15.08.2024

Измерение переходного сопротивления заземления: Сопротивление заземления: методы измерения и периодичность

Содержание

Сопротивление заземления: методы измерения и периодичность

Основная цель измерения рабочих параметров защитного заземления – выявление соответствия их значений требованиям действующих нормативов (ПУЭ, в частности). Соблюдение этого условия является обязательной составляющей мероприятий по обеспечению безопасности эксплуатации электроустановок.

Изменение параметров заземлителей с течением времени

Потребность в том, чтобы периодически проверять сопротивление заземления, вызвана изменениями его реального значения с течением времени и в зависимости от климатических условий.

Последнее обстоятельство связано с их зависимостью от множества факторов, основными из которых являются:

  • Ухудшение контакта в зонах сопряжения металлических элементов из-за повышенной влажности.
  • Изменение состояния грунта в месте его обустройства в засушливые и знойные дни.
  • Старение (износ) металлоконструкций и подводящих проводников, которые согласно ГОСТ должны иметь определенную толщину.

Проверять сопротивления заземления можно любым допустимым нормативами способом с привлечением подходящих для этих целей измерительных приборов. Рассмотрим самые известные из этих методик более подробно.

Методы измерения параметров заземляющих устройств

Известно несколько способов, воспользовавшись которыми удается проверить наличие и померить сопротивление заземлителя с достаточно высокой точностью. Рассмотрим каждый из этих подходов более подробно.

Применение мультиметра

Вопрос о том, как измерить сопротивление заземления мультиметром, не совсем корректен. Сделать это удается лишь при наличии профессионального измерительного оборудования.

Процедура замера сопротивления заземления мультиметром обычно сводится к простейшей проверке подключения заземляющего контакта розетки к защитному контуру. Как это можно проверить посредством тестера и утюга, например, уже было рассмотрено в соответствующей статье. Таким образом, при рассмотрении вопроса измерения заземлений мультиметром под данной процедурой понимают проверку его наличия. Кроме того, этот прибор может пригодиться для выявления скрытых обрывов в цепях или пропадании контактов.

Метод амперметра-вольтметра

При применении этого метода проверки сопротивления заземления потребуется собрать цепочку, одной из составляющих которой станет проверяемое заземляющее устройство. В нее дополнительно включается специальный токовый электрод, называемый «вспомогательным».

Помимо этого в указанной схеме предусматривается еще один – потенциальный электрод (зонд), предназначенный для снятия показаний падения напряжения. Его необходимо установить примерно на равном удалении, как от токового электрода, так и от заземленной точки. Вследствие такого расположения он находится в зоне с практически нулевым потенциалом (фото ниже).

Метод амперметра-вольтметра для измерения сопротивления заземления

Согласно данной схеме замеры сопротивлений заземлений сводятся к снятию показаний напряжения и тока и к последующему вычислению искомой величины по закону Ома R=U/I . Подобный способ испытаний оптимально подходит для загородных и частных домов. Для получения требуемого тока в измерительной цепи можно воспользоваться любым подходящим по мощности трансформаторным устройством. Как вариант, подойдут некоторые модели сварочных агрегатов.

Использование специализированных приборов

Как уже отмечалось, измерять сопротивление заземления простым тестером не представляется возможным (показать реально, сколько Ом составляет сопротивление заземлителя, он не способен). Это относится и к рассмотренной выше схеме с зондом и токовым электродом. Для работы с ними должны использоваться специальные аналоговые приборы следующих типов:

  • Ф4103-М1
  • ИСЗ-2016
  • М-416 (измеритель многофункциональный)
  • ИС-10 (микропроцессорный измеритель)
  • ИС-20/1 (более усовершенствованный прибор)
  • MRU-101 (профессиональный прибор

Для примера можно проследить, как измеряется сопротивление заземления посредством прибора М-416. При работе с ним необходимо действовать по следующему плану:

  1. Сначала следует убедиться в том, что в отсеке прибора имеются элементы питания (3 штуки по 1,5 Вольта, в сумме дающие питающее напряжение 4,5 Вольта).
  2. Затем приготовленный к работе прибор нужно расположить строго горизонтально и прокалибровать его.
  3. Для этого следует установить ручку с указателем в положение «контроль» и, надежно удерживая в нажатом положении кнопку красного цвета, выставить стрелочный указатель на «ноль».

Измерения сопротивления защитного заземления этим прибором осуществляются по той же схеме с двумя электродами.

Схема подключения прибора М-416

После того, как колья вбиты в грунт – к ним подсоединяются провода согласно приведенной схеме (контакты прибора 1, 2, 3 и 4). Затем указатель приборного переключателя «Диапазон» устанавливается в «х1» (фото ниже).

Установка ручки прибора М-416 в положение х1

Потом следует нажать на контрольную кнопку и поворачивать ручку «Реохорд» до того момента, пока стрелка на индикаторе не покажет «ноль». Указанную на шкале реохорда цифру нужно умножить на выбранный диапазон, что и даст в результате измеренное значение.

Обратите внимание: В ситуации, когда показания прибора превышают 10 Ом, переключатель множителя (диапазон) следует установить на более высокое значение: «X5», «X20» или «X100», а затем повторить все описанные ранее операции. Величина сопротивления в этом случае определяется путем умножения показания «Реохорд» на новый масштаб.

Для проведения измерений этим методом могут применяться и более «продвинутые» цифровые приборы, отличающиеся простотой измерений и максимальной точностью. С их помощью можно не только снимать показания, но и сохранять данные измерений во внутренней памяти.

При проведении проверок посредством мегаомметра действовать необходимо согласно инструкции (она похожа на описанные выше процедуры для М-416). Однако перед тем как проверить сопротивление заземления мегаомметром, следует знать, что погрешность снятия показаний в этом случае будет намного выше. Данный факт объясняется заметным отличием исследуемых систем от привычного сопротивления изоляции. Этот прибор больше подходит для проверки сопротивления изоляции электросетей заземляемого оборудования, надежность которой также влияет на безопасность его эксплуатации.

При нарушениях изоляции может наблюдаться неприятный эффект, который объясняется тем, что сопротивление тела человека является достаточно большим для появления на нем опасного потенциала. При случайном прикосновении к оголенному проводнику через тело потечет ток, величина которого достаточна для того, чтобы нанести ему серьезную травму.

Измерение токовыми клещами

Особенность метода замера сопротивления заземления посредством типовых измерительных клещей состоит в следующем:

  • В этом случае отпадает необходимость в отключении заземляющего устройства от обслуживаемого оборудования.
  • Вспомогательные электроды в данной ситуации также не нужны.
  • Появляется возможность оперативно контролировать весь процесс снятия показаний.

Принцип измерения токовыми клещами следующий: протекающий по заземляющему проводнику или шине (являющимися в данном случае вторичной обмоткой) испытательный ток оценивается токовыми клещами по своей величине. После этого посредством вольтметра снимается показание действующего в цепи напряжения.

Для вычисления искомого сопротивления нужно будет разделить полученное значение напряжения в вольтах на измеренную посредством клещей величину тока в амперах.

Измерения переходного сопротивления

При измерении параметров контура заземления особое внимание уделяется так называемым «переходным» зонам, образующимся по всей площади непосредственных сочленений элементов конструкции (включая их контакт с почвой и сам грунт). Для этих участков вводится понятие «переходного сопротивления», в значительной мере влияющего на суммарное значение. Все рассмотренные выше методы измерения касались и этой части общего сопротивления системы (за исключения сопротивления материала заземляющих проводников и штырей).

По его величине можно судить о скорости стекания опасного заряда в землю, а также о тех препятствиях, которые встречаются на пути. В действующих системах эта составляющая вносит ощутимый вклад в формирование общего показателя для всего ЗК.

Как измерять переходное сопротивление

Перед тем как измерять заземление в переходных зонах потребуется приготовить специальный прибор, называемый миллиомметром. Для проведения этих испытаний сгодится любой другой прибор для измерения заземления из той же серии (иногда для этого используются универсальные аппараты М-416). Независимо от типа выбранного прибора для этих целей должна использоваться только сертифицированная измерительная техника, прошедшая государственную поверку. В противном случае проведенные на приборе измерения не будут считаться соответствующими действующим нормам и ГОСТам.

При проведении таких замеров прибор, выбранный в качестве измерительного устройства с заряженным питающим аккумулятором, подключается своими зажимными клеммами по обе стороны контролируемого соединения. Независимо от типа элементов контура переходное сопротивление между ними не должно превышать 0,05 Ома. Если проведенное таким методом измерение переходного сопротивления заземления дало неудовлетворительный результат – эксплуатацию установки прекращают до выявления причин и их устранения. Схема измерений переходной проводимости представлена на фото ниже.

Схема измерения переходного сопротивления

Перед тем как проверить контур заземления – необходимо ознакомиться с существующими методиками его расчета. В подавляющем большинстве случаев они сводятся к простейшим вычислениям по закону Ома (путем деления измеренного напряжения на снятые в соответствующей цепи токовые показания).

Дополнительная информация: Перед расчетом удельного сопротивления заземления важно учесть все звенья цепочки стекания аварийного тока, включая контактные зоны.

Полученный в итоге результат полностью характеризует конструкцию на ее соответствие нормируемым показателям.

Как часто замеряется

Сроки проверки заземления электроустановок устанавливаются согласно следующим требованиям нормативам:

  1. Визуальные осмотры – каждые полгода.
  2. Поверка качества соединений металлических элементов в их стыках – раз в год.

Возможны и внеплановые проверки переходного сопротивления заземлителя, которые проводятся обычно после реставрации контура, а также при внесении в его конструкцию серьезных коррективов. Испытания также могут проводиться и при сдаче вновь запускаемой системы заземления в эксплуатацию.

При организации очередных или внеочередных проверок необходимо руководствоваться общими положениями по расчету удельного сопротивления заземления.

Сопротивление повторного заземления

 является важнейшим элементом комплексной системы защиты от поражения электрическим током. Оно устанавливается на приемной стороне питающей линии при наличии в подводке в ней нулевого провода РЕ или РЕN.

Важно! Это требование справедливо для сетей, работающих по схеме ТN с глухо заземленной нейтралью.

Как правило, в качестве повторного заземления используются как естественные, так и искусственно созданные элементы. Однако сопротивление естественных заземлителей зависят от очень многих факторов (включая климатические условия), так что с течением времени оно постоянно меняет свое значение.

В связи с этим при обустройстве этого типа заземлений предпочтение отдается искусственно созданным системам, имеющим вполне конкретные показатели.

Повторное заземление коттеджа

Заземляющий провод такого устройства выводится от ЗК в сторону вводного щитка с установленной в ней главной заземляющей шиной (ГЗШ).

Необходимость в повторном заземлении своими руками монтируемом на стороне потребителя, объясняется следующими причинами:

  1. Его наличие исключает опасные ситуации, возникающие в питающей сети при обрыве нейтрального или заземляющего провода, идущего от силовой подстанции (фото выше).
  2. В данном случае оно может работать как самостоятельное заземление, обеспечивающее безопасные условия эксплуатации электроустановок на стороне потребителя.
  3. При нем в квартире или частном доме можно обустроить электропроводку с третьей (заземляющей) жилой.

Наличие повторного заземления специально оговаривается в ПУЭ, отдельные положения которых предписывают его обязательную установку и испытание.

Какая периодичность измерений

Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:

  • плановые обследования;
  • внеочередные проверки;
  • пусковые испытания.

Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34.22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:

  • После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
  • После аварийного разрушения и последующего восстановления ЗК.
  • По завершении ремонтных работ.

Периодичность их проведения по понятным причинам не регламентируются.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.

Протокол проверки сопротивлений заземлителей

Итоги

Подводя итог всему описанному в предыдущих главах, необходимо отметить следующие основные моменты:

  1. Систематические проверки заземляющих контуров позволяют убедиться в их полной работоспособности.
  2. При решении проблемы касающейся того, каким прибором следует снимать показания – предпочтение отдается специальным многофункциональным устройствам, обеспечивающим высокую точность измерений.
  3. В процессе их проведения важно придерживаться общепринятых методик определения точных значений измеряемых величин.
  4. С полной формулой определения суммарного сопротивления всей заземляющей конструкции можно ознакомиться в соответствующих разделах ПУЭ.

В дополнение к статье предлагаем для просмотра видео материалы, в которых показывают как измеряется сопротивление заземления с помощью различных многофункциональных приборов.

В заключительной части обзора отметим, что для более подробного ознакомления со всеми рассмотренными вопросами следует обратиться к многочисленным источникам, широко представленным в сети. Там же можно найти большое количество тематических подборок и видео обзоров, позволяющих узнать о том, как проверить и точно измерить сопротивление заземляющих конструкций самого различного типа и класса.

Измерение переходного сопротивления • Energy-Systems

Для чего нужно измерение переходного сопротивления?

При возникновении нештатной ситуации, связанной с коротким замыканием или иной формой повышения напряжения и создания чрезмерно мощного потенциала, необходимо осуществлять его максимально быстрый сброс за пределы установки – это производится с помощью контура заземления, присоединенного к специальному проводнику в грунте. Измерение переходного сопротивления дает понять, насколько быстро может передаваться избыточный заряд и какое противодействие он встретит на своем пути.

Проведение электроизмерений данного типа дает возможность определить, насколько велика вероятность поражения человека током или распространения возгорания при повышении температуры. При длительном отсутствии измерений показатели могут существенно ухудшаться, оказывая соответствующее воздействие на степень безопасности установки.

Как осуществляется замер переходного сопротивления заземления?

При реализации данного вида исследований применяется специальный прибор, представленный миллиомметром, либо же универсальное приспособление, которое позволяет получать сведения о самых разных показателях установок. В любом случае переходное сопротивление заземления должно замеряться с помощью сертифицированного средства, которое проходит регулярную государственную поверку. В противном случае по результатам работ выдача сертификата не производится – фактически они не признаются соответствующими нормативным актам.

Непосредственно замер выполняется максимально просто – прибор, в состав которого входит батарея или иной источник питания, соединяется своими контактами с различными сторонами соединения. Вне зависимости от типа подобного элемента контура заземления показатель должен составлять не более 0,05 Ом. Когда проводится техническое обслуживание и ремонт электрооборудования, обязательно оценивается качество организации контура заземления. Если измерение переходного сопротивления показывает неудовлетворительный результат, эксплуатация установки запрещается до тех пор, пока не будет устранен источник опасности. В базовом виде схема осуществления работ представлена на следующем рисунке:

Как часто замеряется переходное сопротивление заземления?

Подобные работы необходимо осуществлять одновременно с иными проверками данного защитного приспособления – в частности, каждые полгода – с визуальным осмотром, и каждый год – с комплексным анализом состояния установки, в ходе которого устанавливается качество соединения с проводником, расположенным в грунте.

Переходное сопротивление заземления может замеряться и без определенного графика – подобный вид работ используется при комплексной реконструкции системы, а также при внесении в нее определенных изменений, серьезно затрагивающих структуру. Также стоит отметить и тот факт, что данный показатель обязательно стоит получать перед выполнением иных процедур – как связанных с заземлением, так и относящихся к иным категориям.

Пример технического отчета

Назад

1из27

Вперед

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Измерение переходного сопротивления: проверка переходного сопротивления

Переходное сопротивление характеризует противодействие свободному прохождению электрического тока в месте его перехода из одной детали в другую и через заземлитель в грунт. Замер переходного сопротивления выполняется для проверки состояния заземляющего контура и контактов при испытаниях на механическую износостойкость и устойчивость к токам КЗ.

Такие измерения требуются для контактов сборных шин, токопроводов, ошиновки распределительных устройств закрытого и открытого типа, высоковольтных выключателей, короткозамыкателей, сварных швов, разъединителей и других элементов электрической цепи. В целом для диагностики контактов выполняется осмотр узлов, простукиваются сварные швы, и измеряется величина переходного сопротивления. Она является определяющей и отражает работоспособность всей системы.

 

Задачи замеров переходного сопротивления

Измерение переходного сопротивления контактов позволяет:

  • определить качество контактных соединений;
  • проверить целостность проводников и отсутствие повреждений на промежутке от исследуемого объекта до заземлителя;
  • проконтролировать состояние цепи между заземляемыми и заземляющими элементами;
  • определить величину напряжения на корпусе проверяемого электрооборудования, находящегося в рабочем состоянии;
  • выяснить вероятность поражения людей электрическим током, перегрева и возгорания оборудования.

Проверка переходного сопротивления заземления позволяет выяснить, насколько быстро возникший в нештатной ситуации избыточный заряд будет передан специальному проводнику в грунте, и какое противодействие возникнет на его пути. Эти замеры необходимы для того, чтобы обеспечить безопасность эксплуатации электроустановки даже в условиях КЗ и в других случаях повышения напряжения, когда мощный потенциал нужно быстро сбросить за пределы установки.

 

Особенности измерений переходного сопротивления

Такие замеры выполняются совместно с другими проверками контактов и контуров заземления, к примеру, каждые полгода при визуальном осмотре и ежегодно при комплексной проверке состояния электроустановки. Но качество соединения с находящимся в грунте проводником можно проверить и независимо от графика. В частности, переходное сопротивление заземления измеряется:

  • при комплексной реконструкции системы или изменении ее структуры;
  • перед выполнением других работ, связанных с заземлением;
  • после ремонта оборудования.

Для проведения замеров используются сертифицированные приборы, измеряющие малые сопротивления – прошедшие государственную поверку микроомметры или контактомеры. Предельно допустимая величина переходного сопротивления для контактного соединения защитного проводника – 0,05 Ом. Превышение этого значения отражает неисправность связей и требует незамедлительного устранения неполадок.

Заказывайте профессиональные услуги по обеспечению электробезопасности вашего объекта в ИЦ «ПрофЭнергия».

Наши преимущества

 

Лицензия РосТехНадзора №5742

Лицензируемая организация ООО Инженерный центр ”ПрофЭнергия” гарантирует точность, объективность и достоверность результатов.

 

Поверенные приборы и оборудование (СП №0889514)

Проверенные приборы и оборудование (СП №0889514): В нашей кампании используется только качественные приборы и оборудование.

 

Бесплатный выезд на объект и расчет сметы

Бесплатный выезд на объект и расчет сметы: Наши специалисты бесплатно приедут на объект и рассчитают стоимость.

 

На 25% выгоднее конкурентов

На 25% выгоднее конкурентов: У нас честные цены. А так же действуют индивидуальные скидки.

 

Кандидаты технических наук в штате

Кандидаты технических наук в штате: «ПрофЭнергия» имеет очень отлаженный коллектив квалифицированных инженеров с допусками ко всем видам проводимых работ.

Измерение переходного сопротивления в ПрофЭнергия

Мы осуществляем проверку переходного сопротивления заземления с дальнейшим обслуживанием.

Наши лицензии позволяют осуществлять все необходимые замеры и испытания, а благодарственные письма, подтверждают высокий уровень оказанных услуг.

Стоимость проверки переходного сопротивления

Для экономии времени наши специалисты могут бесплатно выехать на объект и оценить объем работ

Заказать бесплатную диагностику и расчет стоимости

Остались вопросы?

Для консультации по интересующим вопросам, или оформления заявки, свяжитесь с нами по телефону:

+7 (495) 181-50-34 

От 10 900р

От 14 500р

От 18 900р

От 19 800р

От 25 500р

От 45 500р

От 49 500р

От 59 900р

Измерение переходного сопротивления контактов, низкая цена.

Измерение переходного сопротивления контактов является вспомогательной процедурой, которая необходима для контроля и оценки текущего состояния проводки при испытаниях механическую износоустойчивость и на устойчивость к электрическим токам короткого замыкания. Для проведения данного мероприятия используются микроомметры или контактомеры, т.е. специальные приборы для замера малых сопротивлений. Точность полученных с их помощью результатов зависит от степени окисления исследуемых контактных деталей и температуры их нагрева.

Цели измерения

  • Установление и тщательная проверка целостности проводников, а также отсутствия на них повреждений на участке от оцениваемого объекта до заземляющего устройства.
  • Проверка состояния цепи между заземляемыми элементами и заземлителями.
  • Определение уровня напряжения на корпусе исследуемого оборудования, которое должно находиться в рабочем режиме.

Измерение переходного сопротивления контактов производится при определенном токе и напряжении. Данная процедура является наиболее объективным способом контроля качества контактных соединений, которые в процессе замеров осматриваются с помощью луп и измеряются штриховыми инструментами.

Методика проведения замеров

Измерение переходного сопротивления контактов подразумевает присоединение первого полюса измерительных приборов к заземлению оцениваемого аппарата, а второго – к заранее выбранной опорной точке. Состояние контактной поверхности оказывает большое влияние на точность полученных показателей. Для достижения максимальной устойчивости и долговечности соединения требуется выполнить его качественную зачистку и обработку, а также создать оптимальное давление.

Измерение переходного сопротивления контактов – сложное и ответственное мероприятие, но электролаборатория «Норма ЭЛ» имеет все необходимое для данной процедуры оборудование, а первоклассные специалисты компании гарантируют Вам максимальную точность и высокое качество итоговых результатов.

 

Оставьте заявку

Измерение сопротивления заземляющих устройств | Разработка и реализация энергосберегающих мероприятий

Данные измерения производятся с целью: проверки смонтированной системы заземляющих устройств на соблюдение требований существующих норм и правил в частности ПУЭ и ПТЭЭП; и проверки эксплуатируемой системы заземления на предмет ее качественного состояния, пригодности дальнейшего использования и способности обеспечить необходимую электробезопасность при эксплуатации.

Периодичность проверки заземляющего устройства

Замер сопротивления заземляющего устройства рекомендуется выполнять не реже, чем раз в шесть лет. При наличии подозрений на неисправности проверка проводится досрочно. Периодичность измерений также может измениться, если в здании проводился капитальный ремонт или реконструкция, в таком случае также необходимо замерить сопротивление опор, соединительных тросов и нулевого провода. Кроме того, все устройства необходимо раз в полгода осматривать на предмет повреждений. Измерение переходного сопротивления контактов контура заземления (металлосвязи) проводится не реже одного раза в год.

Условия и процесс проведения измерения сопротивления ЗУ

Чтобы обеспечить максимально точные результаты замеров, работы должны производиться при сухой погоде, когда высокое удельное сопротивление грунта. При измерении сопротивления заземления учитывается форма заземляющего устройства, состояние и вид почвы, погодные условия. При  сопротивления заземления учитывается форма заземляющего устройства, состояние и вид почвы, погодные условия.

Замер сопротивления заземляющих устройств выполняется при создании искусственной цепи, обеспечивающей протекание электротока через заземлитель, испытания которого проводятся. Происходит это так: токовый электрод, являющийся в данном случае вспомогательным заземлителем, размещают на небольшом расстоянии и подключают к источнику напряжения вместе с проверяемым заземлителем.

Для того, чтобы получить достоверные результаты, замер сопротивления заземления следует выполнять при наибольшем удельном сопротивлении грунта. Сопротивление устройства заземления определяют, умножив значение, полученное тогда, когда проводилось измерение защитного заземления, на определённые поправочные коэффициенты, которые учитывают состояние почвы, климат, конфигурацию конкретного устройства.

Измерения проводятся современными приборами, прошедшими поверку в специально аттестованной организации, с пометкой в паспорте и зарегистрированными в контролирующем органе.

Результаты измерений

По окончании работ результаты измерений заносятся в протокол проверки сопротивления изоляции заземляющего устройства, который подшивается к общему отчету.  В конце отчета вносятся данные о результатах проверки на соответствие требованиям современных нормативных актов.

Проверка соединений заземлителей с заземляемыми элементами

Заземляющие устройства электрических установок на производствах должны содержаться в исправном состоянии и соответствовать требованиям нормативных документов. Только в таком случае они могут обеспечивать должную безопасность трудящихся и защищать приборы, поддерживая нормальный режим работы.

Нарушение соединения заземлителя и заземляемыми элементами может повлечь перепад потенциалов между заземляемой электроустановкой и заземлителем, что повысит риск различных опасных ситуаций и возможное повреждение электрооборудования.

Безопасность труда всегда должна быть первостепенной ценностью предприятия и все части оборудования, которые следует заземлить должны иметь качественное контактное соединение с устройством заземления.

В ситуации, когда переходные сопротивления между корпусом установки и заземляющим проводником и заземляющим проводником и заземлителем достигают показателей, превышающих нормированные значения, или контакта с заземлением нет возникает опасная ситуация.

Человек, находящийся около такого прибора, при соприкосновении с ним сам становится проводником. Заряд, проходящий по его телу будет стекать в землю, а он получит удар током. Для исключения этого необходима проверка соединений заземлителей с заземляемыми элементами с измерением переходного сопротивления контактного соединения.

Как производят проверку соединений заземлителей с заземляемыми элементами?

Переходное сопротивление (металлосвязь)– величина, значения которой характеризуют наличие связи в цепи между заземляемым оборудованием и заземлителем. Для эффективного функционирования заземления значения переходного сопротивления не должны превышать 0,05 Ом.

Переходные сопротивления исследуются непосредственным измерением сопротивления между открытой проводящей частью прибора и ближайшей частью главного защитного проводника. Атмосферные условия, влияют на результаты измерений поэтому исследования должны проводится при показаниях температуры, давления и влажности близких к нормальным.

Перед началом измерений следует обеспечить их безопасность:

  • электроустановку нужно обесточить;
  • разместить рядом предупредительные плакаты;
  • сравнить параметры электроустановки с указанными в проектной документации;
  • проверить наличие и качество электрических соединений;
  • изучить сотояние защитного нулевого проводника на всем его протяжении.

Качество электрических соединений проверяется осмотром. Наличие цепи между заземлителями и заземлёнными элементами при сварных соединениях можно проверить простукиванием мест соединений молотком.

Осмотр, проводимый для выявления обрывов и различных дефектов следует проводить не реже раза в года (раза в три года). Его следует повторять после ремонта или перемещения электрооборудования а также после ремонта заземлителей.

Измерение переходных сопротивлений при исправном состоянии контактного соединения в нормальных условиях должно давать значения не более 0,05 Ом.

Проверка состояния цепей и контактных соединений между заземлителями и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством производится после каждого ремонта и реконструкции заземляющих устройств.

Оформление результатов испытаний

Результаты проведенных специалистами измерений оформляются в виде протокола проверки наличия цепи между заземленными установками и элементами заземленной установки.

В него вносятся сведения о местоположении, наименование, количестве проверенных элементов в электроприборе и максимальное значение металлосвязи. Если выявлено незаземленное оборудование или измеренная величина переходного сопротивления больше максимально допустимой, это также вносится в заключение протокола и дефектной ведомости.

Проверка соединений заземлителей с заземляемыми элементами с измерением переходного сопротивления контактного соединения следует проводить регулярно, как обязательную составляющую эксплуатационных электроизмерений. При этом важно не просто констатировать наличие цепи заземления, но и проверить величину переходного сопротивления. Только систематическое измерение переходных сопротивлений сделает возможным обнаружение дефектов и устранение их на ранней стадии.

Заказать измерения

Другие измерения

Замер металлосвязи, измерение переходного сопротивления

Замер металлосвязи


Под словом металлосвязь понимается величина, характеризующая связь в цепи между заземляющим устройством и заземляемым объектом. Дефекты металлосвязи, возникающие при коррозии, ошибках при проведении непрофессионального монтажа, разрывах и иных повреждениях, могут привести к короткому замыканию. А от этого, как известно, ничего хорошего ждать не стоит.


В связи с этим существует необходимость в замере металлосвязи, который производится специализированными электролабораториями. Измерения металлосвязи преследуют такие цели, как:


  • определение и основательная проверка целостности и отсутствия повреждений защитных проводников (металлические оболочки кабелей, металлические трубы и пр. ) на участке от исследуемого объекта до устройства заземления;

  • проверка наличия цепи между заземлителями и заземляемыми элементами;

  • определение напряжения на корпусе оборудования, находящегося в рабочем режиме.


Главный критерий качества металлосвязи — сопротивление измеряемого участка (максимально допустимое сопротивление — 0,05 Ом). Надёжность и правильность электрических соединений тщательно проверяется в ходе осмотра, а прочность сварочных соединений – измерением цепи после ударов тяжелого молотка.


Плановый замер металлосвязи осуществляется в соответствии с утвержденными Правилами Устройства Электроустановок, где помимо всего прочего оговаривается, тот факт, что проводники (защитные и системы уравнивания потенциалов) обязательно должны быть качественно соединены, тем самым обеспечивая непрерывность и целостность электрической цепи.


Проводники из стали должны соединяться при помощи сварки. Места соединений располагают так, чтобы обеспечить свободный доступ к ним для проведения дальнейших осмотров, испытаний и измерений. Исключением являются сварные, паяные и спрессованные соединения в обогревательных системах, находящихся в стенах, перекрытиях, полах, грунте.


В соответствии с ПУЭ присоединения к проводящим частям проводников выравнивания потенциалов и нулевых, заземляющих проводников также выполняются сваркой или болтовыми соединениями. Для присоединения электрического оборудования, которое подвергается вибрации или часто демонтируется, употребляются гибкие проводники.


Для того чтобы произвести измерение переходного сопротивления, применяется метод, предусматривающий присоединение первого полюса измерительного прибора к заземлению проверяемого аппарата, а второго полюса – к некоторой опорной точке. Между ними присоединяют источник тока.


Замер металлосвязи – ответственное и довольно сложное мероприятие. Но электролаборатория нашей компании имеет все необходимое для этой процедуры оборудование, а наши первоклассные специалисты гарантируют вам точность и высокое качество электроизмерений.

Принципы и методы проверки сопротивления заземления

12 августа 2014 г.,
Опубликовано в статьях: Вектор

Информация из Comtest

Плохое заземление способствует простоям, но отсутствие хорошего заземления также опасно и увеличивает риск отказа оборудования.

Со временем коррозионные почвы с высоким содержанием влаги и солей и высокими температурами могут разрушить заземляющие стержни и их соединения.Таким образом, хотя система заземления имела низкие значения сопротивления заземления при первоначальной установке, сопротивление системы заземления может увеличиваться, если заземляющие стержни корродируют.

Тестеры заземления

— незаменимые инструменты для поиска и устранения неисправностей, помогающие поддерживать время безотказной работы. Рекомендуется проверять все заземления и заземляющие соединения не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания. Если во время этих периодических проверок будет измерено увеличение сопротивления более чем на 20%, техник должен исследовать источник проблемы и внести коррекцию, чтобы снизить сопротивление, заменив или добавив заземляющие стержни в систему заземления.

Что такое земля?

Статья 100 Национального электротехнического кодекса США (NEC) определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или с некоторым проводящим телом, которое служит вместо земли».

Заземление фактически включает в себя два разных предмета: заземление и заземление оборудования. Заземление — это намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.Заземление оборудования обеспечивает правильное заземление работающего оборудования внутри конструкции.

Эти две системы заземления должны быть разделены, за исключением соединений между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления — обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Национальное агентство противопожарной защиты США (NFPA) и Институт инженеров по электротехнике и электронике (IEEE) рекомендуют значение сопротивления заземления 5 или меньше.Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Что влияет на сопротивление заземления?

На сопротивление заземления системы заземления влияют четыре переменных: длина или глубина заземляющего электрода; диаметр заземляющего электрода; количество заземляющих электродов и конструкция системы заземления.

Длина / глубина заземляющего электрода

Установка заземляющих электродов глубже — очень эффективный способ снизить сопротивление заземления.Почва непостоянна по своему удельному сопротивлению и может быть непредсказуемой. Уровень сопротивления обычно можно снизить еще на 40%, удвоив длину заземляющего электрода. Иногда невозможно загнать заземляющие стержни глубже — например, в области, состоящие из скальных пород. В этих случаях жизнеспособны альтернативные методы, включая цементное заземление.

Диаметр заземляющего электрода

Увеличение диаметра заземляющего электрода очень мало влияет на снижение сопротивления.Например, вы можете удвоить диаметр заземляющего электрода, и ваше сопротивление уменьшится только на 10%.

Количество заземляющих электродов

Использование нескольких заземляющих электродов — еще один способ снизить сопротивление заземления. Более одного электрода вбивают в землю и подключают параллельно, чтобы снизить сопротивление. Чтобы дополнительные электроды были эффективными, расстояние между дополнительными стержнями должно быть как минимум равным глубине ведомого стержня.

Сферы влияния заземляющих электродов будут пересекаться, и сопротивление не будет уменьшено без надлежащего расстояния.В таблице 1 представлены различные сопротивления заземления, которые можно использовать в качестве практического правила.

Таблица 1: Сопротивление заземления для практического использования.

Тип почвы

Удельное сопротивление грунта R E

Сопротивление заземления

Глубина заземляющего электрода (метр)

Заземляющая полоса (метр)

Ом · м

3

6

10

5

10

20

Очень влажная почва,
болотистая

30

10

5

3

12

6

3

Сельскохозяйственные почвы суглинистые
и глинистые почвы

100

33

17

10

40

20

10

Грунт песчано-глинистый

150

50

25

15

60

30

15

Влажная песчаная почва

300

66

33

20

80

40

20

Бетон 1: 5

400

160

80

40

Влажный гравий

500

160

80

48

200

100

50

Сухая песчаная почва

1000

330

165

100

400

200

100

Сухой гравий

1000

330

165

100

400

200

100

Каменистая почва

30 000

1000

500

300

1200

600

300

Скала

107

Проектирование наземной системы

Простые системы заземления состоят из одного заземляющего электрода, вбитого в землю.Использование одного заземляющего электрода является наиболее распространенной формой заземления. Сложные системы заземления состоят из нескольких заземляющих стержней, связанных, ячеистых или сетевых сетей, пластин заземления и контуров заземления.

Эти системы обычно устанавливаются на электростанциях, в центральных офисах и на вышках сотовой связи. Сложные сети значительно увеличивают контакт с окружающей землей и снижают сопротивление земли.

Измерение удельного сопротивления грунта

Удельное сопротивление почвы необходимо при определении конструкции системы заземления для новых установок (применение с нуля) для удовлетворения ваших требований к сопротивлению заземления.В идеале вы должны найти место с минимально возможным сопротивлением. Плохие почвенные условия можно преодолеть с помощью более сложных систем заземления. Состав почвы, влажность и температура — все это влияет на удельное сопротивление почвы. Почва редко бывает однородной, и ее удельное сопротивление будет варьироваться географически и на разных глубинах. Влагосодержание меняется в зависимости от сезона, в зависимости от характера подслоев земли и глубины постоянного уровня грунтовых вод. Рекомендуется размещать заземляющие стержни как можно глубже в земле, поскольку почва и вода обычно более устойчивы на более глубоких пластах.

Расчет удельного сопротивления грунта

В описанной здесь методике измерения используется метод Веннера и формула:

ρ = 2 π A R

где:

ρ = среднее удельное сопротивление грунта на глубине A в: Ом-см.

π = 3,1416.

A = расстояние между электродами в см.

R = измеренное значение сопротивления в Ом на измерительном приборе.

Измерение сопротивления почвы

Для проверки удельного сопротивления грунта подключите тестер заземления, как показано на рис. 1. Четыре стержня заземления расположены в грунте по прямой линии на равном расстоянии друг от друга. Расстояние между земляными кольями должно быть не менее чем в три раза больше, чем глубина столбов. Тестер заземления Fluke1625 генерирует известный ток через два внешних стержня заземления, а падение потенциала измеряется между двумя внутренними стержнями заземления.Тестер автоматически рассчитывает сопротивление почвы по закону Ома ( В = IR ).

Рис. 1: Пути тока испытания в бесстоечном методе.

Дополнительные измерения, когда оси кола повернуты на 90 °, всегда рекомендуются, потому что результаты измерений часто искажаются и недействительны из-за подземного металла, подземных водоносных горизонтов и т. Д.

Производится профиль, который может определять подходящую систему сопротивления заземления, изменяя глубину и расстояние несколько раз.Измерения удельного сопротивления почвы часто искажаются из-за наличия токов заземления и их гармоник.

Измерение падения потенциала

Метод испытания падения потенциала используется для измерения способности системы заземления или отдельного электрода рассеивать энергию от объекта. Требуемый заземляющий электрод должен быть отключен. Затем тестер подключается к заземляющему электроду. Затем два заземляющих стержня помещаются в почву на прямой линии — вдали от заземляющего электрода для проверки 3-полюсного падения потенциала.Обычно достаточно расстояния 20 м.

Размещение ставок

Важно, чтобы зонд был размещен вне сферы влияния тестируемого заземляющего электрода и вспомогательного заземления для достижения наивысшей степени точности при выполнении трехполюсного испытания сопротивления заземления, иначе эффективные области сопротивления будут перекрываться и недействительны. любые замеры.

Таблица 2 представляет собой руководство по настройке датчика (внутренний стержень) и вспомогательного заземления (внешний стержень).Переместите внутренний стержень (зонд) на 1 м в любом направлении и проведите новое измерение, чтобы проверить точность результатов и убедиться, что стержни земли находятся вне сфер воздействия. Если есть значительное изменение показаний (30%), вам следует увеличить расстояние между тестируемым стержнем заземления, внутренним стержнем (зондом) и внешним стержнем (вспомогательным заземлением) до тех пор, пока измеренные значения не останутся достаточно постоянными при изменении положения внутренний кол (зонд).

Измерение без ставок

Тестер заземления Fluke 1625 может измерять сопротивление контура заземления для многозаземленных систем, используя только токовые клещи.Этот метод тестирования исключает опасный этап отключения параллельных заземлений, а также процесс поиска подходящих мест для дополнительных заземляющих стержней.

Вы также можете выполнять наземные испытания в местах, о которых вы раньше не думали: внутри зданий, на опорах электропередач или в любом месте, где нет доступа к грунту.

В этом методе тестирования два зажима помещаются вокруг стержня заземления или соединительного кабеля, и каждый из них подключается к тестеру (см. Рис. 2).Земляные колья вообще не используются. Известное напряжение индуцируется одним зажимом, а ток измеряется вторым зажимом. Тестер автоматически определяет сопротивление контура заземления на этом стержне заземления. Если есть только один путь к заземлению, метод бесстойки не даст приемлемого значения, и необходимо использовать метод проверки падения потенциала. Тестер заземления работает по принципу, что в параллельных / многозаземленных системах сеть сопротивление всех путей заземления будет чрезвычайно низким по сравнению с любым одиночным трактом (тестируемым).Таким образом, полное сопротивление всех сопротивлений параллельного обратного пути фактически равно нулю. Бесстоечное измерение измеряет только сопротивление отдельных заземляющих стержней параллельно системам заземления. Если система заземления не параллельна земле, вы либо будете иметь разомкнутую цепь, либо будете измерять сопротивление контура заземления.

Рис. 2: Настройка для бесстержневого метода.

Измерения сопротивления заземления

При попытке рассчитать возможные токи короткого замыкания на электростанциях и в других ситуациях, связанных с высоким напряжением / током, важно определить комплексное полное сопротивление заземления, поскольку полное сопротивление будет состоять из индуктивных и емкостных элементов.Поскольку в большинстве случаев индуктивность и удельное сопротивление известны, фактическое сопротивление можно определить с помощью сложных вычислений.

Поскольку импеданс зависит от частоты, Fluke 1625 использует сигнал 55 Гц для этого расчета, чтобы максимально приблизить его к рабочей частоте напряжения. Это гарантирует, что измерение будет близко к значению на истинной рабочей частоте. Специалисты по электроснабжению, проводящие испытания высоковольтных линий электропередачи, интересуются двумя вещами: сопротивлением заземления в случае удара молнии и полным сопротивлением всей системы в случае короткого замыкания в определенной точке линии.Короткое замыкание в данном случае означает, что активный провод вырывается и касается металлической сетки башни.

В центральных офисах

При проведении аудита заземления центрального офиса требуются три различных измерения.

Перед тестированием найдите главную шину заземления (MGB) в центральном офисе, чтобы определить тип системы заземления. MGB будет иметь заземляющие провода, подключенные к многозаземленной нейтрали (MGN) или входящей сети, полю заземления, водопроводной трубе и конструкционной или строительной стали (см.Рис.3).

Рис. 3: План типичного центрального офиса.

Во-первых, проведите бесстоечный тест на всех отдельных основаниях, исходящих от MGB (см. Рис. 4). Цель состоит в том, чтобы убедиться, что все заземления подключены, особенно MGN. Важно отметить, что вы измеряете не индивидуальное сопротивление, а сопротивление контура того, что вы зажимаете. Подключите тестер заземления, а также индукционные и чувствительные зажимы, которые размещены вокруг каждого соединения для измерения сопротивления контура MGN, поля заземления, водопровода и строительной стали.Во-вторых, выполните 3-полюсное испытание падения потенциала всей системы заземления, подключенной к MGB (см. Рис. 5). Чтобы добраться до удаленной земли, многие телефонные компании используют неиспользуемые кабельные пары, выходящие на расстояние до мили. Запишите измерение и повторяйте этот тест не реже одного раза в год.

Рис. 4: Безэкранное тестирование центрального офиса.

В-третьих, измерьте отдельные сопротивления системы заземления с помощью выборочного теста тестера заземления (см. Рис. 6). Подключаем тестер.Измерьте сопротивление МГН; значение — это сопротивление этой конкретной ветви МГБ. Затем измерьте поле земли. Это показание представляет собой фактическое значение сопротивления заземляющего поля центрального офиса.

Рис. 5: Выполните 3-полюсное испытание падения потенциала всей системы заземления.

Теперь перейдите к водопроводной трубе и повторите процедуру для сопротивления строительной стали. Вы можете легко проверить точность этих измерений с помощью закона Ома. Сопротивление отдельных ветвей при расчете должно равняться сопротивлению всей данной системы (допускать разумную ошибку, поскольку все элементы заземления не могут быть измерены).

Рис. 6: Измерьте отдельные сопротивления системы заземления с помощью выборочного теста.

Эти методы испытаний обеспечивают наиболее точное измерение центральных офисов, поскольку они дают вам индивидуальные сопротивления и их фактическое поведение в системе заземления. Хотя измерения точны, они не покажут, как система ведет себя как сеть, потому что в случае удара молнии или тока короткого замыкания все подключено.

Дополнительные испытания

Сначала выполните 3-полюсный тест на падение потенциала на каждой ножке MGB и запишите каждое измерение.Снова используя закон Ома, эти измерения должны быть равны сопротивлению всей системы. Из расчетов вы увидите, что ваша общая стоимость составляет от 20 до 30% от общей стоимости R E .

Таблица 2: Руководство по установке внутренних и внешних стоек.

Глубина заземляющего электрода

Расстояние до внутренней стойки

Расстояние до внешней стойки

2 месяца

15 метров

25 кв.м

3 м

20 метров

30 кв.м.

6 месяцев

25 кв.м

40 кв.м

10 метров

30 кв.м.

50 кв.м

Наконец, измерьте сопротивление различных ветвей MGB с помощью селективного бесштыревого метода.Он работает как метод без стоек, но отличается тем, как мы используем два отдельных зажима. Мы размещаем зажим индуцирующего напряжения вокруг кабеля, идущего к MGB, и, поскольку MGB подключен к входящей мощности, которая параллельна системе заземления, мы выполнили это требование.

Поместите измерительный зажим вокруг кабеля заземления, ведущего к полю заземления. Когда мы измеряем сопротивление, это фактическое сопротивление поля земли плюс параллельный путь MGB.Поскольку сопротивление должно быть очень низким, оно не должно реально влиять на измеряемые показания. Этот процесс можно повторить для других опор заземляющего стержня, таких как водопроводная труба или конструкционная сталь. Чтобы измерить MGB бесстержневым селективным методом, поместите зажим индуцирующего напряжения вокруг линии к водопроводной трубе (так как медная водопроводная труба должна иметь очень низкое сопротивление), и ваше показание будет сопротивлением только для MGN.

Свяжитесь с Герритом Барнардом, Comtest, тел. 011 608-8520, gbarnard @ comtest.co.za

Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт нового строительства на ГЭС, без Eskom
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • Измерение сопротивления заземления | Fluke

    В центральных офисах

    При проведении аудита заземления центрального офиса требуются три различных измерения.

    Перед тестированием найдите MGB (главную шину заземления) в центральном офисе, чтобы определить тип существующей системы заземления. Как показано на этой странице, MGB будет иметь заземляющие провода, подключаемые к:

    • MGN (многозаземленная нейтраль) или входящей сети, заземляющему полю
    • , водопроводу
    • и
    • конструкционной или строительной стали

    Во-первых, проведите тест без ставок на всех отдельных основаниях, исходящих из MGB. Цель состоит в том, чтобы убедиться, что все заземления подключены, особенно MGN.Важно отметить, что вы измеряете не отдельное сопротивление, а сопротивление контура того, что вы зажимаете. Как показано на Рисунке 1, подключите Fluke 1625 или 1623, а также индукционные и чувствительные зажимы, которые размещены вокруг каждого соединения для измерения сопротивления контура MGN, поля заземления, водопровода и строительной стали.

    Во-вторых, выполните 3-полюсное испытание падения потенциала всей системы заземления, подключенной к MGB, как показано на Рисунке 2.Чтобы добраться до удаленной земли, многие телефонные компании используют неиспользуемые кабельные пары, выходящие на расстояние до мили. Запишите измерение и повторяйте этот тест не реже одного раза в год.

    В-третьих, измерьте отдельные сопротивления системы заземления с помощью выборочного теста Fluke 1625 или 1623. Подключите тестер Fluke, как показано на рисунке 3. Измерьте сопротивление MGN; значение — это сопротивление этой конкретной ветви МГБ. Затем измерьте поле земли. Это показание представляет собой фактическое значение сопротивления заземляющего поля центрального офиса.Теперь переходите к водопроводной трубе, а затем повторите для сопротивления строительной стали. Вы можете легко проверить точность этих измерений с помощью закона Ома. Сопротивление отдельных ветвей при расчете должно равняться сопротивлению всей данной системы (допускать разумную ошибку, поскольку все элементы заземления не могут быть измерены).

    Эти методы тестирования обеспечивают наиболее точное измерение центрального офиса, поскольку они дают вам индивидуальные сопротивления и их фактическое поведение в системе заземления.Хотя измерения точны, они не покажут, как система ведет себя как сеть, потому что в случае удара молнии или тока короткого замыкания все подключено.

    Чтобы доказать это, вам необходимо выполнить несколько дополнительных испытаний отдельных сопротивлений.

    Сначала выполните 3-полюсный тест на падение потенциала на каждой ножке от MGB и запишите каждое измерение. Снова используя закон Ома, эти измерения должны быть равны сопротивлению всей системы. Из расчетов вы увидите, что вы получили от 20% до 30% от общего значения RE.

    Наконец, измерьте сопротивление различных ветвей MGB с помощью селективного бесштыревого метода. Он работает как метод без стоек, но отличается тем, как мы используем два отдельных зажима. Мы размещаем зажим индуцирующего напряжения вокруг кабеля, идущего к MGB, и, поскольку MGB подключен к входящей мощности, которая параллельна системе заземления, мы выполнили это требование. Возьмите чувствительный зажим и поместите его вокруг кабеля заземления, ведущего к полю заземления.Когда мы измеряем сопротивление, это фактическое сопротивление поля земли плюс параллельный путь MGB. И поскольку оно должно быть очень низким с омическим сопротивлением, оно не должно реально влиять на измеряемые показания. Этот процесс можно повторить для других опор заземляющего стержня, т. Е. Водопроводной трубы и конструкционной стали.

    Чтобы измерить MGB бесстержневым селективным методом, поместите зажим индуцирующего напряжения вокруг линии к водопроводной трубе (так как медная водопроводная труба должна иметь очень низкое сопротивление), и ваше показание будет сопротивлением только для MGN.

    Кто заботится о 25 Ом или меньше?

    Узнайте, почему правило Национального электротехнического кодекса «25 Ом или меньше» может иметь меньшее отношение к качеству электроэнергии, чем вы думаете.

    Почти все электрики и электротехники знакомы с требованиями Национального электротехнического кодекса в гл. 250-54, что требует, чтобы сопротивление заземления одноразового электрода (например, заземляющего стержня) составляло 25 Ом или меньше. К сожалению, похоже, что многие специалисты-электрики на самом деле не тестируют систему заземляющих электродов (GES), чтобы убедиться, что они соответствуют этому требованию.Еще меньше из вас считают, что проверка системы заземления стоит того. С точки зрения качества электроэнергии, возможно, вы правы.

    А ГЭС предоставляет:

    • Эталон нулевого напряжения для поставляемых или производных систем электроснабжения.

    • Путь для рассеивания тока молнии или короткого замыкания (для систем с более высоким напряжением).

    • Путь для рассеивания электростатических токов.

    GES состоит из двух компонентов: проводника заземляющего электрода (GEC) и заземляющего электрода.

    Вы можете выбрать GEC без покрытия или с изоляцией (размер по Таблице 250-66) из меди или алюминия. GEC подключает заземляющий электрод к проводнику заземленной цепи, проводнику заземления оборудования или к тому и другому на основном сервисном оборудовании или источнике отдельно производной системы.

    Наиболее распространенные типы заземляющих электродов (обозначены в разделах 250-50 и 250-52):

    • Конструкционная сталь
    • Металлическая труба подземного водоснабжения
    • Кольцо заземления
    • Стержни заземления

    Как тестировать. Вы должны измерить сопротивление электрода по отношению к окружающей почве на участке. Вы можете сделать это только с помощью метода падения потенциала с помощью трехконтактного тестера сопротивления заземления. Чтобы правильно проверить сопротивление GES, вы должны соблюдать несколько простых правил:

    1. Отсоедините проверяемый электрод от остальной электрической системы. Учитывая это, практически невозможно проверить систему заземляющих электродов.

    2.Не используйте измеритель, который вводит постоянный ток в заземляющий стержень. Не используйте стандартные ВОМ.

    3. Не выполняйте тестовые измерения, если ток на GES превышает 5А.

    Вопреки распространенному мнению, клещи для измерения сопротивления заземления могут быть неточными в полевых условиях. Для этих тестеров требуется контур обратной связи с низким сопротивлением и достаточным расстоянием между системами электродов для получения достоверных показаний. Многие люди часто добавляют высокое сопротивление (вызванное неплотным соединением в контуре обратной связи) к отображаемому значению измерителя.Кроме того, недостаточное расстояние между электродами приводит к тому, что измеритель проводит только сравнительный тест на соединение, что почти всегда приводит к низкому значению сопротивления.

    Зачем мне нужно достигать 25 Ом? Наиболее достоверный ответ на этот вопрос: 25 Ом — разумное значение, к которому следует стремиться, учитывая среднее удельное сопротивление почвы для большинства регионов США. Однако имейте в виду, что 25 Ом не является обязательным требованием при установке нескольких электродов. Это требование только для единичных электродов, за сек.250-56. Если вы управляете первым стержнем и получаете показание сопротивления более 25 Ом, NEC позволяет вам отвести дополнительный стержень на 6 футов от первого стержня.

    Скажем, например, вы вбиваете заземляющий стержень в почву, но вместо того, чтобы проверить этот стержень, чтобы увидеть, соответствует ли он критериям сопротивления 25 Ом, вы запускаете второй. Когда два стержня соединятся вместе, считайте, что GES завершен. Но если вы не проводите измерения, как узнать, соответствует ли ваша установка Кодексу?

    Проверка реальности. В большинстве коммерческих и промышленных низковольтных энергосистем технические специалисты не проводят испытания сопротивления заземления. Но это не должно вас удивлять. Неофициальный опрос 50 электриков показал, что только четыре из них проводили испытания заземления в прошлом. Причины, по которым тестирование не проводилось, были:

    • Тестеры были слишком дорогими.
    • Тест был слишком запутанным и занял слишком много времени.
    • Достаточно двух стержней (наиболее частая реакция).

    Влияние качества электроэнергии. Вы не поверите, но почти все электронное оборудование будет работать должным образом без использования GES с низким сопротивлением. Исследования качества электроэнергии на объекте показали, что в ситуациях, когда сопротивление заземляющего электрода составляет от 5 Ом до 105 Ом, оно не влияет на оборудование. Однако вы можете связать большинство проблем с некачественным подключением в системе заземления оборудования. Следовательно, вам следует уделять меньше внимания измерению GES и больше — импедансу системы заземления оборудования и проверке низкоомных соединений между плоскостями заземления.

    Какой урок здесь? Тратьте меньше времени на тестирование и аттестацию сопротивления GES и больше времени на проверку соединения между точками и импеданса заземляющего проводника оборудования.

    Измерение сопротивления заземления | SpringerLink

    Глава

    Первый онлайн:

    Часть
    Энергетические системы
    книжная серия (POWSYS)

    Abstract

    Значение сопротивления заземления является очень важным фактором, который необходимо учитывать для надежной работы электроприборов в домашних, промышленных и коммерческих зданиях.Сопротивление заземления по существу обеспечивает три важные характеристики, а именно (i) опорный нулевой потенциал для электрической системы, (ii) путь с низким сопротивлением для защиты электроприборов от электрических неисправностей и (iii) защиту электрооборудования от статического электричества и персонала от сенсорный потенциал. Стандартное значение сопротивления заземления должно быть ниже 1 Ом для жилого помещения, 5 Ом для телефонной системы и 10 Ом для подстанции. Однако получить эти значения сопротивления грунта сложно из-за различных свойств окружающей почвы.Генератор, трансформатор и другое высоковольтное оборудование обычно заземляют с помощью заземляющей сети. В то время как в линиях электропередачи каждая опора башни также заземлена стержнями с вертикальным приводом. В этой главе будут обсуждаться типы и размер заземляющего электрода, а также различные методы измерения сопротивления заземления.

    Ключевые слова

    Расстояние разнесения датчика тока Водопровод Шаг потенциальный равнобедренный треугольник

    Эти ключевые слова были добавлены машиной, а не авторами.Это экспериментальный процесс, и ключевые слова могут обновляться по мере улучшения алгоритма обучения.

    Это предварительный просмотр содержимого подписки,

    войдите в

    , чтобы проверить доступ.

    Ссылки

    1. 1.

      Руководство пользователя Fluke,

      Зажим заземления-1630

      . Дополнение, выпуск 4, октябрь 2006 г.

      Google Scholar

    2. 2.

      G.F. Tagg,

      Earth Resistances

      , 1st edn. (George Newnes Limited, Лондон, 1964)

      Google Scholar

    3. 3.

      М.А.Салам, М. Шахидулла, Новый подход к измерению сопротивления заземления цифровой телефонной станции. Int. J. Comput. Электр. Англ.

      30

      (2), 119–128 (2004)

      Google Scholar

    4. 4.

      M.A. Salam, S.M. Аль-Алави, А. Макраши, Подход с использованием искусственных нейронных сетей для моделирования и прогнозирования взаимосвязи между сопротивлением заземления и длиной заглубленного в землю электрода. J. Electrostat.

      64

      (5), 338–342 (2006)

      Google Scholar

    5. 5.

      М.А.Салам, Измерение сопротивления заземления с помощью стержней с вертикальным приводом вблизи жилых районов. Int. J. Power Energy Convers.

      4

      (3), 238–250 (2013)

      Google Scholar

    Информация об авторских правах

    © Springer Science + Business Media Сингапур 2016

    Авторы и аффилированные лица

    1. 1.Universiti Teknologi BruneiBandanr Seri
    2. 2.Университет Западного Онтарио, Лондон, Канада

    Наиболее распространенные методы измерения сопротивления заземляющего электрода

    Сопротивление заземляющего электрода

    Когда система заземляющих электродов спроектирована и установлена, обычно необходимо измерить и проверьте сопротивление заземления между электродом и «истинной землей».Наиболее часто используемый метод измерения сопротивления заземляющего электрода — это трехточечный метод измерения, показанный на рисунке 1.

    Наиболее распространенные методы измерения сопротивления заземляющего электрода

    Этот метод основан на четырехточечном методе. , который используется для измерения удельного сопротивления грунта.

    Трехточечный метод, называемый методом «падения потенциала» , включает в себя заземляющий электрод, который необходимо измерить, и два других электрически независимых испытательных электрода, обычно обозначенных P (потенциал) и C (ток).Эти испытательные электроды могут быть более низкого «качества» (более высокое сопротивление заземления), но должны быть электрически независимыми от измеряемого электрода.

    Рисунок 1. Трехточечный метод измерения сопротивления заземления

    Переменный ток (I) пропускается через внешний электрод C, а напряжение измеряется с помощью внутреннего электрода P в некоторой промежуточной точке между ними.

    Сопротивление земли рассчитывается просто по закону Ома: Rg = V / I.

    Другие более сложные методы, такие как метод уклона или четырехполюсный метод, были разработаны для решения конкретных проблем, связанных с этой более простой процедурой, в основном для измерения сопротивления больших систем заземления или в местах, где есть место для размещения тестовые электроды ограничены.

    Независимо от используемого метода измерения, следует помнить, что измерение сопротивления заземления — это столько же искусство, сколько и наука , и на измерения сопротивления могут влиять многие параметры, некоторые из которых трудно определить количественно. . Таким образом, лучше взять несколько отдельных показаний и усреднить их, чем полагаться на результаты одного измерения.

    При выполнении измерения цель состоит в том, чтобы расположить вспомогательный испытательный электрод C достаточно далеко от тестируемого заземляющего электрода, чтобы вспомогательный испытательный электрод P находился за пределами эффективных областей сопротивления как системы заземления, так и другого испытательного электрода. (см. рисунок 2).

    Рисунок 2 — Области сопротивления и изменение измеренного сопротивления в зависимости от положения электрода напряжения

    • Если текущий испытательный электрод, C, расположен слишком близко к , области сопротивления будут перекрываться, и будет резкое изменение измеренного сопротивления, так как электрод проверки напряжения перемещается.
    • Если токовый испытательный электрод расположен правильно , то где-то между ним и системой заземления будет «плоская» (или почти такая) область сопротивления, и изменения в положении испытательного электрода напряжения будут очень незначительные изменения в цифре сопротивления.

    Прибор подключается к тестируемой системе заземления с помощью короткого тестового кабеля, и выполняется измерение.

    На точность измерения может влиять близость других металлических предметов, находящихся под землей, к вспомогательным испытательным электродам . Такие объекты, как заборы и строительные конструкции, заглубленные металлические трубы или даже другие системы заземления, могут мешать измерениям и вносить ошибки.

    Часто трудно судить, просто визуально осмотрев место, подходящее место для испытательных столбов , и поэтому всегда рекомендуется выполнять более одного измерения, чтобы гарантировать точность теста .

    Метод падения потенциала

    Это один из наиболее распространенных методов измерения сопротивления заземления, который лучше всего подходит для небольших систем , которые не покрывают большую площадь . Он прост в исполнении и требует минимальных вычислений для получения результата.

    Измерение сопротивления заземления методом падения потенциала (фото: eblogbd.com)

    Этот метод обычно не подходит для больших заземляющих установок , поскольку расстояние между стойками, необходимое для точного измерения, может быть чрезмерным, что требует использования очень длинные измерительные провода (см. Таблицу 1).

    Обычно внешний испытательный электрод или токовый испытательный стержень вбивается в землю на расстоянии 30-50 метров от системы заземления (хотя это расстояние будет зависеть от размера тестируемой системы — см. Таблицу 1) и Затем внутренний электрод или стержень для проверки напряжения вбивается в землю на полпути между электродом заземления и стержнем для проверки тока и по прямой линии между ними.

    Таблица 1 — Изменение расстояния между электродами тока и напряжения при максимальных размерах системы заземления, в метрах

    9458

    Максимальный размер в системе заземления Расстояние от «электрического центра»
    системы заземления до испытательного стержня напряжения
    Минимальное расстояние от
    «электрического центра» системы заземления
    до текущего испытательного стержня
    1 15 30
    2 20 40
    5 30 60
    10 43 85
    20 60 120
    50 100 200
    100 140 280

    Осень of Potential Method включает проверку, чтобы убедиться, что испытательных электродов действительно расположены далеко достаточно далеко, чтобы получить правильное значение .Желательно, чтобы эта проверка была проведена, так как это действительно единственный способ гарантировать правильный результат.

    Для проверки значения сопротивления необходимо провести два дополнительных измерения:

    1. Первое с испытательным электродом напряжения (P) отодвинуло 10% исходного напряжения системы электрод-земля от ее исходное положение и
    2. Второй с ним переместился на 10% ближе, чем его исходное положение, как показано на рисунке 3.

    Рисунок 3 — Проверка достоверности измерения сопротивления

    Если эти два дополнительных измерения согласуются с исходным измерением в пределах требуемого уровня точности, то испытательные стержни были правильно расположены и значение сопротивления постоянному току может быть получено путем усреднение трех результатов.

    Тем не менее, , если есть существенные расхождения между любыми из этих результатов , то вполне вероятно, что ставки были размещены неправильно, либо из-за того, что они были слишком близко к тестируемой системе земли, слишком близко друг к другу или слишком близко другие структуры, мешающие получению результатов.

    Столбы следует переставить на большем расстоянии или в другом направлении и повторить три измерения. Этот процесс следует повторять до получения удовлетворительного результата.

    Метод 62%

    Метод падения потенциала можно слегка адаптировать для использования с системами заземления среднего размера. Эту адаптацию часто называют методом 62%, , поскольку он включает размещение внутреннего испытательного стержня на 62% расстояния между заземляющим электродом и внешним стержнем (напомним, что в методе падения потенциала эта цифра была 50%).

    Все остальные требования к размещению тестовых столбов — они должны быть на прямой линии и располагаться вдали от других конструкций — остаются в силе.

    При использовании этого метода также рекомендуется повторить измерения с внутренним испытательным стержнем, перемещенным на ± 10% расстояния между заземляющим электродом и внутренним испытательным стержнем, как и раньше.

    Основным недостатком этого метода является то, что теория, на которой он основан, основывается на предположении, что подстилающая почва однородна, что на практике случается редко.Таким образом, следует соблюдать осторожность при его использовании и всегда проводить исследование удельного сопротивления почвы.

    В качестве альтернативы следует использовать один из других методов.

    Другие методы испытаний

    Существует множество других методов измерения сопротивления заземления. Многие из этих методов были разработаны в попытке уменьшить необходимость чрезмерного расстояния между электродами при измерении больших систем заземления или требование знания электрического центра системы.

    Три таких метода кратко описаны ниже. Конкретные подробности здесь не приводятся, вместо этого читатель отсылается к соответствующему техническому документу, в котором эти системы подробно описаны.

    1. Метод наклона
    2. Метод звезда-треугольник
    3. Метод четырех потенциалов (метод Веннера)

    (a) Метод наклона

    Этот метод подходит для использования с большими системами заземления, такими как земли подстанции. Он включает в себя выполнение ряда измерений сопротивления в различных системах заземления для определения напряжения разнесения электродов с последующим построением кривой изменения сопротивления между землей и током.

    Используя этот метод, можно рассчитать теоретическое оптимальное расположение электрода напряжения и, таким образом, по кривой сопротивления вычислить истинное сопротивление.

    Дополнительные измерения и вычисления приводят к тому, что эту систему можно использовать только с очень большими или сложными системами заземления.

    Возможные местоположения датчиков для использования метода наклона (рисунок предоставлен Whitham D. Reeve)

    Для получения полной информации об этом методе обратитесь к статье 62975, написанной доктором G.F. Tagg, взято из материалов тома 117 IEE, № 11, ноябрь 1970 г.

    NETA WORLD TechTips «Метод наклона» Джеффа Джоветта AVO International:

    Загрузить статью

    (b) Звезда-дельта Метод

    Этот метод хорошо подходит для использования с большими системами в населенных пунктах или на каменистой местности, где может быть трудно найти подходящие места для испытательных электродов, особенно на больших расстояниях по прямой линии.

    Используются три испытательных электрода, установленных в углах равностороннего треугольника с системой заземления в середине , и проводятся измерения общего сопротивления между соседними электродами, а также между каждым электродом и системой заземления.

    Используя эти результаты, выполняется ряд расчетов и может быть получен результат для сопротивления системы заземления. Этот метод, разработанный W. Hymers, подробно описан в журнале Electrical Review, январь 1975 г.

    NETA WORLD TechTips «Наземные испытания в сложных установках» Джеффри Р. Джоветт (Megger):

    Загрузить статью

    (c) Метод четырех потенциальных возможностей (метод Веннера)

    Этот метод помогает преодолеть некоторые из проблемы, связанные с требованием для знания электрического центра тестируемых систем заземления .

    Этот метод аналогичен стандартному методу падения потенциала, , за исключением того, что выполняется ряд измерений с электродом напряжения в разных положениях и используется набор уравнений для расчета теоретического сопротивления системы.

    Основным недостатком метода четырех потенциалов является то, что, как и в случае метода падения потенциала, может потребоваться чрезмерное расстояние между электродами, если измеряемая система заземления имеет большие размеры.

    NETA WORLD TechTips «Тестирование сопротивления заземления: четырехпотенциальный метод» Джеффри Р. Джоветт (Megger):

    Загрузить документ

    Справочная информация // Методы заземления от Lightning & Surge Technologies%

    PDF-1.6
    %
    5911 0 объект
    >
    эндобдж

    xref
    5911 171
    0000000016 00000 н.
    0000008285 00000 п.
    0000008390 00000 н.
    0000009141 00000 п.
    0000009320 00000 н.
    0000009485 00000 н.
    0000009600 00000 н.
    0000009713 00000 н.
    0000012903 00000 п.
    0000013369 00000 п.
    0000013996 00000 п.
    0000014081 00000 п.
    0000014534 00000 п.
    0000015088 00000 п.
    0000015184 00000 п.
    0000015823 00000 п.
    0000016499 00000 н.
    0000016613 00000 п.
    0000021306 00000 п.
    0000027396 00000 п.
    0000027420 00000 н.
    0000027499 00000 н.
    0000094464 00000 п.
    0000094826 00000 п.
    0000094895 00000 п.
    0000095013 00000 п.
    0000095037 00000 п.
    0000095116 00000 п.
    0000176293 00000 н.
    0000268065 00000 н.
    0000268454 00000 п.
    0000268523 00000 н.
    0000268641 00000 н.
    0000268677 00000 н.
    0000268756 00000 н.
    0000284349 00000 н.
    0000284677 00000 н.
    0000284746 00000 н.
    0000284864 00000 н.
    0000284981 00000 н.
    0000285017 00000 н.
    0000285096 00000 н.
    0000310307 00000 н.
    0000310639 00000 п.
    0000310708 00000 н.
    0000310826 00000 н.
    0000310850 00000 н.
    0000310929 00000 п.
    0000311293 00000 н.
    0000311607 00000 н.
    0000312073 00000 н.
    0000312142 00000 н.
    0000312260 00000 н.
    0000312377 00000 н.
    0000312413 00000 н.
    0000312492 00000 н.
    0000327987 00000 н.
    0000328314 00000 н.
    0000328383 00000 н.
    0000328501 00000 н.
    0000328525 00000 н.
    0000328604 00000 н.
    0000328993 00000 н.
    0000329062 00000 н.
    0000329180 00000 н.
    0000329216 00000 н.
    0000329295 00000 н.
    0000344747 00000 н.
    0000345072 00000 н.
    0000345141 00000 п.
    0000345259 00000 н.
    0000366122 00000 н.
    0000366163 00000 н.
    0000366228 00000 н.
    0000366264 00000 н.
    0000366343 00000 п.
    0000545158 00000 п.
    0000545496 00000 п.
    0000545565 00000 н.
    0000545683 00000 п.
    0000930310 00000 п.
    0000930711 00000 н.
    0000930790 00000 н.
    0000930814 00000 н.
    0000930893 00000 п.
    0000931152 00000 п.
    0000931221 00000 н.
    0000931339 00000 п.
    0000931404 00000 п.
    0000931440 00000 п.
    0000931519 00000 п.
    0000935485 00000 н.
    0000935819 00000 п.
    0000935888 00000 п.
    0000936008 00000 н.
    0000936319 00000 п.
    0000936599 00000 н.
    0000936678 00000 п.
    0000936792 00000 н.
    0000937071 00000 п.
    0000937136 00000 п.
    0000937172 00000 п.
    0000937251 00000 п.
    0000969833 00000 н.
    0000970163 00000 п.
    0000970232 00000 н.
    0000970350 00000 н.
    0000970714 00000 п.
    0000971028 00000 н.
    0000971541 00000 н.
    0000971620 00000 н.
    0000971644 00000 н.
    0000971723 00000 н.
    0000972087 00000 н.
    0000972401 00000 п.
    0000972867 00000 н.
    0000972936 00000 н.
    0000973054 00000 н.
    0000973119 00000 н.
    0000973155 00000 н.
    0000973234 00000 н.
    0001005774 00000 п.
    0001006103 00000 п.
    0001006172 00000 п.
    0001006290 00000 н.
    0001006654 00000 п.
    0001006968 00000 п.
    0001007485 00000 п.
    0001007768 00000 п.
    0001007847 00000 п.
    0001007973 00000 п.
    0001008234 00000 п.
    0001008299 00000 п.
    0001008335 00000 п.
    0001008414 00000 п.
    0001010276 00000 п.
    0001010617 00000 п.
    0001010686 00000 п.
    0001010805 00000 п.
    0001010841 00000 п.
    0001010920 00000 п.
    0001025736 00000 п.
    0001026081 00000 п.
    0001026150 00000 п.
    0001026278 00000 п.
    0001028140 00000 п.
    0001050383 00000 п.
    0001050844 00000 п.
    0001050923 00000 п.
    0001051185 00000 п.
    0001051250 00000 п.
    0001051286 00000 п.
    0001051365 00000 п.
    0001051706 00000 п.
    0001051775 00000 п.
    0001051894 00000 п.
    0001051930 00000 п.
    0001052009 00000 п.
    0001052356 00000 п.
    0001052425 00000 п.
    0001052553 00000 п.
    0001053012 00000 п.
    0001053091 00000 п.
    0001053357 00000 п.
    0001057728 00000 п.
    0001227403 00000 п.
    0001231530 00000 п.
    0001401000 00000 п.
    0001406762 00000 п.
    0001501342 00000 п.
    0000003716 00000 н.
    трейлер
    ] / Назад 7765723 >>
    startxref
    0
    %% EOF

    6081 0 объект
    > поток
    hWy \ {ۿ i9] {¹mBR * u * ܎ $ eP
    aJm = J)% Lбdzsv {]

    Проверка сопротивления заземления может улучшить время безотказной работы

    Автор: Джит Патель

    Электрические системы должны быть заземлены, чтобы в случае удара молнии или перенапряжения в сети ток нашел безопасный путь на Землю.Заземляющий электрод обеспечивает контакт между электрической системой и землей. Чтобы обеспечить надежное соединение с землей, в электротехнических правилах, технических стандартах и ​​местных стандартах часто указывается минимальное сопротивление заземляющего электрода.

    Плохое заземление может привести к простоям в электрических, кабельных и телекоммуникационных сетях. Кроме того, отсутствие хорошего заземления опасно и увеличивает риск выхода оборудования из строя. Без эффективной системы заземления мы могли бы подвергнуться риску поражения электрическим током, не говоря уже об ошибках приборов, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм.Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей.

    Из-за важности заземления Международная ассоциация электротехнических испытаний предписывает проводить испытания заземляющих электродов каждые три года для системы в хорошем состоянии со средним временем безотказной работы. Кроме того, у этих организаций есть рекомендации и / или стандарты по заземлению для обеспечения безопасности:

    • OSHA (Управление по охране труда)
    • NFPA (Национальная ассоциация противопожарной защиты)
    • ANSI / ISA (Американский национальный институт стандартов и приборное общество Америка)
    • TIA (Ассоциация телекоммуникационной индустрии)
    • IEC (Intl.Электротехническая комиссия)
    • CENELEC (Европейский комитет по электротехнической стандартизации)
    • IEEE (Институт инженеров по электротехнике и электронике)
    Зачем тестировать системы заземления?

    Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения. Таким образом, хотя система заземления при первоначальной установке имела низкие значения сопротивления заземления, сопротивление системы заземления может увеличиться, если заземляющие стержни проржавели.

    Тестеры заземления — незаменимые инструменты для поиска и устранения неисправностей, помогающие поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

    Вот почему настоятельно рекомендуется проверять все заземления и заземляющие соединения не реже одного раза в год в рамках обычного плана профилактического обслуживания. Если во время этих периодических проверок измеряется увеличение сопротивления более чем на 20 процентов, техник должен исследовать источник проблемы и внести коррекцию, чтобы снизить сопротивление, заменив или добавив заземляющие стержни в систему заземления.

    Почему заземление?

    Национальный электротехнический кодекс США (NEC) указывает две основные причины для заземления объекта:

    • Стабилизируйте напряжение относительно земли во время нормальной работы.
    • Ограничьте рост напряжения, вызванный молнией, скачками напряжения в сети или непреднамеренным контактом с линиями высокого напряжения.

    Ток всегда найдет путь с наименьшим сопротивлением и вернется к своему источнику, будь то сетевой трансформатор, трансформатор на объекте или генератор.Между тем молния всегда найдет способ добраться до земли.

    В случае удара молнии в линии электропередач или в любом месте рядом со зданием заземляющий электрод с низким сопротивлением поможет передать энергию в землю. Системы заземления и соединения соединяют землю возле здания с электрической системой и строительной сталью. При ударе молнии объект будет иметь примерно такой же потенциал. Сохраняя низкий градиент потенциала, ущерб сводится к минимуму.

    Если линия среднего напряжения (более 1000 В) вступает в контакт с линией низкого напряжения, на близлежащих объектах может возникнуть резкое перенапряжение.Электрод с низким импедансом поможет ограничить повышение напряжения на объекте.

    Заземление с низким импедансом также может обеспечить обратный путь для переходных процессов, генерируемых электросетью.

    Тестеры заземления и принцип их работы

    Существует два типа тестеров сопротивления заземления: трех- и четырехточечные тестеры заземления и зажимные тестеры заземления. Оба типа подают напряжение на электрод и измеряют результирующий ток.

    Трехполюсный или четырехполюсный тестер заземления сочетает в себе источник тока и измерение напряжения в «коробке для завтрака» или в упаковке в стиле мультиметра.Они используют несколько кольев и / или зажимов. Тестеры заземления имеют следующие характеристики:

    • Испытательный ток переменного тока. Земля плохо проводит постоянный ток.
    • Испытательная частота, близкая к промышленной частоте и ее гармоникам, но отличимая от них. Это предотвращает влияние паразитных токов на измерения импеданса заземления.
    • Отдельные источник и измерительные выводы для компенсации длинных проводов, используемых при этом измерении.
    • Входная фильтрация, предназначенная для улавливания собственного сигнала и подавления всех остальных.
    Бесстоечные измерения

    Тестеры заземления с зажимом отличаются тем, что в них есть как истоковый трансформатор, так и измерительный трансформатор. Исходный трансформатор подает напряжение на тестируемый контур, а измерительный трансформатор измеряет результирующий ток. Тестер заземления использует расширенную фильтрацию для распознавания собственного сигнала и отсеивания всех остальных.

    В качестве примера, клещи заземления Fluke 1630-2 FC могут измерять сопротивление контура заземления для многозаземленных систем с использованием метода измерения без опор.Этот метод тестирования исключает опасные и трудоемкие операции по отключению параллельных заземлений, а также процесс поиска подходящих мест для дополнительных заземляющих стержней. Земные наземные испытания также можно проводить в местах, которые не рассматривались: внутри зданий, на опорах электропередач или в любом месте, где нет доступа к почве.

    В этом методе испытаний зажим заземления помещается вокруг стержня заземления или соединительного кабеля. Столбы заземления не используются. Известное напряжение индуцируется одной стороной зажимной губки, а ток измеряется другой стороной зажимной губки.Зажим автоматически определяет сопротивление контура заземления на этом стержне заземления. Этот метод особенно полезен для многозаземленных систем, обычно используемых на коммунальных предприятиях, коммерческих объектах или промышленных предприятиях.

    Fluke 1630-2 FC работает по принципу, согласно которому в параллельных / многозаземленных системах общее сопротивление всех путей заземления будет чрезвычайно низким по сравнению с любым одиночным трактом (тестируемым). Таким образом, полное сопротивление всех сопротивлений параллельного обратного пути фактически равно нулю.Бесстоечное измерение измеряет только сопротивление отдельных заземляющих стержней параллельно системам заземления. Если система заземления не параллельна земле, то вы либо имеете разомкнутую цепь, либо измеряете сопротивление контура заземления.

    Безопасность при наземных испытаниях

    При подключении всегда используйте изолированные перчатки, защиту для глаз и другие соответствующие средства индивидуальной защиты. Небезопасно предполагать, что заземляющий электрод имеет нулевое напряжение или нулевой ток.Чтобы выполнить базовое испытание заземления (называемое падением потенциала) на электроде, электрод необходимо отсоединить от здания. Новые методы, такие как зажимы заземления, позволяют проводить точные испытания с подключенным электродом.

    Что такое хорошее значение сопротивления заземления?

    Существует неясность в отношении того, что является хорошим заземлением, и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

    Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами.Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

    NEC заявила: «Убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше ».

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *