26.11.2024

Как проверить трансформатор на межвитковое замыкание: Как проверить трансформатор при помощи мультиметра

Содержание

Как проверить трансформатор при помощи мультиметра

Чтобы узнать, как проверить состояние трансформатора мультиметром, предлагаем изучить материал от экспертов  electroinfo.net. Проверить трансформатор на наличие обрыва или замыкания катушки с помощью обычного тестера довольно просто. Проверить межвитковые замыкания, не имея генератора и осциллографа, трудно или даже вовсе невозможно. Провести подобную проверку можно только осциллографом с выходами калибровки. Для этого подаются сигналы и отслеживаются прибором.

Но существуют также специальные приборы для проведения теста на исправность трансформатора и его отдельных элементов – мультиметры. С их помощью установить, исправен ли прибор, можно даже в домашних условиях. В данной статье будут рассмотрены основные моменты проверки трансформаторов с помощью мультиметра. К статье бонусом добавлен видеоролик с наглядным примером проверки трансформатора и файл с подробной инструкцией о том, как пользоваться мультиметром.

Проверка трансформатора мультиметром.

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка на межвитковое замыкание

Начать нужно с внешнего осмотра, особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Дело в том, что межвитковое замыкание приводит к сильному нагреву трансформатора. Далее проверяем сопротивление изоляции между обмотками, оно должно составлять не менее 10 Мом. Если есть аналогичный трансформатор, можно сравнить их значение индуктивности. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи.

От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке.

Для импульсного блока питания он составляет — 8-40 кГц, для ТДКС — 13-17 кГц. Импульсные трансформаторы обычно содержат малое число витков. Возможен вариант убедиться в работоспособности трансформатора путем контроля   коэффициента трансформации обмоток.

Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах).

Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации. Этот метод вполне реален для тех кто дружит с математикой. По результатам пробных измерений составлена таблица, в которой сопротивлению, указанному в левой колонке, соответствует определенное показание цифрового индикатора.

Замер тока и напряжения мультиметром.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.

Как проверить тороидальный трансформатор.

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Порядок проверки трансформатора мультиметром.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Как проверить импульсный трансформатор мультиметром

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования.

Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

  • Методика проверки аналоговым (стрелочным) измерительным прибором:
  • Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  • После в гнёзда тестера вставляются два провода и перемыкаются накоротко.

Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация.

Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Заключение

Более подробно о работе мультиметра и проверке с его помощью трансформаторов можно почитать в файле “Как пользоваться мультиметром”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

телемастерская.рф
www.texnic.ru
www.norma-stab.ru
www.yato-tools.ru

Предыдущая

ПрактикаКатушка тесла (Трансформатор) самостоятельная сборка собственными силами

Следующая

ПрактикаКак проверить конденсатор при помощи мультиметра

проверка на межвитковое замыкание и восстановление работоспособности

Трансформаторы получили широкое применение в радиоэлектронике. Они являются преобразователями переменного напряжения и, в отличие от других радиоэлементов, выходят из строя редко. Для определения их исправности нужно знать, как проверить трансформатор мультиметром. Этот способ достаточно простой, и необходимо понять принцип работы трансформатора и его основные характеристики.

Основные сведения о трансформаторах

Для преобразования номиналов переменного напряжения применяются специальные электрические машины — трансформаторы.

Трансформатор — это электромагнитное устройство, предназначенное для преобразования переменного напряжения и тока одной величины в переменный ток и напряжение другой величины.

Устройство и принцип действия

Используется во всех схемах питания потребителей, а также для осуществления передачи электроэнергии на значительные расстояния. Устройство трансформатора достаточно примитивно:

  1. Ферромагнитный сердечник выполнен из ферромагнетика и называется магнитопроводом. Ферромагнетики — это вещества, обладающие самопроизвольной намагниченностью, параметры (атомы обладают постоянным спиновым или орбитальным магнитными моментами) сильно изменяются благодаря магнитному полю и температуре.
  2. Обмотки: первичная (подключается сетевое напряжение) и вторичная (питание потребителя или группы потребителей). Вторичных обмоток может быть больше 2-х.
  3. Дополнительные составляющие применяются для силовых трансформаторов: охладители, газовое реле, индикаторы температуры, поглотители влаги, трансформаторы тока, системы защиты и непрерывной регенерации масла.

Принцип действия основан на нахождении проводника в переменном электрическом поле. При движении проводника, например, соленоида (катушка с сердечником), на его выводах можно снять напряжение, которое зависит прямо пропорционально от количества витков. В трансформаторе реализован этот подход, но осуществляет движение не проводник, а электрическое поле, образованное переменным током. Он движется по магнитопроводу, выполненному из ферромагнетика. Ферромагнетик — это специальный сплав, идеально подходящий для изготовления трансформаторов. Основные материалы для сердечников:

  1. Электротехническая сталь содержит большую массовую долю кремния (Si) и соединяется под действием высокой температуры с углеродом, массовая доля которого не более 1%. Ферромагнитные свойства нечетко выражаются, и происходят потери на вихревые токи (токи Фуко). Потери прямо пропорционально растут с увеличением частоты. Для решения этой проблемы и происходит добавление Si в углеродистую сталь (Э42, Э43, Э320, Э330, Э340, Э350, Э360). Расшифровывается аббревиатура Э42: Э — электротехническая сталь, содержащая 4% — Si с 2% магнитных потерь.
  2. Пермаллой — вид сплава, и его составляющими частями являются никель и железо. Этот вид характеризуется высоким значением магнитной проницаемости. Применяется в маломощных трансформаторах.

При протекании тока по первичной обмотке (I) в ее витках образуется магнитный поток Ф, который распространяется по магнитопроводу на II обмотку, вследствие чего в ней образуется ЭДС (электродвижущая сила). Устройство может работать в 2-х режимах: нагрузки и холостого хода.

Коэффициент трансформации и его расчет

Коэффициент трансформации (k) является очень важной характеристикой. Благодаря ему можно выявить неисправности. Коэффициент трансформации — это величина, показывающая отношение количества витков I обмотки к числу витков II обмотке. По k трансформаторы бывают:

  1. Понижающими (k > 1).
  2. Повышающими (k < 1).

Найти его просто, и для этого необходимо узнать отношение напряжений каждой из обмоток. При наличии более 2-х обмоток расчет производится для каждой из них. Для точного определения k нужно пользоваться 2-мя вольтметрами, так как напряжение сети может изменяться, и эти изменения нужно отслеживать. Подавать нужно только напряжение, указанное в характеристиках. Определяется k несколькими способами:

По паспорту, в котором указаны все параметры устройства (напряжение питания, коэффициент трансформации, сечение провода на обмотках, количество витков, тип магнитопровода, габариты).

  1. Расчетный метод.
  2. При помощи моста Шеринга.
  3. При помощи специальной аппаратуры (например, УИКТ-3).

Рассчитать k несложно, и существует ряд формул, позволяющих сделать это. Нет необходимости учитывать потери магнитопровода, применяемые при изготовлении на заводе. Исследования показали взаимосвязь магнитопровода (железняк) и k. Для улучшения КПД трансформатора нужно уменьшить магнитные потери:

  1. Использование специальных сплавов для магнитопровода (уменьшение толщины и спецобработка).
  2. Уменьшение количества витков при использовании толстого провода, а на высоких частотах большое сечение является пространством для создания вихревых токов.

Для этих целей применяют аморфную сталь. Но и она обладает ограничением, называемым магнитострикцией (изменение геометрических размеров материала под действием электромагнитного поля). При использовании этой технологии удается получать листы для железняка толщиной в сотые доли миллиметров.

Расчетные формулы

При отсутствии соответствующей документации нужно производить расчеты самостоятельно. В каждом конкретном случае способы расчета различны. Основные формулы расчета k:

  1. Без учета возможных погрешностей: k = U1 / U2 = n1 / n2, где U1 и U2 — U на I и II обмотках, n1 и n2 — количество витков на I и II обмотках.
  2. При учете погрешностей: k = U1 / U2 = (e *n1 + I1 * R1) / (e * n2 + I2 * R2), где U1 и U2 — напряжения на I и II обмотках; n1 и n2 — кол-во витков на I и II обмотках; е — ЭДС (электродвижущая сила) в каждом из витков обмоток; I1 и I2 — силы токов I и II обмоток; R1 и R2 — сопротивления для I и II.
  3. По известным мощностям при параллельном подключении обмоток: kz = Z1 / Z2 = ku * ku, где kz — k по мощности, Z1 и Z2 — мощности на первичной и вторичной обмотках, ku — k по напряжению (k = U1 / U2).
  4. По токам при последовательном подключении обмоток: k = I1 / I2 = n2 / n1. При учете результирующего тока холостого хода (ток потерь Io): I1 * n1 = I2 * n2 + Io.

Проверка исправности

В основном трансформаторы применяются в блоках питания. Намотка и изготовление самого трансформатора с нуля — сложная задача и под силу не каждому. Поэтому за основу берется уже готовый и модернизируется путем изменения количества витков вторичной обмотки. Основные неисправности трансформатора:

  1. Обрыв выводов.
  2. Повреждение магнитопровода.
  3. Нарушение изоляции.
  4. Сгорание при КЗ.

Диагностика начинается с визуального осмотра. Первоначальная диагностика включает в себя осмотр выводов трансформатора, его катушек на предмет обугливаний, целостность магнитопровода.

При изношенных выводах необходимо зачистить их, а в некоторых случаях при обрыве — разобрать трансформатор, припаять их и прозвонить тестером.

При поврежденном магнитопроводе нужно его заменить или узнать из справочников об аналогичном для конкретной модели, так как он ремонту не подлежит. Можно заменить отдельные пластины.

При КЗ необходимо провести диагностику на работоспособность при помощи измерительных приборов (проверка трансформатора мультиметром).

При пробитой изоляции происходит контакт между витками обмоток или на корпус. Определить эту неисправность достаточно сложно. Для этого необходимо произвести следующие действия:

  1. Включить прибор в режим измерения сопротивления.
  2. Один щуп должен быть на корпусе, а другой нужно присоединить к каждому выводу трансформатора поочередно.
  3. Прибор должен во всех случаях прозвонок показывать бесконечность, что свидетельствует об отсутствии КЗ на корпус.
  4. При любых показаниях прибора пробой на корпус существует, и нужно полностью разбирать трансформатор и даже разматывать его обмотки для выяснения причины.

Для поиска короткозамкнутых витков нужно определить, где I обмотка (вход), а где II (выход) у неизвестного трансформатора. Для этого стоит воспользоваться следующим алгоритмом:

  1. Выяснить сопротивление первичной обмотки трансформатора 220 вольт при помощи измерений мультиметра в режиме «сопротивления». Необходимо записать показания прибора. Выбрать обмотку с наибольшим сопротивлением.
  2. Взять лампочку на 50 Вт и подключить ее последовательно с этой обмоткой.
  3. Включить в сеть на 5−7 секунд.

После этого отключить и проверить обмотки на нагрев. Если заметного превышения температуры нет, то приступить к поиску короткозамкнутых витков. Как проверить трансформатор на межвитковое замыкание: необходимо воспользоваться мегаомметром при напряжении 1000 В. При измерении пробоя изоляции необходимо прозванивать корпус и выводы обмоток, а также независимые между собой обмотки, например, вывод I и II.

Нужно определить коэффициент трансформации и сравнить его с документом. Если они совпадают — трансформатор исправен.

Существуют еще два метода проверки:

  1. Прямой — подразумевает проверку под нагрузкой. Для его осуществления необходимо собрать цепь питания I и II обмоток. Путем измерения значений тока в обмотках, а затем по формулам (4) определить k и сравнить его с паспортными данными.
  2. Косвенные методы. Включают в себя: проверку полярности выводов обмоток, определение характеристик намагничивания (используется редко). Полярность находится при помощи вольтметра или амперметра магнитоэлектрического исполнения с определением полярности на выходе. При отклонении стрелки вправо — полярности совпадают.

Проверка импульсного трансформатора достаточна сложная, и ее может произвести только опытный радиолюбитель. Существует много способов проверки исправности импульсников.

Таким образом, трансформатор можно легко проверить мультиметром, зная основные особенности и алгоритм проверки. Для этого нужно выяснить тип трансформатора, найти документацию по нему и рассчитать коэффициент трансформации. Кроме того, необходимо произвести визуальный осмотр прибора.

Originally posted 2018-04-06 09:10:07.

Проверка трансформатора с помощью мультиметра

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Межвитковое замыкание. Как проверить различные замыкание витков

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.

Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.

Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Как проверить импульсный трансформатор мультиметром

Как проверить импульсный трансформатор с помощью осциллографа

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.

Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.

Рис. 2. Формы наблюдаемых сигналов

Способ 2

Необходимое оборудование:

  • Генератор НЧ,
  • Осциллограф

Принцип работы:

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.

Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить

Как проверить импульсный трансформатор мультиметром

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Методика проверки аналоговым (стрелочным) измерительным прибором

  1. Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  2. После в гнёзда тестера вставляются два провода и перемыкаются накоротко.
  3. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Как проверить импульсный трансформатор на межвитковое замыкание и обрыв

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного.

В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом  обозначения диода на схеме.

диод на схеме

  • Для определения обрыва к цифровому прибору подключаются измерительные провода.
  • Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM.
  • Галетный переключатель переводится в область прозвонки.
  • Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на межвитковое и короткое замыкание.

Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока.

Для проведения тестирования мультиметр переключается в режим проверки сопротивления.

Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки).

Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Видео: Как проверить импульсный трансформатор?

Как проверить трансформатор мультиметром на исправность?

Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние. Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, сечение и тип провода и теоретически, при желании, его можно вычислить.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт. Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт. При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.
Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Для сварки в домашних условиях необходим функциональный и производительный аппарат, приобретение которого сейчас слишком дорогое удовольствие. Собрать сварочный инвертор своими руками из подручных материалов вполне возможно, предварительно изучив соответствующую схему.

Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет подробная статья на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже генератор и осциллограф.

Подробная инструкция: как проверить трансформатор мультиметром на видео

Как проверить трансформатор мультиметром на исправность?

Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние. Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, сечение и тип провода и теоретически, при желании, его можно вычислить.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт. Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт. При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.
Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Для сварки в домашних условиях необходим функциональный и производительный аппарат, приобретение которого сейчас слишком дорогое удовольствие. Собрать сварочный инвертор своими руками из подручных материалов вполне возможно, предварительно изучив соответствующую схему.

Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет подробная статья на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже генератор и осциллограф.

Подробная инструкция: как проверить трансформатор мультиметром на видео

Как работают трансформаторы | Проекты самодельных схем

Согласно определению, данному в Википедии, электрический трансформатор — это стационарное оборудование, которое обменивается электроэнергией между парой тесно намотанных катушек посредством магнитной индукции.

Постоянно меняющийся ток в одной обмотке трансформатора генерирует переменный магнитный поток, который, следовательно, индуцирует переменную электродвижущую силу на второй катушке, построенной на том же сердечнике.

Основной принцип работы

Трансформаторы в основном работают за счет передачи электроэнергии между парой катушек посредством взаимной индукции, вне зависимости от какой-либо формы прямого контакта между двумя обмотками.

Этот процесс передачи электричества посредством индукции был впервые доказан законом индукции Фарадея в 1831 году. Согласно этому закону индуцированное напряжение на двух катушках создается из-за переменного магнитного потока, окружающего катушку.

Основная функция трансформатора — повышать или понижать переменное напряжение / ток в различных пропорциях в соответствии с требованиями приложения. Пропорции определяются числом витков и соотношением витков обмотки.

Анализ идеального трансформатора

Мы можем представить себе идеальный трансформатор в виде гипотетической конструкции, которая может быть практически без потерь в какой-либо форме. Более того, в этой идеальной конструкции первичная и вторичная обмотки могут быть идеально соединены друг с другом.

Это означает, что магнитная связь между двумя обмотками осуществляется через сердечник с бесконечной магнитной проницаемостью и с индуктивностями обмотки при общей нулевой магнитодвижущей силе.

Мы знаем, что в трансформаторе приложенный переменный ток в первичной обмотке пытается создать переменный магнитный поток внутри сердечника трансформатора, который также включает вторичную обмотку, окруженную вокруг него.

Из-за этого переменного потока во вторичной обмотке индуцируется электродвижущая сила (ЭДС) посредством электромагнитной индукции. Это приводит к генерации потока во вторичной обмотке с величиной, противоположной, но равной потоку в первичной обмотке, согласно закону Ленца.

Поскольку сердечник обладает бесконечной магнитной проницаемостью, весь (100%) магнитный поток может передаваться через две обмотки.

Это означает, что, когда первичная обмотка подвергается воздействию источника переменного тока, а нагрузка подключена к клеммам вторичной обмотки, ток течет через соответствующую обмотку в направлениях, указанных на следующей схеме.В этом состоянии магнитодвижущая сила сердечника нейтрализуется до нуля.

Изображение предоставлено: https://commons.wikimedia.org/wiki/File:Transformer3d_col3.svg

В этой идеальной конструкции трансформатора, поскольку передача потока через первичную и вторичную обмотку составляет 100%, согласно закону Фарадея наведенное напряжение на каждой обмотке будет полностью пропорционально количеству витков обмотки, как показано на следующем рисунке:

Тестовое видео, подтверждающее линейную взаимосвязь между отношением первичного / вторичного витков.

ОБОРОТЫ И ОТНОШЕНИЯ НАПРЯЖЕНИЙ

Давайте попробуем подробно разобраться в расчетах коэффициента трансформации:

Чистая величина напряжения, индуцированного от первичной обмотки ко вторичной, просто определяется соотношением количества витков намотаны на первичный и вторичный участки.

Однако это правило применяется только в том случае, если трансформатор близок к идеальному трансформатору.

Идеальный трансформатор — это тот трансформатор, который имеет незначительные потери в виде скин-эффекта или вихревых токов.

Давайте возьмем пример на рисунке 1 ниже (для идеального трансформатора).

Предположим, что первичная обмотка состоит примерно из 10 витков, а вторичная — только из одного витка. Из-за электромагнитной индукции силовые линии, генерируемые в первичной обмотке в ответ на входной переменный ток, попеременно расширяются и сжимаются, прорезая 10 витков первичной обмотки. Это приводит к тому, что во вторичной обмотке индуцируется точно пропорциональная величина напряжения в зависимости от соотношения витков.

Обмотка, на которую подается переменный ток, становится первичной обмоткой, а дополнительная обмотка, которая производит выходной сигнал за счет магнитной индукции первичной обмотки, становится вторичной обмоткой.

Рисунок (1)

Поскольку вторичная обмотка имеет только один виток, она испытывает пропорциональный магнитный поток на одном витке по сравнению с 10 витками первичной обмотки.

Следовательно, поскольку напряжение, приложенное к первичной обмотке, равно 12 В, каждая ее обмотка будет подвергаться воздействию противо-ЭДС 12/10 = 1.2 В, и это именно та величина напряжения, которая будет влиять на одиночный виток, присутствующий во вторичной части. Это потому, что у него одна обмотка, которая способна извлекать только такое же эквивалентное количество индукции, которое может быть доступно через один виток первичной обмотки.

Таким образом, вторичная обмотка с одним витком сможет извлечь 1,2 В из первичной обмотки.

Приведенное выше объяснение показывает, что количество витков на первичной обмотке трансформатора линейно соответствует напряжению питания на ней, а напряжение просто делится на количество витков.

Таким образом, в приведенном выше случае, поскольку напряжение составляет 12 В, а количество витков равно 10, суммарная ЭДС счетчика, наведенная на каждый из витков, будет 12/10 = 1,2 В

Пример № 2

Теперь давайте визуализируем рисунок 2 ниже, он показывает конфигурацию, аналогичную показанной на рисунке 1. ожидайте вторичный, у которого теперь есть 1 дополнительный ход, то есть 2 числа ходов.

Излишне говорить, что теперь вторичная обмотка будет проходить через вдвое больше линий потока по сравнению с условием на фигуре 1, в котором был всего один виток.

Итак, здесь вторичная обмотка будет показывать около 12/10 x 2 = 2,4 В, потому что на два витка будет влиять величина противо-ЭДС, которая может быть эквивалентной для двух обмоток на первичной стороне трафарета.

Таким образом, из приведенного выше обсуждения в целом мы можем сделать вывод, что в трансформаторе соотношение между напряжением и числом витков на первичной и вторичной обмотках является достаточно линейным и пропорциональным.

Число витков трансформатора

Таким образом, полученная формула для расчета числа витков для любого трансформатора может быть выражена как:

Es / Ep = Ns / Np

где,

  • Es = вторичное напряжение ,
  • Ep = первичное напряжение,
  • Ns = количество вторичных витков,
  • Np = количество первичных витков.

Первичный коэффициент вторичного витка

Было бы интересно отметить, что приведенная выше формула указывает прямую связь между отношением вторичного напряжения к первичному и числом витков вторичного к первичному, которые указаны как пропорциональные и равный.

Следовательно, приведенное выше уравнение также может быть выражено как:

Ep x Ns = Es x Np

Далее мы можем вывести приведенную выше формулу для решения Es и Ep, как показано ниже:

Es = (Ep x Ns) / Np

аналогично,

Ep = (Es x Np) / Ns

Приведенное выше уравнение показывает, что если доступны любые 3 величины, четвертую величину можно легко определить, решив формулу .

Решение практических проблем с обмоткой трансформатора

Пример №1: Трансформатор имеет 200 витков в первичной части, 50 витков во вторичной и 120 вольт, подключенных к первичной обмотке (Ep). Какое может быть напряжение на вторичной обмотке (E s)?

Дано:

  • Np = 200 витков
  • Ns = 50 витков
  • Ep = 120 вольт
  • Es =? вольт

Ответ:

Es = EpNs / Np

Подстановка:

Es = (120 В x 50 витков) / 200 витков

Es = 30 Вольт

Случай в точке # 2 : Предположим, у нас есть 400 витков провода в катушке с железным сердечником.

Предполагая, что катушка должна использоваться в качестве первичной обмотки трансформатора, рассчитайте количество витков, которые необходимо намотать на катушку, чтобы получить вторичную обмотку трансформатора, чтобы обеспечить вторичное напряжение в один вольт в данной ситуации. где первичное напряжение 5 вольт?

Дано:

  • Np = 400 оборотов
  • Ep = 5 вольт
  • Es = 1 вольт
  • Ns =? оборотов

Ответ:

EpNs = EsNp

Транспонирование для Ns:

Ns = EsNp / Ep

Замена:

Ns = (1V x 400 витков)

9002 Нс = 80 витков

Имейте в виду: Отношение напряжения (5: 1) эквивалентно соотношению обмоток (400: 80).Иногда, вместо определенных значений, вам назначают коэффициент витков или напряжений.

В подобных случаях вы можете просто принять любое произвольное число для одного из напряжений (или обмотки) и вычислить другое альтернативное значение из отношения.

В качестве иллюстрации, предположим, что коэффициент намотки задан как 6: 1, вы можете представить количество витков для первичной части и вычислить эквивалентное вторичное число витков, используя аналогичные пропорции, такие как 60:10, 36: 6, 30: 5 и т. Д.

Трансформатор во всех приведенных выше примерах имеет меньшее количество витков во вторичной части по сравнению с первичной частью. По этой причине вы можете найти меньшее напряжение на вторичной обмотке тракта, а не на первичной стороне.

Что такое повышающий и понижающий трансформаторы

Трансформатор, номинальное напряжение вторичной стороны которого ниже номинального напряжения первичной стороны, называется СТУПЕНЧАТЫМ трансформатором.

Или, в качестве альтернативы, если вход переменного тока подается на обмотку с большим числом витков, то трансформатор действует как понижающий трансформатор.

Соотношение понижающего трансформатора четыре: один записано как 4: 1. Трансформатор, который включает меньшее количество витков на первичной стороне по сравнению с вторичной стороной, будет генерировать более высокое напряжение на вторичной стороне по сравнению с напряжением, подключенным к первичной стороне.

Трансформатор, номинальная сторона вторичной обмотки которого превышает напряжение на первичной стороне, называется СТУПЕНЧАТЫМ трансформатором. Или, в качестве альтернативы, если вход переменного тока подается на обмотку с меньшим числом витков, тогда трансформатор действует как повышающий трансформатор.

Передаточное отношение повышающего трансформатора «один к четырем» должно быть записано как 1: 4. Как вы можете видеть в двух соотношениях, величина первичной обмотки последовательно упоминается в начале.

Можно ли использовать понижающий трансформатор в качестве повышающего трансформатора и наоборот?

Да, безусловно! Все трансформаторы работают по тому же основному принципу, что и описанный выше. Использование повышающего трансформатора в качестве понижающего трансформатора просто означает переключение входных напряжений на их первичную / вторичную обмотку.

Например, если у вас есть обычный повышающий трансформатор источника питания, который обеспечивает выходное напряжение 12-0-12 В от входного переменного тока 220 В, вы можете использовать тот же трансформатор в качестве повышающего трансформатора для получения выходного сигнала 220 В от источника переменного тока. Вход 12 В переменного тока.

Классический пример — схема инвертора, где в трансформаторах нет ничего особенного. Все они работают от обычных понижающих трансформаторов, подключенных противоположным образом.

Воздействие нагрузки

Когда нагрузка или электрическое устройство подключаются ко вторичной обмотке трансформатора, ток или токи проходят через вторичную сторону обмотки вместе с нагрузкой.

Магнитный поток, создаваемый током во вторичной обмотке, взаимодействует с магнитными линиями потока, создаваемыми усилителями на первичной стороне. Этот конфликт между двумя линиями потоков возникает в результате общей индуктивности между первичной и вторичной обмотками.

Mutual Flux

Абсолютный магнитный поток в материале сердечника трансформатора преобладает как для первичной, так и для вторичной обмоток. Кроме того, это путь, по которому электроэнергия может перемещаться от первичной обмотки ко вторичной.

Из-за того, что этот поток объединяет обе обмотки, явление, обычно известное как ВЗАИМНЫЙ ПОТОК. Кроме того, индуктивность, которая создает этот поток, преобладает для обеих обмоток и называется взаимной индуктивностью.

Рисунок (2) ниже

LTspice: Простые шаги для моделирования трансформаторов

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта.Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы analog.com или определенных предлагаемых функций. Они либо служат единственной цели выполнения сетевых передач, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт.Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie регистрируют ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам.Мы также можем передавать эту информацию третьим лицам с этой целью.

Отклонить файлы cookie

Схема включения / выключения питания — Главный трансформатор — Руководство по поиску и устранению неисправностей

×

Результаты поиска

Веб-страницы

Изображения

      • <
      • 1
      • >
    • машины

      • Вертикальные мельницы
        • Вертикальные мельницы
        • VF серии
        • Универсальные станки
        • VR серии
        • VMC для смены поддонов

    Как автоматически включать компьютер по расписанию?

    Идея настроить компьютер так, чтобы он автоматически включался в определенное время, приходит в голову многим.Некоторые люди хотят использовать свой компьютер в качестве будильника таким образом, другим нужно начинать скачивать торренты в наиболее выгодное время согласно тарифному плану, третьи хотят запланировать установку обновлений, проверку на вирусы или другие подобные задачи. Какими способами можно осуществить эти желания, мы поговорим далее.

    Существует несколько способов настройки автоматического включения компьютера. Это можно сделать с помощью инструментов, имеющихся в аппаратном обеспечении компьютера, методов, предусмотренных в операционной системе, или специальных программ сторонних производителей.Разберем стандартные методы более подробно.

    Способ 1: BIOS и UEFI

    О существовании BIOS ( Basic Input-Output System ) слышал, наверное, каждый, кто хоть немного знаком с принципами работы компьютера . Он отвечает за тестирование и правильное включение всех компонентов оборудования ПК, а затем передает их в операционную систему.

    BIOS содержит множество различных настроек, среди которых есть возможность включения компьютера в автоматическом режиме.Сразу оговоримся, что эта функция присутствует далеко не во всех BIOS, а только в более-менее современных его версиях.

    Чтобы запланировать запуск вашего ПК на машине через BIOS

    ● Войдите в меню настроек BIOS Setup. Для этого сразу после включения питания необходимо нажать клавишу Delete или F2 (в зависимости от производителя и версии BIOS). Возможны и другие варианты. Обычно система показывает, как войти в BIOS сразу после включения ПК.

    ● Перейдите в раздел «Настройка управления питанием». Если такого раздела нет, то в данной версии BIOS возможность включения компьютера на автомате не предусмотрена. В некоторых версиях BIOS этот раздел находится не в главном меню, а в виде подраздела в «Advanced BIOS Features» или «ACPI Configuration» и называется немного иначе, но суть его всегда одна — есть компьютер настройки мощности.

    ● Найдите элемент «Включение по тревоге» в разделе «Настройка управления питанием» и установите для него значение «Включено».Это позволит автоматически включить ПК.

    ● Установите расписание для включения компьютера. Сразу после предыдущего пункта станут доступны настройки «Будильник дня месяца» и «Будильник времени». С их помощью можно настроить дату месяца, на которую будет запланирован автоматический запуск компьютера и его время. Параметр «Ежедневно» в пункте «Тревога дня месяца» означает, что данная процедура будет запускаться ежедневно в указанное время.Установка в этом поле любого числа от 1 до 31 означает, что компьютер включится в определенное число и время. Если периодически не менять эти параметры, то эта операция будет выполняться один раз в месяц в указанную дату.

    В настоящее время интерфейс BIOS считается устаревшим. В современных компьютерах его заменил UEFI (Unified Extensible Firmware Interface). Его основное назначение такое же, как и у BIOS, но возможности намного шире.Пользователю намного проще работать с UEFI за счет поддержки мыши.

    Настройка автоматического включения компьютера с использованием UEFI

    ● Войдите в UEFI так же, как в BIOS.

    ● В главном окне UEFI перейдите в расширенный режим, нажав клавишу F7 или кнопку «Дополнительно» в нижней части окна.

    ● В открывшемся окне перейдите в раздел APM.

    ● В новом окне активируйте режим «Power On By RTC».

    ● В появившихся новых строках настройте расписание для автоматического включения компьютера. Особое внимание следует уделить параметру «RTC Alarm Date». Установка его на ноль будет означать включение компьютера каждый день в указанное время. Установка другого значения в диапазоне от 1 до 31 подразумевает включение в определенную дату, как и в BIOS. Установка времени начала интуитивно понятна и не требует дополнительных пояснений.

    ● Сохраните настройки и выйдите из UEFI.

    Настройка автоматического включения с помощью BIOS или UEFI — единственный способ выполнить эту операцию на полностью выключенном компьютере. Во всех остальных случаях речь идет не о включении, а о выводе ПК из режима гибернации.

    Способ 2: Планировщик заданий

    Вы можете настроить компьютер на автоматическое включение с помощью системных инструментов Windows. Для этого воспользуйтесь планировщиком заданий.Рассмотрим, как это делается на примере Windows 7.

    Вначале нужно разрешить системе автоматически включать / выключать компьютер. Для этого откройте раздел «Система и безопасность» в панели управления и в разделе «Блок питания» нажмите ссылку «Изменить, когда компьютер спит».

    Затем в открывшемся окне нажмите ссылку «Изменить дополнительные параметры питания».

    После этого найдите в списке дополнительных параметров «Сон» и установите разрешение для таймеров пробуждения на «Включить».

    Теперь вы можете настроить расписание для автоматического включения компьютера. Для этого выполните следующие действия:

    ● Откройте планировщик. Проще всего это сделать через меню «Пуск», где есть специальное поле для поиска программ и файлов.

    Чтобы открыть планировщик, просто щелкните по нему левой кнопкой мыши. Его также можно запустить через меню «Пуск» — «Стандартные» — «Системные инструменты» или через окно «Выполнить» (Win + R), введя команду taskschd.msc там.

    ● В окне планировщика перейдите в «Библиотеку планировщика заданий».

    ● В правой части окна выберите «Создать задачу».

    ● Создайте имя и описание для новой задачи, например, «Автоматически включать компьютер». В этом же окне вы можете настроить параметры, с которыми компьютер будет просыпаться: пользователь, под которым система будет входить в систему, и уровень его прав.

    ● Щелкните вкладку «Триггеры» и нажмите кнопку «Создать». Установите частоту и время автоматического включения компьютера, например, ежедневно в 11:42.

    ● Перейдите на вкладку «Действия» и создайте новое действие по аналогии с предыдущим элементом. Здесь вы можете настроить, что должно происходить при выполнении задачи. Сделаем так, чтобы при этом на экране отображалось какое-то сообщение.При желании вы можете настроить другое действие, например, воспроизведение аудиофайла, запуск торрента или другой программы.

    ● Перейдите на вкладку «Условия» и установите флажок «Разбудить компьютер для выполнения задачи». При необходимости поставьте оставшиеся отметки. Этот элемент является ключевым в создании нашей задачи.

    ● Завершите процесс, нажав кнопку «ОК». Если общие параметры были указаны для входа под конкретным пользователем, планировщик попросит вас указать его имя и пароль.

    На этом настройка автоматического включения компьютера с помощью планировщика завершена.

    Поворотный отказ для трансформатора

  1. ЧУВСТВИТЕЛЬНАЯ ЗАЩИТА ОТ ПОВРЕЖДЕНИЙ ОТ ПОВОРОТА

    ДЛЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ

    Зоран Гайи *, Иво Бринстянк, Иво Бринстин, Бахрэнк, Швеция ABBInc.HEP, Хорватия 1. ВВЕДЕНИЕ

    Три наиболее типичных недостатка электромеханических и полупроводниковых дифференциальных реле силового трансформатора:

    1. Длительное время работы в случае серьезных внутренних неисправностей с последующим насыщением основного ТТ

    2. Нежелательные операции при внешних неисправностях и бросках тока трансформатора

    3. Плохая чувствительность к внутренним неисправностям низкого уровня, таким как межвитковые неисправности обмоток

    С внедрением числовой технологии первые две проблемы можно было решить гораздо лучше. [4].Однако чувствительность к межвитковым замыканиям внутренней обмотки существенно не улучшилась. В этом документе представлен новый принцип защиты, который повысит чувствительность дифференциального реле к незначительным внутренним межповоротным замыканиям. Однако первые две проблемы также эффективно решаются путем применения решения, описанного в документе.

    Короткое замыкание нескольких витков обмотки вызовет сильный ток короткого замыкания в короткозамкнутых витках, но изменения токов на клеммах трансформатора будут очень небольшими из-за высокой степени трансформации всей обмотки. и короткозамкнутые витки.По этой причине традиционная дифференциальная защита трансформатора обычно была недостаточно чувствительной, чтобы обнаруживать такие межвитковые замыкания обмоток, прежде чем они перерастут в более серьезные и дорогостоящие для устранения замыканий на землю. В качестве альтернативы, такие неисправности также могут быть обнаружены реле внезапного давления. Однако эти реле обнаруживают такие неисправности низкого уровня с задержкой, обычно 50 мс 100 мс, что часто позволяет неисправности перерасти в более серьезную.

    Новый принцип защиты основан на теории симметричных составляющих [1] и [2], а точнее, на токах обратной последовательности.Само существование относительно высоких токов обратной последовательности само по себе является признаком нарушения, так как токи обратной последовательности накладываются друг на друга, что является величиной чистой неисправности. Величины обратной последовательности особенно подходят для различных видов направленных испытаний. Для конкретных приложений они кажутся лучше величин нулевой последовательности, которые до сих пор использовались более широко, в основном из-за того, что их было легко измерить.

    Новый принцип защиты обеспечивает очень чувствительную защиту от межвитковых замыканий низкого уровня.Все такие неисправности, которые включают около 1% короткозамкнутых витков, могут быть обнаружены. Это низкое значение ограничено только небольшим количеством ложных установившихся токов обратной последовательности. Новая чувствительная защита на основе тока обратной последовательности является хорошим дополнением к традиционной дифференциальной защите силового трансформатора, которая основана на хорошо известной характеристике дифференциала смещения. В документе представлен принцип этой новой защиты и завершается тематическое исследование.

  2. 2. ЗАЯВЛЕНИЕ О ПРОБЛЕМЕ

    Изучение журналов поломок современных трансформаторов, произошедших в течение многих лет, показало, что от 70% до 80% от общего числа отказов трансформаторов в конечном итоге связаны с внутренней изоляцией обмоток. неудача. Если не обнаруживать быстро, эти межвитковые замыкания обычно перерастают в более серьезные и дорогостоящие для устранения замыканий на землю, связанных с железным сердечником силового трансформатора. В качестве альтернативы они вызывают искрение в баке силового трансформатора, что вызывает большие повреждения, пока не сработает реле внезапного давления.

    Эти неисправности обмоток в основном являются результатом деградации системы изоляции из-за теплового, электрического и механического напряжения, влажности и т. Д. [8]. Деградация означает снижение качества изоляции, что в конечном итоге приведет к пробою изоляции, что приведет либо к короткому замыканию соседних витков обмотки (межвитковое короткое замыкание), либо непосредственно к замыканию обмотки на землю (отказ обмотки на землю. ). Чаще всего изоляция подвергается постепенному старению, прежде чем произойдет такая неисправность.Старение изоляции снижает как механическую, так и диэлектрическую прочность. В условиях внешнего повреждения обмотки силового трансформатора временно подвергаются воздействию высоких радиальных и сжимающих сил. По мере увеличения нагрузки с ростом системы рабочие нагрузки увеличиваются. В стареющем трансформаторе изоляция проводника ослаблена до такой степени, что она больше не может выдерживать дополнительные нагрузки. При повышенном напряжении, например, из-за некоторого внешнего повреждения, изоляция между соседними витками разрушается диэлектриком и возникает межвитковое замыкание.

    Короткое замыкание нескольких витков обмотки вызовет сильный ток короткого замыкания в короткозамкнутой петле, сопровождаемый относительно низким значением тока в остальной части обмотки (рис. 1) [10]. Коэффициент трансформации между первичной обмоткой и короткозамкнутыми вторичными витками высок (эффект автотрансформатора).

    Xs

    Xs

    Xs

    A

    B

    C

    rs

    SCi2

    SCNN 22

    SCN 2

    1i

    1i

    1i

    1i

    1i

    1 вторичной обмотки трансформатора

    2

  3. 1i

    SCi2

    15

    0

    Cur

    аренда

    в р

    .u. o

    f tra

    nsfo

    rmer

    rate

    d cu

    rrent

    % 100 *) (2

    2

    NNX SC = 0100

    Рис. процент короткозамкнутых витков

    Проблема традиционной дифференциальной защиты трансформатора заключалась в том, что именно эти низкоуровневые межвитковые замыкания не могли быть обнаружены при общей чувствительности, представленной характеристикой ограничения срабатывания дифференциальной защиты.Даже относительно высокой чувствительности в первом участке характеристики ограничения срабатывания дифференциального реле может быть недостаточно. Если, например, минимальный ток срабатывания дифференциального реле, например параметр IdMin в первой части характеристики ограничения срабатывания реле установлен на 30%, незначительное межвитковое замыкание, которое первоначально вызывает только дифференциальный ток, скажем, 10%, не может быть обнаружено, пока оно не превратится в более серьезное повреждение с более высокими дифференциальными токами.

    3

  4. кВЭ с 1151 1 = кВЭ с 1151 2 =

    ==

    01

    01

    802.130

    802.131

    с

    с

    ZZ

    ==

    02

    02

    808.190

    802.131

    с

    с

    000 ZyeZ

    с

    ZyeZ система питания машины Однолинейная схема

    Давайте рассмотрим простую систему, показанную на рисунке 3., и исследуем фазовое соотношение между фазными токами на входе и выходе из защищенного силового трансформатора. Для простоты рассматривается трансформатор с коэффициентом трансформации, равным единице, и смещением фаз в ноль градусов.

    Полные сопротивления прямой, обратной и нулевой последовательности для эквивалентных источников S1, S2 и трансформатора приведены на рисунке 4.

    Для системы, показанной на рисунке 3., было смоделировано внутреннее замыкание фазы на землю внутри трансформатора. Было применено сопротивление короткого замыкания в сто Ом.

    Для нагрузки 150 МВА, соответствующей углу закручивания в двадцать два градуса между источниками S1 и S2, последовательность цепей для короткого замыкания в середине трансформатора показана на рисунке 4.

    4

  5. 01 4.22661 = kVE s

    02 0661 = kVE S

    = 3003R

    802.13

    802.13

    802.13

    802.13

    802.13

    802.13

    802.13

    802.13

    802.13

    802.13

    802,13

    889 8897.3

    Рисунок 4: Схема последовательности для внутреннего повреждения трансформатора

    В таблице 1 приведены фазные токи на обеих сторонах трансформатора (S1 и S2) для повреждения в середине трансформатора и сопротивления короткого замыкания в сотни Ом.

    Таблица 1: Расчетные фазные токи для замыкания фазы на землю в трансформаторе

    Фаза Фазные токи на S1 (амперы и градусы)

    Фазные токи на S2 (амперы и градусы)

    A 4.15089,1 152465 B 99749 81749 C 138749 42749

    Ток, протекающий от сборной шины наружу вдоль трансформатора, считается положительным. Точно так же ток, текущий от трансформатора наружу по системе, считается отрицательным.

    Очевидно, что для нагрузки или внешнего повреждения токи на стороне трансформатора (S1 и S2) близки к 180 градусам.

    График фазных токов A от Источника 1 и Источника 2 (Рисунок 5) показывает, что фазовый угол между ними составляет 167 градусов. Угол между фазой B и током C составляет 180 градусов. Внутреннее замыкание фазы А на землю может попасть в зону ограничения дифференциального реле трансформатора.

    5

  6. Токи фазы A на стороне S1 и S2

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    03

    20 -10 0 10 20

    Real

    Imag

    inar

    y

    Ia (S1) Ia (S2)

    Рисунок 5: Угол и величина тока фазы A на стороне Sq и S2 трансформатора

    От На рис. 4 токи обратной последовательности на стороне S1 и S2 трансформатора близки к 0 градусам.Дифференциальный элемент тока обратной последовательности сработает при таком коротком замыкании с высоким сопротивлением.

    Из предыдущего анализа очевидно, что кто-то может сделать элемент фазового дифференциала безопасным и надежным при многофазном КЗ, имея при этом дифференциальный ток обратной последовательности для повышения чувствительности (Таблица 2).

    Наличие относительно больших токов обратной последовательности само по себе является доказательством нарушения в энергосистеме, возможно, неисправности силового трансформатора.Токи обратной последовательности — это измеримые индикаторы ненормальных условий, аналогичные токам нулевой последовательности. Один из нескольких ADV

  7. Измеритель коэффициента поворота трансформатора Набор для проверки коэффициента поворота

    1000 долларов.00–2 000 долларов США

    / Ед. изм
    | 1 измеритель коэффициента поворота единиц / единиц (Мин. Заказ)

    Перевозка:
    Поддержка
    Морские перевозки
    Время выполнения:
    Количество (шт.) 1–1 > 1
    Приблиз.Срок (дни) 7 Оборотная
    Настройка:

    Индивидуальный логотип
    (Мин.Заказ: 1 шт.)

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *