Типы конденсаторов. Конденсатор виды. Использование конденсаторов и их виды и


Зачем нужен конденсатор | samoeinteresnoe.com

 

Люди, далекие от техники, даже не задумываются, что в конструкции современных электроприборов стоят различные элементы, благодаря которым и работает эта техника. Они даже не понимают о чем идет речь, когда окружающие их знатоки ведут разговоры о технике. Но иногда любопытство берет верх, и они начинают задавать вопросы. Например, зачем нужен конденсатор?

Чтобы удовлетворить любопытство, постараемся объяснить его функции и выявить, в каких областях конденсаторы нашли свое применение.

 

Что такое конденсатор?

Конденсатор, по-народному – «кондер», устройство, которое используется в электрических цепях для накопления электрической энергии. Конденсаторы применяются при фильтрации помех, в сглаживающих фильтрах в источниках электропитания, цепях межкаскадовых связей и во многих других областях радиотехники.

Конструкция и средства использующихся материалов определяют электрическую характеристику «кондера». В устройство конденсатора входят обкладки (или пластины), находящиеся друг перед другом. Делают их из токопроводящего и изолирующего материала. В качестве изоляции могут выступать слюда или бумага.

Емкость у конденсатора может быть разной. Она увеличивается в размерах пропорционально площади обкладок, а ее уменьшение происходит в зависимости от расстояния между ними. Очень важным является рабочее напряжения конденсатора. Если превысить максимальное напряжение, конденсатор может сломаться из-за пробоя диэлектрика.

 

Как все начиналось

Принцип изготовления этого устройства был известен довольно давно, благодаря немецкому физику Эвальду Юргену фон Клейсту и его нидерландскому коллеге Питеру ван Мушенбруку. Именно они были создателями первого в мире конденсатора. Их детище было значительно примитивнее современных собратьев, ведь диэлектриком выступали стенки банки из стекла. В наши дни технологии намного совершеннее, да и создание новых материалов весьма улучшило конструкцию конденсатора.

Гениальный электротехник Павел Яблочков также смог достичь выдающихся результатов в разработке конденсаторов и в их использовании. На эту тему он создал множество публикаций. Павел Николаевич прекрасно понимал зачем нужен конденсатор, поэтому одним из первых включил «кондер» в цепь перемежающегося тока. Это имело огромное значение для развития и становления электро- и радиотехники.

В наши дни существует многообразие конденсаторов, но в основе всех их лежат две металлические пластины, которые находятся в изоляции друг от друга.

 

Где применяются конденсаторы

Конденсаторы окружают нас во многих областях, занимая особую нишу в электронике.

  1.  Телевизионная или радиотехническая аппаратура без конденсаторов не обойдется. Их применяют для фильтров-выпрямителей, создания и настройки колебательных контуров, разделения цепей с разной частотой и многого другого.
  2.  Радиолокационная техника использует их, чтобы получить импульсы большей мощности, а также для формирования импульсов.
  3.  Для искрогашения в контактах, разделения токов разной частоты, разделения цепей постоянного и переменного токов «кондеры» нужны в телеграфии и телефонии.
  4.  В телемеханике и автоматике с их помощью создают датчики на емкостном принципе. Здесь также нужно искрогашение в контактах, разделение цепей токов и т.д.
  5.  В специальных устройствах для запоминания, что используются в счетно-решающей технике.
  6.  Для получения мощных импульсов в лазерной технике.

Современная электроэнергетика тоже использует во всю это изобретение: для подключения к линии передачи нужной аппаратуры, чтобы повысить коэффициент мощности, для регулировки напряжения в распределительных сетях, чтобы защитить от перенапряжения, для электрической сварки, подавления радиопомех и много другого.

Зачем нужен конденсатор еще? Для металлопромышленности, автотракторной и медицинской техники, для использования атомной энергии, в фотографической технике для получения световой вспышки и аэрофотосъемки. Даже добывающая промышленность не обходится без конденсаторов. Одни конденсаторы могут быть совсем крошечными и весить меньше одного грамма, другие их «сотоварищи» поражают весом в несколько тонн и высотой более двух метров.

 

Огромное разнообразие типов конденсаторов дало возможность применять их в различных сферах деятельности, поэтому без них нам никак не обойтись.

www.samoeinteresnoe.com

Конденсатор виды. Виды конденсаторов и их применение

Типы конденсаторов, теория и примеры

Определение и типы конденсаторов

Причем проводники (обкладки конденсатора) имеют такую форму и расположены так, по отношению друг к другу, что поле, создаваемое данной системой, в основном расположено во внутренней области пространства конденсатора. У реального конденсатора обкладки не являются полностью замкнутыми, однако, следует отметить, что приближение к идеальной картине довольно большое. На практике независимости внутреннего поля между обкладками конденсатора от внешних полей достигают тем, что пластины конденсатора располагают на очень малом расстоянии. В таком случае заряды находятся на внутренних поверхностях обкладок.

Основное назначение конденсатора состоит в накоплении электрического заряда. Способность конденсатора накапливать заряд связана с основной характеристикой конденсатора электроемкостью (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

   

q – величина заряда на обкладке; – разность потенциалов между обкладками. Емкость конденсатора зависит от размеров и устройства конденсатора.

Подходы к классификации конденсаторов могут быть разными. Выделяют, например:

  1. Конденсаторы имеющие постоянную или переменную емкость, подстроечные конденсаторы.
  2. Тип диэлектрика, заполняющий пространство между обкладками конденсатора, может влиять на то, к какому типу отнесут тот или иной конденсатор. (Электролит – электролитический конденсатор (см. раздел «Электролитический конденсатор»), воздух – воздушный конденсатор, тефлон – тефлоновый конденсатор и т.д).
  3. Керамические (подробно о керамических конденсаторах см. раздел «Керамические конденсаторы»), пластиковые, металлические конденсаторы в зависимости от материала, который применяется в изготовлении корпуса конденсатора
  4. Плоские, цилиндрические, шаровые (сферические) конденсаторы в соответствии с геометрией (строением) конденсатора.

Кроме этого конденсаторы можно разделить по их предназначению (см., например раздел «Пусковой конденсатор»), способу монтажа (для печатного, навесного, поверхностного монтажа; с защелкивающимися выводами; выводами под винт), принципам защиты от внешних воздействий (с защитой и без нее; изолированные и неизолированные; уплотненные и герметизированные).

Типы конденсаторов в разделе общая физика

В задачах по общей физике рассматривают обычно три типа конденсаторов: плоские, цилиндрические и сферические. Кроме того могут варьироваться типы диэлектрика между обкладками.

Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Емкость плоского конденсатора, содержащего N слоев диэлектрика (толщина i-го слоя равна , диэлектрическая проницаемость i-го слоя , определяется как:

   

Электрическая емкость цилиндрического конденсатора вычисляют как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Емкость сферического (шарового) конденсатора находят по формуле:

   

где – радиусы обкладок конденсатора.

Примеры решения задач

ru.solverbook.com

Типы конденсаторов

Конденсатор — один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Пленочные конденсаторы

Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же дв

szemp.ru

Применение конденсаторов, принцип работы конденсатора, электрическая ёмкость конденсатора

Применение конденсаторов весьма обширно: совместно с резисторами в таймерах, потому, что резисторы позволяет им медленно заряжаться и/или разряжаться; в колебательных контурах приёмопередающих устройств совместно с катушками индуктивности; в блоках питания для сглаживания пульсаций напряжения после выпрямления; в различных фильтрах потому, что конденсаторы легко пропускают переменный ток и не пропускают постоянный; просто в схемах, где необходимо замедлить процесс увеличения или падения напряжения и др.

Принцип работы конденсатора

Принципом работы конденсатора считается способность конденсатора сохранять электрический заряд, т.е. заряжаться и в нужный момент разряжаться. Например в колебательном контуре радиоприёмника или передатчика, когда он соединён (как правило параллельно, но может и последовательно) с катушкой индуктивности. При таком соединении получается, что на пластинах конденсатора периодически происходит смена полярности. Сначала одна пластина заряжается положительным зарядом, а вторая отрицательным. После того, как он зарядится полностью, он начинает разряжаться. После полного разряда он начинает заряжаться в обратном направлении. Та пластина, что была с положительным зарядом, заряжается отрицательным, а другая - положительным. Так до полного заряда и снова разряд. На этом принципе работы конденсатора основана работа всех генераторов аналоговых приёмопередающих устройств.

Электрическая ёмкость конденсатора

Электрическая ёмкость конденсатора характеризует способность конденсатора сохранять электрический заряд. Чем больше ёмкость, тем больший заряд может быть сохранен. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F. Однако 1F - очень большая емкость, поэтому для обозначения ёмкости как правило используются префиксы, обозначающие меньшие значения емкости.

Используются три префикса: µ (микро), n (нано) и p (пико):

  • µ (микро) означает 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
  • n (нано) означает 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
  • p (пико) означает 10-12 (одна триллионная часть), т.е. 1000pF = 1nF
Ёмкость конденсатора не всегда просто определить, т.к. существует множество типов конденсаторов с различными системами маркировки.

 

Все существующие типы конденсаторов разделяются на две основные группы: электролитические конденсаторы (так же называемые полярными) и неполярные. Неполярные в свою очередь подразделяются на конденсаторы постоянной ёмкости и конденсаторы переменной ёмкости, разновидностью которых являются подстроечные конденсаторы. Каждая группа имеет собственное схематическое обозначение.

katod-anod.ru

Виды конденсаторов и их применение. Большая энциклопедия нефти и газа

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электриф

masters220v.ru

Виды конденсаторов и их применение. §52. Конденсаторы, их назначение и устройство

— это электрический (электронный) компонент, построенный из двух проводников (обкладок), разделенные между собой слоем диэлектрика. Различают много видов конденсаторов и в основном они делятся по материалу самих обкладок и по виду используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим так же относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al 2 O 3),

Свойства:

  • они работают корректно только на малых частотах
  • имеют большую емкость

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки,имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электроли

tanders.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.