25.11.2024

Индуктивное сопротивление в цепи переменного тока: Емкостное и индуктивное сопротивление в цепи переменного тока.

Содержание

Емкостное и индуктивное сопротивление в цепи переменного тока.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Емкостное сопротивление в цепи переменного тока

Мгновенное значение напряжения равно  Мгновенное значение напряжения.

Мгновенное значение силы тока равно: Мгновенное значение силы тока

Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.

Емкостное сопротивление в цепи переменного тока

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: для максимальных значений тока и напряжения, где  емкостное сопротивление— емкостное сопротивление.

для максимальных значений тока и напряжения

Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).

Емкостное сопротивление не является характеристикой проводника

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

 

Индуктивное сопротивление в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки

Мгновенное значение силы тока: Мгновенное значение силы тока

Мгновенное значение силы тока

Мгновенное значение напряжения можно установить, учиты­вая, что u = — εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.

 

Мгновенное значение напряжения.

Следовательно Мгновенное значение напряжения, где амплитуда напряжения амплитуда напряжения.

Напряжение опережает ток по фазе на π/2.

амплитуда напряжения

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.

амплитуда напряжения

Величина индуктивное сопротивление — индуктивное сопротивление.

индуктивное сопротивление

Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.

в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции

В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.

 

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

 

Индуктивное сопротивление в цепи переменного тока

Сопротивление в электрических цепях бывает двух видов – активное и реактивное. Активное представлено резисторами, лампами накаливания, нагревательными спиралями и пр. Другими словами, всеми элементами, в которых протекающий ток непосредственно совершает полезную работу или, частный случай, вызывает желаемый нагрев проводника. В свою очередь, реактивное – это обобщающий термин. Под ним понимают емкостное и индуктивное сопротивление. В элементах цепи, обладающих реактивным сопротивлением, при прохождении электрического тока происходят различные промежуточные преобразования энергии. Конденсатор (емкость) накапливает заряд, а затем отдает его в контур. Другой пример — индуктивное сопротивление катушки, в которой часть электрической энергии превращается в магнитное поле.

На самом деле «чистых» активных или реактивных сопротивлений нет. Всегда присутствует противоположная составляющая. Например, при расчете проводов для линий электропередач большой протяженности, учитывают не только активное сопротивление, но и емкостное. А рассматривая индуктивное сопротивление, нужно помнить, что как проводники, так и источник питания вносят свои корректировки в расчеты.

Определяя общее сопротивление участка цепи, необходимо сложить активную и реактивную составляющие. Причем, получить прямую сумму обычным математическим действием невозможно, поэтому используют геометрический (векторный) способ сложения. Выполняют построение прямоугольного треугольника, два катета которого представляют собой активное и индуктивное сопротивление, а гипотенуза – полное. Длина отрезков соответствует действующим значениям.

Рассмотрим индуктивное сопротивление в цепи переменного тока. Представим простейшую цепь, состоящую из источника питания (ЭДС, E), резистора (активная составляющая, R) и катушки (индуктивность, L). Так как индуктивное сопротивление возникает благодаря ЭДС самоиндукции (E си) в витках катушки, то очевидно, что оно возрастает с увеличением индуктивности цепи и ростом значения протекающего по контуру тока.

Закон ома для такой цепи выглядит как:

E + E си = I*R.

Определив производную тока от времени (I пр), можно вычислить самоиндукцию:

E си = -L*I пр.

Знак «-» в уравнении указывает на то, что действие E си направлено против изменения значения тока. Правило Ленца гласит, что при любом изменении тока возникает ЭДС самоиндукции. А так как такие изменения в цепях переменного тока естественны (и постоянно происходят), то E си формирует существенное противодействие или, что также верно, сопротивление. В случае источника питания постоянного тока данная зависимость не выполняется и при попытке подключить катушку (индуктивность) в подобную цепь произошло бы классическое к.з.

Для преодоления E си источник питания должен создавать на выводах катушки такую разность потенциалов, чтобы ее хватило, как минимум, на компенсацию сопротивления E си. Отсюда следует:

U кат = -E си.

Другими словами, напряжение на индуктивности численно равно электродвижущей силе самоиндукции.

Так как с ростом тока в цепи увеличивается магнитное поле, в свою очередь генерирующее вихревое поле, вызывающее рост противотока в индуктивности, то можно сказать, что имеет место смещение фаз между напряжением и током. Отсюда следует одна особенность: так как ЭДС самоиндукции препятствует любому изменению тока, то при его возрастании (первая четверть периода на синусоиде) происходит генерация полем противотока, а вот при падении (вторая четверть) наоборот – индуцированный ток сонаправлен с основным. То есть, если теоретически допустить существование идеального источника питания без внутреннего сопротивления и индуктивность без активной составляющей, то колебания энергии «источник – катушка» могли бы происходить неограниченное время.

Индуктивное реактивное сопротивление: формулы, схемы

В данной статье мы подробно поговорим про индуктивное сопротивление, реактивное сопротивление и треугольники напряжения, сопротивления и силы.

Введение

Итак, мы рассмотрели поведение индукторов, подключенных к источникам постоянного тока, и, надеюсь, теперь мы знаем, что когда на индуктор подается постоянное напряжение, рост тока через него происходит не мгновенно, а определяется индуктором, индуцированным самим индуктором или обратным значением ЭДС.

Также мы видели, что ток индукторов продолжает расти, пока не достигнет своего максимального установившегося состояния после пяти постоянных времени. Максимальный ток, текущий через индукционную катушку ограничиваются только резистивной частью катушек обмотки в омах, и как мы знаем из закона Ома, это определяется отношением напряжения к току V / R .

Когда переменное напряжение подается на катушку индуктивности, поток тока через него ведет себя совершенно иначе, чем при приложении постоянного напряжения. Эффект синусоидального питания приводит к разности фаз между напряжением и формами тока. Теперь в цепи переменного тока противодействие току, протекающему через обмотки катушек, зависит не только от индуктивности катушки, но и от частоты сигнала переменного тока.

Сопротивление току, протекающему через катушку в цепи переменного тока, определяется сопротивлением переменного тока, более известным как полное сопротивление (Z) цепи. Но сопротивление всегда связано с цепями постоянного тока, поэтому, чтобы отличить сопротивление постоянного тока от сопротивления переменного тока, обычно используется термин «реактивное сопротивление» .

Как и сопротивление, значение реактивного сопротивления также измеряется в омах, но ему присваивается символ X (заглавная буква «X»), чтобы отличить его от чисто резистивного значения.

Поскольку интересующий нас компонент является индуктором, реактивное сопротивление индуктора поэтому называется «Индуктивное реактивное сопротивление». Другими словами, электрическое сопротивление индуктивности при использовании в цепи переменного тока называется индуктивным сопротивлением .

Индуктивное сопротивление, которому дается символ L , является свойством в цепи переменного тока, которое противодействует изменению тока. В наших уроках о конденсаторах в цепях переменного тока мы видели, что в чисто емкостной цепи ток C «опережает» напряжение на 90 o . В чисто индуктивной цепи переменного тока верно обратное: ток L отстает от напряжения на 90 o или (π / 2 рад).

Схема индуктивности переменного тока

картинка-схема индуктивности переменного токакартинка-схема индуктивности переменного тока

В приведенной выше чисто индуктивной цепи индуктор подключен непосредственно через напряжение питания переменного тока. Когда напряжение питания увеличивается и уменьшается с частотой, самоиндуцированная обратная ЭДС также увеличивается и уменьшается в катушке по отношению к этому изменению.

Мы знаем, что эта самоиндуцированная ЭДС прямо пропорциональна скорости изменения тока через катушку и имеет наибольшее значение при переходе напряжения питания от положительного полупериода к отрицательному полупериоду или наоборот в точках 0о и 180о вдоль синусоиды.

Следовательно, минимальная скорость изменения напряжения возникает, когда синусоида переменного тока пересекается при своем максимальном или минимальном пиковом уровне напряжения. В этих положениях в цикле максимальный или минимальный токи протекают через цепь индуктора, и это показано ниже.

Векторная диаграмма индуктора переменного тока

векторная диаграмма индуктора переменного токавекторная диаграмма индуктора переменного тока

Эти формы напряжения и тока показывают, что для чисто индуктивной цепи ток отстает от напряжения на 90 o . Также можно сказать, что напряжение опережает ток на 90 o . В любом случае общее выражение заключается в том, что ток отстает, как показано на векторной диаграмме. Здесь вектор тока и вектор напряжения показаны смещенными на 90 o . Ток отстает от напряжения .

Мы можем также написать это заявление как, L  = 0 ö и I L  = -90 о по отношению к напряжению, L . Если форма волны напряжения классифицируется как синусоида, то ток L можно классифицировать как отрицательный косинус, и мы можем определить значение тока в любой момент времени как:

значения тока в любой период временизначения тока в любой период времени
Где: 
ω в радианах в секунду, а 
t в секундах.

Поскольку ток всегда отстает от напряжения на 90 o в чисто индуктивной цепи, мы можем найти фазу тока, зная фазу напряжения или наоборот. Так что если мы знаем значение L , то L должно отставать на 90 o . Аналогичным образом, если мы знаем значение L, то L, следовательно, должно опережать на 90 o . Затем это отношение напряжения к току в индуктивном контуре будет производить уравнение, определяющее индуктивное сопротивление Х L катушки.

формула индуктивного сопротивленияформула индуктивного сопротивления

Мы можем переписать уравнение для индуктивного сопротивления в более привычную форму, которая использует обычную частоту питания вместо угловой частоты в радианах ω и это будет выглядеть так:

уравнение для индуктивного сопротивленияуравнение для индуктивного сопротивления
Где: 
ƒ — частота, 
L — индуктивность катушки и 
2πƒ = ω .

Из приведенного выше уравнения для индуктивного реактивного сопротивления можно видеть, что, если увеличить частоту, либо индуктивность, общее значение индуктивного реактивного сопротивления также увеличится. Когда частота приближается к бесконечности, реактивное сопротивление индукторов также увеличивается до бесконечности, действуя как разомкнутая цепь.

Однако, когда частота приближается к нулю или постоянному току, реактивное сопротивление индукторов будет уменьшаться до нуля, действуя как короткое замыкание. Это означает, что индуктивное сопротивление «пропорционально» частоте.

Другими словами, индуктивное реактивное сопротивление увеличивается с частотой, в результате чего L будет небольшим на низких частотах, а L будет высоким на высоких частотах, что продемонстрировано на графике ниже.

Индуктивное сопротивление от частоты

Индуктивное сопротивление от частотыИндуктивное сопротивление от частоты

Затем мы видим, что при постоянном токе индуктор имеет нулевое реактивное сопротивление (короткое замыкание), на высоких частотах индуктор имеет бесконечное реактивное сопротивление (разомкнутая цепь).

Питание от сети переменного тока серии LR

До сих пор мы рассматривали чисто индуктивную катушку, но невозможно иметь чистую индуктивность, поскольку все катушки, реле или соленоиды будут иметь определенное сопротивление, независимо от того, насколько мало связано с витками используемого провода. Тогда мы можем рассматривать нашу простую катушку как последовательное сопротивление с индуктивностью (LR).

В цепи переменного тока, которая содержит как индуктивность L и сопротивление R, напряжение V будет векторная сумма двух компонентов напряжения, V R и V L . Это означает, что ток, протекающий через катушку еще будет отставать от напряжения, но на величину меньше чем 90 ö в зависимости от значений R и V L .

Новый фазовый угол между напряжением и током известен как фазовый угол цепи и обозначается греческим символом фи, Φ .

Чтобы получить векторную диаграмму зависимости между напряжением и током, необходимо найти эталонный или общий компонент. В последовательно соединенной цепи RL ток является общим, так как один и тот же ток течет через каждый компонент. Вектор этой эталонной величины обычно рисуется горизонтально слева направо.

Из наших руководств о резисторах и конденсаторах, мы знаем, что ток и напряжение в цепи переменного резистивного тока, оба «в фазе» и, следовательно, вектор V R рисуется с наложением на текущую или контрольную линию.

Из вышесказанного также известно, что ток «отстает» от напряжения в чисто индуктивной цепи и, следовательно, вектор L отображается на 90 o перед опорным током и в том же масштабе, что и R, это показано ниже.

Цепь переменного тока серии LR

Цепь переменного тока серии LRЦепь переменного тока серии LR

На приведенной выше векторной диаграмме видно, что луч OB представляет текущую опорную линию, луч OA — это напряжение резистивного компонента, которое в фазе с током, луч OC показывает индуктивное напряжение, которое составляет 90 o перед током, поэтому видно, что ток отстает от напряжения на 90 o , луч OD дает нам результирующее или питающее напряжение в цепи. Треугольник напряжения выводится из теоремы Пифагора и имеет вид:

треугольник напряжениятреугольник напряжения

Треугольник сопротивления

треугольник сопротивлениятреугольник сопротивления

В цепи постоянного тока отношение напряжения к току называется сопротивлением. Однако в цепи переменного тока это отношение известно как полное сопротивление Z с единицами измерения в омах. Полное сопротивление — это полное сопротивление току в «цепи переменного тока», содержащее как сопротивление, так и индуктивное сопротивление.

Если мы разделим стороны треугольника напряжения выше на ток, получим еще один треугольник, стороны которого представляют сопротивление, реактивное сопротивление и полное сопротивление катушки. Этот новый треугольник называется «Треугольник сопротивления».

Силовой треугольник индуктора переменного тока

Существует еще один тип конфигурации треугольника, который мы можем использовать для индуктивной цепи, и это «силовой треугольник». Мощность в индуктивной цепи называется реактивной мощностью или вольт-амперной реактивной, символ Var, который измеряется в вольт-амперах. В цепи переменного тока серии RL ток отстает от напряжения питания на угол Φ o .

В чисто индуктивной цепи переменного тока ток будет сдвинут по фазе на 90 o к напряжению питания. Таким образом, общая реактивная мощность, потребляемая катушкой, будет равна нулю, так как любая потребляемая мощность компенсируется генерируемой самоиндуцированной ЭДС-мощностью. Другими словами, полезная мощность в ваттах, потребляемая чистым индуктором в конце одного полного цикла, равна нулю, так как энергия берется из источника и возвращается к нему.

Реактивная мощность ( Q ) катушки может быть задана как: I 2  x X L (аналогично 2 R в цепи постоянного тока). Затем три стороны силового треугольника в цепи переменного тока представлены кажущейся мощностью ( S ), реальной мощностью ( P ) и реактивной мощностью ( Q ), как показано.

силовой треугольниксиловой треугольник

Обратите внимание, что данный индуктор или катушка будет потреблять мощность в ваттах из — за сопротивления обмоток, создающих сопротивление Z.

Активное, емкостное и индуктивное сопротивление. Закон Ома для цепей переменного тока

Активное сопротивление

Определение 1

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

\[I\left(t\right)=I_m{sin \left(\omega t\right)\ \left(1\right).\ }\]

Рисунок 1.

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

\[U=IR=I_m{Rsin \left(\omega t\right)\ \left(2\right),\ }\]

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

\[U_m=RI_m\left(3\right),\]

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Рисунок 2.

Мы можем использовать следующие соотношения:

Готовые работы на аналогичную тему

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Рисунок 3.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Закон Ома для цепей переменного тока

Определение 2

Выражение вида:

\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(12\right).\]

где

\[Z=\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}(13)\]

называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Пример 1

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $\nu$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока»:

\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(1.1\right)\]

оно связано с действующим значением силы тока как:

\[I=\frac{I_m}{\sqrt{2}}\left(1.2\right).\]

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

\[U=\frac{U_m}{\sqrt{2}}\to U_m=\sqrt{2}U\left(1.3\right).\]

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

\[I=\frac{1}{\sqrt{2}}\frac{\sqrt{2}U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\]

где $\omega =2\pi \nu .$

Ответ: $I=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

Пример 2

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:

\[U_L=I\omega L=2 \pi \nu L\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]

Напряжение на активном сопротивлении ($U_R$) равно:

\[U_R=IR=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.\]

Напряжение на конденсаторе ($U_C$) определяется как:

\[U_C=\frac{I}{C2 \pi \nu}=\frac{1}{C2 \pi \nu}\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]

Ответ: $U_L=2\pi \nu L\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\ U_R=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},U_C=\frac{1}{C2\pi \nu }\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

Активное и индуктивное сопротивление | У электрика.ру

Активное и индуктивное сопротивлениеРазличные факторы играют важную роль для вычисления потерь в линиях транспортировки электрической энергии. Для постоянного тока вполне хватает стандартных данных об омическом сопротивлении. А вот для цепей переменной разновидности необходимо учитывать активное и индуктивное сопротивление в сочетании с емкостной проводимостью токопроводников.

Можно воспользоваться для вычислений специальными таблицами. В них представлены с большой точностью различные варианты для выполнения расчетов в сетях переменного тока. Но, чтобы быстро разобраться в специфике представленных характеристик, желательно знать природу подобного явления и его основные характеристики.

Особенности активного сопротивления

В общем виде данный параметр выглядит, как противодействие определенного участка цепи проходящему по нему току. Полученная в результате такого процесса величина участвует в преобразовании энергии и ее переходе в какое-то другое состояние.aktivnoe-i-induktivnoe-soprotivleni1

Важно! Это явление наблюдается исключительно в ситуациях с переменным током. Только он способен образовывать в кабелях оба вида противодействия.

Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.

Обратим внимание на такой момент:

  1. Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
  2. А вот в стальных изделиях данный показатель намного выше. Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными. При этом, само явление ослабевает в проводниках многопроволочного типа.

Индуктивное сопротивление

Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.

Само сопротивление обычно классифицируют следующим образом:

  • зависящее от параметров тока и материала — внутреннее;
  • обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.

Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.

Данный параметр обычно определяется следующим выражением:

в котором индуктивный показатель для 1 км провода – , а L – протяженность.

Х километрового участка рассчитывается по следующей формуле:

Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.

Принцип действия индуктивного сопротивления линий

Именно индуктивность признана главной характеристикой для катушек наряду с аналогичным показателем для их обмоток. R реактивного вида, проявляющееся под действием самоиндукционной ЭДС, растет в прямой пропорции с частотой тока.aktivnoe-i-induktivnoe-soprotivleni2

Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.

Оперативно справиться с поставленной задачей по расчету номинальных показателей помогут специальные таблицы. В них для самых распространенных проводников приведены все главные характеристики. Но на практике часто требуется узнать Х для участка с конкретной протяженностью. В этом случае главным инструментом является уже приводившееся выражение 

Емкостная проводимость

Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.

Для его определения в трехфазной линии воздушных передач применяется выражение:aktivnoe-i-induktivnoe-soprotivleni6

Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.

Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:aktivnoe-i-induktivnoe-soprotivleni7Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.

Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.

Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:aktivnoe-i-induktivnoe-soprotivleni3

Данный показатель будет объективным только при полностью обесточенных приемниках электричества.

Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.

Для воздушной линии действительна такая формула:aktivnoe-i-induktivnoe-soprotivleni4

Для кабельных магистралей:aktivnoe-i-induktivnoe-soprotivleni5

Поделиться ссылкой:

Похожее

Индуктивное сопротивление катушки — Основы электроники

Так как самоиндукция препятствует всякому резкому изменению силы тока в цепи, то, следовательно, она представляет собой для переменного тока особого рода сопротивление, называемое индуктивным сопротивлением.

Чисто индуктивное сопротивление отличается от обычного (омического) сопротивления тем, что при прохождении через него переменного тока в нем не происходит потери мощности.

Под чисто индуктивным сопротивлением мы понимаем сопротивление, оказываемое переменному току катушкой, проводник которой не обладает вовсе омическим сопротивлением. В действительности же всякая катушка обладает некоторым омическим сопротивлением. Но если это сопротивление невелико по сравнению с индуктивным сопро¬тивлением, то им можно пренебречь.

При этом наблюдается следующее явление: в течение одной четверти периода, когда ток возрастает, магнитное поле потребляет энергию из цепи, а в течение следующей четверти периода, когда ток убывает, возвращает ее в цепь. Следовательно, в среднем за период в индуктивном сопротивлении мощность не затрачивается. Поэтому индуктивное сопротивление называется реактивным (прежде его неправильно называли безваттным).

Индуктивное сопротивление одной и той же катушки будет различным для токов различных частот. Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.

 Рисунок 1. Зависимость индуктивного сопротивления катушки от частоты переменного тока. Реактивное сопротивление катушки возрастает с увеличением часторы тока.

Индуктивное сопротивление обозначается буквой XL и измеряется в омах.

Подсчет индуктивного сопротивления катушки для переменного тока данной частоты производится по формуле

XL=2π• f •L

где XL — индуктивное сопротивление в ом; f—частота переменного тока в гц; L — индуктивность катушки в гн

Как известно, величину 2π• f называют круговой частотой и обозначают буквой ω (омега). Поэтому приведенная выше формула может быть представлена так:

XL=ω•L

Отсюда следует, что для постоянного тока (ω = 0) индуктивное сопротивление равно нулю. Поэтому, когда, нужно пропустить по какой-либо цепи постоянный ток, задержав в то же время переменный, то в цепь включают последовательно катушку индуктивности.

Для преграждения пути токам низких звуковых частот ставят катушки с железным сердечником, так называемые дроссели низкой частоты, а для более высоких радиочастот — без железного сердечника, которые носят название дросселей высокой частоты.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Индуктивное сопротивление: обозначение, сопротивление катушки формула

Когда в цепи нарастает или уменьшается ток, электромагнитное поле создает противодействующую электродвижущую силу. Это явление порождается индуктивностью катушки. Индуктивное сопротивление воздействует только на переменный ток, быстрые изменения которого порождают противодействующую силу. В статье будет более подробно рассказано о природе этого явления.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.

Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.

Определение индуктивности

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

Цепь, в которой возникает индукция

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Принцип действия электродвижущей силы

Катушка индуктивности

Он представляет собой изолированный провод, многократно намотанный вокруг сердечника.

Обычно каркас имеет цилиндрическую или тороидальную форму.

Индуктивность рассматривается в качестве основной характеристики катушки. Это качество выражает способность элемента осуществлять преобразование переменного тока в магнитное поле.

Важно! Магнитные свойства существуют даже у одиночного провода, при условии, что изменяется проходящий через него ток. Воздействие поля направлено так, чтобы противодействовать его изменению. Если он будет увеличиться, поле будет его тормозить, а если ослабевать — усиливать.

Катушки индуктивности

Определение направления силовых линий подчиняется «правилу большого пальца»: если у сжатой в кулак руки большой палец указывает в направлении изменения силы тока, то сомкнутые пальцы подсказывают направление силовых линий поля.

Таким образом в том случае, если провод многократно намотан на цилиндрическое основание, то силовые линии от разных витков складываются и проходят через ось.

Для того, чтобы многократно увеличить индуктивность, в центр цилиндра помещают сердечник из ферромагнитного материала.

Индуктивное сопротивление – единицы измерения

Измерение этой величины производится в омах. Здесь используются такая же единица измерения, как и для резистора, несмотря на то, что у них различная природа. Рассматриваемая величина порождается электродвижущей силой, противодействующей происходящему изменению. Обычное возникает в связи с рассеиванием энергии при прохождении электронов по проводнику.

Магнитное поле индуктивного элемента

Индуктивное сопротивление – как его найти

Реальная катушка имеет не только реактивное, но и обычное сопротивление. Индуктивное сопротивление определяется по формуле:

XL=2*П*v*L

Здесь употреблены следующие обозначения:

  1. XL – рассматриваемая величина.
  2. Символом «П» обозначено число Пи.
  3. V представляет собой частоту.
  4. L — это обозначение величины индуктивности.

Надо отметить, что величина (2*П*v) представляют собой круговую частоту, которую обозначают греческим символом «омега».

Катушки с различными сердечниками

Рассматриваемая величина подчиняется закону Ома. Формула выглядит так:

I = U / XL

I, U представляют собой ток и напряжение, XL – это индуктивное сопротивление.

Конфигурация магнитного поля катушки

Для определения искомой величины можно воспользоваться приведенными формулами. При этом можно воспользоваться амперметром и вольтметром. Первый из них надо включить последовательно, второй — параллельно.

При этом необходимо учитывать следующее. На самом деле, в цепи, в которую включена индуктивность, действует два вида сопротивления: активное и реактивное. Измерив ток и напряжение, можно определить их результирующую величину. Нужно помнить, что она не является их простой суммой.

Дело в том, что в переменной цепи, где имеется только катушка и нет конденсатора, напряжение находится впереди тока на четверть периода колебания. Эта величина равна 90 градусам.

Полное сопротивление определяется следующим образом. Для этого необходимо нарисовать соответствующую диаграмму. Если по горизонтали отложить величину обычного, а по вертикали — реактивного, а затем по этим векторам построить прямоугольник, то длина его диагонали будет равна полному значению.

Магнитное поле провода

К примеру, если подобрать элементы цепи таким образом, чтобы по абсолютной величине обе этих величины были равны, то искомая часть определится как их полное значение, умноженное на квадратный корень из двух.

Для того, чтобы получить информацию о зависимости индуктивного сопротивления от частоты, возможно воспользоваться осциллографом.

При использовании переменного тока необходимо учитывать не только обычное, но и индуктивное сопротивление. Оно возникает в том случае, если в электрической цепи присутствует катушка.

Формула и расчеты индуктивного сопротивления

Любая катушка индуктивности сопротивляется изменениям переменного тока, что приводит к возникновению у нее импеданса.


Учебное пособие по индуктивности и трансформатору Включает:
Индуктивность
Символы
Закон Ленца
Собственная индуктивность
Расчет индуктивного реактивного сопротивления
Теория индуктивного реактивного сопротивления
Индуктивность проволоки и катушек
Трансформеры


Катушка индуктивности препятствует прохождению переменного тока за счет своей индуктивности.Любая катушка индуктивности сопротивляется изменению тока в соответствии с законом Ленца.

Степень, в которой индуктор препятствует прохождению тока, обусловлена ​​его индуктивным реактивным сопротивлением.

Индуктивное реактивное сопротивление зависит от частоты и возрастает с частотой, но его можно легко вычислить с помощью простых формул.

Индуктивное сопротивление

Эффект, за счет которого уменьшается протекание переменного или изменяющегося тока в катушке индуктивности, называется ее индуктивным реактивным сопротивлением.Любое изменение тока в катушке индуктивности будет затруднено в результате связанной с ней индуктивности.

Причину этого индуктивного реактивного сопротивления можно просто увидеть, исследуя самоиндуктивность и ее влияние в цепи.

Когда изменяющийся ток подается на катушку индуктивности, самоиндукция вызывает индуцированное напряжение. Это напряжение пропорционально индуктивности, и в результате закона Ленца индуцированное напряжение противоположно приложенному напряжению.Таким образом, индуцированное напряжение будет работать против напряжения, вызывающего протекание тока, и, таким образом, оно будет препятствовать протеканию тока.

Формулы индуктивного сопротивления

Хотя идеальных катушек индуктивности не существует, полезно представить себе, чтобы взглянуть на формулы и расчеты, связанные с индукторами и индуктивностью. В этом случае идеальный индуктор — это тот, который имеет только индуктивность, но не имеет сопротивления или емкости. Если на эту идеальную катушку индуктивности подается изменяющийся сигнал, такой как синусоида, реактивное сопротивление препятствует протеканию тока и подчиняется закону Ома.

Где:
X L = индуктивное реактивное сопротивление, Ом, Ом
В = напряжение в вольтах
I = ток в амперах

Индуктивное сопротивление катушки индуктивности зависит от ее индуктивности, а также от применяемой частоты. Реактивное сопротивление линейно увеличивается с частотой. Это можно выразить в виде формулы для расчета реактивного сопротивления на определенной частоте.

Где:
XL = индуктивное реактивное сопротивление в Ом, Ом
π = греческая буква Пи, 3.142
f = частота в Гц
L = индуктивность в генри

Суммирование индуктивного реактивного сопротивления и сопротивления

Настоящая катушка индуктивности будет иметь некоторое сопротивление, или индукторы могут быть объединены с резисторами для создания комбинированной сети. В любом из этих случаев необходимо знать полное сопротивление цепи.

Поскольку ток и напряжение внутри индуктора не совпадают по фазе на 90 ° (ток отстает от напряжения), индуктивное реактивное сопротивление и сопротивление нельзя складывать напрямую.

Суммирование индуктивного реактивного сопротивления и сопротивления постоянному току

Добавление индуктивного реактивного сопротивления и сопротивления постоянному току достигается векторным образом

Из диаграммы видно, что две величины необходимо сложить векторно. Это означает, что индуктивное реактивное сопротивление и сопротивление необходимо возвести в квадрат, сложить и затем извлечь квадратный корень:

VTotal2 = VL2 + VR2

Это можно переписать в более удобный формат:

VTotal = VL2 + VR2

Результирующая комбинация сопротивления и индуктивного реактивного сопротивления называется импедансом, который снова измеряется в омах.

При использовании и проектировании цепей, содержащих катушки индуктивности, часто необходимо посмотреть на индуктивное реактивное сопротивление, рассчитать его с использованием приведенных выше формул, а затем прибавить его к чистому сопротивлению, чтобы получить общий импеданс. Как таковые эти формулы особенно полезны.

Дополнительные основные понятия:
Напряжение
ток
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность

Вернуться в меню «Основные понятия».. .

.

Индуктивное реактивное сопротивление

  • Изучив этот раздел, вы сможете описать:
  • • Индуктивное реактивное сопротивление.
  • • Соотношение между реактивным сопротивлением, частотой и индуктивностью.
  • • Графическое представление индуктивного сопротивления.

Когда ток в индукторе изменяется, создается обратная ЭДС, которая противодействует изменению тока, и чем быстрее начальное изменение тока, тем больше обратная ЭДС.Поэтому неудивительно, что более высокие скорости изменения тока, которые происходят при увеличении частоты волны, вызывают больший эффект обратной ЭДС, который, в свою очередь, снижает ток в большей степени, чем на более низких частотах.

Это переменное сопротивление току, протекающему в катушке индуктивности, связано с величиной индуктивности, потому что чем больше значение индуктивности, тем больше возникает эффект обратной ЭДС. Противодействие протеканию тока через катушку индуктивности пропорционально величине индуктивности и частоте тока в катушке индуктивности.Это противодействие протеканию тока называется ИНДУКТИВНОЙ РЕАКТИВНОСТЬЮ (X L ). Формула для индуктивного реактивного сопротивления умножает угловую скорость волны переменного тока на значение индуктивности:

graphXL.gif Inductive Reactance

Рис. 6.1.1 Индуктивное реактивное сопротивление

form-XL.gif Inductive Reactance Formula

Где 2πƒ или ω — угловая скорость, а L — индуктивность в генри.

Как и сопротивление, реактивное сопротивление измеряется в омах, но отдельно от сопротивления току, вызванного любым внутренним сопротивлением внутри индуктора.Большие значения индуктивности (обнаруживаемые в больших типах индукторов, используемых на низких частотах) имеют более высокие значения внутреннего сопротивления, чем гораздо меньшие типы индукторов, используемые на радиочастотах и ​​выше. Индукторы — это в основном катушки с проволокой, и чем больше катушек у катушки индуктивности, тем длиннее будет провод и тем больше будет его сопротивление. Это внутреннее сопротивление нельзя отделить от катушки индуктивности, и его необходимо учитывать в расчетах, особенно в низкочастотных приложениях, где используются большие индукторы.Однако небольшую величину сопротивления, присутствующую в гораздо меньших радиочастотных индукторах, обычно можно не учитывать.

На рис. 6.1.1 показан график зависимости индуктивного реактивного сопротивления от частоты для определенного значения индуктивности, причем X L линейно увеличивается с частотой

Сопротивление в индукторах

Сопротивление, присутствующее в проводе больших индукторов, оказывает заметное влияние на ток и напряжение на индукторе. Хотя влияние реактивного сопротивления можно рассчитать, оно не будет учитывать общее влияние на ток и напряжение, сопротивление также должно быть принято во внимание.Внутреннее сопротивление индуктора не может быть физически отделено от индуктора, как показано на рис. 6.1.2

 Lr-phasors.gif Effect of internal resistance on inductors

Рис. 6.1.2 Как V r и X L влияют на V L на фазорной диаграмме.

Рис. 6.1.2 также показывает влияние внутреннего сопротивления индуктора на его векторную диаграмму. Напряжение на внутреннем сопротивлении (V r ) может быть небольшим по сравнению с напряжением на индуктивности, но V r будет находиться в фазе с опорным вектором (ток I) и, таким образом, вызовет фазовый сдвиг, вызывающий вектор для V L сместиться в сторону 0 °.

Поскольку V L представляет собой векторную сумму напряжений V XL и V r (из-за реактивного сопротивления и внутреннего сопротивления катушки индуктивности), она также будет немного больше, чем напряжение (V XL ), которая будет рассчитана только за счет индуктивности. Это означает, что в практической катушке индуктивности вектор напряжения не будет опережать вектор тока точно на + 90 °, фактическая величина фазового сдвига также будет зависеть от величины внутреннего сопротивления.Хотя это не большая проблема с небольшими индукторами, используемыми в высокочастотных приложениях, это необходимо учитывать в больших низкочастотных индукторах, где катушка имеет намного больше витков и, следовательно, ее внутреннее сопротивление больше.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *