26.02.2025

Испытание измерение тока утечки: Как проверить ток утечки, приборы для измерения тока утечки

Содержание

Утечка тока — как найти самостоятельно

Как самостоятельно проверить с помощью бытового мультиметра или индикаторной отвертки утечку тока

Причины возникновения утечки тока

С утечкой тока довольно часто сталкиваются профессиональные электрики во время  обследования электропроводки, особенно старой, электроприборов ненадлежащего качества и другого электрооборудования. Проблема тока утечки также довольно часто встречается и при эксплуатации автомобилей и обуславливает быструю разрядку аккумуляторной батареи. В этой статье будут рассматриваться действия по выявлению утечек электричества относительно домашней сети 220В, но принципиальных различий между ней и автомобильной электросетью нет.

Причины возникновения утечки тока довольно банальны, со временем изнашивается защитная изоляция провода, меняются её характеристики. При неправильной эксплуатации проводки на изоляции провода появляются заломы, трещины, потёртости. Главная задача изоляции проводки и токопроводящих элементов — защищать человека от поражения электрическим током и предотвратить утечку электричества.

 Даже новые электроприборы и проводка имеют  небольшие утечки тока. Практически любая изоляция не идеальна, особенно это касается дешевого кабеля низкой ценовой категории. На дешевой электропроводке, как правило, с завода есть микротрещины, она менее устойчива к температурным и перепадам влажности, часто встречаются мелкие дефекты толщины. Неправильная эксплуатация, перегрев провода при нагрузках превышающих расчетные — всё это выводит изоляцию из строя и приводит к утечкам тока.

Утечку тока можно определить по следующим характерным признакам – прикосновение к корпусу электроприбора, стене, трубопроводу вызывает легкое покалывание в кончиках пальцев. Но будьте осторожны — величина истекания не превышающая величину в 10 мА считается безопасной, но ток утечки более 30 мА смертельно опасен.

Если у вас возникло подозрение на утечку тока, необходимо сразу обесточить помещение и вызвать профессионалов. Автомобиль со значительными утечками также эксплуатировать небезопасно. Вторым признаком утечек тока является непропорционально использованию повышенный расход и как следствие большие счета за электроэнергию или разрядка аккумулятора в автомобиле.

Какими приборами можно зафиксировать утечку электричества?

Специалисты электролаборатории используют профессиональный прибор для измерения сопротивления изоляции — мегаомметр. Такие приборы стоят довольно дорого, в быту не используются. 

У многих дома или в гараже, можно встретить бытовой мультиметр и индикаторную отвёртку, ими и можно самостоятельно приблизительно обнаружить место утечки тока или электроприбор с дефектной изоляцией.

Какими приборами можно зафиксировать утечку электричества

Что бы с помощью «бытового мультиметра» проверить сопротивление изоляции электроприбора, необходимо обязательно полностью отключить проверяемый прибор от электросети. На мультиметре перевести регулятор в положение 20 МОм. Одним щупом прикоснуться к штырю вилки, вторым металлической части электроприбора, лучше последовательно в нескольких местах. Если на дисплее отображается цифра «1», то тока утечки нет, изоляция исправна, показатели на экране ниже единицы свидетельствуют о токах утечки и чем ниже показатель, тем больше ток утечки.

Если у вас нет мультиметра, то обнаружить утечку можно обычной, даже самой дешевой индикаторной отвёрткой. Современные индикаторы чувствительны даже к небольшим токам. Алгоритм действий еще проще, необходимо включить прибор в сеть и коснуться  жалом отвертки до металлических частей прибора, трубопровода или стен в нескольких местах. Лучше предварительно затенить помещение, если ток утечки присутствует, индикатор засветится с разной степенью интенсивности.

Как отыскать место утечки в электропроводке или кабеле

Найти дефект изоляции в скрытой проводке без специального оборудования невозможно. В этом случае необходимо вызывать специалисты электротехнической лаборатории. В открытой можно визуально внимательно осмотреть провод на предмет повреждений изоляции, особенно в местах соприкосновения кабеля со стенами, стояками, металлическими деталями.

Средства защиты человека от токов утечки

Для защиты от утечек тока в распределительном щитке устанавливаются УЗО или АВДТ (дифавтомат). В случае возникновения, даже небольшого, но опасного для человека тока утечки, УЗО или АВДТ моментально  отключат подачу электричества. Правильная работа активного защитного электрооборудования гарантированно только при наличие рабочего заземления. Еще очень важно выбрать качественную автоматику и протестировать её. Все это могут выполнить специалисты наше электроизмерительной лаборатории.  Не экономьте на своей безопасности!

Общие и практические нормы испытания УЗО

Поскольку дифференциальный контроль токов утечки сегодня стал фактической нормой для большинства электропроектов, цикл плановых и внеочередных испытаний, проводимых ЭТЛ, дополнился ещё одним пунктом – проверка работоспособности УЗО. Но так как количество модификаций и схем подключения этого прибора сегодня исчисляется десятками, то не существует единой пооперационной методики тестирования, и для каждого конкретного случая разрабатывается свой алгоритм, учитывающий нормы испытания УЗО, оговоренные в базовых стандартах.

Сразу подчеркнём, что в соответствующих стандартах и СНИП описаны параметры и алгоритмы, рассчитанные, прежде всего, на заводскую сертификацию защитных устройств, поэтому любая практическая методика тестирования заметно отличается как по количеству измерений, так и по объёму отчётной документации.

Нормы и регламентирующие документы

В статье «Как выполняется тестирование УЗО в лабораторных условиях» мы уже приводили полный список стандартов, используемых для разработки методик проверки УЗО. Здесь же напомним, что эту документацию можно условно разбить на две группы:

  • терминология, базовые нормативы и рекомендуемые методы испытаний;
  • требования по организации процесса измерений.

В данном случае, нормативная информация изложена в стандартах:

  • ГОСТ Р 51326.1-99 (МЭК 61008-1-96) – для устройств контроля токов утечки без защиты от сверхтоков;
  • ГОСТ Р 51327.1-2010 (МЭК 61009-1-2006) – для устройств контроля токов утечки со встроенной защитой от сверхтоков (то есть, для дифференциальных автоматов).

Организационные аспекты испытаний, в том числе и требования к уровню квалификации персонала, рассмотрены в ГОСТ Р 50571.3-2009 (МЭК 60364-4-41:2005).

Как мы уже упоминали во введении, в стандартах рассмотрены все конструктивные параметры устройств, проверка которых в режиме лабораторных проверок обычно не производится.

Так, в пунктах 8.5-8.10 ГОСТ Р 51326.1-99, в числе прочих, перечислены следующие направления проверок:

  • стойкость к механическому удару и толчку;
  • теплостойкость;
  • устойчивость к аномальному нагреву и огню;
  • проверка стойкости маркировки;
  • контроль крутящего момента, с которым затянуты винтовые соединения.

Основная информация, на основании которой делаются экспертные заключения о результатах испытаний, опубликована в 9 разделе этого же стандарта.

Полный список испытаний приведен в заглавной таблице раздела.

Полный список испытаний

Но при разработке технологических карт для электролабораторий используют далеко не все перечисленные алгоритмы, а только те, которые непосредственно относятся к эксплуатационным характеристикам.

Чаще всего таковыми являются:

  • проверка защиты от поражения электрическим током;
  • контроль электроизоляционных свойств устройства;
  • тестирование функциональных характеристик;
  • контроль механической и коммутационной износостойкости.
  • тестирование механизма свободного расцепления;
  • проверка стабильности работы при возникновении кратковременных импульсов напряжения.

Отдельно отметим, что для электронных систем контроля, срабатывание которых зависит от наличия напряжения в контролируемой цепи, необходимо предусмотреть отдельный цикл проверки, отражающий поведение прибора при отсутствии напряжения (должно происходить автоматической отключение).

В ходе профилактических испытаний устройств защитного отключения основное внимание уделяется соответствию фактических время токовых характеристик их нормативным значениям.

Источниками «эталонных» данных, с которыми сравниваются измеренные значения, являются перечисленные выше стандарты, а также эксплуатационная документация, поставляемая вместе с прибором.

Кроме этого, при измерениях ориентируются и на общие положения, сформулированные для данного класса приборов.

Так, базовое соотношение номинального тока утечки и номинального неотключающего тока должно быть таким, чтобы размыкание цепи гарантировано происходило при уровнях токов утечки не более 50% от рабочего значения In. То есть, если защитный диапазон УЗО равен 30 мА, то прибор считается исправным, если отключение осуществляется при токах утечки от 15 до 30 мА.

Второй важный параметр – время отключения, зависит от уровня коммутируемых токов и находится в диапазоне от 0.04 до 0.3 секунды.

Время отключения

Кроме электротехнических характеристик, существует ещё один важный параметр, часто игнорируемый при проведении испытаний. Это размеры зазоров между элементами контактных групп и токоведущими частями, проверка которых должна производиться в ходе визуального осмотра, также входящего в алгоритм тестирования.

Отклонение от этого размера легко не заметить, и в итоге это может привести к значительному росту токов утечки самого прибора и, как следствие, ухудшению его эксплуатационных показателей.

В пункте 8.1.3 ГОСТ Р 51326.1-99 приведена подробная таблица с описанием допустимых зазоров, но в общем случае можно ориентировать на правило: зазоры в разомкнутых контактных группах должны быть не менее 3 мм.

В завершение раздела о базовых нормативах, ещё раз подчеркнём, что действующие стандарты разработаны, в первую очередь, для сертификационных испытаний, поэтому циклы испытаний построены таким образом, что какой-то процент испытуемых устройств может прийти в негодность.

Очевидно, что для профилактических электроизмерительных проверок подобный подход неприемлем, и при разработке практических алгоритмов измерений следует учитывать не только общие цели тестирования, но и степень разрушающего воздействия измерительных сигналов.

Условия проведения проверок

Помимо методик и нормативов, в приведенных выше стандартах также оговариваются условия проведения проверок.

Следует отметить, что в этих подпунктах рассмотрены далеко не тривиальные требования, и для некоторых видов проверок они могут быть созданы только в лабораторных условиях.

Так, согласно пункта 9.7 стандарта ГОСТ Р 51326.1-99, перед проверкой электроизоляционной стойкости, прибор должен быть помещён в среду, имитирующую максимальный уровень влажности в том помещении, где он эксплуатируется.

Однако для стандартных приёмосдаточных и профилактических испытаний основным требованием к условиям измерений является отсутствие избыточной влажности и нормальная рабочая температура.

В тех случаях, когда в зоне измерений невозможно обеспечить «комнатные» климатические параметры, в протоколе проверки фиксируют фактические значения температуры и влажности, а экспертное заключение оформляют только после приведения результатов замеров к нормативному уровню.

Следует отдельно подчеркнуть, что из-за узкого диапазона допустимых временных интервалов, температурно-влажностные показатели играют существенную роль, поэтому при организации испытаний данный фактор следует контролировать особо внимательно.

Требования к измерительным приборам

Базовая испытательная цепь

Помимо общих требований к измерительным приборам ЭТЛ, технические средства, применяемые для испытаний УЗО, должны соответствовать следующим критериям:

  • испытательная цепь должна обладать как можно более малой индуктивностью;
  • класс точности приборов, используемых для замеров дифференциальных токов, должен быть не менее 0.5;
  • относительная погрешность электронных секундомеров должна составлять не более 10% от уровня замеряемых значений.

Реальная испытательная цепь разрабатывается на основе следующей базовой схемы, приведенной в приложении стандарта ГОСТ Р 51326.1-99.

Как правило, все современные универсальные измерители соответствуют озвученным условиям и в сопроводительной документации содержат подробные инструкции по сборке измерительных цепей.

Периодичность испытаний

Согласно ПУЭ изд.7, п.1.8.37, периодичность испытаний УЗО определяется исходя из требований, сформулированных в эксплуатационной документации прибора.

Как правило, минимальные сроки проверки, озвученные в инструкциях на прибор – 1 раз в квартал.

Но руководитель подразделения, в зону ответственности которого входят устройства защитного отключения, может составлять специальный график проверок, если это обусловлено особой производственной ситуацией (такая возможность оговорена в ПТЭЭП).

На практике, стендовые и лабораторные тесты УЗО синхронизируют с минимальным периодом испытаний электроустановки, в которой они установлены, а ручные проверки с помощью кнопки «Тест» включают в график оперативного обслуживания.

Что рекомендуется включать в приёмосдаточные испытания

Наиболее краткая программа испытаний сформулирована в приложении D стандарта ГОСТ Р 51326.1-99, в котором рассмотрена рекомендуемая последовательность приёмосдаточных испытаний.

В нём сказано, что для подтверждения работоспособности прибора, достаточно выполнить следующие виды измерений:

  1. Определение время-токовых параметров расцепления;
  2. Тест электрической прочности диэлектрических элементов прибора;
  3. Контроль общей работоспособности на собранной рабочей схеме.

Также в этом приложении сформулировано правило, справедливое для всех видов проверок защитной аппаратуры: если прибор рассчитан на несколько контролируемых уровней напряжений, то проверку следует выполнять для минимального.

Электротехническая лаборатория «Мега.ру» принимает заказы на плановые и внеочередные проверки систем защиты от перегрузок и утечек токов, включая стендовые и лабораторные испытания УЗО. Уточнить детали сотрудничества и оформить заявку на выезд специалистов можно по телефонам, опубликованным в разделе «Контакты», или отправив запрос из формы обратной связи, расположенной в боковой колонке.

 

Методика испытания повышенным напряжением | Элкомэлектро

Электролаборатория » Услуги электролаборатории » Методики измерений » Методика испытания повышенным напряжением

1. Общие положения.

К работе по проведению высоковольтных испытаний в электроустановках допускаются специалисты электролаборатории, лица не моложе 18 лет, прошедшие специальную подготовку и проверку знаний схем испытаний и правил испытаний в условиях действующих электроустановок.

Лица, допущенные к проведению испытаний, должны иметь отметку об этом в удостоверении в графе “Свидетельство на право проведения специальных работ” и ПУЭ.

2. Сущность процесса высоковольтных испытаний.

Испытание изоляции повышенным напряжением позволяет убедиться в наличии необходимого запаса прочности изоляции, отсутствии местных общих дефектов, не обнаруживаемых другими способами. Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами (измерение сопротивления изоляции, определение влажности изоляции и т.п.).

Величина испытательного напряжения для каждого вида оборудования определяется установленными нормами “Правил эксплуатации электроустановок потребителей”.

Электрооборудование и изоляторы электроустановок, в которых они эксплуатируются, испытываются повышенным напряжением по нормам, установленным для класса изоляции данной установки.

Изоляция считается выдержавшей электрическое испытание повышенным напряжением в том случае, если не было пробоя, перекрытия по поверхности, поверхностных разрядов, увеличения тока утечки выше нормированного значения, наличия местных нагревов от диэлектрических потерь. В случае несоблюдения одного из этих факторов — изоляции электрического испытания не выдержала.

3. Измерение сопротивления изоляции мегаомметром.

Для измерения сопротивления изоляции используются мегаомметры типа М4100/1-5 на напряжение от 100 до 2500В. Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “Л” (линия) должен быть подключен к токоведущей части испытываемой установки, а зажим “З” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

Мегаомметры дают правильные показания при вращении ручки генератора в пределах 90-150 об/мин и развивают номинальное напряжение при 120 об/мин и разомкнутой внешней цепи.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на шкале мегаомметра через 60 с, причем отсчет времени надо производить после достижения нормальной частоты вращения генератора.

При изменении сопротивления изоляции объектов с большой емкостью во избежание колебания стрелки прибора необходимо ручку генератора вращать с частотой, несколько выше номинальной, т.е. 130-140 об/мин (увеличивая скорость до успокоения стрелки) и отсчет показания производить только после того, стрелка займет устойчивое положение.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены.

При производстве измерений в сырую погоду необходимо учитывать возможное искажение показаний мегаомметра за счет увлажнения поверхности изолирующих частей установки. В этом случае необходимо пользоваться зажимом мегаомметра “Э”, который должен быть присоединен таким образом, чтобы исключить возможность замера поверхностных токов утечки.

4. Определение увлажненности изоляции методом абсорбции.

Метод основан на сравнении показаний мегаомметра, снятых через 15 и 60 сек. после приложения напряжения. Метод применяется для определения увлажненности гигроскопической изоляции электрических машин и трансформаторов.

Измерение сопротивления изоляции производится между каждой обмоткой и корпусом и между обмотками при изолированных свободных обмотках.

Коэффициент абсорбции равен:

Кабс = R60/R15

где R60 и R15 — сопротивления изоляции, измеренные соответственно через 60 и 15 сек после приложения напряжения мегаомметром.

Для неувлажненных обмоток при t = 10-30оС этот коэффициент равен 1,3-2, для увлажненных обмоток он близок к единице.

Измерения производятся мегаомметром на напряжение 1000-2500В.

Измерение коэффициента абсорбции производится при t не ниже 10оС.

5. Описание процесса испытания повышенным напряжением.

5.1. Перед началом работы производителю работ необходимо проверить исправность испытательного оборудования.

5.2. При сборке испытательной цепи прежде всего выполняются защитное и рабочее заземление испытательной установки, и если потребуется, защитное заземление корпуса испытываемого оборудования.

Перед присоединением испытательной установки к сети 380/220В на ввод высокого напряжения установки накладывается заземление. Сечение медного провода, с помощью которого заземляется вывод должно, быть не менее 4 кв мм.

Сборку цепи испытания оборудования производит персонал бригады, проводящей испытания.

5.3. Присоединение испытательной установки к сети напряжением 380/220В производится через коммутационный аппарат с видимым разрывом цепи или через штепсельную вилку, расположенную на месте управления установкой.

5.4. Присоединить провод к фазе, полюсу испытываемого оборудования или к жиле кабеля; отсоединить его разрешается по указанию лица, руководящего испытанием, и только после их заземления.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

-проверить, все ли члены бригады находятся на указанных местах, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

-предупредить бригаду о подаче напряжения и убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки, после чего подать на нее напряжение 380/220В;

-с момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода, считается находящейся под напряжением и производить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается;

-после окончания испытаний производитель работ должен снизить напряжение испытательной установки до 0, отключить ее от сети 380/220В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде. Только после этого можно пересоединять провода от испытательной установки или в случае полного окончания испытания, отсоединять их и снимать ограждения.

6. Порядок проведения испытаний установкой АИИ-70.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, автоматический выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа, а положение предохранителей соответствовало бы напряжению сети. При транспортировках высоковольтный трансформатор должен быть надежно закреплен внутри аппарата, рукоятка регулятора напряжения утоплена, дверцы закрыты, банка для испытания жидкого диэлектрика вынута из аппарата, а кенотронная приставка надежно закреплена.

При помощи щупа следует периодически проверять расстояние между электродами банки, которое должно быть равно 2,5 мм. Щуп должен входить между электродами без качки, но не очень туго.

6.1. Порядок проведения испытаний установкой УПУ-1М.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, сетевой выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа. Данная установка предназначена только для испытаний электрозащитных средств.

ПРАВИЛА БЕЗОПАСНОСТИ

1. Прежде чем приступить к испытаниям, необходимо заземлить медным проводом, сечение которого не менее 4 мм2, аппарат, ручной разрядник (в случаях, оговоренных ниже)., высоковольтный трансформатор и кенотронную приставку.

РАБОТА БЕЗ ЗАЗЕМЛЕНИЯ НЕДОПУСТИМА!

2. Необходимо установить защитное ограждение с предупреждающими надписями. Его крепят со стороны изоляционных трубок к кенотронной приставке (к скобам на кожухе микроамперметра), а со стороны металлических стержней — к поворотным ушкам каркаса пульта управления.

3. Любые переключения как на высоковольтной, так и на низковольтной стороне аппарата производить после отключения аппарата от сети при надежном заземлении высоковольтных частей.

4. Кабель либо другой объект со значительной емкостью после испытания необходимо заземлить, так как на испытуемом объекте в процессе испытания и даже после сохраняется заряд, предоставляющий большую опасность для жизни. Без заземления кабеля дверцу на крыше аппарата не открывать!

5. Все высоковольтные испытания производить в резиновых перчатках, стоя на резиновом коврике

ИСПЫТАНИЯ КАБЕЛЯ

1. Заземлить аппарат и ручной разрядник. В случае, если кенотронная приставка и высоковольтный трансформатор вынесены за пределы аппарата, они также подлежат заземлению.

2. Откинуть заднюю верхнюю дверцу аппарата, установив ее на кронштейне. Откинуть заднюю нижнюю дверцу и установить на нее кенотронную приставку, заведя ее лапы под скобу и выдавки дверцы.

Вставить в отверстие верхней дверцы рукоятку переключения пределов и

сочленить ее при помощи ключа с переключателем пределов блока

микроамперметра. Рукоятку заземлить.

3. Достать из запасных частей пружину и присоединить ее одним концом к высоковольтному повышающему трансформатору, а другим к высоковольтному выводу кенотронной приставки, расположенной посередине цилиндра.

Вставит вилку кенотронной приставки в розетку пульта управления (сзади слева).

Рукоятку «Защита» установить в положение «Чувствительная».

4. Подключить при помощи кабеля испытуемый объект к кенотронной приставке (муфту кабеля навернуть на вывод блока микроамперметра до упора) и установить защитное ограждение. Аппарат в рабочем положении показан на рис. 1.

5. Включить вилку шнура питания в сеть и, встав на резиновый коврик, включить аппарат.

При этом загорается зеленый сигнал, а после нажатия кнопки автомата «Вкл.» — красный.

6. Плавно вращая рукоятку регулятора напряжения по часовой стрелке, повысить напряжение до испытательного (отсчет вести по шкале киловольтметра, отградуированной в киловольтах максимальных)

7. Переключая рукоятку переключения пределов с большей кратности на меньшую и нажимая кнопку в центре рукоятки, измерять ток утечки.

Примечание: при измерении показание микроамперметра в делениях умножить на кратность предела.

8.После испытания снизить испытательное напряжение до нуля и нажать кнопку «Откл.»

9. Поднести стержень ручного разрядника к разрядному крючку блока микроамперметра и снять емкостный заряд через разрядное сопротивление, встроенное внутри разрядника, а затем заземлить блок микроамперметра наглухо, повесив разрядник на крючок блока микроамперметра или на ручку кенотронной приставки.

Примечание: при необходимости аппарат можно включить через стабилизатор напряжения, однако при этом вследствие искажения формы кривой напряжения пользоваться градуировочными данными, снятыми при работе с конкретным стабилизатором.

Порядок испытания твердых диэлектриков такой же, как и кабеля.

7. Испытания повышенным напряжением промышленной частоты распределительных устройств (вместе с коммутационными аппаратами).

1. Подготовить испытываемый объект к испытаниям, для чего отключить от РУ трансформаторы напряжения, вентильные разрядники, кабели, которые должны быть закорочены и заземлены. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2,5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

8. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением распределительное устройство; величины испытательного напряжения приведены в таблице № 1. Продолжительность приложения испытательного напряжения 1 мин для керамической изоляции, 5 мин — для изоляции из твердых органических материалов. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных цепей 1 мин.

Таблица № 1






Класс напряжения

Испытательное напряжение кВ, ячейки с изоляцией

(кВ)

керамической

из тв. орг. материалов

3

24

21.6

6

32

28.8

10

42

37.8

8.Испытание повышенным напряжением промышленной частоты измерительных трансформаторов.

1. Подготовить испытываемый объект к испытаниям, для чего отключить от испытываемого трансформатора первичные и вторичные цепи. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2.5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

4. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением первичную обмотку измерительного трансформатора повышенным напряжением промышленной частоты; величины испытательного напряжения приведены в таблице № 2. Продолжительности приложения испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет — 1 мин.

Таблица № 2





Исполнение изоляции измерительного трансформатора

Испытательное напряжение кВ, при номинальном напряжении кВ

 

3

6

10

Нормальная

21,6

28,8

37,8

Ослабленная

9

14

22

9. Испытание силовых кабелей номинальным напряжением выше 1кВ повышенным напряжением выпрямленного тока.

1. В соответствии с разделом 3 измерить сопротивление изоляции мегаомметром на напряжение 2,5кВ. Для силовых кабелей напряжение выше 1кВ сопротивление изоляции не нормируется. Измерение изоляции повторить после испытания кабеля повышенным напряжением выпрямленного тока.

2. В соответствии с разделом 6 испытать силовой кабель повышенным напряжением выпрямленного тока. Значения испытательного напряжения и

длительность приложения испытательного напряжения приведены в таблице № 3. В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

10. Оформление результатов испытаний.

Результаты испытаний по настоящей Методике оформляются протоколами установленного образца.

Испытательное напряжение выпрямленного тока для силовых кабелей.

Таблица № 3






Изоляция и марка кабеля

Испытательное напряжение для кабелей кВ

Продолжительность испытания (мин)

 

3

6

10

 

Бумажная

18

36

60

10

Резиновая

6

12

 

5

Пластмассовая

15

  

10

нормы, проверяемые параметры, образец протокола

Из-за угрозы возникновения перенапряжений в электрических сетях, и, как следствие, поломки приборов, разрушения изоляции и последующих затрат на восстановление, применяют защиту  в виде ограничителей перенапряжений (ОПН). Которые представляют собой нелинейные приборы, изменяющие величину сопротивления в ответ на возрастание напряжения в сети. Из-за старения и нарушения свойств вилитового материала, нелинейные ОПН могут утрачивать свои характеристики, перегреваться, в результате чего может произойти взрыв, угрожающий безопасности персонала и целостности оборудования. Для предотвращения подобных инцидентов производится испытание ОПН.

Зачем проводят испытания ограничителей перенапряжения?

Проведение испытаний ОПН требуется для контроля за их состоянием. Благодаря чему обеспечивается их работоспособность, как при вводе в работу, так и  в течении всего периода эксплуатации. А организация, эксплуатирующая электроустановку,  может быть уверена в полноценной защите электрооборудования на случай возникновения аварийного скачка напряжения. В зависимости от конкретной ситуации нелинейные ОПН могут подвергаться различным видам испытаний.

Типы испытаний

В зависимости от причин проведения, все испытания ОПН подразделяются на такие категории:

  • Приемо-сдаточные – выполняются для вновь смонтированных устройств с целью определения соответствия параметров уже установленных ОПН. Так как в процессе монтажа или наладки электроустановок разрядники и ОПН могли быть повреждены, из-за чего их характеристики будут отличаться от заявленных. Данная категория испытаний является обязательной для всех ограничителей перенапряжения.
  • Периодические – проводятся для тех моделей, которые уже включены в работу. Производятся с целью осуществления текущего контроля за состоянием защитного оборудования посредством проверки их параметров.
  • Квалификационные – предназначены для определения способности какого-либо предприятия к началу производства ОПН. При этом первая партия подвергается выборочной проверке по ряду параметров, наиболее сложный из которых — его реакция на нерасчетный режим. Во время протекания которого внешняя рубашка подвергается чрезмерному давлению изнутри и создается угроза взрыва.
  • Типовые – призваны учитывать особенности различных категорий, рассчитанных на особенности электроустановок определенного типа.

Периодичность

Испытания ОПН выполняются в соответствии с требованиями международного стандарта МЭК 60099-4:2004, который лег в основу разработки отечественного ГОСТ Р 52725-2007. Помимо них каждый изготовитель самостоятельно может ужесточать требования, в зависимости от индивидуальных особенностей сетей для которых выпускаются устройства. Этими НД регламентируется частота проведения тех или иных измерений.

Сопротивление проверяется с периодичностью: для моделей наружной установки – раз в 3 года, для внутренней – раз в 6 лет. Ток утечки должен проверяться ежегодно до начала грозового периода. Также рекомендуется осуществлять тепловизионный контроль с периодичностью раз в 3 года для сетей до 35 кВ, и раз в 2 года для 110 кВ и выше.

Параметры, проверяемые у ОПН

На различных этапах изготовления и последующей эксплуатации ограничители должны подвергаться тем или иным испытаниям, которые регламентируются вышеприведенными НД:

  • Сопротивление изоляции – проверяется мегаомметром для контроля изоляции;
  • Ток проводимости – позволяет проверить нелинейное сопротивление вилитовых дисков;
  • Воздействие электрическим напряжением – для проверки прочности и устойчивости в различных режимах;
  • Частичные разряды – используются для проверки устойчивости на пробой посредством амплитудных скачков тока;
  • Остаточное напряжение – характеризует способность устройства к накоплению заряда;
  • Механическая прочность – позволяет убедиться, что рубашка выдержит механические нагрузки;
    Принцип проверки механической прочностиРис. 1. Принцип проверки механической прочности
  • Герметичность – определяет сопротивление корпуса проникновению влаги внутрь.

Объем и нормы приёмо-сдаточных испытаний ОПН

Все испытания приемо-сдаточного характера проводятся в соответствии с требованиями, которые устанавливает раздел 1.8.31 ПУЭ 7. Именно он регламентирует методику и те проверки, которые должны проходить вентильные разрядники и ОПН.

В зависимости от класса напряжения на  ОПН подается испытательное напряжение определенной величины, после чего регистрируется величина тока. Также в зависимости от номинального напряжения проверяется сопротивление агрегата. Но мегаомметр, при измерении сопротивления, должен выставляться на определенную величину напряжения.

Измерение тока проводимости

Одной из двух величин, измеряемых для ОПН, является ток проводимости. Перед началом испытаний ОПН необходимо отключить от сети. С его поверхности, ребер и фланцев должна удаляться пыль, мусор и прочие засорители. Категорически запрещается проводить измерения на мокрых или влажных ограничителях, необходимо дожидаться их полного высыхания. К выполнению таких работ должны приступать только работники, которые прошли обучение, имеют соответствующую группу по электробезопасности и право на выполнение таких испытаний. Для измерения тока проводимости используется следующая схема.

Измерение тока проводимостиРис. 2. Измерение тока проводимости

Как видите, на данной схеме к выводам испытательной установки (АИИ-70) последовательно подключается сам ОПН и миллиамперметр (мА). С началом испытаний высоковольтного оборудования напряжение от АИИ-70 должно плавно повышаться до установленной величины со скоростью, приблизительно 2 кВ в секунду. При этом температура устройства должна находиться в пределах от – 15 до +20ºС.

После установки уровня напряжения до нормативной величины производится измерение тока. Затем эту величину сравнивают с заводской, которая указывается в паспортных параметрах изготовителем.

В зависимости от уровня напряжения, на которое рассчитаны ОПН, замер тока проводимости производится:

  • Устройствам до 3 кВ – величина не нормируется.
  • От 3 до 35 кВ подается наибольшая величина максимально допустимого напряжения, при котором и производится замер тока. В результате его сравнивают с паспортной нормой.
  • От 110 до 500 кВ на испытуемый объект подается 100 кВ промышленной частоты 50 Гц. Получаемый при этом ток сравнивается с данными заводской инструкции.

Замер сопротивления изоляции

Изоляция, при испытаниях ОПН, измеряется мегаомметром. При этом должен использоваться калиброванный прибор, имеющий отметку о такой поверке. В зависимости от уровня напряжения, на которое рассчитано устройство, изоляция электрооборудования проверяется в соответствии с такими принципами:

  • Для испытаний ОПН до 3 кВ должен применяться мегаомметр на 1 кВ, а величина сопротивления должна быть не менее 1000 МОм.
  • Если испытываются устройства от 3 до 35 кВ, то необходим мегаомметр на 2,5 кВ, а сопротивление, при этом, должно находиться в пределах установленных заводскими инструкциями.
  • Для устройств от 110 до 500 кВ также применяется мегаомметр на 2,5 кВ, а величина сопротивления, при этом, должна быть не менее 3000 МОм. Но при этом, не должна отличаться, от регламентируемой заводскими нормами, более чем на ±30%.

Пример и описание протокола испытания ОПН

Все результаты по испытанию высоковольтного оборудования, включая те же ОПН, должны вноситься в протокол.

Пример заполнения протокола испытанийРисунок 3. Пример заполнения протокола испытаний

Посмотрите на рисунок 3, как видите, протокол состоит из двух таблиц. В первой из них указываются паспортные данные. Эта таблица разделяется на 6 колонок, в которые вносятся тип, место его установки, изготовитель, присвоенный на заводе номер, даты выпуска и ввода в работу. Вся информация заносится для каждой фазы отдельно.

Во второй таблице указывается пофазный замер сопротивления. Где он сравнивается с паспортными и базовыми значениями. После проведения испытаний, в протоколе ставятся подписи работников, которые производили замеры.

Видео по теме

Руководство по измерению (тестированию) сопротивления изоляции

Подробное руководство по проведению измерения сопротивления изоляции

Подробное руководство по проведению измерения сопротивления изоляции

Навигация по статье:

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты или электродвигателях и генераторах, электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярное тестирование изоляции, проводимое на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

На этом этапе полезно прояснить разницу между двумя типами измерений, которые часто путают – испытанием электрической прочности изоляции и измерением сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования высоковольтного тестера. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Это измерение выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроля старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром.

Измерители сопротивления изоляции

Изоляция и причины ее неисправности

Поскольку измерение изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

Напряжения, связанные с колебаниями температуры

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

Загрязнение окружающей среды

Плесень и посторонние частицы в теплой влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Относительная частота различных причин отказа электродвигателя

Внешние загрязнения

Внешние загрязнения

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто определить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов

Емкость: Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.

Поглощение: Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.

Ток утечки: Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Три тока в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Измерители сопротивления изоляции

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

Пример показаний сопротивления изоляции для электродвигателя
В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана),

поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Источник: AEMC® Instruments

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальное измерение сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:





Значение PI

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:





Значение DAR

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.






DD

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Измерители сопротивления изоляции










Рабочее напряжение кабеля/оборудования

Испытательное напряжение постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

В приведенной выше таблице показаны рекомендованные испытательные напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Перед тестированием

  1. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.
  2. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).
  3. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.
  4. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.
  5. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Результат моих измерений – x МОм. Это нормально?

На этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности:

  • используйте специальное гнездо G (Guard) (описывается в специальном разделе выше;
  • используйте чистые, сухие провода;
  • прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии;
  • не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов;
  • для стаб илизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Измерители сопротивления изоляции

При выборе мегомметра необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Измерение изоляции на электрической установке

Измерение изоляции на электрической установке

Измерение изоляции на вращающейся машине

Измерение изоляции на вращающейся машине

Измерение изоляции на инструменте и электрическом двигателе

Измерение изоляции на инструменте и электрическом двигателе

Измерение изоляции на трансформаторе

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

Измерение изоляции на трансформаторе между высоковольтной обмоткой и низковольтной обмоткой и землей

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

Измерение изоляции на трансформаторе между низковольтной обмоткой и высоковольтной обмоткой и землей

c. Между высоковольтной обмоткой и низковольтной обмоткой

Измерение изоляции на трансформаторе между высоковольтной обмоткой и низковольтной обмоткой

d. Между высоковольтной обмоткой и землей

Измерение изоляции на трансформаторе между высоковольтной обмоткой и землей

e. Между низковольтной обмоткой и землей

Измерение изоляции на трансформаторе между низковольтной обмоткой и землей

Подробнее о приборах для тестирования изоляции высоковольтных кабельных линий читайте в этом разделе.

Если вам нужна профессиональная консультация по измерению сопротивления изоляции электрооборудования, просто отправьте нам сообщение!

Примеры оборудования

Поделитесь этой страницей с друзьями и коллегами

 

2.6.2. Измерение сопротивления изоляции (токов утечки)

Этот
метод из-за своей простоты нашел очень
широкое приме­нение в практике и
является одним из основных методов
контроля каче­ства изоляции.

Известно,
что любая изоляция имеет конечную
величину со­противления, хотя и
достаточно большую. Поэтому при приложении
напряжения через изоляцию, кроме токов
на зарядку геометрической емкости и
абсорбционных токов, течет ток,
определяемый электропро­водностью
диэлектрика. С увеличением дефектности
изоляции ток утечки возрастает. Это
явление и положено в основу данного
метода.

Сопротивление
изоляции равно:

.

На
постоянном напряжении
будет изменяться во времени, поскольку
на величину тока будут влиять процессы
медленной поляризации. На рис. 2.10 показан
характер изменения тока через изоляцию
и сопротивление изоляции от времени.

Рис.
2.10. Изменение тока утечки и сопротивления
изоляции во времени

Опытным
путем установлено, что для большинства
изоляци­онных конструкций время
достижения установившегося значения
тока утечки I
меньше
1 мин., т. е. к этому времени после приложения
напря­жения R
также
достигнет установившегося значения.

Резкое
падение
показывает
на далеко зашедшее развитие дефекта в
изоляции, или на наличие сквозного
проводящего пути, или пробоя. Обычно
суждение об изоляции составляется на
основании срав­нения с результатом
предыдущих измеренийили заводских данных.

Измерение
сопротивления изоляции производится
с помощью специальных приборов —
мегаомметров, у которых шкала
проградуирована в МОм или кОм.

Конструкции
отечественных мегаомметров для измерения
раз­личны. Наибольшее применение
нашли индукторные (с ручным приво­дом)
типа М-110 на 500 В, МОМ-5 на 1000 В и МС-06 на
2500. В настоящее время находят широкое
применение электронные мегаомметры,
например, типа ЭС0210.

2.6.3. Измерение tg

Диэлектрические
потери в изоляции характеризуются углом
диэлектрических потерь. Если обратиться
к рис. 2.11, то tg

определя­ется отношением активной
составляющей тока в диэлектрике к
емкост­ной составляющей

tg
,

где
Ia

активная составляющая тока через
диэлектрик; Ic

реактивная составляющая тока через
диэлектрик.

Рис.2.11.
Векторная диаграмма токов через
диэлектрик с потерями

Измерение
величины tg
,
а
не величины самих диэлектрических
потерь:

P
= U
I
c
tg

=
UC

tg
.

имеет
следующие преимущества:

  1. величина
    tg

    как характеристика материала не зависит
    от размеров объекта, но позволяет
    обнаружить возникающие в изоляции
    дефекты, особенно если они распространены
    по всему объему;

  2. величина
    tg

    может быть непосредственно измерена
    мос­том переменного тока.

Метод
контроля изоляции путем измерения угла
диэлектриче­ских потерь является
самым эффективным и распространенным.
Он по­зволяет выявить следующие
дефекты: увлажнение, воздушные (газовые)
включения с процессами ионизации,
неоднородности и загрязнения и др.

Измерения
tg

ведутся при напряжении U<10
кВ и частоте 50 Гц при помощи высоковольтных
мостовых схем (мост Шеринга). Оцен­ка
состояния изоляции по значению tg

предусматривается норматива­ми почти
для всех видов изоляции. В зависимости
от конструктивных особенностей объекта
(заземлен один электрод или нет)
используется нормальная или перевернутая
схемы моста Шеринга.

По
нормальной схеме обычно выполняются
измерения в лабо­раториях, а также
измерения междуфазной изоляции (кабель,
трансфор­матор и т.п.).

Выпускаются
мосты типа МДП, которые позволяют
измерять tg

при емкостях объектов от 40 до 20000 пФ.

При
работе с перевернутой схемой нужно
иметь в виду, что от измерительных ветвей
и конденсатора С3
(измеряемый объект) идут проводники,
находящиеся под высоким напряжением.

Для
измерений по перевернутой схеме
применяется малогаба­ритный переносной
мост МД-16, который позволяет измерять
tg

при емкостях объекта от 30 до 40000 пФ.

Испытание кабеля повышенным напряжением: нормы, методика, схема

Параметры современных электрических систем способны обеспечить необходимый уровень напряжения и его качество для любых потребителей. А за счет масштабной застройки больших городов, близкого расположения промышленных объектов, нагромождения их коммуникаций, большая часть линий выполняются силовыми кабелями. Из-за воздействия внешних факторов изоляция электрооборудования способна утрачивать защитные свойства, что приводит к сбоям и нарушению нормального режима работы. Для предотвращения аварийных ситуаций на кабельных линиях и своевременного выявления дефектов осуществляется испытание кабеля повышенным напряжением.

Подготовка к испытанию

В связи с тем, что повышенное напряжение несет потенциальную угрозу как самому оборудованию, так и персоналу, существует методика испытаний, регламентирующая определенную последовательность действий. Первым этапом является оформление работ, подготовка места работы, оборудования и самого кабеля.

Следует оговориться, что к электрическим испытаниям допускаются лишь те лица, которые достигли совершеннолетия, прошли медосмотр, периодическую проверку знаний по электробезопасности. Испытания, в обязательном порядке, оформляются нарядом, а бригаде проводится инструктаж по охране труда.

По отношению к испытуемой электроустановке предъявляются такие требования:

  • Перед испытанием с кабеля обязательно снимается напряжение, все металлические элементы (экраны, броня), на которые подача напряжения не производится, должны заземляться.
  • Предварительно с кабеля удаляется остаточный заряд, для этого провода и металлические части заземляются на 2 минуты.
  • До подачи повышенного напряжения на жилы кабеля, осмотрите его на наличие загрязнителей на видимых участках или в воронках. При обнаружении таковых поверхность очищается, после чего могут производиться высоковольтные процедуры.
  • При отрицательной температуре испытания не проводятся. Это обусловлено тем, что лед выступает в роли диэлектрика и сопротивление изоляции будет значительно больше реальной величины. Помимо этого, разработка траншеи и откопка кабеля в замерзшем грунте значительно усложняется. В связи с чем, при нулевых или более низких температурах, испытание целесообразно только в случае аварии.
  • До начала испытания посредством мегомметра обязательно проверяется сопротивление от каждой жилы к  металлической оболочке кабеля и между фазами.
  • Величину тока утечки, напряжение на киловольтметре можно начинать фиксировать только спустя минуту, с момента установки испытательного напряжения на нужной отметке.

Причины и физика испытания

Профиспытания повышенным напряжением используются для выявления слабых мест в изоляции кабеля. Не зависимо от материала диэлектрика: пластмассовый, резиновый, полиэтиленовый или маслонаполненный кабель воспринимает нагрузку от испытательной установки на одну жилу, а остальные металлические части подключаются к земле. В результате чего изоляция находится под потенциалом, в разы превышающим номинальный.

От подачи на жилы повышенного потенциала в изоляции возникает ионизация, а в местах нахождения каких-либо дефектов, неоднородностей или включений инородных материалов скапливается достаточное для протекания малых токов количество заряженных частиц. Такие включения и дефекты могли образоваться в результате неудовлетворительных условий эксплуатации, аварийных режимов или из-за естественного старения материала.

Все изъяны, из-за малого сопротивления, начинают ионизироваться и пропускать электрический ток все большей величины по микроскопическим каналам в диэлектрике. Из-за этого сопротивление изоляции уменьшается вплоть до пробоя. Если пробой не наступает, а дефект оказывает существенное влияние, его можно зафиксировать по изменению величины тока утечки.

Данная методика дает уверенность, что при номинальном токе изоляция кабеля выдержит нагрузку до следующих испытаний.

Схемы испытаний

Для проверки прочности изоляции кабеля могут использоваться различные устройства, обеспечивающие на выходе повышенное напряжение. Но, независимо от конкретной модели, схема  измерений и работы строится по такому принципу.

Схема измеренийРисунок 1. Схема измерений

Посмотрите на схему (рис. 1.), здесь изображено:

1 – обмотки трансформатора с функцией регулировки уровня напряжения (автотрансформатор),

2 – высоковольтный трансформатор для подачи напряжения на испытуемый объект,

3 – панель управления,

4 – испытуемый кабель,

5 – трансформатор питания катодной цепи кенотрона.

На схеме  рассматривается метод испытания, когда к одной из жил кабеля подведено повышенное напряжение, а остальные заземлены.

С началом испытаний от автотрансформатора  через киловольтметр подается напряжение на первичную обмотку испытательного агрегата. Вторичная обмотка которого заземляется через амперметр, именно он и показывает значение тока утечки. Испытуемая обмотка, помимо амперметра, содержит резистор R для ограничения  величины переменного тока, в случае пробоя. Вторым выводом резистор подключается к аноду кенотрона, катод которого запитывается от преобразователя накала.

Нормы испытаний

В ходе испытаний высоковольтный провод получает нагрузку повышенным напряжением, но поднимается оно плавно от нулевой отметки до установленной величины. Продолжительность воздействия составляет 5 минут для периодических и 10 минут во время приемо-сдаточных испытаний для кабелей с пластмассовой и бумажной изоляцией. После каких-либо ремонтных работ или при изменениях в схеме время испытания кабеля составляет 10 – 15 минут. Кабель с резиновой изоляцией испытывается повышенным напряжением  5 минут во всех случаях.

Все данные устанавливаются государственными документами – ПУЭ и ПТЭЭП. В зависимости от параметров сети и технических характеристик кабеля существуют такие пределы  подачи повышенного напряжения (см. таблицу ниже):

Тип кабеляНоминальное напряжение кабеля, кВИспытательное напряжение, кВПродолжительность испытания, мин
С бумажной изоляцией3—106 Uв10
20—355 Uв10
11030015
22045015
С резиновой изоляцией3615
6125

Посмотрите, в таблице вы можете увидеть значение выпрямленного напряжения, подаваемого непосредственно на сам кабель. Оно отличается от номинального напряжения, выдаваемого испытательным трансформатором и по величине и по роду. UВ обозначает номинальное напряжение кабеля, а цифры указывают во сколько раз испытательное напряжение должно превышать номинальное.

Ток утечки не является параметром для контроля или выбраковки. Но в случае его скачков, колебаний во время испытания повышенным напряжением, можно смело утверждать о наличии дефектов. В таком случае подачу напряжения на кабель необходимо осуществлять до пробоя, но не больше 15 минут. Вместе с током рассчитывают и коэффициент асимметрии,  их нормы вы можете увидеть в таблице:

Кабели напряжением, кВИспытательное напряжение, кВДопустимые значения токов утечки, мАДопустимые значения коэффициента асимметрии,
636

45

0,2

0,3

8

8

1050

60

0,5

0,5

8

8

201001,510
35140

150

175

1,8

2,0

2,5

10
110285не нормируетсяне нормируется
150347не нормируетсяне нормируется
220510не нормируетсяне нормируется
330670не нормируетсяне нормируется
500865не нормируетсяне нормируется

Отклонение от значений, приведенных в таблице, может свидетельствовать о серьезных изменениях в изоляции кабельной линии. В случае, когда не было  пробоя, отсутствовали электрические разряды, хлопки, внезапное нарастание или колебания постоянного тока во время испытания, кабель считается годным. В частных случаях, лицо ответственное за электрохозяйство может самостоятельно устанавливать испытательные сроки и параметры в разрез заводских норм.

Аппараты для испытаний

  • АИИ – 70 – одна из наиболее популярных стационарных установок, применяемых в испытании и фазировке силовых кабелей, вводов, проверке прочности жидких диэлектриков на пробой и т.д. Может обеспечивать как постоянное напряжение на выходе (максимально 70 кВ), так и переменное (50 кВ).
  • АИД-70 – является диодным аналогом предыдущей модели. Наиболее широко применяется для испытания как постоянным, так и переменным напряжением в передвижках или переносных агрегатах, в лабораториях.
  • ИВК-5, АИ-2000, КУ-65 и прочие – установки с диодной схемой. Применяется для продавливания вторичных электрических цепей.

Принципиальная схема ИВКПринципиальная схема ИВК

Как и в других схемах, здесь используется трансформатор (АТ), диодные выпрямители (В), резисторы (Р), трансформатор тока (Т) сигнальные светодиоды и устройства для съема показаний (v, mA). На том же принципе основан ряд других портативных устройств.

Методика испытания кабеля повышенным напряжением

Возьмите кабель с несколькими жилами, и соедините вывод установки с одной из фаз, остальные заземлите, для одножильных кабелей ничего кроме брони или экрана заземлять не нужно. Если к одному проводнику подводится напряжение, а другие заземляются, то оголенные концы разводятся на расстояние не менее 15 см. В случае проведения профилактических испытаний, подключение испытательной установки осуществляется на концевых муфтах. В аварийных ситуациях присоединение может выполняться в местах раздела, как более целесообразных точках для измерений.

Схема подключения кабеляСхема подключения кабеля

Силовой трансформатор преобразует напряжение и ток промышленной частоты до нужного уровня, затем подает через выпрямитель на кабель. Методика измерений требует плавного наращивания напряжения со скоростью около 1 – 2кВ в течении одной секунды до получения необходимой величины. После того, как стрелка киловольтметра установится в нужную позицию, начинается отсчет времени. По результатам снимаются данные с приборов на установке и фиксируются в соответствующих документах – протоколах и кабельных журналах.

Для завершения  измерений  ручка автотрансформатора выводится в ноль. Отключается кнопка питания, устанавливается блокировка от случайной подачи напряжения. Обратите внимание, на высоковольтный вывод  обязательно завешивается заземление. После чего можно приступать к разборке схемы.

В случае если изоляция выполнена из сшитого полиэтилена, кабель не допускается испытывать выпрямленным током из-за возможности скопления  локальных объемных зарядов. По причине дороговизны таких кабелей, их порча чревата большими затратами. Поэтому следует прибегать к принципиально иной технологии проверки.

Кабель с изоляцией из сшитого полиэтиленаКабель с изоляцией из сшитого полиэтилена

К кабелям таких марок целесообразно подводить переменное напряжение низкой частоты, с целью планомерного и полного рассеивания местных зарядов при переходе синусоиды через ноль. При этом удаляются даже те заряды, которые могли возникнуть в процессе эксплуатации из-за режима питания.

В завершение, для кабелей, продавленных повышенным напряжением, в обязательном порядке выполняется проверка электрической прочности их изоляции. Так как воздействие такого напряжения могло нарушить ее диэлектрические свойства.

Периодичность

Для кабелей, рассчитанных на напряжение от 2 до 35 кВ с пластмассовой и бумажной оболочкой, в течении первых 2 лет с момента запуска в работу устанавливается периодичность испытания повышенным напряжением раз в год. В случае отсутствия аварий, реконструкций, которые могли быть причиной каких-либо изменений, за первые два года, испытания разрешается проводить реже – раз в 2 года. В противном случае, сроки остаются теми же. Если такой кабель эксплуатируется на территориях подстанций, заводов и прочих промышленных объектов, где доступ к ним затруднен, разрешается проводить испытание не реже, чем раз в 3 года.

Кабели, рассчитанные на напряжение 110  — 500кВ подлежат проверке через 3 года с момента их ввода в эксплуатацию. После чего,  в случае отсутствия аварийных ситуаций или реконструкций, испытание может производиться с периодичностью раз в 5 лет.

Для кабелей, оснащенных резиновой изоляцией, в случае питания стационарных устройств электроустановок, периодичность высоковольтных испытаний составляет 1 раз в год. Для сезонных электроустановок испытания должны проводиться перед началом сезона. Такую же процедуру необходимо выполнять при пуске в эксплуатацию электроустановок после их длительного отключения.

Допускается не производить испытания кабелей с бумажной и пластмассовой изоляцией в случае если:

  • используется в качестве питающих вводов и длина кабеля менее 100 м;
  • срок их службы уже более 15 лет, а удельное количество отказов не менее 30 раз на 100 км в год;
  • в ближайшие 5 лет планируется их реконструкция или полный демонтаж.

Оформление результатов испытаний в виде протокола (пример)

После проведения испытаний, все данные заполняются в соответствующие графы протокола. Пример заполнения которого можно увидеть на рисунке.

Пример заполнения протоколаПример заполнения протокола

В графе о лицах, проводивших испытания, ставятся фамилии и подписи работников, участвовавших в соответствующих процедурах. После чего протокол визируется начальником лаборатории и хранится в установленном порядке.

Интересное видео

Основы измерения тока утечки — метод

Основы

Измерение тока утечки выполняется как часть проверки безопасности электрического устройства. Измеряются токи, протекающие через защитный проводник или металлические части земли. Могут возникать переменные токи, такие как сквозная пропускная способность линий, катушек и т. Д. Они могут протекать даже при надлежащей изолированной земле. Если эти потоки слишком высоки, это становится опасностью.

Методика измерения тока утечки

Измерение тока утечки проводится в условиях эксплуатации и неисправности. По определению рабочее напряжение 110%. Сила тока измеряется измерительным устройством, моделирующим сопротивление человеческого тела (2 кОм). Измерение проводится в трех режимах работы тестируемого однофазного устройства, за исключением медицинских устройств, по следующим методикам:

метод A1:

leakage current A1

Измерение тока утечки между нулевым проводом и PE

метод A2:

leakage current A2

Измерение тока утечки между фазой и PE

метод B:

leakage current B

Измерение тока утечки между фазой и нейтралью и PE

Если тестируется трехфазная система, ток утечки измеряется от точки звезды относительно PE.Здесь предусмотрено прерывание отдельных фаз. Пределы определены в соответствии со стандартами. Здесь вы найдете компактный тестер и приборы для измерения тока утечки, а также испытания высокого напряжения, испытания защитных проводов и испытания на утечку.

«Назад
.

Измерение тока утечки в Ададжане, Сурат, ПРЕДПРИЯТИЕ ШИВШАКТИ


О компании

Год основания 1996

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Оптовый дистрибьютор

Количество сотрудников от 11 до 25 человек

Годовой оборот R.50 лакх — 1 крор

Участник IndiaMART с ноября 2008 г.

GST24ADLPA1503A1ZM

SHIV SHAKTI ENTERPRISES хотела бы представить себя как процветающее предприятие в области торговли энергосберегающими аксессуарами, светодиодными осветительными приборами, датчиками и другими индивидуализированными электрическими промышленными компонентами.

Все наши продукты известны своей долговечностью и энергоэффективностью. Более того, компания также может похвастаться огромным количеством клиентов на индийском рынке.Число наших клиентов увеличивается день ото дня. Единственная цель компании — предложить полное удовлетворение своими продуктами и услугами. Следовательно, нас считают одним из надежных оптовых поставщиков электронных энергосберегающих продуктов в стране.

Г-н Нареш Агравал (владелец компании) — инженер-электрик, обладающий очень хорошими практическими, а также теоретическими знаниями, позволяющими точно понимать потребности клиента. Это помогает повысить удовлетворенность наших клиентов.

Ресурсы
Компания имеет надежную поддержку всех видов ресурсов, которые помогают нам удовлетворять растущий спрос на нашу продукцию. Команда профессионалов, хорошие складские помещения, эффективная логистическая поддержка для своевременной доставки — вот некоторые из наших ресурсов, которые помогли нам стать надежным лицом на рынке.

Опыт
Мы успешно работаем в этой области более десяти лет. Этот богатый опыт дал нам искусство точно определять потребности клиентов и соответствующим образом их обслуживать.По этим причинам мы также завоевали доверие наших клиентов как на национальном, так и на международном рынке.

Сеть
Компания процветает за счет хорошо налаженной сети, которая распространяется на различных зарубежных рынках. Наша обширная сеть также помогла нам в обслуживании клиентов в самых отдаленных частях рынка.

.

ETCR9000S Измерение тока нагрузки высокого / низкого напряжения с помощью клещей для измерения тока утечки переменного тока Регистратор данных 99 наборов | измерение тока | измерение переменного тока измерение тока утечки

Сведения о доставке

Мы отправляем по всему миру, за исключением APO / FPO

Товары отправляются из Китая авиапочтой и доставляются в большинство стран в течение 15-25 рабочих дней.

Срок доставки зависит от пункта назначения и других факторов, это может занять до 30 рабочих дней.

Платеж

Мы принимаем Alipay и Paypal, кредитную карту, Money Booker, T / T, Western Union, здесь

Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

Гарантия и гарантия

Гарантия 12 месяцев. Покупайте с уверенностью

Если вы не удовлетворены полученным товаром, пожалуйста, верните его в течение 14 дней для замены или возврата денег, пожалуйста, свяжитесь с нами, прежде чем вернуть его.

Если товар неисправен в течение 3 месяцев, мы отправим вам замену без дополнительной оплаты или предложим возврат средств после получения дефектного товара.

Если товар неисправен через 3 месяца, вы все равно можете отправить его нам. Мы отправим вам новый после получения дефектного товара. Но вам придется заплатить дополнительную плату доставку.

Обратная связь

Мы зависим от удовлетворенности клиентов, чтобы добиться успеха, ваш положительный отзыв о 5 звезд очень важен для нас, если вы удовлетворены нашим продуктом, пожалуйста, оставьте нам положительный отзыв ( 5 звезд )

Пожалуйста, не оставляйте нам отрицательный отзыв, прежде чем связаться с нами, мы постараемся сделать все, чтобы решить проблему, пожалуйста, помогите нам улучшить

Прочая политика

Мы не несем ответственности за какие-либо таможенные пошлины или налог на импорт.

На все электронные письма ответят в течение 1 рабочего дня. Если вы не получили наш ответ, пожалуйста, повторно отправьте свое письмо, и мы ответим вам как можно скорее.

Только серьезный покупатель! Пожалуйста, разместите заявку, только если вы согласны со всеми пунктами

FAQ

В: есть ли какой-либо номер для отслеживания моего товара?

A: Если вы хотите, чтобы посылка отслеживалась, выберите авиапочту Китая, почту Сингапура или экспресс

В: Поставляется ли этот продукт в розничной упаковке?

A: Мы указали детали упаковки в описании каждого продукта, пожалуйста, проверьте это, спасибо!

В: Я являюсь торговым посредником, я хотел бы купить много вашего товара, какова оптовая цена?

A: Если вы хотите купить большое количество, отправьте нам электронное письмо, мы предложим вам лучшую цену, спасибо!

.

ETCR9100S Тестовые данные для измерения тока нагрузки беспроводной передачи с помощью токоизмерительных клещей высокого / низкого напряжения переменного тока | ток утечки | измеритель тока утечкиИзмерение тока

Сведения о доставке

Мы отправляем по всему миру, за исключением APO / FPO

Товары отправляются из Китая авиапочтой и доставляются в большинство стран в течение 15-25 рабочих дней.

Срок доставки зависит от пункта назначения и других факторов, это может занять до 30 рабочих дней.

Платеж

Мы принимаем Alipay и Paypal, кредитную карту, Money Booker, T / T, Western Union, здесь

Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

Гарантия и гарантия

Гарантия 12 месяцев. Покупайте с уверенностью

Если вы не удовлетворены полученным товаром, пожалуйста, верните его в течение 14 дней для замены или возврата денег, пожалуйста, свяжитесь с нами, прежде чем вернуть его.

Если товар неисправен в течение 3 месяцев, мы отправим вам замену без дополнительной оплаты или предложим возврат средств после получения дефектного товара.

Если товар неисправен через 3 месяца, вы все равно можете отправить его нам. Мы отправим вам новый после получения дефектного товара. Но вам придется заплатить дополнительную плату доставку.

Обратная связь

Мы зависим от удовлетворенности клиентов, чтобы добиться успеха, ваш положительный отзыв о 5 звезд очень важен для нас, если вы удовлетворены нашим продуктом, пожалуйста, оставьте нам положительный отзыв ( 5 звезд )

Пожалуйста, не оставляйте нам отрицательный отзыв, прежде чем связаться с нами, мы постараемся сделать все, чтобы решить проблему, пожалуйста, помогите нам улучшить

Прочая политика

Мы не несем ответственности за какие-либо таможенные пошлины или налог на импорт.

На все электронные письма ответят в течение 1 рабочего дня. Если вы не получили наш ответ, пожалуйста, повторно отправьте свое письмо, и мы ответим вам как можно скорее.

Только серьезный покупатель! Пожалуйста, разместите заявку, только если вы согласны со всеми пунктами

FAQ

В: есть ли какой-либо номер для отслеживания моего товара?

A: Если вы хотите, чтобы посылка отслеживалась, выберите авиапочту Китая, почту Сингапура или экспресс

В: Поставляется ли этот продукт в розничной упаковке?

A: Мы указали детали упаковки в описании каждого продукта, пожалуйста, проверьте это, спасибо!

В: Я являюсь торговым посредником, я хотел бы купить много вашего товара, какова оптовая цена?

A: Если вы хотите купить большое количество, отправьте нам электронное письмо, мы предложим вам лучшую цену, спасибо!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *