22.11.2024

Индуктивность проводника зависит от: Катушка индуктивности в цепи переменного тока

Содержание

Индуктивность: формула, единица измерения

Индуктивность – это элемент цепи, где происходит накопление энергии от магнитного поля. Так происходит запас поля или его преобразование в иные виды энергий. Самым идеальным примером служит катушка индуктивности. В ней происходит запасание поля и его дальнейшее преобразование в энергию других видов, в том числе и тепловую. Способность накапливать магнитное поле и является индуктивностью. Индуктивность напрямую связана с электромагнитной индукцией, статья о которой, также есть на нашем сайте. В данной статье будет описано данное физическое явление, как оно происходит, а также как используется на практике, в чем измеряется и как можно рассчитать физические характеристики. Дополнениями служат два ролика и одна статья, по выбранной теме.

Что такое индуктивность.

Что такое индуктивность.

 Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока, в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю. Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Измерение катушки индуктивности мультиметром

Измерение катушки индуктивности мультиметром

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL,

  • где XL— индуктивное сопротивление, ом;
  • ω — угловая частота переменного тока, рад/сек;
  • L— индуктивность катушки, гн.

Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L,    (59)

где f — частота переменного тока, гц.

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение. Индуктивное сопротивление переменному току при f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Индуктивность сварочной дуги

Индуктивность сварочной дуги

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток. Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.

В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Индуктивность

Индуктивность

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.

Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°. Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе.

Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Что такое индуктивность

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току. Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.

Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.

  • В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
  • Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
  • В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
  • В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.

Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.

Интересно по теме: Как проверить стабилитрон.

Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии. Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Индуктивность и емкость в цепи переменного тока

Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:

i = Iм sin ωt

u = Uм sin (ϕ + ωt),

e = Ɛm sin (ψ + ωt).

Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:

R=(pl/S)(1 + at).

В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

График и схема подключения

График и схема подключения

Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:

ХL = ωL.

Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Катушки индуктивности

Катушки индуктивности

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;

Хс = 1/ωС

Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:

X = XL—XC

и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.

В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:

P = IU cos ϕ.

Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:

Р = I2R

Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)

Индуктивность

Индуктивность

Устройство катушки

Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.

Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.

Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = — dψ / dt

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Интересно почитать: инструкция как прозвонить транзистор.

Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.

1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп

ψ= ψси + ψвп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:

e = eси + eвп,

тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.

Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно об индуктивности рассказано в статье Что такое катушка индуктивности. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.jasic.ua

www.tkexp.ru

www.elektrica.info

www.electricalschool.info

www.tehnar.net.ua

www.tehinfor.ru

Предыдущая

ТеорияЧто такое электромагнитная индукция?

Следующая

ТеорияЧто такое анод и катод, в чем их практическое применение

Расчёт индуктивности. Часть 1 | HomeElectronics

Всем доброго времени суток! В прошлой статье я рассказывал о таком явлении как электромагнитная индукция и ЭДС возникающая при самоиндукции и взаимной индукции. Устройства, в основе которых лежат данные явления и процессы, называются индуктивными элементами (катушки колебательных контуров, трансформаторы, дроссели, реакторы). В качестве одного из основных параметров данных элементов выступает индуктивность L(также имеет название коэффициента самоиндукции). О том, как рассчитать данный параметр пойдёт речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Методы расчёта индуктивностей

Индуктивностью (обозначается L) или коэффициентом самоиндукции называется коэффициент пропорциональности между потокосцеплением (обозначается Ψ­L) и электрическим током, который возбуждает данное потокосцепление.

В простых случаях индуктивность можно рассчитать, применяя формулы для вычисления магнитной индукции B0 (закон Био-Савара-Лапласа), магнитного потока Φ и потокосцепления Ψ­L

где S – площадь поверхности ограниченная контуром, который создает магнитную индукцию;

n – количество контуров с током, которые пронизывает магнитный поток.

Однако это в идеальном случае, в реальности говоря о токе I, который протекает по проводнику, необходимо отметить, что его распределение по сечению проводника не всегда равномерно, вследствие возникновения скин-эффекта при переменном токе. В результате этого эффекта плотность электрического тока распределяется неравномерно, происходит её уменьшение от внешнего слоя проводника к его центру. Уменьшение плотности тока также происходит неравномерно и зависит от частоты переменного тока. Для оценки скин-эффекта ввели понятие толщины скин-слоя ∆, которая показывает, на каком расстоянии от поверхности проводника плотность тока падает в е = 2,718 раз. Толщину скин-слоя можно вычислить по выражению

где δ – глубина проникновения переменного тока или толщина скин-слоя;

μ – магнитная проницаемость вещества;

γ – удельная электрическая проводимость материала проводника;

ω – круговая частота переменного тока, ω = 2πf.

Поэтому непосредственный способ вычисления индуктивности практически не применяется.

На практике применяется выражения для индуктивности, выведенные с некоторыми допущениями, погрешности вычисления индуктивности по этим выражениями составляет порядка нескольких процентов.

Так как индуктивные элементы довольно разнообразны, их можно разделить на три группы:

индуктивные элементы без сердечников;

индуктивные элементы с замкнутыми сердечниками;

индуктивные элементы с сердечниками, имеющие воздушный зазор.

Самые простые по конструкции являются индуктивные элементы без сердечников, поэтому рассмотрим их в первую очередь. Простейшим из таких элементов является прямой провод.

Индуктивность прямолинейного провода круглого сечения

При расчёте индуктивности необходимо разделять индуктивность на постоянном токе и индуктивность на высокой частоте. Под высокой частотой следует понимать такую частоту, на которой толщина скин-слоя меньше размеров поперечного сечения провода. В случае если толщина скин-слоя больше поперечных размеров провода, то можно вести расчёт для постоянного тока.

Индуктивность прямого проводаИндуктивность прямого провода
Определение индуктивности прямого провода. l – это длина проводника, d = 2r – диаметр проводника.

В случае постоянного тока или тока низкой частоты индуктивность составит

где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;

l – длина провода, м;

d – диаметр провода, м.

Как я уже говорил, на величину индуктивности влияет частота переменного тока, поэтому в случае необходимости рассчитать индуктивность на любой частоте применяется следующее выражение

где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Данный коэффициент зависит от величины k*r, где

d = 2r – диаметр поперечного сечения провода, м.

где ω – угловая частота переменного тока, ω = 2πf;

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м;

γ – удельная проводимость вещества проводника.

Тогда если k*r < 3, то

если k*r > 3, то

где

Пример. Необходимо рассчитать индуктивность прямолинейного провода круглого сечения из меди (γ = 5,81*107 См/м) диаметром d = 2 мм и длиной l = 4 м, при постоянном токе и токе частотой f = 50 кГц.

На постоянном токе

На частоте 50 кГц

Индуктивность кругового кольца круглого сечения

Теперь рассмотрим, какова будет индуктивность если провод свернуть в кольцо. Такой индуктивный элемент будет иметь вид

Индуктивность кольца (витка) из проводаИндуктивность кольца (витка) из провода
Определение индуктивности кругового витка. D – диаметр кольца (витка), d – диаметр провода, из которого сделано кольцо (виток).

При этом его индуктивность можно вычислить по следующему выражению

для  постоянного тока

где R – радиус витка, м, R = D/2;

r – радиус провода, м, r = d/2;

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м.

Так же как и для проводника существует выражение для индуктивности кругового витка на любой частоте

где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Определяется также как и для прямого проводника.

Пример. В качестве примера рассчитаем индуктивность такого же провода, как и в первом примере, только свёрнутом в кольцо. В этом случае диаметр провода d = 2 мм, а диаметр кольца D = l/π = 4/3,142 ≈ 1,273 м, провод выполнен из меди (γ = 5,81*107 См/м).

Для постоянного тока индуктивность составит

На частоте 50 кГц

В следующей части я продолжу рассмотрение расчётов индуктивности для различных индуктивных элементов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Индуктивность | Полезные статьи — Кабель.РФ

Индуктивность L — величина, равная отношению потокосцепления, связанного с контуром, к силе тока, протекающего по нему:

<

Индуктивность складывается из внутренней индуктивности (жилы кабеля и провода) L в и наружной, междужильной, индуктивности L и

Единица индуктивности генри (гн) — индуктивность контура, с которым сцеплен магнитный поток 1 вб, когда по контуру течет ток 1 а, или индуктивность контура, в котором возникает э. д. с. самоиндукции 1 в при изменении тока в нем на 1 а в 1 сек.

Индуктивность одножильного кабеля, а также внешняя индуктивность коаксиального кабеля

Индуктивность коаксиального кабеля

Общая индуктивность коаксиального кабеля с медными внутренним и внешним проводниками

У многопроволочного внутреннего проводника диаметр равен

Индуктивность внутреннего проводника спирального радиочастотного кабеля (задержки), выполненного в виде спирали поверх сердечника с магнитной проницаемостью μ

Индуктивность двухжильного кабеля:

а) неэкранированного (рис. 2-2)

б) экранированного (рис. 2-3)

в) с учетом магнитного потока внутри жил

где Q(x) — коэффициент, зависящий от вихревых токов, и радиуса жилы r (табл. 2-2). С возрастанием частоты передаваемого тока общая индуктивность цепи уменьшается, а внешняя индуктивность не зависит от частоты.

Индуктивность двухпроводной линии (см. рис. 2-2), когда μ = 1,

Индуктивность одиночного провода

Зависимость индуктивности кабеля от частоты приведена на рис. 1-1. При больших сечениях токопроводящих жил, а также при высоких частотах происходит уплотнение тока у периферии жилы, благодаря чему снижается напряженность магнитного поля внутри токопроводящей жилы. Для определения индуктивности одиночного провода пользуются так же формулой

Для трехжильного кабеля или трех одножильных кабелей, расположенных по вершинам равностороннего треугольника (см. рис. 2-2,б) индуктивность каждой жилы также можно определить по (2-16). В случае трехжильного кабеля с секторными жилами за r принимают радиус эквивалентной по сечению круглой жилы, а за а — расстояние между серединами малых хорд секторов в поперечном сечении кабеля. В случае расположения трех одножильных кабелей в одной плоскости (рис. 2-2,в) индуктивность среднего кабеля определяют по приведенной выше формуле, но за а принимается расстояние между осями двух соседних кабелей. Индуктивность -крайних кабелей

 

где I а и I с — силы тока в крайних кабелях.

Приведенные формулы для подсчета индуктивности справедливы в случае небронированных кабелей. При наличии в непосредственной близости к кабелю магнитных материалов (например, проволочная или ленточная броня) индуктивность таких кабелей соответственно возрастает; в этом случае

где μ- магнитная проницаемость брони кабеля; D 1 и D 2 — диаметры кабеля под броней и поверх нее, мм.

В трехжильном кабеле в каждый момент времени сумма величин тока, в трех жилах равна нулю. Результирующий магнитный поток в пространстве, окружающем жилы на некотором удалении от них практически также, равен нулю. Поэтому в трехжильных кабелях, влиянием магнитной брони на индуктивность пренебрегают.

Индуктивность искусственной цепи, образованной из четверки (Ч) в кабелях дальней связи,

при четверке типа двойной пары (ДП)

Индуктивное сопротивление x L — сопротивление, которое оказывает переменному току проводник, обладающий индуктивностью L:

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 529

«Физика — 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:

магнитный поток, пронизывающий катушку, меняется во времени,

а в катушке возникает ЭДС индукции .

Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.

При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке:

при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.

В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.

Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).

Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:

Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.

Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:

При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.

При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.

При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.

В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.

Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.

Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.

Вихревое поле совершает положительную работу.

Запасенная током энергия выделяется.

Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,

аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика


Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Явление самоиндукции. Индуктивность проводников — Студопедия

При любом изменении тока в проводнике его собственное магнитное поле также изменяется. Вместе с ним изменяется и поток магнитной индукции, пронизывающий поверхность, охваченную контуром проводника. В результате в этом контуре индуцируется ЭДС. Это явление называется явлением самоиндукции.

В соответствии с законом Био-Савара-Лапласа индукция магнитного поля В пропорциональна силе тока I в проводнике. Отсюда следует, что поток магнитной индукции и сила тока I также пропорциональны друг другу:

Коэффициент пропорциональности L называютиндуктивностью проводника. За единицу индуктивности в СИ принимают индуктивность такого проводника, у которого при силе тока 1А создается поток магнитной индукции, равный 1Вб. Эту единицу называют Генри, Гн.

Индуктивность проводника зависит от его формы и размеров, а также от магнитных свойств окружающей его среды (магнитной проницаемости μ). Заметим при этом, что линейная зависимость между и I остается справедливой и в том случае, когда μ зависит от напряженности магнитного поля Н, а значит, от I (например, ферромагнитная среда). В этом случае индуктивность L также зависит от I.

Согласно основному закону электромагнитной индукции, ЭДС самоиндукции, возникающая при изменении силы тока в проводнике, есть:

.

Или, записав , будем иметь: .

В том случае, когда среда не является ферромагнитной L=const, тогда:

Последняя формула дает возможность определить индуктивность L как коэффициент пропорциональности между скоростью изменения силы тока в проводнике и возникающей вследствие этого ЭДС самоиндукции.

что это такое и от чего зависит

В радиотехнике часто приходится сталкиваться с индуктивным сопротивлением. Его источником являются катушки. Они представляют собой двухполюсник, намотанный медным эмалированным проводом (обычно это ПЭТВ) на ферритовый или железный сердечник. Подобные детали встречаются в широком перечне оборудования: от древних советских радиоприёмников до материнских плат ПК последних моделей.

Катушки индуктивности

Катушки индуктивности

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Y = LI.

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Простой DC-DC повышающий преобразователь

Простой DC-DC повышающий преобразователь

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Сопротивление катушки переменному току

Гораздо интереснее дела обстоят с индуктивностью в контуре переменного тока. Любая катушка содержит в себе две составляющие сопротивления:

  1. Активную;
  2. Индуктивную.

При постоянном токе учитывается только первый фактор, а при переменном – оба. Формула индуктивного сопротивления XL катушки имеет следующий вид:

XL = 2pfL,

где:

  • p = 3.14;
  • f – частота переменного тока, Гц;
  • L – индуктивность катушки, Гн.

Полное сопротивление катушки Z, называемое импедансом, определяется, исходя из активной R и индуктивной XL составляющих.

Импеданс катушки

Импеданс катушки

Важно! Если катушка установлена в печатную плату, то для проверки её следует отпаять. В таком случае индуктивность будет измеряться независимо от других компонентов, что существенно повысит точность показаний прибора.

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

L=u0urN2S/l,

где:

  • u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Где применяется катушка (дроссель, индуктивность)

Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.

Катушка как электромагнит

Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.

Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.

Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.

Индукционный нагрев металла

Индукционный нагрев металла

Индуктивность как фильтр

Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.

Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».

Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.

Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.

Самодельный звуковой фильтр

Самодельный звуковой фильтр

Катушка как источник ЭДС

Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.

Подобное явление объясняется законом электромагнитной индукции.  Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.

Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.

Принцип работы генератора

Принцип работы генератора

Две катушки – трансформатор

Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике. Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке. Напряжения во входной и выходной катушках прямо зависят от количества их витков.

Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.

Устройство трансформатора

Устройство трансформатора

Катушка индуктивности — элемент колебательного контура

Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора. Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС. Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.

Катушка индуктивности – дроссель ДРЛ ламп

Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.

ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.

Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.

Видео

Зависимость индуктивности от проводника

Deprecated: Non-static method Date_TimeZone::getDefault() should not be called statically, assuming $this from incompatible context in /home/carkey/hitech/hardtech/kernel/pear/date/Date.php on line 201

Deprecated: Non-static method Date_TimeZone::isValidID() should not be called statically, assuming $this from incompatible context in /home/carkey/hitech/hardtech/kernel/pear/date/Date.php on line 576

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Зависимость индуктивности от проводника

­Индуктивность зависит от формы и размеров проводника. Индуктивность прямого проводника очень мала. Чем длиннее проводник, тем больше его индуктивность; с увеличением толщины проводника индуктивность его уменьшается. Так, например, прямой проводник длиной 1 м и диаметром 1 мм имеет индуктивность 1,51 мкГн, а диаметром 2 мм — 1,37 мкГн. Индуктивность катушки значительно больше индуктивности прямого проводника. Это объясняется тем, что при изменении тока в катушке магнитные силовые линии каждого витка пересекают не I только этот виток, но и соседние витки, вследствие чего э. д. с. самоиндукции получается значительно больше, чем в прямом проводнике. Индуктивность катушки тем больше, чем больше количество витков в ней; при этом, если, например, количество витков увеличить в два раза, то индуктивность возрастет в четыре раза. Катушки могут иметь индуктивность до нескольких сотен миллигенри, а иногда и больше.

Чтобы получить еще большую индуктивность, в катушку помещают стальной сердечник. Он значительно усиливает магнитный поток, создаваемый катушкой, и малые изменения тока в ней вызывают значительные изменения магнитного потока, что приводит к появлению большой э. д. с. самоиндукции. Особенно большой будет индуктивность, если применить замкнутый стальной сердечник. В этом случае магнитный поток проходит целиком по стали; так как сталь имеет малое магнитное сопротивление, магнитный поток имеет большую величину даже при малом токе. При изменениях тока он сильно изменяется и э. д. с. самоиндукции становится очень большой. Итак, э. д. с. самоиндукции тем больше, чем больше индуктивность проводника и скорость изменения тока в нем.

Знаете ли вы, что в наши дни услуги частного сыщика столь же популярны, как во времена легендарного Шерлока Холмса — персонажа писателя Сэра Артура Конан Дойля. Современный частный детектив (Москва) пользуется новейшими методами сбора информации и способен найти должника, выявить факт супружеской измены и принять меры для обеспечения безопасности клиента.
­

Наша продукция







Warning: Unknown: write failed: Disk quota exceeded (122) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/opt/alt/php56/var/lib/php/session) in Unknown on line 0

Индуктивность

  • Изучив этот раздел, вы сможете описать:
  • • Единица индуктивности.
  • • Факторы, влияющие на индуктивность.
  • • Напряжение и э.д.с.
  • • Самоиндукция.
  • • Обратный э.м.ф. и его эффекты.

Индуктивность

Ток, генерируемый в проводнике изменяющимся магнитным полем, пропорционален скорости изменения магнитного поля.Этот эффект называется ИНДУКТИВНОСТЬЮ и обозначается символом L. Он измеряется в единицах, называемых генри (H), названных в честь американского физика Джозефа Генри (1797-1878). Один генри — это величина индуктивности, необходимая для создания ЭДС в 1 вольт в проводнике, когда ток в проводнике изменяется со скоростью 1 ампер в секунду.
Генри — довольно крупная единица измерения для использования в электронике, чаще всего используются миллигенри (мГн) и микрогенри (мкГн). Эти единицы описывают одну тысячную и одну миллионную генри соответственно.

Хотя генри обозначается символом (заглавной) H, имя генри применяется к единице индуктивности с использованием строчной буквы h. Форма множественного числа генри может быть генри или генри; Американский национальный институт стандартов и технологий рекомендует в публикациях США использовать генри.

Факторы, влияющие на индуктивность.

Величина индуктивности в катушке индуктивности зависит от:

  • а. Количество витков провода в индукторе.
  • г.Материал сердечника.
  • г. Форма и размер сердечника.
  • г. Форма, размер и расположение проволоки, составляющей катушки.

Поскольку индуктивность (в генри) зависит от множества переменных величин, ее довольно сложно вычислить точно; были разработаны многочисленные формулы, учитывающие различные особенности конструкции. Также в этих формулах часто необходимо использовать специальные константы и таблицы данных преобразования для работы с требуемой степенью точности.Использование компьютерных программ и систем автоматизированного проектирования несколько облегчило ситуацию. Однако внешние эффекты, вызванные другими компонентами и проводкой рядом с катушкой индуктивности, также могут повлиять на ее значение индуктивности, когда она собрана в цепь, поэтому, когда требуется точное значение индуктивности, одним из подходов является расчет приблизительного значения и разработка индуктор так, чтобы он был регулируемым.

Типовая формула для аппроксимации значения индуктивности индуктора приведена ниже.Эта конкретная версия предназначена для расчета индуктивности «соленоида, намотанного одним слоем витков бесконечно тонкой ленты, а не проволоки, и с равномерно и близко расположенными витками».

variable-inductor.jpg

Рис. 3.2.1 Миниатюрный переменный индуктор.

Form-L.gif

Где:

  • L — индуктивность в генри.
  • d — диаметр рулона в метрах.
  • n — количество витков в катушке.
  • l — длина змеевика в метрах.

Для катушек, не соответствующих в точности указанным выше спецификациям, необходимо учитывать дополнительные факторы. На рис. 3.2.1 показан один из способов получения достаточно точной индуктивности, используемый в некоторых ВЧ и ВЧ схемах. Миниатюрная катушка индуктивности намотана на пластмассовый каркас, в который достаточно ввинчен ферритовый сердечник (железная пыль), чтобы обеспечить сердечник, обеспечивающий нужную индуктивность.

Напряжение и э.д.с.

Напряжение , индуцированное в проводнике, называется e.м.ф. (электродвижущая сила), поскольку ее источником является изменяющееся магнитное поле вокруг проводника и вне его. Любое внешнее напряжение (в том числе создаваемое внешней батареей или источником питания) называется э.д.с., в то время как напряжение (разность потенциалов или п.о.) на внутреннем компоненте в цепи называется напряжением.

Задний э.д.с.

Обратная ЭДС (также называемая противоэдс) — это ЭДС, создаваемая на индукторе изменяющимся магнитным потоком вокруг проводника, вызванная изменением тока в индукторе.Его значение можно рассчитать по формуле:

Form-induced-emf.gif

Где:

  • E — наведенная обратная ЭДС. в вольтах
  • L — индуктивность катушки в генри.
  • ΔI — изменение силы тока в амперах.
  • Δt — время изменения тока в секундах.

Maths Tips booklet

Примечания:

Δ (греч. D — дельта) обозначает различие или изменение свойства.

Итак, формула описывает обратную ЭДС как зависимость от индуктивности (в генри), умноженную на скорость изменения тока (в амперах в секунду).

Знак минус перед L указывает, что полярность наведенной обратной ЭДС будет обратной по сравнению с изменяющимся напряжением на проводнике, которое первоначально вызвало изменение тока и, как следствие, изменение магнитного поля.

Помните, что при работе с практическими значениями милли или микрогенри все значения, используемые в формуле, должны быть преобразованы в стандартные значения генри-ампер и секунд, как описано в нашем буклете «Советы по математике».

Пример

Поскольку значение обратной ЭДС зависит от скорости изменения тока, оно будет наибольшим, когда произойдет самое быстрое изменение.Например, скорость изменения чрезвычайно высока, когда ток через катушку индуктивности отключается; тогда изменение может быть от максимума до нуля всего за несколько миллисекунд.

Представьте, что катушка индуктивности 200 мГн, подключенная к источнику питания 9 В, пропускает ток в 2 ампера. Когда ток отключается, он падает до нуля через 10 мсек. Какой будет обратная ЭДС, генерируемая на катушке?

E = 200 мГн x 2 А / 10 мс

или

E = 200 x 10 -3 x 2/10 x 10 -3

= 40 вольт

Значит, обратная ЭДС, возникающая при выключении, более чем в 4 раза превышает напряжение питания!

Эти высоковольтные импульсы, возникающие при отключении индуктивного компонента, такого как двигатель или катушка реле, потенциально могут вызвать повреждение выходного транзистора или интегральной схемы, переключающей устройство.Поэтому существенная защита обеспечивается включением диода в выходной каскад, как показано на рис. 3.2.2 и 3.2.3

Задняя защита от ЭДС

Protection-Diode.gif

Рис. 3.2.2 Задний Э.д.с. Защитный диод.

Защитный диод на рис. 3.2.2, подключенный к катушке индуктивности, обычно имеет обратное смещение, поскольку напряжение на его катоде, подключенном к шине питания + V, будет более положительным, чем его анод на коллекторе транзистора. Однако при выключении на индукторе появляется большой всплеск напряжения противоположной полярности из-за схлопывающегося магнитного поля.Во время этого скачка напряжения коллектор транзистора может находиться под более высоким потенциалом, чем питание, за исключением того, что если это произойдет, диод станет смещенным в прямом направлении и предотвратит повышение напряжения коллектора выше, чем на шине питания.

ULN2803.gif

Рис. 3.2.3 Защитные диоды в ULN2803.

На рис. 3.2.3 показан популярный I.C. (ULN2803) для переключения индуктивных нагрузок. Выходы восьми инвертирующих усилителей защищены диодом, общие катоды которого подключены к положительной шине питания + V на выводе 10.

Самоиндукция

Принцип работы самоиндукции зависит от двух взаимосвязанных действий, происходящих одновременно, и от каждого из этих действий в зависимости от другого.

Действие 1.

Любой проводник, в котором изменяется ток, создает вокруг себя изменяющееся магнитное поле.

Действие 2.

Любой проводник в ИЗМЕНЯЕМОМ магнитном поле будет иметь изменяющуюся ЭДС, наведенную в него.Величина этой наведенной ЭДС и величина индуцированного тока, который она производит в проводнике, будут зависеть от скорости изменения магнитного поля; чем быстрее изменяется поток поля, тем больше будет наведенная ЭДС. и его последующий ток.

Эффект индуктора, индуцирующего в себе ЭДС, называется самоиндукцией (но часто его называют просто индукцией). Когда катушка индуктивности наводит ЭДС в отдельную соседнюю катушку индуктивности, это называется взаимной индукцией и является свойством, используемым трансформаторами.

Изменяющееся магнитное поле, создаваемое вокруг проводника изменяющимся током в проводнике, вызывает изменение ЭДС в этом проводнике. Эта изменяющаяся ЭДС, в свою очередь, вызывает переменный ток, текущий в направлении, противоположном исходному току. Таким образом, изменения этого тока противодействуют изменениям исходного тока.

Следовательно, действие Действия 2 ограничивает изменения, происходящие из-за Действия 1.
Если исходный ток увеличивается, индуцированный ток замедляет скорость увеличения.Точно так же, если исходный ток уменьшается, индуцированный ток замедляет скорость уменьшения. Общий результат этого — уменьшение амплитуды переменного тока через катушку индуктивности и, таким образом, уменьшение амплитуды переменного напряжения на катушке индуктивности.

Поскольку сила магнитного поля, создаваемого исходным током, зависит от скорости (скорости) изменения тока, индуктор уменьшает поток переменного тока (AC) больше на высоких частотах, чем на низких.Этот ограничивающий эффект, создаваемый наведенной ЭДС, будет больше на более высоких частотах, потому что на высоких частотах ток и, следовательно, поток изменяются быстрее. Этот эффект получил название «Индуктивное реактивное сопротивление».

Индуктивное реактивное сопротивление.

Реактивность создает сопротивление потоку переменного тока. Как и сопротивление, оно измеряется в Ом, но поскольку сопротивление имеет одинаковое значение на любой частоте, а сопротивление переменному току в индукторах зависит от частоты, его нельзя назвать сопротивлением.Вместо этого он называется Reactance (X). Конденсаторы также обладают свойством реактивного сопротивления, но они по-разному реагируют на частоту, поэтому существует два типа реактивного сопротивления; индукторы имеют индуктивное реактивное сопротивление (X L ), а конденсаторы — емкостное реактивное сопротивление (X C ).

.

Индуктивность | электроника | Britannica

Индуктивность , свойство проводника (часто в форме катушки), которое измеряется величиной электродвижущей силы или напряжения, индуцированного в нем, по сравнению со скоростью изменения электрического тока, который производит напряжение. Постоянный ток создает стационарное магнитное поле; Постоянно меняющийся ток, переменный ток или флуктуирующий постоянный ток создают изменяющееся магнитное поле, которое, в свою очередь, индуцирует электродвижущую силу в проводнике, присутствующем в поле.Величина наведенной электродвижущей силы пропорциональна скорости изменения электрического тока. Коэффициент пропорциональности называется индуктивностью и определяется как значение электродвижущей силы, индуцированной в проводнике, деленное на величину скорости изменения тока, вызывающего индукцию.

Британская викторина

Гаджеты и технологии: факт или вымысел?

Компьютерная клавиатура — старинное устройство.

Если электродвижущая сила индуцируется в проводнике, отличном от того, в котором изменяется ток, это явление называется взаимной индукцией, примером которой является трансформатор. Однако изменение магнитного поля, вызванное изменяющимся током в проводнике, также индуцирует электродвижущую силу в самом проводнике, по которому протекает изменяющийся ток. Такое явление называется самоиндукцией, и отношение индуцированной электродвижущей силы к скорости изменения тока определяется как самоиндукция.

Самоиндуцированная электродвижущая сила противодействует изменению, которое ее вызывает. Следовательно, когда ток начинает течь через катушку с проволокой, он претерпевает сопротивление своему течению в дополнение к сопротивлению металлической проволоки. С другой стороны, когда электрическая цепь, несущая постоянный ток и содержащая катушку, внезапно размыкается, схлопывающееся и, следовательно, уменьшающееся магнитное поле вызывает индуцированную электродвижущую силу, которая стремится поддерживать ток и магнитное поле и может вызвать искру. между контактами переключателя.Таким образом, самоиндукцию катушки или просто ее индуктивность можно рассматривать как электромагнитную инерцию, свойство, которое противодействует изменениям как токов, так и магнитных полей.

Индуктивность зависит от размера и формы данного проводника, количества витков, если это катушка, и типа материала рядом с проводником. Катушка, намотанная на сердечник из мягкого железа, гораздо более эффективно подавляет увеличение тока, чем такая же катушка с воздушным сердечником. Железный сердечник увеличивает индуктивность; при той же скорости изменения тока в катушке существует большая противодействующая электродвижущая сила (противо-ЭДС), которая подавляет ток.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Единицей измерения магнитной индукции является генри, названный в честь американского физика 19-го века Джозефа Генри, который первым обнаружил явление самоиндукции. Один генри эквивалентен одному вольту, разделенному на один ампер в секунду. Если ток, изменяющийся со скоростью один ампер в секунду, индуцирует электродвижущую силу в один вольт, цепь имеет индуктивность в один генри, то есть относительно большую индуктивность.

Джозеф Генри. Архив Халтона / Getty Images .

Что такое индуктор? — Определение и типы

Определение: Катушка индуктивности — это пассивный компонент, который накапливает электрическую энергию в магнитном поле, когда через него проходит электрический ток. Или мы можем сказать, что индуктор — это электрическое устройство, обладающее индуктивностью.

Катушка индуктивности изготовлена ​​из проволоки, обладающей свойством индуктивности, т. Е. Противодействующей прохождению тока. Индуктивность провода увеличивается за счет увеличения количества витков. Алфавит «L» используется для обозначения индуктора и измеряется в Генри.Индуктивность характеризует катушку индуктивности. На рисунке ниже показано символическое изображение индуктора.

inductor-image

Электрический ток I, протекающий через катушку, создает вокруг нее магнитное поле. Представьте, что магнитное поле генерирует поток Φ, когда через него протекает ток. Соотношение потока и тока дает индуктивности. equations-inductor

Индуктивность цепи зависит от путей прохождения тока и магнитной проницаемости ближайшего материала. Магнитная проницаемость показывает способность материала формировать магнитное поле.

Типы индукторов

Катушки индуктивности подразделяются на два типа.

1. Индуктор с воздушным сердечником (намотанный на неферритовый материал) — Индуктор, в котором либо сердечник полностью отсутствует, либо керамический материал используется для изготовления сердечника. Такой тип индуктора известен как индуктор с воздушным сердечником.

air-cored-inductor

Керамический материал имеет очень низкий коэффициент теплового расширения. Низкий коэффициент теплового расширения означает, что форма материала остается неизменной даже при повышении температуры.Керамический материал не имеет магнитных свойств. Проницаемость индуктора остается неизменной благодаря керамическому материалу.

В воздушном сердечнике-индукторе единственная работа сердечника — это придание катушке определенной формы. Структура с воздушным сердечником имеет много преимуществ, таких как уменьшение потерь в сердечнике и повышение добротности. Индуктор с воздушным сердечником используется в высокочастотных приложениях, где требуется низкая индуктивность.

2. Индуктор с железным сердечником (намотанный на ферритовый сердечник) — это индуктор с фиксированным значением, в котором железный сердечник находится между катушкой.Индуктор с железным сердечником используется в схеме фильтра для сглаживания пульсаций напряжения, он также используется в качестве дросселя в лампах дневного света, в промышленных источниках питания, инверторных системах и т. Д.

iron-cored-inductor

Как работает индуктор?

Катушка индуктивности — это электрическое устройство, используемое для хранения электрической энергии в форме магнитного поля. Он построен путем намотки провода на сердечник. Сердечники изготавливаются из керамического материала, железа или воздуха. Сердечник может быть тороидальным или Е-образным.

Катушка, по которой проходит электрический ток, индуцирует магнитное поле вокруг проводника. Напряженность магнитного поля увеличивается, если сердечник помещается между катушкой. Сердечник обеспечивает путь магнитному потоку с низким сопротивлением.

inductor-coil

Магнитное поле индуцирует ЭДС в катушке, которая вызывает ток. А согласно закону Ленца причины всегда противостоят следствию. Здесь причиной является ток, и он индуцируется из-за напряжения.Таким образом, ЭДС противодействуют изменению тока, изменяющему магнитное поле. Ток, который уменьшается из-за индуктивности, известен как индуктивное реактивное сопротивление. Индуктивное сопротивление увеличивается с увеличением количества витков катушек.

.

Сопротивление проводника — Energy Education

Рис. 1. Нить накаливания загорается из-за сопротивления проводящего провода. [1]

Сопротивление проводника — это свойство проводника при определенной температуре, и оно определяется как величина сопротивления протеканию электрического тока через проводящую среду. [2] Сопротивление проводника зависит от площади поперечного сечения проводника, длины проводника и его удельного сопротивления.Важно отметить, что электрическая проводимость и удельное сопротивление обратно пропорциональны, а это означает, что чем больше проводимость, тем меньше сопротивление.

Сопротивление проводника можно рассчитать при температуре 20 ° C с помощью: [3]

[математика] \ R = \ frac {\ rho L} {A} [/ математика]

где:

  • [math] R [/ math] — сопротивление в омах (Ом)
  • [math] \ rho [/ math] — удельное сопротивление материала в омметрах (Ом · м)
  • [math] L [/ math] — длина проводника в метрах (м)
  • [math] A [/ math] — площадь поперечного сечения проводника в метрах в квадрате (м 2 )

Эта формула говорит нам, что сопротивление проводника прямо пропорционально [math] \ rho [ / math] и [math] L [/ math], и обратно пропорционально [math] A [/ math].Поскольку сопротивление некоторого проводника, такого как кусок провода, зависит от столкновений внутри самого провода, сопротивление зависит от температуры. С повышением температуры сопротивление провода увеличивается, поскольку столкновения внутри провода увеличиваются и «замедляют» ток. Величина изменения определяется температурным коэффициентом. [4] Положительный температурный коэффициент приводит к увеличению сопротивления с повышением температуры, тогда как отрицательный температурный коэффициент приводит к уменьшению сопротивления с повышением температуры.Поскольку проводники обычно демонстрируют повышенное удельное сопротивление с повышением температуры, они имеют положительный температурный коэффициент. Наиболее распространенные типы резисторов — это переменные резисторы и постоянные резисторы.

Используя сопротивление проводника, можно создать свет в лампе накаливания. В лампе накаливания есть проволочная нить определенной длины и ширины, обеспечивающая определенное сопротивление. Если это сопротивление правильное, ток, протекающий через провод, замедляется ровно настолько, без остановки из-за слишком большого сопротивления, что нить накала нагревается до точки, в которой она начинает светиться. [5]

Подробнее о сопротивлении проводника см. HyperPhysics.

PhET: Сопротивление в проводе

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите симуляцию, чтобы увидеть, как изменяется сопротивление проводника в зависимости от геометрии и удельного сопротивления:

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение прав доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее вашей версии сервера MySQL, чтобы найти правильный синтаксис рядом с ‘)’ в строке 1

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *