Строение вещества элементарные частицы. Химия элементарные частицы


Элементарные частицы

ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ

ЭЛЕМЕНТАРНЫЕ (фундаментальные) ЧАСТИЦЫ

Мельчайшие объекты материи, являющиеся составными элементами атомов вещества, или же объекты, преобразующиеся в эти элементы в процессе взаимодействия друг с другом.

На данном уровне развития научных представлений о строении вещества им отводится роль первичных кирпичиков мироздания. Считается, что все многообразие окружающего нас мира построено из ограниченного числа элементарных частиц.

Элементарные частицы делят на 3 класса:

I – ФОТОН – квант электромагнитного излучения;

II – ЛЕПТОНЫ – электронное (электронное нейтрино, электрон) семейство; мюонное (мюонное нейтрино, мюон) семейство;

III – АДРОНЫ – мезонное (пион, каон, мезон и др.) семейство; барионное (протон, нейтрон, гигерон и т.д.) семейство. В настоящее время известно несколько сотен элементарных частиц и делаются попытки их построения из небольшого числа частиц (кварков).

В химии наиболее значение имеют такие элементарные частицы, как электроны, протоны и нейтроны, из которых образованы атомы химических элементов.

Электрон – первая из открытых элементарных частиц, – носитель наименьшего электрического заряда (кванта электричества q= = 1,6 –10–19 Кл. Масса покоя 9,1–10–31 кг).

АТОМНЫЕ ЧАСТИЦЫ

Атомная частица представляет собой систему взаимодействующих элементарных частиц, состоящую из ядра, образованного протонами и нейтронами, и электронов.

Под атомной частицей понимается не только изолированный атом, но и производные от него: атомный (одноатомный) ион, атомный радикал, атомный ион-радикал, образующиеся вследствие ионизации или возбуждения атома и способные к самостоятельному существованию (определяется временем жизни частицы, которое можно измерить физическими методами) .

ИЗОЛИРОВАННЫЙ АТОМ не имеет заряда, однако он может иметь не спаренные электроны (атомный радикал). АТОМНЫЙ ИОН (К+, S2–) характеризуется наличием положительного или отрицательного заряда и образуется в результате удаления или присоединения электронов к атому.

АТОМНЫЙ РАДИКАЛ (Н, Cl) имеет не спаренные электроны в основном или возбужденном состоянии, а атомный ион– радикал (Cu2+, V2+) – заряд и не спаренные электроны. Атомная частица является низшим, исходным уровнем хим. организации материи. Следующий уровень усложнения часэлектроны) NO 2–, SO42–, молекулярные радикалы или бирадикалы (отсутствует заряд, имеется один или два не спаренных электрона), NO 2, O2, молекулярные ион–радикады (имеется заряд и не спаренные электроны)

 

МОЛЕКУЛЯРНЫЕ ЧАСТИЦЫ

Молекулярная частица представляет собой систему взаимодействующих элементарных частиц, состоящую из атомных ядер и окружающих их внутренних и валентных электронов. Она образуется вследствие взаимодействия атомных частиц. Образование хим. связей между атомными частицами осуществляется валентными электронами.

Молекула может переходить в свободно–радикальное состояние в результате возбуждения (воздействие света, теплоты и т.д.). В редких случаях такое возбуждение приводит к обратному процессу, когда бирадикал вследствие спаривания электронов превращается в молекулу

Понятие молекулы в химии введено в связи с необходимостью отличить от ее атома. Оно должно отражать число атомов, их взаимное расположение и характер связи между ними (т.е. структуру), а также исключать характерные признаки других частиц.

В формулировке понятия молекулы не следует указывать такой признак, как свойства, поскольку они зависят от внешних условий, растворителя, агрегатного состояния.

Кроме того, две полимерных молекулы о высокой, но различной степенью полимеризации могут практически не отличаться по химическим и даже физическим свойствам

 

www.berl.ru

Строение вещества элементарные частицы



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Энтропия по Больцману

где константа k = 1,38×10−23 Дж/К постоянная Больцмана, а Ω — статистический вес состояния, является числом возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние.

6) Предположим, что на N одинаковых микрочастиц приходится G различных состояний, в которых может находиться отдельная микрочастица. Мерой частоты «встреч» микрочастиц может служить отношение N/G. Микрочастицы будут встречаться редко, если выполнено следующее условие: N/G<<1

В этом случае число различных вакантных состояний много больше числа микрочастиц. Подобные коллективы называются невырожденными, условие N/G<<1 называют условием невырожденности.

Если число состояний G оказывается одного порядка с числом частиц N, то вопрос о том, как заселять состояния — поодиночке или коллективно, становится весьма актуальным. В этом случае специфика фермионов и бозонов проявляется в полной мере, оказывая значительное влияние на свойства коллектива как целого. Такие колективы называются вырожденными. Вырожденные коллективы могут образовываться только квантово-механическими объектами.

Распределение Максвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию, также применимо для электронных процессов переноса ик множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

 

Так, мы получили - функцию плотности вероятности, которая и называется распределением Максвелла.

наиболее вероятная скорость, — вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

 

Среднеарифметическую:

 

7) Барометрическая формула. Она позволяет вычислить атмосферное давление в зависимости от высоты или, измеряя давление, найти высотуЕсли температура не зависит от высоты, то давление газа меняется с высотой по закону:,

 

где — высота, — молярная газовая постоянная, — постоянная Больцмана, — ускорение свободного падения вблизи поверхности земли, — молярная масса газа, — масса одной молекулы, — абсолютная температура.

Поделив барометрическую формулу на , с учетом уравнения состояния идеального газа, получим распределение Больцмана — зависимость концентрации молекул от потенциальной энергии: ,где — потенциальная энергия молекулы. В однородном поле силы тяжести .

График температур сканировать

 

 

Строение вещества элементарные частицы

1)Элементарные частицы – частицы, которые на современном уровне развития физики нельзя представить как совокупность более маленьких частиц.

Источники элементарных частиц: 1) радиоактивные элементы, которые произвольно выбрасывают элементарные частицы; 2) взаимодействие между собой; 3)космические лучи.

Излучение, приходящее непосредственно из космоса, называют первичным космическим излучением. Первичное излучение представляет собой поток элемен­тарных частиц высокой энергии, причем более 90% из них составляют протоны с энергией примерно 109—1013 эВ, около 7%—a-частицы и лишь небольшая доля (около 1%) приходится на ядра более тяжелых элементов (Z>20).

С приближением к Земле интенсивность космического излучения возрастает, что свидетельствует о появлении вторичного космического излучения, которое образуется в результате взаимодействия первичного космического излучения с ядрами атомов земной атмосферы. Во вторичном космическом излучении встречаются практически все известные элементарные частицы.

Биологическое воздействие частиц высоких энергий В результате прямого и косвенного воздействия излучений не только изменяются сами молекулы живого вещества, но в значительной степени меняется также скорость реакций, протекающих с участием ферментов, и наряду с этим нарушается и подвижное равновесие. Указанные явления наблюдаются в живых клетках и тканях.

Античастица — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками некоторых характеристик взаимодействия. Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица.

Классификация элементарных частиц:1) фотоны; эта группа состоит всего лишь из одной частицы - фотона - кванта электромагнитного излучения;2) лептоны ,участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон, таон, а также соответствующие им античастицы. Название лeптонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. 3) aдроны. Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон и другие.

Четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное. 1)Сильное, или ядерное, взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

2)Электромагнитное взаимодействие характеризуется как взаимодействие, в основе которого лежит связь с электромагнитным полем. Оно характерно для всех элементарных частиц, за исключением нейтрино, антинейтрино и фотона.

3)Слабое взаимодействие - наиболее медленное из всех взаимодействий, протекающих в микромире. Оно ответственно за взаимодействие частиц, происходящих с участием нейтрино или антинейтрино (например, b-распад, m-распад), а также за безнейтринные процессы распада.

4)Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно.

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

2) Опыты Резерфорда

 

 

Экспериментальная установка позволяла наблюдать α-частицы, отклоненные золотой фольгой под разными углами.

В опыте обнаружилось, что некоторые α-частицы отклонялись на большие углы, до 180º.Резерфорд понял, что такое отклонение возможно лишь при встрече с положительно заряженной частицей большей массы. А малая вероятность отклонения на большие углы говорила, что эта положительная частица имеет малые размеры, порядка 10–14 м. Электроны, по мнению Резерфорда, движутся вокруг ядра

Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, вращаются под действием кулоновских сил со стороны ядра электроны. Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Согласно ядерной модели почти вся масса атома сосредоточена в положительно заряженном ядре, занимающем лишь ничтожную часть

Дефект масс является мерой энергии связи атомного ядра. Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:

 

 

где Мя – масса ядра ( из справочника)Z – число протонов в ядреmp – масса покоя свободного протона (из справочника)N – число нейтронов в ядреmn – масса покоя свободного нейтрона (из справочника)

Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.

Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны.

Е св = - А

По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.Удельная энергия связи - это энергия связи, приходящаяся на один нуклон.

 

Размеры ядер атомов, определенные по формуле (1.4), есть величины порядка 10-13см. Отсюда первое свойство ядерных сил - короткодействие: ядерные силы действуют только на малых расстояниях, сравнимых по порядку величины с размерами самих нуклонов.

Из короткодействия ядерных сил вытекает второе их свойс­тво, кратко именуемое насыщением. Это означает, что любой нуклон ядра взаимодействует не со всеми другими нуклонами, а лишь с ограниченным числом нуклонов, являющихся его непосредственными соседями.

Третье свойство ядерных сил - их равнодействие. Поскольку предполагается, что силы взаимодействия между нуклонами обоих видов являются силами одной природы, то тем самым постулируется, что на равных расстояниях по­рядка 10-13 см два протона, два нейтрона или протон с нейтроном взаимо­действуют одинаково.

 

3)Явление самопроизвольного испускания химическими элементами излучения, обладающего значительной проникающей способностью и ионизирующими свойствами, получило название радиоактивности. Элементы, испускающие такое излучение называются радиоактивными.Радиоактивными являются все элементы с порядковым номером более 83 в таблице Менделеева.(Z >83).

Состав радиоактивного излученияИзлучение радиоактивных веществ состоит из трех компонент: a-,b-,g-излучения. Обнаружено, что a-,b-лучи отклоняются магнитным полем в разные стороны, а g-лучи не отклоняются совсем.

a лучи -поток полностью ионизированных атомов гелия;

b лучи- поток быстрых электронов

g лучи - жесткое электромагнитное излучение (l=10-2 нм)

Радиоактивный распад— спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце.

 

 

Дифференциальное уравнение означает, что число распадов , произошедшее за короткий интервал времени , пропорционально числу атомов в образце .

— постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с−1.

Решение этого дифференциального уравнения имеет вид:

,

где — начальное число атомов, то есть число атомов для .

Таким образом, число радиоактивных атомов уменьшается со временем по экспоненциальному закону. Скорость распада, то есть число распадов в единицу времени, также падает экспоненциально.

 

,

где — скорость распада в начальный момент времени .

Период полураспада, промежуток времени, в течение которого количество радиоактивных ядер в среднем уменьшается вдвое.

, где λ - постоянная радиоактивного распада, N – число не распавшихся ядер.

Величина t = 1/ λ называется средним временем жизни радиоактивных ядер.. T1/2 связан с λ и t соотношением:

4)Типы радиоактивных распадов

При реакциях самопроизвольного радиоактивного распада выполняются следующие законы сохранения:

-сохранение зарядового числа
-сохранение массового числа
-сохранение энергии

α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).

.

Пример:

.

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.

 

β-распад (точнее, бета-минус-распад, β − -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.

β-распад является внутринуклонным процессом. При этом распаде происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

Правило смещения Содди для β − -распада:

Пример:

После β − -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

 

К-захват, вид радиоактивного распада атомных ядер, при котором ядро захватывает электрон с К-оболочки атомаи одновременно испускает нейтрино.

Электронный захват— один из видов β -распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино.

Общая формула электронного захвата

 

5) Деление тяжелых ядер. В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Поэтому ядра-осколки испытывают серию последовательных β–-распадов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

Цепная ядерная реакция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.

Для получения стационарной цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон, идущий на деление второго тяжелого ядра.

Ядерный реактор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Цепная ядерная реакция в реакторе может осуществляться только при определенном количестве делящихся ядер, которые могут делиться при любой энергии нейтронов

В активной зоне, окруженной отражателем, возвращающим часть нейронов в активную зону за счет многократного рассеяния, реактора наряду с ядерным топливом должна находиться значительная масса замедлителя-вещества.

Атомная бомба— совокупность ядерных боеприпасов, средств их доставки к цели и средств управления; относится к оружию массового поражения наряду с биологическим и химическим оружием.

В основу атомной бомбы положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза.

 

6)Термоядерная реакция— разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра.

Проблемы использования термоядерного синтеза:- утечка трития (одного из изотопов водорода, участвующего в реакции)- радиация нейтронами.

Преимущества использования термоядерного синтеза для получения энергии:

- энергия, выделившаяся на один нуклон в результате термоядерной реакции, значительно превышает энергию, выделившуюся на один нуклон в результате деления ядер урана;

- топливом для термоядерных установок является тяжелый водород (нерадиоактивный изотоп водорода), а его много в морской воде;

- нет опасного радиоактивного излучения, и в процессе реакции не будет радиоактивных отходов.

Токамак (тороидальная камера с магнитными катушками) — тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза.

 

7) Бета-распад нейтрона — спонтанное превращение свободного нейтрона в протон с излучением β-частицы (электрона) и электронного антинейтрино.

Поскольку нейтрон тяжелее протона, то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино (а также, возможно, гамма-квант). Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия.

Закон сохранения барионного заряда - при всех взаимодействиях должен сохраняться полный барионный заряд замкнутой системы. Закон - результат процесса сильных взаимодействий.

 

 

Лептонный заряд системы частиц равен алгебраической сумме лептонных зарядов входящих в неё частиц .

 

8) МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Счетчик Гейгера- служит для подсчета количества радиоактивных частиц ( в основном электронов).

Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод).При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.Достоинства:1)компактность 2) эффективность3)быстродействие 4) высокая точность Где используется:- регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д.- на объектах хранения радиоактивных материалов или с работающими ядерными реакторами- при поиске залежей радиоактивной руды (U, Th)Камера Вильсона- служит для наблюдения и фотографирования следов от пролета частиц (треков).

Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии: при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар.По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы.

По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы.

 

Пузырьковая камера - вариант камеры ВильсонаПри резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние. При быстром движении частицы по следу образуются пузырьки пара , т.е. жидкость закипает, виден трек.

Преимущества перед камерой Вильсона:- большая плотность среды, следовательно короткие треки- частицы застревают в камере и можно проводить дальнейшее наблюдение частиц - большее быстродействие.

 

21) Уравнение Шредингера для частицы вблизи потенциального барьера прямоугольной формы.

Стационарные уравнения Шредингера имеют вид:

 

где , – волновые вектора, – постоянная Планка. Решение волнового уравнения при ищем в виде суммы падающей и отражённой волны , а решение при – в виде прошедшей волны . решение в области потенциального барьера есть . Постоянные коэффициенты a, b, c, d определяются из условия непрерывности волновой функции и в точках и .

В качестве коэффициента прозрачности барьера D естественно взять отношение плотности потока вероятности прошедших частиц к плотности потока вероятности частиц, падающих на барьер. В рассматриваемом случае, это отношение будет просто равно квадрату модуля волновой функции, оказавшейся за барьером, так как амплитуда падающей волны принята за единицу, а волновые вектора падающей и прошедшей волны совпадают.

Как видно из полученного соотношения, вероятность прохождения тем больше, чем уже барьер (меньше L) и чем он ниже (меньше разность U - E).

 

22) Квантовый гармонический осциллятор - это колеблющаяся по гармоническому закону микрочастица, находящаяся в связанном состоянии внутри атома или ядра.

потенциальная энергия .

megapredmet.ru

Новые элементарные частицы.

 

В последние десятилетия термин «элементарная частица» обычно используется применительно к неделимым фрагментам атома. До работы Дирака считалось, что существуют только три элементарные частицы-электрон, протон и нейтрон. Вскоре после того, как Дирак предсказал существование античастиц, другие физики выдвинули предположение о существовании новых элементарных частиц. Наиболее известен из них Хидэки Юкава, который в 1935 г. предположил существование мезона. Эта элементарная частица необходима для удержания вместе протонов и нейтронов в атомном ядре. В 1938 г. он предсказал также существование так называемых «промежуточных векторных бозонов». С этих пор было предсказано несколько сотен элементарных частиц. Некоторые из них были обнаружены при бомбардировке вещества частицами, обладающими огромными скоростями. Для этой цели используются ускорители частиц с высокой энергией.

Античастицы обладают такой же массой, как и соответствующие обычные частицы (если у них есть масса), но электрическим зарядом противоположного знака. Например, позитрон является античастицей по отношению к электрону. Он имеет положительный заряд. Антипротон имеет отрицательный электрический заряд.

В настоящее время истинно фундаментальными, или элементарными, частицами считаются кварки и лептоны. Кварки* были предсказаны Мюреем Гелл-Маном и независимо Джорджем Цвейгом в 1964 г. В настоящее время предполагается существование по меньшей мере 18 типов кварков. Они включают 6-кварк и 6-антикварк, «очарованный» кварк и кварк, обладающий «ароматом» (особым квантовым числом), который называется «красотой». «Красивый» ароматный мезон состоит из двух кварков, один из которых обладает свойством «красоты». Некоторые кварки обладают «явной красотой», а другие-«скрытой красотой»! «Ароматы» кварков определяют их квантовые свойства (см. следующий раздел). Фундаментальными частицами кроме кварков считаются еще шесть лептонов и десяток других частиц, которые являются переносчиками различных взаимодействий. Лептоны относятся к тому же классу неделимых частиц, к которому принадлежит электрон. До последнего времени не существовало прямых экспериментальных доказательств существования фундаментальности таких частиц, как кварки и лептоны. Их существование было предсказано на основании гипотетических моделей атома, предложенных физиками-теоретиками.

Считается, что протон состоит из набора трех кварков, а нейтрон-из другого набора трех кварков. Эти кварки удерживаются вместе сильным взаимодействием, которое носит название «цветового взаимодействия» (хотя такая характеристика не имеет ничего общего с обычным понятием о цвете). «Цветовое взаимодействие» обусловлено глюонами. Различные типы глюонов имеют различные «цвета». Когда кварки связываются друг с другом, образуя протон либо нейтрон, между кварками происходит обмен глюонами. Теория «цветового взаимодействия» называется квантовой хромодинамикой (КХД). Квантовая хромодинамика во многих отношениях сопоставима с фундаментальной теорией электромагнитных взаимодействий, начало которой положили работы Дирака в конце 20-х годов XX в. и которая развивалась последующие 20 лет. В этой теории силы взаимодействия между двумя электрически заряженными частицами объясняются обменом фотонами. Она называется квантовой электродинамикой (КЭД).

Однако обнаружение так называемых W- и Z-частиц женевскими учеными в 1983 г. поставило под сомнение обе теории**. На рис. 1.5 в схематическом виде изображено современное состояние знаний, касающихся строения атома.

Изучение элементарных частиц до последнего времени почти полностью было областью интересов физиков-теоретиков и специалистов в области высоких энергий. Однако в последние годы химики стали изучать эффекты, к которым приводит бомбардировка молекул мюонами и другими элементарными частицами. И все же большинство современных химиков по-прежнему твердо полагаются только на три фундаментальные частицы-электрон, протон и нейтрон, которые позволяют им объяснять природу химических реакций и свойств химических систем.

Слово «кварк обязано своим происхождением рассказу Джеймса Джойса «Поминки Финнегана», где посетитель кабачка произносит фразу: «Три кварка для мистера Марка!», подразумевая под «тремя кварками» три капли.

 

Рис. 1.5. Общие сведения о современном состоянии знаний, касающихся строения атома, силовых полей и элементарных частиц вещества, а-строение атома; б-четыре типа сил взаимодействий; в-частицы и переносчики взаимодействий.

 

Оглавление:

 

 

www.himikatus.ru

Элементарные частицы

После того, как физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых элементарных частиц, идея поиска таких фундаментальных частиц заняла главное место в их исследованиях. По-прежнему мысль ученых была направлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных частиц, названных элементарными.

Исторически электрон был первой элементарной частицей, открытой еще в конце прошлого века английским физиком Дж.Дж. Томсоном (1856–1940). В 1919 г. Резерфорд, бомбардируя атомы альфа-частицами, открыл протоны. В начале века был открыт фотон – квант света, в 1932 г. – нейтрон, а спустя четыре года – первая античастица – позитрон, которая по массе равна электрону, но имеет положительный заряд. В дальнейшем при исследовании космических лучей были обнаружены многие другие элементарные частицы. С начала 50-х годов основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. С их помощью удалось открыть ряд античастиц, например антипротон. В 1970 и 1980-х годах поток открытий новых элементарных частиц усилился, и ученые заговорили о семействах элементарных частиц, которые стали называть "странными", "очарованными" и "красивыми".

        1. Характеристики элементарных частиц

Общими для всех элементарных частиц характеристиками являютсямасса, время жизни, электрический заряд, спин и др. Одна из характерных особенностей элементарных частиц состоит том, что они имеют крайне незначительные массы и размеры. Например, масса такой характерной частицы как протон равна 1,610–24г, а размеры порядка 10–16см.

В зависимости от времени жизни, частицы делятся на стабильные (электрон, протон, фотон и нейтрино), квазистабильные (распадающиеся при электромагнитном и слабом взаимодействии, время их жизни порядка 10–20сек) и резонансы (частицы, распадающиеся за счет сильного взаимодействия, типичное время жизни 10–22 10–24 сек).

Элементарные частицы – это маленькие вращающиеся волчки. Они характеризуются моментом импульсом, связанным с вращением частицы и называемым спиновым моментом или спином. Спин может принимать целые или полуцелые значения. Частицы с полуцелым спином называются фермионами, с целым спином –бозонами.

У многих частиц существуют двойники в виде античастицс теми же массой, временем жизни, спином, но отличающиеся знаками зарядов, например, электрон-позитрон, протон-антипротон. Существование античастиц было впервые предсказано в 1928 г. английским физиком П. Дираком на основе решения релятивистского уравнения движения для электрона.

        1. Классификация элементарных частиц

Элементарными частицаминазывают фундаментальные, т.е. неделимые, количества вещества или энергии. В соответствии с этим определением проводят наиболее общую классификацию элементарных частиц, которая выделяет элементарные частицы, представляющие собойструктурные единицы вещества, и элементарные частицы, передающиефундаментальные взаимодействияи являющиеся квантами соответствующих полей.

Элементарные частицы вещества являются фермионами(т.е. имеют полуцелый спин) и бывают двух типов:кварки– основной строительный материал таких частиц, как протоны, нейтроны и –лептоны, к числу которых относятся электроны, мюоны и нейтрино.

Элементарные частицы, передающие взаимодействие, являются бозонами(обладают целым спином) и бывают четырех типов:гравитоны, передающие гравитационное взаимодействие,фотоны, передающие электромагнитное взаимодействие,слабые бозоны– для слабого взаимодействия иглюоны– для сильного ядерного взаимодействия.

Согласно современным представлениям, кварки являются теми самыми "кирпичиками", из которых построена материя.

Сейчас их считают “самыми элементарными” в том смысле, что из них могут быть “построены” все сильно взаимодействующие частицы. С позиции теории кварков уровень элементарных частиц – это область объектов, состоящих из кварков и антикварков. При этом хотя последние и считаются на данном уровне познания простейшими, самыми элементарными из известных частиц, сами они обладают сложными свойствами – зарядом, “очарованием”, “цветом” и другими необычными свойствами. Как в химии не обойтись без понятий “атом” и “молекула”, так и физика элементарных частиц не может обойтись без понятия “кварк”.

Считают, что при Большом Взрыве возникли не атомы и атомные частицы, а именно первичный строительный материал – кварки, из которого потом сформировались другие частицы. Большая заслуга в открытии кварков принадлежит американскому ученому Гелл Манну, который впервые предположил, что протоны, нейтроны, мезоны построены из кварков. Теория кварков наилучшим образом объясняет поведение атомов. Известно несколько разновидностей кварков, называемых "ароматами": u-кварк,d-кварк, странный кварк, очарованный кварк,b-кварк,t-кварк. Кварк каждого "аромата" может быть еще трех "цветов" – красного, зеленого, синего. Протон и нейтрон состоят из трех кварков различных цветов. В протоне содержатся дваu-кварка и одинd-кварк, в нейтроне – дваd-кварка и одинu-кварк.

Таким образом, согласно современным воззрениям, ни атомы, ни находящиеся внутри атомов протоны с нейтронами не являются неделимыми.

Обратимся еще раз к атомистической концепции, но уже с позиций наших знаний об элементарных частицах. Атомистическая концепция опирается на представление о дискретном строении материи, согласно которому объяснение свойств физического тела можно, в конечном счете, свести к свойствам составляющих его мельчайших частиц, которые на определенном этапе познания считаются неделимыми. Исторически такими частицами сначала признавались атомы, затем элементарные частицы и кварки. Трудности, которые возникают при таком подходе с общей мировоззренческой точки зрения связаны, во-первых, с абсолютизацией аспекта дискретности, неограниченной делимости материи, во-вторых, с полной редукцией сложного к простому, при которой не учитываются качественные различия между ними.

Поэтому с философской точки зрения особенно интересными представляются новые подходы к изучению строения материи, которые основываются не на поиске последних, неделимых ее части, а скорее на выявлении их внутренних связей для объяснения целостных свойств других материальных образований. По-видимому, на объединении концепции дискретности и атомизма, с одной стороны, и непрерывности, целостности и системного подхода, с другой стороны, следует ждать дальнейшего прогресса в познании фундаментальных физических свойств материи. Во всяком случае редукционистская тенденция, связанная с попытками сведения свойств и закономерностей разнообразных сложных объектов и явлений к простым свойствам составляющих их элементов, в настоящее время наталкивается на серьезные трудности, преодоление которых возможно путем поиска альтернативных путей исследования.

studfiles.net

Элементарные частицы, составляющие атом - Справочник химика 21

    Электрон - элементарная отрицательная частица, носитель наименьшей массы и наименьшего электрического заряда. Заряд электрона (элементарный электрический заряд) равен -1,602-Ю Кл, масса электрона составляет 9,110-10" кг. Число электронов в атомах равно числу положительного заряда ядра, выраженному в единицах элементарного заряда, поэтому атом в целом электронейтрален. При удалении от атома одного или нескольких электронов образуется положительный ион, при присоединении к атому электрона - отрицательный ион. [c.7]     Современная химия установила, что и атом не предел делимости. Атом сам состоит из еще более простых частиц. Эти элементарные частицы названы протонами, нейтронами, электронами. Протоны и нейтроны составляют ядро атома, а вокруг ядра вращаются электроны. Например, атом водорода состоит из одного протона, вокруг которого двигается один электрон. Атом второго элемента из периодической системы элементов Д. И. Менделеева — гелия, сложнее, атом его состоит из 2 протонов, из 2 нейтронов и из 2 электронов. Атом углерода еще сложней. Ядро его состоит из 6 протонов,, из 6 нейтронов, вокруг ядра двигается 6 электронов. Последний элемент таблицы уран имеет очень сложное строение. Ядро его состоит из 92 протонов, 146 нейтронов и двигающихся вокруг ядра 92 электронов. [c.12]

    Так, из рисунков V-5 и V-6 видно, что атом углерода в элементарной ячейке алмаза окружен четырьмя атомами С, расположенными по вершинам тетраэдра. Следовательно, координационное число, характерное для кристаллов алмаза, равно четырем. Далее, из рисунка V-7 явствует, что антураж каждого атома С в ячейке графита составляет 3 частицы, что соответствует координационному числу 3. [c.126]

    В зависимости от того, является ли спин частицы целым или полу-целым, частицы делятся на два класса частицы с целым или нулевым спином носят название частиц Бозе или бозонов частицы с полуцелым спином носят название частиц Ферми или фермионов. К бозонам из элементарных частиц относятся фотон (з 1), я- и К-мезоны (я 0). Большинство элементарных частиц (электроны, протоны, нейтроны, позитроны и др.) имеет спин 5 = 1/2 является фермиоиами. Принадлежность сложной частицы к тому или другому классу определяется ее суммарным спином. Если сложная частица составлена из четного числа фермионов (Н, Нг, Не), она является бозоном сложная частица является фермионом, если суммарное число фермионов в ней нечетное (атом дейтерия, молекула НО). [c.158]

    Если температура жидкости выше таковой в паре (трубке), то начнется перенос жидкости через перегородку, то есть осуществится своеобразный тепловой насос. Расчет показывает, что в случае воды при разнице температур в 100°С, процесс подъема прекратится, когда высота жидкости в трубке будет составлять несколько километров. Таким образом, этот тепловой насос способен поднимать жидкость на высоту, измеряемую в километрах. При термодиффузии градиент температуры вызывает перенос примеси. Величина такого переноса должна зависеть от механизма его осуществления. В простой теории Виртца, описывающей вакансионный механизм переноса, учитывается, что при совершении элементарного акта блуждания атом пёреходит от одной температуры к другой. При этом энергию, необходимую для преодоления активационного барьера, частица получает в начале блуждания и отдает в конце. Подобный переход возможен, если вакансия образуется в конце пути и исчезает в начале. В итоге тепло переноса должно составлять разницу энергий, равную высоте потенциального барьера и энергия образования вакансии. [c.539]

    Примером феноменологического понятия докварковой эры могут служить элементарные частицы, о которых мы кратко рассказали в гл. 5. Последняя фраза несет на себе дополнительную нагрузку, демонстрируя следующий факт феноменологические понятия не составляют застывшее множество. Перемещение границы познания превращает их в объяснимые, в выводимые. Вспомним молекулу, атом, атомное ядро. Величины, характеризующие элементарные частицы (их заряды, массы, спины), также являются примерами феноменологических величин. [c.223]

    Менделеев исходил из того, что в атоме— мельчайшей частице материи, обладающей свойствами того или иного элемента и постоянной, характерной, только ему присущей массой, ярче и яснее всего долиша проявиться функциональная связь между явлениями, совершенно различными по своей природе. Масса и все, что относится к ее определению, истолкованию и изучению, составляет предмет физики и, в частности, механики. Валентность, химическая активность и другие свойства элементов изучаются химией. И, следовательно, атом является той элементарной частицей природы, тем объектом исследования, где одновременно выступают явления физические и химические. В то же время в атоме они выступают в наиболее чистом виде, не затемненном никакими побочными обстоятельствамв. В большой совокупности атомов, в окружающих нас телах мы имеем дело со многими физическими свойствами— твердостью, вязкостью, блеском и т. д. Химические свойства тел, представляющих гигантское скопление атомов, зависят от их агрегатного состояния и многого другого. Поэтому при сопоставлении химических и физических свойств реальных, природных тел не легко установить существующую между ними связь. А в атоме эта связь должна выступить совершенно четко. Известно, что дляуспе- [c.28]

    НИИ кинетич. энергия относит, движения частиц остается постоянной, но меняется направление их движения, т. е. поток И.И. рассеивается при неупругих процессах кинетич. энергия И.И. мсходуется на ионизацию и возбуждение частиц среды. Для потока электронов характерны упругое рассеяние иа ядрах атомов среды и неупругие процессы-ионизация и возбуждение атомов и молекул при взаимод. с их электронньини оболочками (ионизационные потери) и генерация тормозного излучения при взаимод. с атомными ядрами (радиационные потери). Если энергия электронов не превышает 10 МэВ, во всех средах преобладают иоиизац. потери. Для потока ускоренных иоиов ионизац. потери доминируют при всех энергиях. Энергия, передаваемая заряженной частицей данному в-ву на единице длины ее пути, наз. тормозной способностью в-ва = dE dl ( -энергия, теряемая частицей при прохождении элементарного пути dl). Значение снижается с увеличением энергии заряженных частиц и растет с повышением ат. номера элемента, из к-рого состоит в-во среды. Глубина проникновения заряженных частиц в в-во характеризуется пробегом Л в воде ддя ионов Не с энергией 5,3 МэВ Д составляет 39 мкм, для электронов с энергией 5 МэВ-2,5 см. [c.254]

    Представляет большой интерес получение двуокиси серы для производства серной кислоты обжигом непосредственно серной руды без предварительного извлечения из нее элементарной серы. Особенно ценен такой путь в применении к серным руда м, из которых извлечение серы экономически нецелесообразно. Обжиг таких руд проводится в кипящем слое (см. стр.59). Приводим данные о процессе обжига серной руды, представляющей собой горные породы — андезит и туф, пропитанные серой. Содержание элементарной серы в руде — около 25%. Руду сушат, измельчают в стержневых шаровых мельницах (стр. 49) до частиц размером менее 2 мм и подают в печь (рис. 116). Она представляет собой цилиндр с конической крышкой и дном, сваренными из стальных листов. Внутри она футерована огнеупорным и теплоизоляционным кирпичо.м. Высота печи — около 7,5 м. Руда поступает в аппарат сверху, воздух снизу — через плиту с отверстиями, служащую для равномерного распределения воздуха. На 1 кг руды поступает около 1,5 куб. м воздуха с давлением (избыточным сверх атмосферного) около 0,2 ат. Вновь поступающие в печь частицы быстро перемешиваются с материалом, находящимся в кипящем слое , температура в котором одинакова по всей его высоте и колеблется в узких пределах около 650°. Высота кипящего слоя в описываемом аппарате составляет около 1,5 м. Время пребывания обжигаемого материала в печи в среднем около 5 часов. Огарок частично высыпается через выходное отверстие в корпусе аппарата, частично уносится током газа. При 75%-иом избытке воздуха получается газ с содержанием 12% 502. [c.137]

chem21.info

Элементарные частицы.

Химия Элементарные частицы.

просмотров - 217

1.Виды взаимодействия и классы элементарных частиц.

Дать строгое определœение понятия элементарной частицы оказывается затруднительным. В качестве первого приближения можно понимать под элементарными частицами такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединœение других частиц.

Известны четыре вида взаимодействия между элементарными частицами: сильное, электромагнитное, слабое и гравитационное (перечислены в порядке убывания интенсивности). Интенсивность взаимодействия принято характеризовать с помощью, так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

Сильное взаимодействие. Константа сильного взаимодействия имеет величину порядка 10. Наибольшее расстояние, на котором проявляется сильное взаимодействие (радиус действия r), составляет примерно 10-13см. Именно данный вид взаимодействия обеспечивает связь нуклонов в ядрах атомов и обеспечивает исключительную прочность этих образований, лежащую в основе стабильности веществ в земных условиях. Вследствие своей большой величины сильное взаимодействие является источником огромной энергии. В частности, за счет него выделяется большая часть тепла внутри Солнца.

Электромагнитное взаимодействие. Константа взаимодействия равна постоянной тонкой структуры 1/137≈10-2. Радиус действия не ограничен (r = ∞). Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулы и кристаллы. Оно лежит в основе почти всœех окружающих нас явлений – физических, химических и биологических. В электромагнитном взаимодействии принимают участие частицы, обладающие электрическим зарядом.

Слабое взаимодействие. Константа слабого взаимодействия равна по порядку величины 10-14. Слабое взаимодействие, как и сильное, является короткодействующим. Слабое взаимодействие по своему характеру является деструктивным в том смысле, что оно не способно создавать устойчивые состояния вещества, как к примеру, сила тяготения поддерживает существование Солнечной системы или электромагнитное взаимодействие обеспечивает стабильность атома. Другими словами, основное предназначение слабого взаимодействия регулировать время жизни неживой материи. Это взаимодействие ответственно за всœе виды β-распада ядер( включая e-захват), за многие распады элементарных частиц, а также за всœе процессы взаимодействия нейтрино с веществом.

Гравитационное взаимодействие. Константа взаимодействия имеет значение порядка 10-39. Радиус действия неограничен (r = ∞). Гравитационное взаимодействие является универсальным и ему подвержены всœе элементарные частицы. Хотя оно и является самым слабым из всœех, оно обладает кумулятивным эффектом. Так притяжение двух тел есть сумма притяжений между составляющими их массами. Поскольку в микромире вклад гравитационного взаимодействия мал по сравнению с другими взаимодействиями, оно не приводит к измеримым эффектам на субатомном уровне. При этом на макроскопическом уровне гравитационное взаимодействие является доминирующим: оно соединяет воедино части земного шара, объединяет Солнце и планеты в Солнечную систему и управляет эволюцией всœей Вселœенной.

Элементарные частицы обычно подразделяют на четыре класса (предположительно существует еще один класс частиц – гравитоны (кванты гравитационного поля). Экспериментально эти частицы пока не обнаружены.)

К первому классу относится только одна частица – фотон. Второй класс образуют лептоны. Третий класс – мезоны. Четвёртый класс – барионы.

Мезоны и барионы часто объединяют в один класс сильно взаимодействующих частиц, называемых адронами(греческое слово «адрос» означает крупный, массивный).

Перечисленные классы можно охарактеризовать следующим образом.

1. Фотоны, γ (кванты электромагнитного поля), принимают участие в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

2. Лептоны получили свое название от греческого слова «лептос», ĸᴏᴛᴏᴩᴏᴇ означает «легкий». К их числу относятся частицы, не обладающие сильным взаимодействием: электроны (e-, e+), мюоны (μ-,μ+), тяжелый тау-лептон (τ-,τ+), а также электронные нейтрино ( е, е), мюонные нейтрино ( μ, m) и тау-нейтрино ( τ, τ). Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами, Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (мюоны и электроны), обладают также электромагнитным взаимодействием.

3. Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемое барионного заряда, К их числу принадлежат π-мезоны, или пионы (π+,π-,π0), К-мезоны, или каоны (К+, К-, К0, 0), и эта-мезон (h). В отличие от лептонов мезоны обладают не только слабым (и, если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами, Спин всœех мезонов равен нулю, так что они являются бозонами.

4. Барионы – нуклоны (p,n) и нестабильные частицы с массой, большей массы нуклонов, получившие название гиперонов(L,S+,S-,S0,X0,X-,W-). Все барионы обладают сильным взаимодействием и, следовательно, активно взаимодействуют с атомными ядрами. Спин всœех барионов равен ½, так что барионы являются фермионами. За исключением протона, всœе барионы нестабильны, При распаде бариона наряду с другими частицами обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда.

Кроме перечисленных выше частиц, обнаружено большое число сильно взаимодействующих короткоживущих частиц, которые получили название резонансов. Эти частицы представляют собой резонансные состояния, образованные двумя или большим числом элементарных частиц. Время жизни резонансов составляет всœего 10-23- 10-22 с.

Из всœей известной совокупности элементарных частиц абсолютно стабильны, как говорит нам современный эксперимент, только одиннадцать частиц: три нейтрино ( е, μ, τ), три антинœейтрино ( е, μ, τ), фотон, электрон, позитрон, протон и антипротон. Остальные частицы нестабильны.

Читайте также

  • - Элементарные частицы

    ЛЕКЦИЯ 9. Под элементарными частицами можно понимать такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединения других частиц. Чтобы объяснить свойства и поведение элементарных частиц, их приходится... [читать подробенее]

  • - Элементарные частицы

    6. Из окружающего пространства на Землю падает поток космического излучения. Первичные космические лучи состоят из протонов (90% ), a-частиц (9%) и более тяжелых ядер (1%). На уровне моря наблюдается вторичное космическое излучение: мягкая компонента, состоящая из электронов и... [читать подробенее]

  • - Черные дыры и элементарные частицы

    С первого взгляда трудно себе представить два более разобщенных понятия, чем черные дыры и элементарные частицы. Обычно мы представляем себе черные дыры самыми ненасытными из небесных тел, а элементарные частицы — самыми незаметными частицами материи. Однако... [читать подробенее]

  • - Элементарные частицы

    Комплексная система управления качеством ТО и ремонта автомобилей (КСУКТОРА) Лекция № 14 Принципиально новым в организации работы по повышению ка­чества ТО и ремонта автомобилей является переход к взаимосвязан­ному и целенаправленному комплексу постоянно... [читать подробенее]

  • - Элементарные частицы. Происхождение Вселенной

    Согласно исследованиям, проведенным со спутников, пространство пронизано микроволновым излучением. Это микроволновое излучение является «наследством» от более ранних стадий существования нашей Вселенной. К началу 1930-х гг. было известно, что большинство звезд состоит... [читать подробенее]

  • - Лекция № 15 Элементарные частицы. Лептоны, адроны, кварки. Электромагнитное, сильное, слабое, гравитационное взаимодействие

    Лекция № 14 Атомное ядро и элементарные частицы. Ядерные силы. Модели ядра. Ядерные реакции. Цепная реакция деления После достижения устойчивого состояния выходное напряжение ОУ Uвых =KUUд =KU(Uвх - Uвых). Решив это уравнение относительно Uвых, получим: K=Uвых /Uвх =KU/(1 + KU) (1) ... [читать подробенее]

  • - Элементарные частицы и связи в веществах

    Получение экспериментальной информации об одних физических величинах, описывающих микрочастицу, неизбежно связано с потерей информации о других величинах, дополнительных к первым. Это утверждение, впервые сформулированное датским физиком Н. Бором, называется принципом... [читать подробенее]

  • - Элементарные частицы.

    Электрон, протон и нейтрон уже были открыты. Ученые думали, что эти частицы (и еще фотон) – элементарные «частички мироздания». Античастицы: позитрон – положительно заряженный электрон. Исследовали частицы, прилетающие из космоса, оказалось, что они вращаются неправильно... [читать подробенее]

  • - Элементарные частицы.

    1.Виды взаимодействия и классы элементарных частиц. Дать строгое определение понятия элементарной частицы оказывается затруднительным. В качестве первого приближения можно понимать под элементарными частицами такие микрочастицы, внутреннюю структуру которых на... [читать подробенее]

  • - Элементарные частицы

    Элементарными частицами называются мельчайшие известные в настоящее время частицы материи. В микромире выделяются три уровня, различающиеся характерными масштабами: - первый – молекулярно-атомный ; - второй – ядерный ; - третий – элементарные частицы. Физика... [читать подробенее]

  • oplib.ru

    Элементарные частицы

    Элементарные частицы

    1. Первые представления о строении вещества

    Первые теории о строении вещества были положены еще очень давно. Знаменитый греческий ученый Фалес, живший 2600 лет назад, всю жизнь старался вникнуть в проблему устройства мира. Его знания по геометрии и астрономии поражали. Он умел отслеживать любые лунные и солнечные циклы и даже предсказал полное солнечное затмение. Можно представить, какое волнение и страх оно вызывало две с половиной тысячи лет назад. Но главная заслуга Фалеса в том, что он первым поставил вопрос об исходных элементах мира. Он раньше всех увидел лестницу, ведущую вглубь вещества.

    Фалес считал, что в основе всего сущего лежит вода. Он утверждал, что если воду уплотнить, то получаются твёрдые тела, если воду испарить, то получается воздух, при этом даже Земля плавает в воде, подобно куску дерева

    Эмпедокл из Агригента в своих трудах обосновывал существование четырёх стихий: огня, воздуха, воды и земли; утверждая, что всё остальное состоит из них, а сами стихии объединены силами взаимодействия («возбудители движения»): любовь, объединяющая, и вражда, разделяющая их.

    В V в. до н.э. последователи Фалеса - Левкипп и его ученик Демокрит, высказывали точку зрения, что всё состоит из мельчайших частичек - атомов. Они пропустили ступеньку молекул и сразу шагнули на ступень их составляющих. Таким образом, они придумали атом на две тысячи лет раньше, чем он был открыт как таковой. «Атом» в переводе с греческого означает неделимое. По Левкиппу и Демокриту, атомы - бесконечное число твердых, неделимых далее частичек. Подобно семенам растений, атомы могут быть различной формы - круглой, пирамидальной, плоской и так далее. Поэтому и состоящий из них мир неисчерпаемо богат в своих свойствах и качествах. Цепляясь друг за друга крючками, атомы образуют твердые тела. Атомы воды, наоборот, гладкие и скользкие, поэтому она растекается и не имеет формы. Атомы вязких жидкостей обладают заусеницами, воздух - пустота с редкими носящимися атомами, у огня же острые и колючие атомы.

    К началу XVIII в. атомистическая теория приобретает все большую популярность. К этому времени работами французского химика А. Лавуазье (1743-1794), русского ученого М.В. Ломоносова и английского химика и физика Д. Дальтона (1766-1844) была доказана реальность существования атомов. Большую роль в развитии атомистической теории сыграл и выдающийся русский химик Д.И. Менделеев, разработавший в 1869 г. периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине XIX в. было экспериментально доказано, что электрон является одной из основных частей любого вещества. Эти выводы, а также многочисленные экспериментальные данные привели к тому, что в начале XX в. серьезно встал вопрос о строении атома.

    Первые косвенные подтверждения о сложной структуре атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Изучение свойств этих лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, близкой к скорости света. Особыми приемами удалось определить массу катодных частиц и величину их заряда, выяснить, что они не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов и превращены в электронейтральные частицы: электрический заряд составляет сущность их природы. Эти частицы, получившие название электронов, были открыты в 1897 г. английским физиком Дж. Томсоном. Положительно заряженных частиц внутри атома модель атома Томсона не предполагала. Но как же тогда объяснить испускание положительно заряженных альфа-частиц радиоактивными веществами? Модель атома Томсона не давала ответа и на некоторые другие вопросы.

    В 1911 г. английским физиком Э. Резерфордом при исследовании движения альфа-частиц в газах и других веществах была обнаружена положительно заряженная часть атома. Дальнейшие более тщательные исследования показали, что при прохождении пучка параллельных лучей сквозь слои газа или тонкую металлическую пластинку выходят уже не параллельные лучи, а несколько расходящиеся: происходит рассеяние альфа-частиц, т.е. отклонение их от первоначального пути. Углы отклонения невелики, но всегда имеется небольшое число частиц (примерно одна из нескольких тысяч), которые отклоняются очень сильно. Некоторые частицы отбрасываются назад, как если бы на пути встретилась непроницаемая преграда. Отклонение может происходить при столкновении с положительными частицами, масса которых того же порядка, что и масса альфа-частиц. Исходя из этих соображений, Резерфорд предложил следующую схему строения атома. В центре атома находится ядро, состоящее из положительно заряженных частиц - протонов, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Поскольку масса электрона ничтожна мала, то почти вся масса атома сосредоточена в его ядре.

    В начале 30-х годов нашего столетия современная наука смогла найти более приемлемое описание строения вещества на основе четырех типов элементарных частиц - протонов, нейтронов, электронов и фотонов. Это была чрезвычайно простая и привлекательная схема: с помощью всего лишь четырех типов элементарных частиц, следуя законам квантовой механики, удалось объяснить природу химических элементов, их соединений и испускаемых ими излучений. Добавление пятой частицы - нейтрино - позволило объяснить также процессы радиоактивного распада. Казалось, что названные элементарные частицы являются в конечном счете основными кирпичами мироздания.

    Но эта кажущаяся простота вскоре исчезла. Не прошло и года после открытия нейтрона, как был обнаружен позитрон. В 1936 г. среди продуктов взаимодействия космических лучей с веществом был открыт первый мезон. В 1947 г. был обнаружен мезон второго типа, и вскоре после этого удалось наблюдать мезоны иной природы, а также другие необычные частицы. Эти частицы рождались под действием космических лучей столь редко, что поначалу нельзя было провести детальных исследований их свойств и взаимодействий. Однако после того, как были построены ускорители, позволяющие получать частицы все больших энергий, удалось не только выполнить ряд таких исследований, но и одновременно открыть множество новых частиц.

    В настоящее время известно более сотни различных мезонов и других частиц со странными свойствами. Все это множество частиц принято называть «элементарными частицами». Такой термин не означает, что эти частицы являются кирпичами мироздания в том смысле, что все они образуют атомы: с этой задачей вполне удовлетворительно справляются протоны, нейтроны и электроны. Однако эти частицы возникают в результате основных взаимодействий частиц обычного вещества, и многие из них прямым или косвенным образом участвуют в основных взаимодействиях в обычном веществе. Их массы лежат в пределах от 200 электронных масс до масс, в несколько раз превышающих массу протона. Существование всех этих новых частиц скоротечно, ни одна из них не живет дольше нескольких микросекунд, а многие частицы распадаются примерно через 10 в -20 степени секунд после своего образования (они называются резонансами). Конечные продукты распадов этих частиц - обычные составные части вещества, т.е. протоны, электроны и фотоны, а также нейтрино.

    2. Классификация элементарных частиц

    Все бесчисленное многообразие животного мира, можно разделить на четыре царства: животные, растения, грибы, бактерии. Все процессы, наблюдаемые на сегодняшний день, сводятся всего к четырем видам взаимодействий: гравитационное, электромагнитное, сильное и слабое. Так же можно классифицировать и элементарные частицы.

    Лептоны

    Лептоны - элементарные частицы со спином 1/2, не участвующие в сильных взаимодействиях. Известны три заряженных лептона: электрон, мюон и тау-лептон - и три нейтральных: электронное нейтрино мюонное нейтрино и тау-нейтрино. У каждой из этих частиц имеется соответствующая античастица.

    В электромагнитных взаимодействиях рождаются пары заряженных лептонов. В слабых распадах каждый из заряженных лептонов рождается в сопровождении «своего» антинейтрино. Предполагается, что все лептоны обладают некоторым специфическим квантовым числом - лептонным числом, равным +1, а все антилептоны - лептонным числом, равным -1. Данное число во всех наблюдавшихся до сих пор процессах сохраняется. Процессы, в которых ожидают увидеть не сохранение лептонного числа: распад протона, двойной ?-распад, нейтринные осцилляции. Мюон и т-лептон распадаются за счет слабого взаимодействия. Электрон стабилен.

    Слово «лептон» происходит от греческого слова «лептос» - мелкий, узкий (сравните: лепта - мелкая греческая монета).

    Различают три поколения лептонов: первое поколение: электрон, электронное нейтрино; второе поколение: мюон, мюонное нейтрино; третье поколение: тау-лептон, тау-нейтрино. Плюс соответствующие античастицы. Таким образом, в каждое поколение входит отрицательно заряженный (с зарядом ?1e) лептон, положительно заряженный (с зарядом +1e) антилептон и нейтральные нейтрино и антинейтрино. Все они обладают ненулевой массой, хотя масса нейтрино весьма мала по сравнению с массами других элементарных частиц.

    Адроны

    Адроны - частицы, участвующие в сильных взаимодействиях. Адроны с целым спином называют мезонами, с полуцелым - барионами. Известно несколько сотен адронов.

    Большинство адронов крайне нестабильны - это так называемые резонансы: они распадаются на более легкие адроны посредством сильного взаимодействия. Время жизни резонансов меньше 10 в -21 степени секунды.

    Квазистабильные адроны живут гораздо дольше и распадаются посредством слабого и электромагнитного взаимодействий. Конечными продуктами распада квазистабильных мезонов являются более легкие мезоны, лептоны и фотоны и, если распадающиеся мезоны достаточно тяжелые, то пары барион + антибарион.

    Самые легкие барионы (протон и нейтрон) называют нуклонами. Более тяжелые квазистабильные барионы называют гиперонами. Конечными продуктами распада гиперонов являются лептоны, фотоны, мезоны и обязательно нуклон.

    Из протонов и нейтронов состоят атомные ядра. Остальные адроны в состав окружающего нас стабильного вещества не входят, они рождаются в столкновениях частиц, обладающих высокими энергиями. Источниками этих частиц являются ускорители и космические лучи. Согласно современным представлениям, адроны не являются истинно элементарными частицами: они состоят из кварков.

    Слово «адрон» происходит от греческого слова «хадрос» - массивный, сильный, крупный. И на данный момент адроны являются самым многочисленным классом

    Кварки

    Далее, вполне планомерными становятся вопросы: «Что же такое кварк? И является ли кварк истинно элементарной частицей?» О них написано огромное количество работ, их изучением занимаются одни из самых выдающихся ученых и исследователей, и, разумеется, в этом реферате у меня нет возможности описать даже тысячную часть той информации, что имеется на данный момент о кварках. Но все же я попробую, пусть и в грубом приближении, но все же отвечу на эти вопросы, ссылаясь на работы различных ученых и исследовательских групп. Далее будут представлены несколько теорий о кварках, выписанных мной из публикаций известнейших в этой области ученых и расположенных в хронологическом порядке.

    «Одной из любопытных схем описания элементарных частиц является модель кварков - еще одно изобретение М. Гелл-Манна. В этой модели предполагается, что все элементарные частицы являются комбинациями трех основных частиц (называемых кварками) и их античастиц. Кварки имеют необычные свойства: электрический заряд, равный ± 1/3е или ± 2/3е, и барионный заряд, равный ± 1/3. Таким образом, основные свойства кварков не похожи на свойства других частиц. Однако различные комбинации этих гипотетических частиц воспроизводят свойства всех известных адронов с поразительной точностью.

    Кроме того, модель кварков успешно воспроизвела качественно известные времена жизни, магнитные моменты и типы распада элементарных частиц. Реальны ли кварки или модель кварков служит лишь удобным средством описания элементарных частиц, но лишена реального физического смысла? Пока это неизвестно.

    Хотя модель кварков поразительно успешно объяснила ряд свойств адронов, однако пока она находится в весьма неудовлетворительном состоянии. Быть может, нам удастся в конце концов описать все сильные процессы с помощью только трех кварков и их античастиц, вместо того чтобы иметь дело с «зоологической коллекцией», содержащей примерно сотню экземпляров частиц. Но прежде чем это окажется возможным, необходимо обнаружить кварки и исследовать их свойства. Эксперименты по рассеянию быстрых электронов на нуклонах указывают на существование некоторой длины, малой по сравнению с 10~14 см, которая должна играть важную роль в структуре нуклонов. Возможно, внутри нуклона существуют некие малые объекты - может быть, и кварки.» [3]

    «Кварки - частицы со спином 1/2, являющиеся составными элементами адронов. Известны кварки шести сортов (ароматов), из них три - down, strange, beauty, имеют электрический заряд -1/3, а остальные up, charm, true - заряд -2/3.

    Согласно квантовой хромодинамике, сильные взаимодействия между кварками обусловлены наличием у кварков специфических цветовых зарядов. Кварки каждого аромата существуют в виде трех различных цветовых разновидностей: «желтого», «синего» и «красного». Кварк одного цвета может перейти в кварк другого цвета, испустив цветной глюон. Взаимодействие между кварками осуществляется путем обмена глюонами. Кварки находятся в адроиах в таких цветовых состояниях, что суммарный цветовой заряд адрона равен нулю. Поэтому про адроны говорят, что они бесцветные или белые.

    Хотя группа Станфордского университета в течение ряда лет сообщала о наблюдении свободных дробно-заряженных частиц, опыты других групп по поискам свободных кварков дают отрицательные результаты, и большинство физиков скептически относится к идее о существовании свободных кварков. В рамках квантовой хромодинамики существует гипотеза о конфайнменте (справедливость ее пока что не доказана), согласно которой цветные частицы (кварки и глюоны и их цветные комбинации) в принципе не могут существовать в свободном состоянии.

    Первые, косвенные, свидетельства о существовании кварков были получены на основе классификации адронов. В дальнейшем в экспериментах по глубоко-неупругому взаимодействию лептонов с адронами были зарегистрированы прямые столкновения лептонов с отдельными кварками. Эти столкновения происходят в глубине адрона и длятся очень короткое время, в течение которого кварк не успевает обменяться глюоном с другими кварками и взаимодействует почти как свободная частица. Чем больше переданный импульс, т.е. чем на меньших расстояниях происходит столкновение лептона с кварком, тем свободнее выглядит кварк. Это свойство, являющееся следствием асимптотической свободы, означает, что кварки являются не квазичастицами, не какими-то коллективными возбуждениями адронной материи, а, подобно лептонам, являются истинно элементарными частицами. Возможная не элементарность кварков, как и лептонов, может быть обнаружена лишь при еще более глубоком проникновении внутрь этих частиц, т.е. при еще больших переданных импульсах.

    Термин «кварк» был введен в 1964 г. Гелл-Манном и взят им из романа Джеймса Джойса «Поминки по Финнигану» (герою снится сон, в котором чайки кричат: «Три кварка для мастера Марка»). По-немецки «кварк» - творог.» [4]

    «Согласно стандартной модели - лучшей на сегодняшний день теории строения материи, - кварки, объединяясь, образуют всё многообразие адронов. Взаимодействие между кварками описывает теория квантовой хромодинамики (сокращенно КХД). В соответствии с этой теорией кварки взаимодействуют друг с другом, обмениваясь особыми частицами - глюонами.

    КХД развивает идеи первой успешной теории из ряда калибровочных - квантовой электродинамики, или КЭД. Согласно КЭД, электромагнитная сила между электрически заряженными частицами возникает в результате обмена фотонами (квантами света). Аналогично устроена и КХД, только вместо электрических зарядов взаимодействия между кварками обусловлены свойством особого рода, который ученые назвали цветом. Он может иметь три значения или, если хотите, три оттенка. Ученые условно называют их красный, желтый и синий, но буквально эти термины понимать не следует. Цвет присущ только кваркам, но не барионам и мезонам, в состав которых они входят. Барионы (к которым относятся, в частности, протон и нейтрон) состоят из трех кварков - красного, желтого и синего, - цвета которых взаимно гасятся. А мезоны - из пары «кварк + антикварк», поэтому они тоже бесцветны. Вообще, в КХД действует принцип, согласно которому кварки в природе могут образовывать только такие комбинации, суммарный цвет которых оказывается нейтральным.

    Взаимодействие между кварками осуществляется посредством восьми разновидностей частиц, называемых глюонами (от английского glue - «клей, клеить»; глюоны как бы «склеивают» кварки между собой). Именно они выступают посредниками в сильном взаимодействии. Однако, в отличие от фотонов в КЭД, которые электрическим зарядом не обладают, глюоны имеют собственный цветовой заряд и могут изменять цвет кварков, с которыми взаимодействуют. Например, если при поглощении глюона синий кварк превращается в красный, значит, глюон нес на себе единичный положительный заряд красного цвета и единичный отрицательный заряд синего. Поскольку совокупный цветовой заряд кварка при этом не меняется, такие взаимодействия в рамках КХД допустимы и даже необходимы.

    КХД функционирует с начала 1980-х годов и с тех пор успешно прошла целый ряд экспериментальных проверок - пока что все ее прогнозы относительно результатов соударений элементарных частиц высоких энергий подтверждаются фактическими данными, полученными на ускорителях.» [5]

    Рассмотрев виды элементарных частиц, было бы неправильным не исследовать и взаимодействия, которым эти частицы подвержены. В рамках «Стандартной теории» их четыре, но следуя теме данной работы, рассматривать необходимо только два из них.

    3. Взаимодействия частиц

    частица атом элементарный кварк

    Важнейший вопрос физики - вопрос о взаимодействиях. Если бы не взаимодействия, то частицы материи двигались бы независимо, не подозревая о существовании других частиц. Благодаря взаимодействиям частицы обретают, как бы способность распознавать другие частицы и реагировать на них, благодаря чему рождается коллективное поведение. Поскольку вся материя состоит из частиц, для объяснения природы сил необходимо, в конечном счете, обратиться к физике элементарных частиц. Сделав это, физики обнаружили, что все взаимодействия, независимо от того, как они проявляются в больших масштабах, можно свести к четырем фундаментальным типам: гравитационному, электромагнитному и двум типам ядерных.

    На уровне кварков доминируют ядерные взаимодействия. Сильное взаимодействие связывает кварки в протоны и нейтроны и не дает ядрам разваливаться. На уровне атомов преобладает электромагнитное взаимодействие, связывающее атомы и молекулы. В астрономических масштабах господствующим становится гравитационное взаимодействие.

    В последние годы физики заинтересовались соотношением между четырьмя фундаментальными взаимодействиями, которые в совокупности управляют Вселенной. Существует ли между ними какая-либо связь? Не являются ли они всего лишь различными ипостасями единственной основополагающей суперсилы? Если такая суперсила существует, то именно она представляет собой действующее начало всякой активности во Вселенной - от рождения субатомных частиц до коллапса звезд. Разгадка тайны суперсилы невообразимо увеличила бы нашу власть над природой и даже позволила бы объяснить само «сотворение» мира.

    Мы уже знаем, что элементарные частицы взаимодействуют друг с другом посредством других частиц, которые они непрерывно испускает и поглощает. Слои этих частиц экранируют заряды, поэтому частица с различных высот до нее выглядит заряженной по-разному. Именно так, всегда различно заряженными, видят друг друга сталкивающиеся частицы. Чем больше их энергия, тем глубже они проникают друг в друга и тем отчетливее ощущают «дыхание» их центральных неэкранированных зарядов. Поэтому можно ожидать, что с ростом энергии различные типы взаимодействий будут становиться все более похожими и при высоких энергиях сольются в одно-единое взаимодействие - суперсилу. Произойдет «великое объединение» всех сил природы.

    Реальное положение дел несколько сложнее. Экранирующие облака образуются не только вокруг заряда, но и вокруг каждой частички-переносчика, которыми прощупывают друг друга сталкивающиеся частицы. Если переносчики взаимодействия очень тяжелые, то взаимодействие переносится на ультрамалые расстояния. Вдали от центра такие частицы почти не встречаются и связанное с ними взаимодействие проявляется очень слабо. В других случаях переносчики легкие (например, фотоны), они способны далеко уйти от испустившего их заряда, и с их помощью происходит взаимодействие на больших расстояниях.

    Таким образом, не только частицы, но и силы, связывающие их, оказываются необычайно сложными. Простейшими точками их уже никак не назовешь! И трудно поверить, что сила тяготения двух электронов и в миллиарды большая сила их электромагнитного отталкивания - ветви одного дерева.

    К идее «великого объединения» физики пришли совсем недавно - каких-нибудь двадцать-тридцать лет назад, хотя первый шаг сделали еще Фарадей и Максвелл, объединившие электричество и магнетизм, которые как тогда считалось, совсем разные взаимодействия. Они же ввели и понятие «поля». Фарадей доказал, что электричество и магнетизм - два компонента одного и того же электромагнитного поля.

    Следующий шаг на пути к «великому объединению» был значительно более трудным. Он был сделан лишь в середине 60-х годов ХХ века. Внимание физиков привлекло тогда слабое взаимодействие. Оно обладало странной особенностью: для всех других сил можно указать промежуточное поле, кванты которого служат переносчиком взаимодействия, а в распадных процессах частицы «разговаривают» так сказать, напрямую, без всяких посредников, толкая друг друга как бильярдные шары.

    Естественно предположить, что в этом случае тоже происходит обмен между частицами, но только такими тяжелыми, что весь процесс происходит на очень малых расстояниях, и со стороны это выглядит как будто частицы просто толкают друг друга.

    Расчеты показали: если бы не большая масса промежуточных частиц, то такое взаимодействие по своим свойствам было бы очень похожим на электромагнитное. И вот трое физиков: Абдус Салам, Стив Вайнберг и Шелдон Глешоу допустили, что фотон и тяжелые промежуточные частицы слабого взаимодействия - это одна и та же частица, только в разных «шубах». Разработанную ими теорию стали называть «электрослабой», поскольку она, как частный случай, содержит электродинамику и старую теорию слабых взаимодействий. Вскоре на ускорителях были выловлены тяжелые кванты электрослабого поля - три брата-мезона с массой, почти в сто раз больше протонной. Создание теории электрослабого поля и экспериментальное открытие его переносчиков было отмечено сразу двумя Нобелевскими премиями.

    Вдохновленные открытием электрослабого поля, физики увлеклись новой идеей дальнейшего объединения - слияние сильного взаимодействия с электрослабым. Суть этой идеи в следующем. Каждый кварк обладает аналогом электрического заряда, названный цветом. В отличие от заряда, видов цветов у кварка - три. Поэтому глюонное поле более сложное. Оно состоит из восьми составляющих силовых полей. В типичном адроне - протоне или нейтроне - комбинация трех кварков - красного, зеленого и синего - всегда имеет «белый» цвет. Испускаемые мезоны содержат пары кварк-антикварк, поэтому они тоже «бесцветны». Так как мы знаем, что при взаимодействиях частиц происходит экранировка их зарядов, то это и приводит к тем эффектам различия в дальности взаимодействий различных видов частиц. Оценка расстояния, при котором все взаимодействия становятся сравнимы по величине, составляет около 10 в -29 степени сантиметров. Переносчик взаимодействия - Х-частица - обладает массой, равной примерно 10 в 14 степени масс протона. На протяжении того ничтожного отрезка времени, какой существует Х-частица, энергия и масса имеют громадную неопределенность. И в этом отношении мы похожи на Фалеса и других греческих философов, которые размышляли о свойствах атомов, не имея ни малейшей надежды хоть когда-нибудь увидеть их.

    Элементарные частицы нельзя разделить на более простые части (именно поэтому их и назвали «элементарными»). В любых известных сегодня реакциях эти частицы лишь переходят друг в друга - взаимопревращаются. Причем из легких могут родиться более тяжелые частицы - если они движутся с достаточной скоростью (кинематическая энергия переходит в массу)

    Элементарные частицы различаются по заряду, спину, массе, времени жизни и так далее. Например, время жизни протона больше времени жизни Вселенной, а ро-мезон живет 10 в -23 степени секунды. Масса фотонов и нейтрино равна нулю, а масса еще не открытого, но предсказанного теоретиками максимона (самой тяжелой элементарной частицы, которая только может существовать) - что-то около микрограмма - как у крупной, видимой глазом пылинки. Их можно разбить на семейства, и членов каждого рассматривать как различные состояния одной и той же частицы. Семейства объединяются в более сложные группы - кланы, или мультиплеты. Но главное - мультиплеты связаны определенными правилами симметрии. В целом получается что-то вроде периодической таблицы элементарных частиц, наподобие Менделеевской. Можно предполагать, физики нащупали следующий ярус строения материи.

    Большую роль в развитии знаний сыграли ускорители элементарных частиц. Электронное просвечивание показало, что протон на самом деле не точка, а довольно крупный объект радиусом около 10 в -13 степени сантиметров. Анализируя результаты новых опытов по рассеянию электронов, ученые сделали вывод, что нуклоны являются роем каких-то очень мелких частичек, которые при меньшем увеличении выглядят как сгусток накладывающихся и проникающих друг в друга мезонов и других элементарных частиц. Теоретики, занимавшиеся классификацией частиц, обрадовались, так как уже давно догадывались о существовании таких частиц, только называли их по-своему: кварки.

    Когда кварки замелькали на страницах теоретических статей, многие ученые считали их всего лишь неким курьезом, временными строительными лесами на пути к более совершенной теории. Однако не успели физики оглянуться, как оказалось, что с помощью кварков очень просто и наглядно объясняются самые различные экспериментальные факты, а теоретические вычисления сильно упрощаются. Без кварков стало просто невозможно обойтись, также как без молекул и атомов.

    Опыты по зондированию нуклона доказали, что в центре элементарной частицы кварки почти не связаны взаимодействием и ведут себя как плавающие в воздухе воздушные шарики. Если же они попытаются разойтись, то сразу же возникают стягивающие их силы. На периферии кварки могут находиться лишь в форме связанных сгустков - например, в виде пи-мезонов, что согласуется с теорией ядерного взаимодействия на основе мезонов. Но как взаимодействуют друг с другом кварки? Так как другого способа организовать взаимодействие, чем посредством передачи частицы-носителя взаимодействия, наука не знает, то были предложены глюоны - склеивающие кварки частицы. Глюоны похожи на фотоны, только с зарядом. Фотон никакого поля вокруг себя не создает, поэтому наибольшую интенсивность поле имеет возле своего источника - заряда, дальше оно постепенно рассеивается и ослабевает. Глюон же своим зарядом рождает новые глюоны, те в свою очередь - следующие и так далее, поэтому глюонное поле не ослабевает, а наоборот, возрастает при удалении от породившего его кварка. Удаляющийся кварк, как пеной обрастает новыми глюонами и их связь становится более сильной.

    Физика элементарных частиц представляет собой удивительный сплав эксперимента и теории. Свойства мельчайших частиц вещества установлены и продолжают устанавливаться в экспериментах, по сложности не имеющих себе равных в других областях науки. Эти уникальные эксперименты сочетают поистине индустриальный размах с ювелирной точностью. В большинстве случаев сами объекты исследования - частицы - создаются тут же в лаборатории с помощью ускорителей и живут столь ничтожные промежутки времени, что по сравнению с ними мгновение кажется вечностью. Случай какого-нибудь редкого распада частицы приходится находить среди миллиардов похожих на него «неинтересных» распадов. Все сведения об элементарных частицах добываются в результате тщательных измерений.

    Теги: Элементарные частицы  Реферат  ХимияПросмотров: 12908Найти в Wikkipedia статьи с фразой: Элементарные частицы

    diplomba.ru


    Видеоматериалы

    24.10.2018

    Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

    Подробнее...
    23.10.2018

    Соответствует ли вода и воздух установленным нормативам?

    Подробнее...
    22.10.2018

    С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

    Подробнее...
    22.10.2018

    Столичный Водоканал готовится к зиме

    Подробнее...
    17.10.2018

    Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

    Подробнее...

    Актуальные темы

    13.05.2018

    Формирование энергосберегающего поведения граждан

     

    Подробнее...
    29.03.2018

    ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

    Подробнее...
    13.03.2018

    Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

    Подробнее...
    11.03.2018

    НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

     
    Подробнее...

    inetpriem

    
    << < Ноябрь 2013 > >>
    Пн Вт Ср Чт Пт Сб Вс
            1 2 3
    4 5 6 7 8 9 10
    11 12 13 14 15 16 17
    18 19 20 21 22 23 24
    25 26 27 28 29 30  

    calc

    banner-calc

    .