7. Понятие информации в кибернетике. Информация в кибернетике


Информация (в кибернетике) — Викизнание... Это Вам НЕ Википедия!

Информация (лат. ' – разъяснение, изложение) – основное понятие кибернетики. Кибернетика изучает машины и живые организмы исключительно с точки зрения их способности воспринимать, сохранять в «памяти», перерабатывать и передавать по каналам связи информацию, направляющую их деятельность и поведение. Интуитивное представление об информации о каких-либо событиях и величинах, содержащейся в тех или иных данных кибернетикой ограничивается и уточняется Фундаментальным результатом теории информации является утверждение о том, что в определённых, весьма широких условиях можно пренебречь качественными особенностями информации и выразить её количество числом, которым (и только им) определяются возможности передачи информации по каналам связи и её хранения в запоминающих устройствах.

В основе информации теории лежит предложенный в 1948 Клодом Шенноном способ измерения количества информации, содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно другого случайного объекта. Этот способ приводит к выражению количества информации числом. В простейшем варианте рассматриваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений.

Пусть и – случайные величины, принимающие и различных значений с вероятностями и соответственно. Тогда количество информации, содержащейся в с.в. относительно с.в. определяется числом

где вероятность пересечения событий « принимает -е значение» и « принимает -е значение».

Информация обладает рядом свойств, которые естественно требовать от числовой меры информации. Так, всегда и равенство возможно тогда и только тогда, когда при всех , т. е. когда случайные величины независимы. Далее, всегда и равенство возможно только в случае, когда есть функция от (напр., и т. д.). Справедливо равенство – мера информации симметрична относительно своих аргументов. Кроме того, количество информации не зависит от значений с.в. , а только – от распределения их вероятностей.

Величина

носит название энтропии случайной величины . Понятие энтропии относится к числу основных понятий теории информации. Количество информации и энтропия связаны соотношением

где — энтропия пары , т. е.

Величина энтропии указывает среднее число двоичных знаков, необходимое для различения (записи) возможных значений случайной величины. Это обстоятельство позволяет понять роль количества информации при «хранении» информации в запоминающих устройствах. Основная информационная характеристика каналов, так называемая пропускная способность, определяется через понятие информации.

Если и могут принимать бесконечное число значений, то предельным переходом получается формула

где и обозначают соответствующие плотности вероятности. При этом энтропии и не существуют, но имеет место аналогичная формула:

где

— дифференциальная энтропия , а и определяются подобным образом.

Понятие в статистике было введено Р.Фишером (1921), он же предложил меру среднего количества информации относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории статистических оценок.

www.wikiznanie.ru

Понятие информации в кибернетике

Информация (от лат. informatio - разъяснение, изложение) первоначально - сведения, передаваемые одними людьми другим людям устным, письменным или каким-либо другим способом (например, с помощью условных сигналов, с использованием технических средств и т.д.), а также сам процесс передачи или получения этих сведений.

В отечественной и зарубежной литературе предлагается много разных концепций (определений) информации:

1) информация как отраженное разнообразие,

2) информация как устранение неопределенности (энтропии),

3) информация как связь между управляющей и управляемой системами,

4) информация как преобразование сообщений,

5) информация как единство содержания и формы (например, мысль - содержание, а само слово, звук - форма),

6) информация - это мера упорядоченности, организации системы в ее связях с окружающей средой.

Информация всегда играла в жизни человечества очень важную роль. Однако в середины 20 в. в результате социального прогресса и бурного развития науки и техники роль информации неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной информации, получившее название "информационного взрыва". В связи с этим возникла потребность в научном подходе к информации, выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия информации. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу информации. Во-вторых, была предложена количественная мера информации (работы К. Шеннона, А. Н. Колмогорова и др.), что привело к созданию информации теории.

Понятие информации в кибернетики уточняется в математических "теориях информации". Это теории статистической, комбинаторной, топологической, семантической информации.

Общее понятие информации должно непротиворечиво охватывать все определения информация, все виды информации. К сожалению, такого универсального понятия информации еще не разработано. Информация может быть структурной, застывшей, окостенелой. Информация может быть также функциональной, " актуальным управлением". Информация измеримая величина. Она измеряется в битах. Каковы свойства информации? Первое - способность управлять физическими, химическими, биологическими и социальными процессами. Там, где есть информация, действует управление, а там, где осуществляется управление, непременно наличествует и информация. Второе свойство информации - способность передаваться на расстоянии. Третье - способность информации подвергаться переработке. Четвертое - способность сохраняться в течение любых промежутков времени и изменяться во времени. Пятое - способность переходить из пассивной формы в активную. Информация существенно влияет на ускоренное развитие науки, систем управления, техники и различных отраслей народного хозяйства. Информация - неисчерпаемый ресурс общества. Информация - первооснова мира, всего сущего. Современным научным обобщением всех информационных процессов в природе и обществе явилась информациология - генерализованная наука о природе информации и законах информации.



biofile.ru

Что значит информация (в кибернетике)

Пусть результатом некоторого измерения является случайная величина X. При передаче по некоторому каналу связи X искажается, в результате чего на приёмном конце получают величину Y = X + q, где q не зависит от X (в смысле теории вероятностей). «Выход» Y даёт И. о «входе» X; причём естественно ожидать, что эта И. тем меньше, чем больше дисперсия случайной ошибки q.

В каждом из приведённых примеров данные сравнивались по большей или меньшей полноте содержащейся в них И. В примерах 1≈3 смысл такого сравнения ясен и сводится к анализу равносильности или неравносильности некоторых соотношений. В примерах 3 а и 4 этот смысл требует уточнения. Это уточнение даётся, соответственно, математической статистикой и теорией И. (для которых эти примеры являются типичными).

В основе теории информации лежит предложенный в 1948 американским учёным К. Шенноном способ измерения количества И., содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно другого случайного объекта. Этот способ приводит к выражению количества И. числом. Положение можно лучше объяснить в простейшей обстановке, когда рассматриваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений. Пусть X ≈ случайная величина, принимающая значения x1, x2,..., xn с вероятностями p1, p2,..., pn, а Y ≈ случайная величина, принимающая значения y1, y2,..., ymс вероятностями q1, q2,..., qm. Тогда И. I (X,Y) относительно Y, содержащаяся в X, определяется формулой

где pij ≈ вероятность совмещения событий X = xi и Y = yj и логарифмы берутся по основанию 2. И. I (X, Y) обладает рядом свойств, которые естественно требовать от меры количества И. Так, всегда I (X, Y) ³ 0 и равенство I (X, Y) = 0 возможно тогда и только тогда, когда pij = piqj при всех i и j, т. е. когда случайные величины X и Y независимы. Далее, всегда I (X, Y) £ I (Y, Y) и равенство возможно только в случае, когда Y есть функция от X (например, Y = X2 и т. д.). Кроме того, имеет место равенство I (X, Y) = I (Y, X). Величина

носит название энтропии случайной величины X. Понятие энтропии относится к числу основных понятий теории И. Количество И. и энтропия связаны соотношением

I (X, Y) = H (X) + H (Y) ≈ H (X, Y),════════════════════════════(5)

где H (X, Y) ≈ энтропия пары (X, Y), т. е.

Величина энтропии указывает среднее число двоичных знаков (см. Двоичные единицы ), необходимое для различения (или записи) возможных значений случайной величины (подробнее см. Кодирование , Энтропия ). Это обстоятельство позволяет понять роль количества И. (4) при «хранении» И. в запоминающих устройствах. Если случайные величины X и Y независимы, то для записи значения X требуется в среднем H (X) двоичных знаков, для значения Y требуется H (Y) двоичных знаков, а для пары (X, Y) требуется Н (Х) + H (Y) двоичных знаков. Если же случайные величины X и Y зависимы, то среднее число двоичных знаков, необходимое для записи пары (X, Y), оказывается меньшим суммы Н (Х) + H (Y), так как

H (X, Y) = H (X) + H (Y) ≈ I (X, Y).

С помощью значительно более глубоких теорем выясняется роль количества И. (4) в вопросах передачи И. по каналам связи. Основная информационная характеристика каналов, так называемая пропускная способность (или ёмкость), определяется через понятие «И.» (подробнее см. Канал ).

Если X и Y имеют совместную плотность p(x, y), то

где буквами р и q обозначены плотности вероятности Х и Y соответственно. При этом энтропии Н (X) и Н (Y) не существуют, но имеет место формула, аналогичная (5),

I (X, Y) = h (X) + h (Y) ≈ h (X, Y),═════════════════════════════════════════(7)

где

дифференциальная энтропия X [h (Y) и h (X, Y) определяется подобным же образом].

Пример

Пусть в условиях примера 4 случайные величины X и q имеют нормальное распределение вероятностей с нулевыми средними значениями и дисперсиями, равными соответственно s2х и s2q. Тогда, как можно подсчитать по формулам (6) или (7):

Таким образом, количество И. в «принятом сигнале» Y относительно «переданного сигнала» X стремится к нулю при возрастании уровня «помех» q (т. е. при s2q╝ ¥) и неограниченно возрастает при исчезающе малом влиянии «помех» (т. е. при s2q ╝ 0).

Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины X и Y заменяются случайными функциями (или, как говорят, случайными процессами) X (t) и Y (t), которые описывают изменение некоторой величины на входе и на выходе передающего устройства. Количество И. в Y (t) относительно X (t) при заданном уровне помех («шумов», по акустической терминологии) q(t) может служить критерием качества самого этого устройства (см. Сигнал , Шеннона теорема ).

В задачах математической статистики также пользуются понятием И. (сравни примеры 3 и 3а). Однако как по своему формальному

xn--b1algemdcsb.xn--p1ai

Кибернетика - Большая советская энциклопедия

Информация в кибернетике. Естественнонаучное понимание И. основано на двух определениях этого понятия, предназначенных для различных целей (для информации теории, иначе называемой статистической…

Алгоритмов теория, раздел математики, изучающий общие свойства алгоритмов. Содержательные явления, приведшие к образованию понятия "алгоритм", прослеживаются в математике в течение всего времени её…

Автоматов теория, часть теоретической кибернетики, объектом исследования которой являются различные преобразователи дискретной информации; возникла в начале 50-х гг. 20 в. в связи с требованиями…

Информации теория, математическая дисциплина, исследующая процессы хранения, преобразования и передачи информации. И. т. - существенная часть кибернетики. В основе И. т. лежит определённый способ…

Информация в кибернетике. Естественнонаучное понимание И. основано на двух определениях этого понятия, предназначенных для различных целей (для информации теории, иначе называемой статистической…

Кодирование, операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Необходимость К. возникает прежде всего из потребности приспособить форму…

Программное управление, управление режимом работы объекта по заранее заданной программе. П. у. может осуществляться как с использованием обратной связи, (системы с замкнутой цепью воздействия), так и…

Автоматическое управление в технике, совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта без непосредственного участия человека в соответствии с…

Оптимальное управление, раздел математики, изучающий неклассические вариационные задачи. Объекты, с которыми имеет дело техника, обычно снабжены "рулями" - с их помощью человек управляет движением…

Распознавание образов, научное направление, связанное с разработкой принципов и построением систем, предназначенных для определения принадлежности данного объекта к одному из заранее выделенных…

Надёжности теория, научная дисциплина, в которой разрабатываются и изучаются методы обеспечения эффективности работы объектов (изделий, устройств, систем и т.п.) в процессе эксплуатации. В Н. т…

Операций исследование, научный метод выработки количественно обоснованных рекомендаций по принятию решений. Важность количественного фактора в О. и. и целенаправленность вырабатываемых рекомендаций…

Ползунов Иван Иванович [1728, Екатеринбург, ныне Свердловск, - 16(27).5.1766, Барнаул], русский теплотехник, один из изобретателей теплового двигателя, создатель первой в России паросиловой установки…

Уатт (Watt) Джеймс (19.1.1736, Гринок, Шотландия, - 19.8.1819, Хитфилд, Англия), английский изобретатель, создатель универсальной паровой машины, член Лондонского королевского общества (1785). С 1757…

Павлов Иван Петрович [14 (26).9. 1849, Рязань, - 27.2.1936, Ленинград], советский физиолог, создатель материалистического учения о высшей нервной деятельности и современных представлений о процессе…

Буль (Boole) Джордж (2.11.1815, Линкольн, - 8.12.1864, Баллинтемпл близ Корка), английский математик и логик. Не имея специального математического образования, в 1849 стал профессором математики в…

Тьюринг (Turing) Алан Матисон (23.6.1912, Лондон, - 7.6.1954, Уилмслоу, близ Манчестера), английский математик. Член Королевского общества (1951). По окончании Кембриджского университета (1935)…

Тьюринга машина, название, закрепившееся за абстрактными (воображаемыми) "вычислительными машинами" некоторого точно охарактеризованного типа, дающими пригодное для целей математического рассмотрения…

Паскаль (Pascal) Блез (19.6.1623, Клермон-Ферран, - 19.8.1662, Париж), французский религиозный философ, писатель, математик и физик. Родился в семье высокообразованного юриста, занимавшегося…

Шеннон (Shannon) Клод Элвуд (р. 30.4.1916, Гейлорд, шт. Мичиган, США), американский учёный и инженер, один из создателей математической теории информации, с 1956 - член национальной АН США и…

Нейман (Neumann) Джон (Янош) фон (28.12.1903, Будапешт, - 8.2.1957, Вашингтон), американский математик, член Национальной АН США (1937). В 1926 окончил Будапештский университет. С 1927 преподавал в…

Винер (Wiener) Норберт (26.11.1894, Колумбия, Миссури, - 19.3.1964, Стокгольм), американский учёный. К 14 годам изучил высшую математику, в 18 лет стал доктором философии Гарвардского университета…

Кибернетика (от греч. kybernetike — искусство управления, от kybernáo — правлю рулём, управляю), наука об управлении, связи и переработке информации.

Предмет кибернетики. Основным объектом исследования в К. являются так называемые кибернетические системы. В общей (или теоретической) К. такие системы рассматриваются абстрактно, безотносительно к их реальной физической природе. Высокий уровень абстракции позволяет К. находить общие методы подхода к изучению систем качественно различной природы, например технических, биологических и даже социальных.

Абстрактная кибернетическая система представляет собой множество взаимосвязанных объектов, называемых элементами системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении), электронные вычислительные машины (ЭВМ), человеческий мозг, биологические популяции, человеческое общество.

Элементы абстрактной кибернетической системы представляют собой объекты любой природы, состояние которых может быть полностью охарактеризовано значениями некоторого множества параметров. Для подавляющего большинства конкретных приложений К. оказывается достаточным рассматривать параметры двух родов. Параметры 1-го рода, называемые непрерывными, способны принимать любые вещественные значения на том или ином интервале, например на интервале от — 1 до 2 или от —¥ до +¥. Параметры 2-го рода, называемые дискретными, принимают конечные множества значений, например значение, равное любой десятичной цифре, значения "да" или "нет" и т.п.

С помощью последовательностей дискретных параметров можно представить любое целое или рациональное число. Вместе с тем дискретные параметры могут служить и для оперирования величинами качественной природы, которые обычно не выражаются числами. Для этой цели достаточно перечислить и как-то обозначить (например, по пятибалльной системе) все различимые состояния соответствующей величины. Таким образом могут быть охарактеризованы и введены в рассмотрение такие факторы, как темперамент, настроение, отношение одного человека к другому и т.п. Тем самым область приложений кибернетических систем и К. в целом расширяется далеко за пределы строго "математизированных" областей знаний.

Состояние элемента кибернетической системы может меняться как самопроизвольно, так и под воздействием тех или иных входных сигналов, получаемых им извне (из-за пределов рассматриваемой системы), либо от других элементов системы. В свою очередь каждый элемент системы может формировать выходные сигналы, зависящие в общем случае от состояния элемента и воспринимаемых им в рассматриваемый момент времени входных сигналов. Эти сигналы либо передаются на др. элементы системы (служа для них входными сигналами), либо входят в качестве составной части в передаваемые за пределы системы выходные сигналы всей системы в целом.

Организация связей между элементами кибернетической системы носит название структуры этой системы. Различают системы с постоянной и переменной структурой. Изменения структуры задаются в общем случае как функция от состояний всех составляющих систему элементов и от входных сигналов всей системы в целом.

Таким образом, описание знаков функционирования системы задается тремя семействами функций: функций, определяющих изменения состояний всех элементов системы, функций, задающих их выходные сигналы, и, наконец, функций, вызывающих изменения в структуре системы. Система называется детерминированной, если все эти функции являются обычными (однозначными) функциями. Если же все эти функции, или хотя бы часть их, представляют собой случайные функции, то система носит название вероятностной, или стохастической. Полное описание кибернетической системы получается, если к указанному описанию знаков функционирования системы добавляется описание её начального состояния, т. е. начальной структуры системы и начальных состояний всех её элементов.

Классификация кибернетических систем. Кибернетические системы различаются по характеру циркулирующих в них сигналов. Если все эти сигналы, равно как и состояние всех элементов системы, задаются непрерывными параметрами, система называется непрерывной. В случае дискретности всех этих величин говорят о дискретной системе. В смешанных, или гибридных, системах приходится иметь дело с обоими типами величин.

Разделение кибернетических систем на непрерывные и дискретные является до известной степени условным. Оно определяется глубиной проникновения в предмет, требуемой точностью его изучения, а иногда и удобством использования для целей изучения системы того или иного математического аппарата. Так, например, хорошо известно, что свет имеет дискретную, квантовую природу. Тем не менее, такие параметры, как величина светового потока, уровень освещенности и др. принято обычно характеризовать непрерывными величинами поскольку, постольку обеспечена возможность достаточно плавного их изменения. Другой пример — обычный проволочный реостат. Хотя величина его сопротивления меняется скачкообразно, при достаточной малости этих скачков оказывается возможным и удобным считать изменение непрерывным.

Обратные примеры еще более многочисленны. Так, выделительная функция почки на обычном (неквантовом) уровне изучения является непрерывной величиной. Однако во многих случаях довольствуются пятибалльной характеристикой этой функции, рассматривая ее тем самым как дискретную величину. Более того, при любом фактическом вычислении значения непрерывных параметров приходится ограничиваться определенной точностью вычислений. А это означает, что соответствующая величина рассматривается как дискретная.

Последний пример показывает, что дискретный способ представления величин является универсальным способом, ибо имея в виду недостижимость абсолютной точности измерений, любые непрерывные величины сводятся в конечном счете к дискретным. Обратное сведение для дискретных величин, принимающих небольшое число различных значений, не может привести к удовлетворительным (с точки зрения точности представления) результатам и поэтому на практике не употребляется. Таким образом, дискретный способ представления величины является в определённом смысле более общим, чем непрерывный.

Разделение кибернетических систем на непрерывные и дискретные имеет большое значение с точки зрения используемого для их изучения математического аппарата. Для непрерывных систем таким аппаратом является обычно теория систем обыкновенных дифференциальных уравнений, для дискретных систем — алгоритмов теория и автоматов теория.Ещё одной базовой математической теорией, используемой как в случае дискретных, так и в случае непрерывных систем (и развивающейся соответственно в двух аспектах), является информации теория.

Сложность кибернетических систем определяется двумя факторами. Первый фактор — это так называемая размерность системы, т. е. общее число параметров, характеризующих состояния всех её элементов. Второй фактор — сложность структуры системы, определяющаяся общим числом связей между ее элементами и их разнообразием. Простая совокупность большого числа не связанных между собой элементов с повторяющимися от элемента к элементу простыми связями, ещё не составляет сложной системы. Сложные (большие) кибернетические системы — это системы с описаниями, не сводящимися к описанию одного элемента и указанию общего числа таких (однотипных) элементов.

При изучении сложных кибернетических систем, помимо обычного разбиения системы на элементы, используется метод укрупнённого представления систем в виде совокупности отдельных блоков, каждый из которых является отдельной системой. При изучении систем большой сложности употребляется целая иерархия подобных блочных описаний: на верхнем уровне такой иерархии вся система рассматривается как один блок, на нижнем уровне в качестве составляющих системы блоков выступают отдельные элементы системы.

Необходимо подчеркнуть, что само понятие элемента системы является до известной степени условным, зависящим от ставящихся при изучении системы целей и от глубины проникновения в предмет. Так, при феноменологическом подходе изучения мозга, когда предметом изучения является не строение мозга, а выполняемые им функции, мозг может рассматриваться как один элемент, хотя и характеризуемый достаточно большим числом параметров. Обычный подход заключается в том, что в качестве составляющих мозг элементов выступают отдельные нейроны. При переходе на клеточный или молекулярный уровень каждый нейрон может, в свою очередь, рассматриваться как сложная кибернетическая система и т.д.

Если обмен сигналами между элементами системы полностью замыкается в ее пределах, то система называется изолированной или замкнутой. Рассматриваемая как один элемент, такая система не имеет ни входных, ни выходных сигналов. Открытые системы в общем случае имеют как входные, так и выходные каналы, по которым они обмениваются сигналами с внешней средой. Предполагается, что всякая открытая кибернетическая система снабжена рецепторами (датчиками), воспринимающими сигналы из внешней среды и предающими их внутрь системы. В случае, когда в качестве рассматриваемой кибернетической системы выступает человек, такими рецепторами являются различные органы чувств (зрение, слух, осязание и др.). Выходные сигналы системы передаются во внешнюю среду через посредство эффекторов (исполнительных механизмов), в качестве которых в рассматриваемом случае выступают органы речи, мимика, руки и др.

Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая открытая кибернетическая система, равно как и элементы любой системы (открытой или замкнутой), может рассматриваться как преобразователь информации. При этом понятие информации рассматривается в очень общем смысле, близком к физическому понятию энтропии (см. Информация в кибернетике).

Кибернетический подход к изучению объектов различной природы. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов. Этот подход (равно как и подход со стороны др. фундаментальных наук — механики, химии и тому подобное) требует определенного уровня абстракции. Так, при кибернетическом подходе к изучению мозга как системы нейронов обычно отвлекаются от их размеров, формы, химического строения и др. Предметом изучения становятся состояния нейронов (возбужденное или нет), вырабатываемые ими сигналы, связи между нейронами и законы изменения их состояний.

Простейшие преобразователи информации могут осуществлять преобразование информации лишь одного определённого вида. Так, например, исправный дверной звонок при нажатии кнопки (рецептора) отвечает всегда одним и тем же действием — звонком или гудением зуммера. Однако, как правило, сложные кибернетические системы обладают способностью накапливать информацию в той или иной форме и в зависимости от этого менять выполняемые ими действия (преобразование информации). По аналогии с человеческим мозгом подобное свойство кибернетических систем называют иногда памятью.

"Запоминание" информации в кибернетических системах может производиться двумя основными способами — либо за счет изменения состояний элементов системы, либо за счет изменения структуры системы (возможен, разумеется, смешанный вариант). Между этими двумя видами "памяти" по существу нет принципиальных различий. В большинстве случаев это различие зависит лишь от принятого подхода к описанию системы. Например, одна из современных теорий объясняет долговременную память человека изменениями проводимости синаптических контактов, т. е. связей между отдельными составляющими мозг нейронами. Если в качестве элементов, составляющих мозг, рассматриваются лишь сами нейроны, то изменение синаптических контактов следует рассматривать как изменение структуры мозга. Если же наряду с нейронами в число составляющих мозг элементов включить и все синаптические контакты (независимо от степени их проводимости), то рассматриваемое явление сведется к изменению состояния элементов при неизменной структуре системы.

ЭВМ как преобразователи информации. Из числа сложных технических преобразователей информации наибольшее значение для К. имеют ЭВМ. В более простых вычислительных машинах — цифровых электромеханических или аналоговых — перенастройка на различные задачи осуществляется с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных ЭВМ такие изменения производятся с помощью "запоминания" машиной в специальном устройстве, накапливающем информацию, той или иной программы её работы.

В отличие от аналоговых машин, оперирующих с непрерывной информацией, современные ЭВМ имеют дело с дискретной информацией. На входе и выходе ЭВМ в качестве такой информации могут выступать любые последовательности десятичных цифр, букв знаков препинания и др. символов. Внутри машины эта информация обычно представляется (или, как говорят, кодируется) в виде последовательности сигналов, принимающих лишь два различных значения.

В то время как возможности аналоговых машин (равно как и любых других искусственно созданных устройств) ограничены преобразованиями строго ограниченных типов, современные ЭВМ обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены ЭВМ после введения в нее составленной должным образом программы. Эта способность ЭВМ достигается за счет универсальности ее системы команд, т. е. элементарных преобразований информации, которые закладываются в структуру ЭВМ. Подобно тому, как из одних и тех же деталей собираются любые дома, из элементарных преобразований могут складываться любые, сколь угодно сложные преобразования буквенно-цифровой информации. Программа ЭВМ как раз и представляет собой последовательность таких элементарных преобразований.

Свойство универсальности ЭВМ не ограничивается одной лишь буквенно-цифровой информацией. Как показывается в теории кодирования, в буквенно-цифровой (и даже просто цифровой) форме может быть представлена (закодирована) любая дискретная информация, а также — с любой заданной степенью точности — произвольная непрерывная информация. Таким образом, современные ЭВМ могут рассматриваться как универсальные преобразователи информации. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг.

Свойство универсальности современных ЭВМ открывает возможность моделирования с их помощью любых др. преобразователей информации, в том числе любых мыслительных процессов. Такая возможность ставит ЭВМ в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает К.

Управление в кибернетических системах. В рассмотренных до сих пор случаях изменение поведения ЭВМ определялось человеком, меняющим программы ее работы. Можно, однако составить программу изменения программы работ ЭВМ и организовать ее общение с внешней средой через соответствующую систему рецепторов и эффекторов. Таким образом, можно моделировать различные формы изменения поведения и развития, наблюдающиеся в сложных биологических и социальных системах. Изменение поведения сложных кибернетических систем есть результат накопления обработанной соответствующим образом информации, которую эти системы получили в прошлом.

В зависимости от формы, в которой происходит "запоминание" информации, различают два основных типа изменения поведения систем — самонастройку и самоорганизацию. В самонастраивающихся системах накопление опыта выражается в изменении значений тех или иных параметров, в самоорганизующихся — в изменении структуры системы. Как указывалось выше, это различие является до некоторой степени условным, зависящим от способа разбиения системы на элементы. На практике обычно самонастройка связывается с изменениями относительно небольшого числа непрерывных параметров. Что же касается глубоких изменений структуры рабочих программ ЭВМ (которые можно трактовать как изменения состояний большого числа дискретных элементов памяти), то их более естественно рассматривать как пример самоорганизации.

Целенаправленное изменение поведения кибернетических систем происходит при наличии управления. Цели управления сильно меняются в зависимости от типа систем и степени их сложности. В простейшем случае такой целью может быть поддержание постоянства значения того или иного параметра. Для более сложных систем в качестве целей возникают задачи приспособления к меняющейся среде и даже познания законов таких изменений.

Наличие управления в кибернетической системе означает, что её можно представить в виде двух взаимодействующих блоков — объекта управления и управляющей системы. Управляющая система по каналам прямой связи через соответствующее множество эффекторов передает управляющие воздействия на объект управления. Информация о состоянии объекта управления воспринимается с помощью рецепторов и передаётся по каналам обратной связи в управляющую систему

Описанная система с управлением может, как и всякая кибернетическая система, иметь также каналы связи (с соответствующими системами рецепторов и эффекторов) с окружающей средой. В простейших случаях среда может выступать как источник различных помех и искажений в системе (чаще всего в канале обратной связи). В задачу управляющей системы входит тогда фильтрация помех. Особо важное значение эта задача приобретает при дистанционном (телемеханическом) управлении, когда сигналы передаются по длинным каналам связи. Основной задачей управляющей системы является такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) целей управления. По виду таких целей и характеру функционирования управляющей системы различают следующие основные типы управления.

Одним из простейших видов управления является т. н. программное управление. Цель такого управления состоит в том, чтобы выдать на объект управления ту или иную строго определенную последовательность управляющих воздействий. Обратная связь при таком управлении отсутствует. Наиболее простым примером подобного программного управления является светофор-автомат, переключение которого происходит в заданные заранее моменты времени. Более сложное управление светофором (при наличии счетчиков подъезжающих машин) может включать простейший "пороговый" сигнал обратной связи: переключение светофора происходит всякий раз, когда количество ждущих автомашин превысит заданную величину.

Весьма простым видом управления является также классическое авторегулирование (см. Автоматическое управление), цель которого состоит в поддержании постоянного значения того или иного параметра (или нескольких независимых параметров). Примером может служить система автоматического регулирования температуры воздуха в помещении: специальный термометр-датчик измеряет температуру воздуха Т, управляющая система сравнивает эту температуру с заданной величиной То и формирует управляющее воздействие — k (T — То) на задвижку, регулирующую приток тёплой воды в батареи центрального отопления. Знак минус при коэффициенте k означает, что регулирование происходит по закону отрицательной обратной связи, а именно: при увеличений температуры Т выше установленного порога То приток тепла уменьшается, при её падении ниже порога — возрастает. Отрицательная обратная связь необходима для обеспечения устойчивости процесса регулирования. Устойчивость системы означает, что при отклонении от положения равновесия (когда Т = То) как в одну, так и в другую сторону система стремится автоматически восстановить это равновесие. При простейшем предположении о линейном характере зависимости между управляющим воздействием и скоростью притока тепла в помещение работа такого регулятора описывается дифференциальным уравнением dT/dt = — k (T — То), решением которого служит функция Т = То + d-e-kt, где d — отклонение температуры Т от заданной величины То в начальный момент времени. Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы.

Возможны системы, в которых принцип программного управления комбинируется с задачей регулирования в смысле поддержания устойчивого значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 °С в дневное время и снижение её до +16°С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра.

В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.

В т. н. системах оптимального управления основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы.

Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой.

В простейшем случае оптимальное управление может сводиться к задаче поддержания наибольшего (или наименьшего) возможного при заданных условиях значения регулируемого параметра. В этом случае говорят о системах экстремального регулирования.

В случае, когда нерегулируемые параметры в системе оптимального управления на том или ином отрезке времени меняются, функция системы сводится к поддержанию таких постоянных значений регулируемых параметров, которые обеспечивают максимизацию (или минимизацию) соответствующего критерия оптимального управления. Здесь, как и в случае обычного регулирования, возникает задача устойчивости управления. При проектировании относительно несложных систем подобная устойчивость достигается за счет соответствующего выбора параметров проектируемой системы. В более сложных случаях, когда количество возмущающих воздействий и размерность системы очень велики, иногда оказывается удобным для достижения устойчивости прибегать к самонастройке и самоорганизации систем. При этом некоторая часть параметров, определяющая характер существующих в системе связей, не фиксируется заранее и может изменяться системой в процессе ее функционирования. Система имеет специальный блок, регистрирующий характер переходных процессов в системе при выведении ее из равновесия. При обнаружении неустойчивости переходного процесса система меняет значения параметров связей, пока не добьётся устойчивости. Системы такого рода принято называть ультраустойчивыми.

При большом числе изменяемых параметров связей случайный поиск устойчивых режимов может занимать слишком много времени. В таком случае применяются те или иные способы ограничения случайного перебора, например разбиение параметров связей на группы и осуществление перебора лишь внутри одной группы (определяемой по тем или иным признакам). Такого рода системы называют обычно мультиустойчивыми. Большое разнообразие ультраустойчивых и мультиустойчивых систем дает биология. Примером может служить система регулирования температуры крови у человека и теплокровных животных.

Задача группировки внешних воздействий, необходимая для успешного выбора способа самонастройки в мультиустойчивых системах, входит в число задач узнавания, или, иначе, задач распознавания образов. Для определения типа поведения (способа управления) у человека особую роль играют зрительные и звуковые образы. Возможность их распознавания и объединения в те или иные классы позволяет человеку создавать абстрактные понятия, являющиеся непременным условием сознательного познания действительности и началом абстрактного мышления. Абстрактное мышление позволяет создавать в управляющей системе (в данном случае в человеческом мозге) модели различных процессов, осуществлять с их помощью экстраполяцию действительности и определять свои действия на основе такой экстраполяции.

Таким образом, на высших уровнях иерархии управляющих систем задачи управления оказываются тесно переплетенными с задачами познания окружающей действительности. В чистом виде эти задачи проявляются в абстрактных познающих системах, также являющихся одним из классов кибернетических систем.

Существенное место в К. занимает надёжности теория кибернетических систем. Её задачей является разработка методов построения систем, обеспечивающих правильное функционирование систем при выходе из строя части их элементов, разрыве тех или иных связей и др. возможных случайных сбоях или неисправностях.

Методы кибернетики. Имея в качестве основного объекта исследования кибернетические системы, К. использует для их изучения три принципиально различных метода. Два из них — математико-аналитический и экспериментальный — широко применяются и в др. науках. Сущность первого состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.

Одним из важнейших достижений К. является разработка и широкое использование нового метода исследования, получившего название математического (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его описанием. Описание объекта вместе с программами, реализующими изменения характеристик объекта в соответствии с этим описанием, помещается в память ЭВМ, после чего становится возможным проводить с объектом различные эксперименты: регистрировать его поведение в тех или иных условиях, менять те или иные элементы описания и тому подобное. Огромное быстродействие современных ЭВМ зачастую позволяет моделировать многие процессы в более быстром темпе, чем они происходят в действительности.

Первым этапом математического моделирования является разбиение изучаемой системы на отдельные блоки и элементы и установление связей между ними. Эту задачу решает так называемый системный анализ. В зависимости от целей исследования глубина и способ такого разбиения могут варьироваться. В этом смысле системный анализ представляет собой скорее искусство, чем точную науку, ибо при анализе действительно сложных систем приходится априори отбрасывать несущественные (с точки зрения поставленной цели) детали и связи.

После разбиения системы на части и характеристики их теми или иными множествами параметров (количественных или качественных) для установления связи между ними привлекают обычно представителей различных наук. Так, при системном анализе человеческого организма типичные связи имеют следующую форму: "При переходе органа А из состояния k1 в состояние k2 и сохранении органа В в состоянии М орган С через N месяцев с вероятностью р перейдёт из состояния n1 в состояние n2". В зависимости от вида органов, к которым относится указанное высказывание, оно может быть сделано эндокринологом, кардиологом, терапевтом и др. специалистами. В результате их совместной работы возникает комплексное описание организма, представляющее искомую математическую модель.

Так называемые системные программисты переводят эту модель в машинное представление, программируя одновременно средства, необходимые для экспериментов с ней. Проведение самих экспериментов и получение различных выводов из них составляют предмет операций исследования. Впрочем, исследователи операций в случае, когда это оказывается возможным, могут применить дедуктивно-математические построения и даже воспользоваться натурными моделями всей системы или ее отдельных частей. Задача построения натурных моделей, равно как и задача проектирования и изготовления различных искусственных кибернетических систем, относится к области системотехники.

Историческая справка. Первым, кто применил термин К. для управления в общем смысле, был по-видимому, древнегреческий философ Платон. Однако реальное становление К. как науки произошло много позже. Оно было предопределено развитием технических средств управления и преобразования информации. Ещё в средние века в Европе стали создавать так называемые андроиды — человекоподобные игрушки, представляющие собой механические, программно управляемые устройства.

Первые промышленные регуляторы уровня воды в паровом котле и скорости вращения вала паровой машины были изобретены И. И. Ползуновым (Россия) и Дж. Уаттом (Англия). Во 2-й половине 19 в. требовалось построение все более совершенных автоматических регуляторов. Наряду с механическими блоками в них всё чаще начинают применяться электромеханические и электронные блоки. Большую роль в развитии теории и практики автоматического регулирования сыграло изобретение в начале 20 в. дифференциальных анализаторов, способных моделировать и решать системы обыкновенных дифференциальных уравнений. Они положили начало быстрому развитию аналоговых вычислительных машин и их широкому проникновению в технику.

Немалое влияние на становление К. оказали успехи нейрофизиологии и особенно классические труды И. П. Павлова по условным рефлексам. Можно отметить также оригинальные работы украинского учёного Я. И. Грдины по динамике живых организмов.

В 30-х гг. 20 в. все большее влияние на становление К. начинает оказывать развитие теории дискретных преобразователей информации. Два основных источника идей и проблем направляли это развитие. Во-первых, задача построения оснований математики. Еще в середине прошлого века Дж. Буль заложил основы современной математический логики. В 20-е гг. 20 в. были заложены основы современной теории алгоритмов. В 1934 К. Гёдель показал ограниченность возможностей замкнутых познающих систем. В 1936 А. М. Тьюринг описал гипотетический универсальный преобразователь дискретной информации, получивший впоследствии назв. Тьюринга машины. Эти два результата, будучи полученными в рамках чистой математики, оказали и продолжают оказывать огромное влияние на становление основных идей К.

Вторым источником идей и проблем К. служила практика создания реальных дискретных преобразователей информации. Простейший механический арифмометр был изобретён Б. Паскалем (Франция) ещё в 17 в. Лишь в 19 в. Ч. Беббидж (Англия) предпринял первую попытку создания автоматического цифрового вычислителя — прообраза современной ЭВМ. К началу 20 века были созданы первые образцы электромеханических счетно-аналитических машин, позволивших автоматизировать простейшие преобразования дискретной информации. Резкое усиление интереса к теории дискретных преобразователей информации в 30-х гг. было обусловлено необходимостью создания сложных релейно-контактных устройств, прежде всего для нужд автоматических телефонных станций. В 1938 К. Шеннон (США), а в 1941 В. И. Шестаков (СССР) показали возможность использования для синтеза и анализа релейно-контактных схем аппарата математической логики. Тем самым было положено начало развитию современной теории автоматов.

Решающее значение для становления К. имело создание в 40-х гг. 20 в. электронных вычислительных машин (Дж. фон Нейман и др.). Благодаря ЭВМ возникли принципиально новые возможности для исследования и фактического создания действительно сложных управляющих систем. Оставалось объединить весь полученный к этому времени материал и дать название новой науке. Этот шаг был сделан Н. Винером, опубликовавшим в 1948 свою знаменитую книгу "Кибернетика".

Н. Винер предложил называть К. "науку об управлении и связи в животном и машине". В первой и во второй своей книге ("Кибернетика и общество", 1954) Винер уделил большое внимание общефилософским и социальным аспектам новой науки, трактуя их зачастую весьма произвольно. В результате дальнейшее развитие К. пошло двумя различными путями. В США и Западной Европе стало преобладать узкое понимание К., концентрирующее внимание на спорах и сомнениях, поднятых Винером, на аналогиях между процессами управления в технических средствах и живых организмах. В СССР после первоначального периода отрицания и сомнений утверждалось более естественное и содержательное определение К., включившее в нее все достижения, накопленные к тому времени в теории преобразования информации и управляющих систем. При этом особое внимание уделялось новым проблемам, возникающим в связи с широким внедрением ЭВМ в теорию управления и теорию преобразования информации.

На Западе подобные вопросы развив

allencyclopedia.ru

Введение в кибернетику

краткий конспект правка 2015 г.

Введение

Кибернетика - это исследование общих закономерностей управления и передачи информации в различных системах, будь то техника, живые организмы, общество.

Именно в общности идей в разных областях знания и состоит смысл введения кибернетики; так она исторически и возникла.

Всё это позволяет дать другое(современное) определение кибернетики:

Важные понятия кибернетики. Более простые:

система, связь, процесс, алгоритм, обратная связь,чёрный ящик.

Более сложные:

информация, управление, связь (коммуникация), автомат, самоорганизация, интеллект.

Повторим: именно эти понятия выделяются в машинах, живых организмах, организациях (обществе). Кибернетика фокусирует внимание на том, как что-либо (компьютерное, механическое, биологическое, социальное) обрабатывает информацию, реагирует на неё и изменяется под её воздействием.

При этом именно в кибернетике появились такие понятия как: обратная связь,чёрный ящик, самоорганизация; другие понятия существовали до кибернетики.

Объектом кибернетики является управляемая система (или набор взаимодействующих управляемых систем).

В кибернетика также вводят понятия кибернетического подхода, кибернетической системы (будут в курсе). И то, и другое, рассматривается абстрактно, вне зависимости от их природы конкретных объектов, к которым эти понятия потом применяются.

Гл.1 основные понятия кибернетики

1.1 Информация, управление, система управления

1.1.1 Понятия объекта и свойства объекта Базовыми понятиями для входа в данный курс являются понятия объектаисвойства

Объект и свойство – важнейшие метки для остановки нашего внимания на чем-либо и для запоминания отличия одних ощущений от других.

Понятия объекта и свойства являются первичными. Это означает, что они не определяются через более простые.

Первичные понятия не могут быть определены, но могут быть пояснены. Для них часто существуют так называемые поясняющие определения.

Наиболее типичное поясненио для первичного понятия «объект»: То, на чем в данный момент сосредоточено наше внимание

Наиболее типичные пояснения для первичного понятия «свойство»: Признак, составляющий особенность объекта

На практике свойство всегда привязывается к определённому объекту («свойство объекта»).

1.1.2 Информация

К понятию информации существует несколько подходов.

Первый подход: Во многих источниках информация определяется как данные, сведения, сообщения, сигналы, факты. Также к информации относят знания.

Указанные понятия являются синонимами информации или её частными случаями.

Второй подход: Информация – это первичное (аксиоматическое) понятие.

Третий подход: Информация – это структурированное отображение свойств объекта

Вместо «структурированный» в приведённом определении можно говорить также: «пригодный для восприятия». Или по простому: надо знать, что означает информация в данном месте.

Это третье определение мы будем считать в данном курсе основным.

Различают актуальную и потенциальную информацию. Актуальной является та информация, которая нам известна, которой мы прямо сейчас можем воспользоваться.

Потенциальна та информация, которая где-либо имеется, при необходимости мы до нее доберемся и воспользуемся.

Потенциальной можно считать и ту информацию, которая пока неизвестна науке. До неё можно добраться, но неизвестно когда и какими усилиями..

      1. Понятие управления

Рассмотрим объект и его свойства. Фиксируем все свойства объекта.

Состояние объекта определим как фиксированный набор его свойств (параметров, характеристик).

Свойства объекта могут изменяться. Если хоть один параметр объекта изменился, это уже другое состояние. Отсюда понятно, что состояния объекта редко бывают неизменными. В объектах постоянно происходят изменения.

Изменение объекта можно рассматривать как чередование его состояний. Эти изменения могут быть:

  • непрерывными

  • дискретными .

Чередование состояний образуют некоторые последовательности.

Назовем эту последовательность состояний траекторией.

Последовательности состояний могут ветвиться, т.е. с некоторого места события пойдут либо по одному, либо по иному пути (см. рис.).

На Рис. точки или линии – дискретные и непрерывные последовательности состояний объекта. ○ - точки ветвления. В точках ветвления присутствует внешнее воздействие (оно не изображено).

1

2

0

0

Воздействия в точках ветвления могут иметь различный характер, например, целенаправленный, случайный, интуитивный и др. Среди них выделяются действия по принципу «если так, то так», т.е., если объект  находится в состоянии А, то будет совершено действие , если объект  находится в состоянии В, то будет совершено действие  и т.д.

Действия по принципу «если так, то так» называются логическими.

Возможность воздействий на изменения в объекте позволяет поставить задачу достижения заранее выделенного (желаемого, требуемого) состояния объекта.

Желаемое состояние объекта назовём целью

Теперь мы готовы дать важное определение.

Управлением называется специально организованное изменение состояния объекта, ведущее к выполнению поставленной цели

Управление – это всегда воздействие на объект. Для нахождения управления необходимо уметь предвидеть (рассчитать), последствия воздействия.

Вырабатывать и выполнять управление может как человек, так и техническое средство.

studfiles.net

7. Понятие информации в кибернетике. Концепции современного естествознания

Похожие главы из других работ:

Анатомия и физиология центральной нервной системы

1. Нервная система, анатомическое строение, отделы и виды, нервные связи, источники формирования энергии передачи информации

Любое живое существо, в том числе и человек, наделено способностью реагировать на внешние раздражители, и каждая группа клеток, из которых оно состоит, специализируется на определенной функции: размножении, пищеварении, дыхании...

Анатомия и физиология центральной нервной системы

2. Переработка информации в центральной нервной системе. Понятие "сенсорная система". Структура связей, формирующих сенсорные системы

Сенсорная система - часть нервной системы, ответственная за восприятие определённых сигналов (так называемых сенсорных стимулов) из окружающей или внутренней среды. Сенсорная система состоит из рецепторов...

Вегетативная нервная система

Пути проведения чувствительной информации

Сведения о волоконном составе главного коллектора парасимпатических путей - блуждающего нерва - многочисленны. При общем количестве волокон его шейного отдела, достигающем у кошки 30 тыс., 80-90% составляют афферентные...

Информационная система клетки

1.1 Кодирование и реализация генетической информации в клетке. Генетический код и его характеристика

Генетическая информация закодирована в ДНК. Генетический код был выяснен М. Ниренбергом и Х.Г. Корана, за что они были удостоены Нобелевской премии в 1968 году. Генетический код - система расположения нуклеотидов в молекулах нуклеиновых кислот...

Кодирование и реализация биологической информации в клетке, генетический код и его свойства

6. Способ записи генетической информации в молекуле ДНК.Биологический код и его свойства

...

Концепции развития современных технологий и энергетики

2. Современные средства накопления информации

Появление наскальных рисунков и надписей свидетельствует о стремлении человека еще в древние времена сохранить свои наблюдения, передать их потомкам. Позднее стали писать на глиняных пластинах, свитках папируса...

Кровеносная система. Виды и формы памяти

2. Психофизиологические механизмы памяти: запоминание, хранение и воспроизведение информации

...

Представление о критерии истинности знания

10. Раскройте понятие «биосфера», укажите ее функции и характеризуйте ее оболочки. Как это понятие было переосмыслено В.И.Вернадским?

Существование биосферы Земли как определенной природной системы выражается в первую очередь в круговороте энергии и веществ при участии всех живых организмов. Идея этого круговорота была изложена в книге немецкого натуралиста Я. Молешотта...

Процесс антропогенеза

3. Способы передачи информации

Наличие более или менее развитой культуры зависит от способности к обучению и способности передавать навыки и знания другим...

Процессы брожения. Санитарный надзор. Виды дезинфекции

3. Дезинфекция: понятие, назначение, способы и методы. Дезинфицирующие средства, их характеристика и правила применения. Дезинсекция и дератизация: понятие, назначение, методы, средства

Дезинфекция -- это комплекс мероприятий, направленных на уничтожение возбудителей инфекционных заболеваний и разрушение токсинов на объектах внешней среды. Для её проведения обычно используются химические вещества, например...

Слуховой анализатор

3. Слуховой анализатор как средство восприятия звуковой информации человеком

...

Тайна, покрытая мраком: человеческий мозг

2.3 Хранение информации

Пожалуй, самыми убедительными доказательствами того, что мозг выполняет не те функции, которые ему приписывают, являются следующие истории. В 1940 году доктор Августин Итуррича сделал сенсационный доклад в Антропологическом обществе г...

Устройство памяти. Воспроизводство и передача информации в организме

1. УСТРОЙСТВО ПАМЯТИ. ВОСПРОИЗВОДСТВО И ПЕРЕДАЧА ИНФОРМАЦИИ В ОРГАНИЗМЕ

Если какую-то из наших способностей можно счесть самой поразительной, я назвала бы память. В ее могуществе, провалах, постоянстве есть что-то откровенно непостижимое, чем в любом из наших даров. Память иногда такая цепкая, услужливая, послушная...

Хромосомы – материальные носители генетической информации. Единый генетический код

Передача генетической информации

Как известно, особенности, характеризующие потомков, передаются им от родителей через половые клетки: мужскую - сперматозоид и женскую - яйцеклетку. Слияние их при оплодотворении приводит к образованию единой клетки зиготы...

Эмпирические методы исследования

3. Получение информации эмпирическим методом

эмпирический объект исследование информация Приемы получения количественной информации представлены двумя видами операций - счетом и измерением в соответствии с объективными различиями между дискретным и непрерывным...

bio.bobrodobro.ru

Кибернетика и информатика

Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и других. Управление – это целенаправленная организация того или иного процесса, протекающего в системе. Управление является центральным понятием кибернетики.

Каждая фаза процесса управления протекает во взаимодействии с окружающей средой. Поэтому в кибернетике большое внимание уделяется изучению обратных связей и концепции "черного ящика".

Основы кибернетики как науки были заложены трудами по математической логике американского математика Норберта Винера, опубликованными в 1948 г. Хотя сам термин был введен на век раньше французом А-М Ампером.

Связаны ли между собой кибернетика и информатика и каким образом? Да, они связаны. В основном через понятие "информация". Обе науки оперируют информацией, но делают это с разными целями. Поэтому кибернетика и информатика – разные науки, имеющие ряд точек соприкосновения. Другими словами, их сферы деятельности частично пересекаются.

Кибернетика – это наука об управлении. Через управляющий орган проходят информационные потоки. Другое дело – объекты управления, через которые преимущественно проходят материальные потоки. Информация для кибернетики играет роль своего рода средства, которым обеспечивается управление. Все люди, занятые в сфере управления, имеют дело только с информацией.

Процесс управления – это информационный процесс, который включает в себя сбор информации, ее переработку и анализ, принятие решений, выработку управляющих воздействий и их доведение до объектов управления.

Со своей стороны, информатика в общей сложности – наука о том, как автоматизировать обработку информации. Как получать информацию, хранить, передавать, преобразовывать. Здесь информация – центральное понятие, объект изучения. Информатика занимается изучением процессов преобразования и создания новой информации более широко. Для кибернетики же центральным понятием является – управление.

Информатика появилась благодаря развитию компьютерной техники, базируется на ней и без нее немыслима. Компьютерные технологии играют для информатики роль средства обработки информации.

Кибернетика развивается сама по себе, строя различные модели управления объектами. Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.

Однако современная кибернетика также активно использует все достижения компьютерной техники. Сей факт также как информация связывает кибернетику с информатикой. Однако каждая из наук делает акцент на разных направлениях компьютерных технологий.

В свою очередь, результаты развития компьютерной науки охватывают все больше сфер деятельности людей, внедряются во все большее количество отраслей.

Можно сказать, что кибернетика и информатика различаются в расстановке акцентов. Если в информатике важны свойства информации и аппаратно-программные средствах ее обработки, то в кибернетике акцент сделан на разработке концепций и построении моделей управления.

inf1.info


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.