01.02.2025

Как проверить трансформатор тока мультиметром: Как проверить трансформатор мультиметром ⋆ diodov.net

Содержание

Как проверить трансформатор мультиметром ⋆ diodov.net

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле. Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС. При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.

Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

E ~ w.

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

Так как

E1 > E2,

то

w1 > w2.

Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:

S1 = S2.

А так как мощность – это произведение тока i на напряжение u

S = u∙i,

то

S1 = u1∙i1; S2 = u2∙i2.

Откуда получаем простое уравнение:

u1∙i1 = u2∙i2.

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:

kт = w1 / w2 = E1 / E2.

Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т. д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.

Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательн

Как проверить транзистор мультиметром ⋆ diodov.net

Если под рукой нет документации на биполярный транзистор, то мультиметр позволяет определить некоторые параметры и выводы транзистора. Поэтому рассмотрим, как проверить транзистор мультиметром.

Принципиально различают два вида биполярных транзисторов: npn и pnp структуры. Принцип работы их аналогичен. Отличие заключается лишь в полярности подключения источника питания и других полярных радиодеталей: электролитических конденсаторов, диодов, светодиодов и т. п.

Упрощенно любой биполярный транзистор можно представить в виде двух последовательно и встречно соединенных диодов, поэтому рекомендую изначально ознакомиться с тем, как проверить диод. Однако следует понимать, что если взять и соединить таким образом два диода, то транзистор не получится. Но в данном случае мы можем допустить такое упрощение.

Место соединения двух условных диодов называется базой. А два оставшихся вывода, соответственно будут эмиттер и коллектор. Теперь рассмотрим, как проверить транзистор мультиметром и определить его выводы.

Проще всего определить базу. С нее и начнем. Если относительно одного вывода ток будет протекать в сторону других выводов, то это и есть база. Когда на базе находится положительный щуп, то значит, то биполярный транзистор имеет npn структуру. В противоположном случае – pnp структуру.

Когда база определена, осталось узнать, какой из выводов является эмиттером, а какой коллектором. Для этого следует выполнить «прозвонку» выводов между базой и другими выводами и сравнить показания двух падений напряжений. Большее значение соответствует эмиттеру, а меньшее – коллектору.

Как проверить транзистор мультиметром наверняка

У современных биполярных транзисторов эта разница выражена не очень явно и бывает, что мультиметр показывает одинаковые значения. Поэтому с целью однозначного определения выводов можно воспользоваться функцией измерения коэффициента усиления биполярного транзистора по току. Для этого переключатель устанавливается на отметке hFE. Этому режиму соответствует специальный режим на передней части корпуса. Он имеет 8 отверстий: 4 для pnp структуры и 4 для npn структуры. Отверстия для эмиттера дублируются, поскольку транзисторы могут иметь разное расположение выводов относительно корпуса. Поэтому такой подход позволяет определить коэффициент усиления по току транзистора с любой распиновкой.

Структуру транзистора ранее мы уже научились определять «прозвонкой». С базой тоже проблем нет. Осталось убедиться в правильности соответствия коллектора и эмиттера. Вставляем полупроводниковый прибор в нужные отверстия. Если на дисплее отображается число в среднем от 30 и выше, то коллектор с эмиттером определены верно, а данное число показывает коэффициент усиления по току. В противном случае нужно поменять местами два вывода.

Я надеюсь статья стала полезной и Вы нашли ответ на вопрос, как проверить транзистор мультиметром. Более подробно с работой мультиметра можно ознакомиться, перейдя по ссылке.

Еще статьи по данной теме

Как проводить проверку трансформаторов тока

Трансформатор тока (ТТ) – это электромагнитное устройство, изменяющее частоту или напряжение тока по заданным параметрам. Они бывают совсем маленькими, размещенными на электронных платах или представлять собой большие промышленные конструкции, находящиеся в закрытой зоне.


Принцип работы

Устройство состоит из двух стержней, называемых магнитопроводом. Его конструкция служит одновременно основой для крепления обмоток, отводов, переключателей и замыкает магнитный поток. Напряжение подается на провод первичной обмотки, а снимается – на вторичной. ТТ так же может быть измерительным.

Возможные неполадки

ТТ имеют изолированный корпус и выводы для подключения источника и вторичных устройств. Некоторые устройства можно проверить самостоятельно, для проверки работоспособности других, необходимо иметь квалификацию и соответствующий допуск к высоковольтному оборудованию. Причина неисправности в повреждениях:

  • Корпус;
  • Магнитопровод;
  • Обрыв обмоток;
  • Изоляция обмоток;
  • Износ контактов и выходов.

Проверка трансформатора

Внешний осмотр может показать появление сколов на внешней изоляции, состояние клемм, загрязнения, наличие повреждений.

Изоляция, обрыв

Все витки обмоток изолированы друг от друга лаковым диэлектриком. При износе происходит замыкание, а сам прибор нагревается. Целостность показывает наличие напряжения при измерении мультиметром. При обрыве на дисплее высветится единица.

Магнитопровод или сердечник

У понижающих приборов при отключенной нагрузке измеряется ток холостого хода, напряжение на входе и выходе. Полученные данные должны соответствовать паспортным. У измерительных проверяют зависимость намагничивания обмотки от подаваемого напряжения. Увеличивая напряжение на второй обмотке, снимают несколько значений. Создают около 10 точек за одно включение. Резкие изменения этой указывают на повреждения сердечника.

Если есть возможность, проводят внешний осмотр на отсутствие ржавчины и целостность пластинок.

Износ контактов

Устройство не работает или отключается от сети, сильно нагревается при работе. При проверке работоспособности используется мультиметр и внешний осмотр. Так же выявить неисправность можно с помощью светодиода, замыкая его на первом и втором выходе, но такой способ не точен и может показать лишь поломки, работа при которых невозможна.

За подробной информацией перейдите на сайт priboravtomatika.ru



( Пока оценок нет )

Узнаем как проверить трансформатор мультиметром? Инструкция




Узнаем как проверить трансформатор мультиметром? Инструкция li { font-size:1.06rem; }
}.sidebar .widget { padding-left: 20px; padding-right: 20px; padding-top: 20px; }::selection { background-color: #4f4f4f; }
::-moz-selection { background-color: #4f4f4f; }a,.themeform label .required,#flexslider-featured .flex-direction-nav .flex-next:hover,#flexslider-featured .flex-direction-nav .flex-prev:hover,.post-hover:hover .post-title a,.post-title a:hover,.sidebar.s1 .post-nav li a:hover i,.content .post-nav li a:hover i,.post-related a:hover,.sidebar.s1 .widget_rss ul li a,#footer . widget_rss ul li a,.sidebar.s1 .widget_calendar a,#footer .widget_calendar a,.sidebar.s1 .alx-tab .tab-item-category a,.sidebar.s1 .alx-posts .post-item-category a,.sidebar.s1 .alx-tab li:hover .tab-item-title a,.sidebar.s1 .alx-tab li:hover .tab-item-comment a,.sidebar.s1 .alx-posts li:hover .post-item-title a,#footer .alx-tab .tab-item-category a,#footer .alx-posts .post-item-category a,#footer .alx-tab li:hover .tab-item-title a,#footer .alx-tab li:hover .tab-item-comment a,#footer .alx-posts li:hover .post-item-title a,.comment-tabs li.active a,.comment-awaiting-moderation,.child-menu a:hover,.child-menu .current_page_item > a,.wp-pagenavi a,.entry.woocommerce div.product .woocommerce-tabs ul.tabs li.active a{ color: #4f4f4f; }.themeform input[type=»submit»],.themeform button[type=»submit»],.sidebar.s1 .sidebar-top,.sidebar.s1 .sidebar-toggle,#flexslider-featured .flex-control-nav li a.flex-active,.post-tags a:hover,.sidebar.s1 .widget_calendar caption,#footer .widget_calendar caption,. author-bio .bio-avatar:after,.commentlist li.bypostauthor > .comment-body:after,.commentlist li.comment-author-admin > .comment-body:after,.themeform .woocommerce #respond input#submit.alt,.themeform .woocommerce a.button.alt,.themeform .woocommerce button.button.alt,.themeform .woocommerce input.button.alt{ background-color: #4f4f4f; }.post-format .format-container { border-color: #4f4f4f; }.sidebar.s1 .alx-tabs-nav li.active a,#footer .alx-tabs-nav li.active a,.comment-tabs li.active a,.wp-pagenavi a:hover,.wp-pagenavi a:active,.wp-pagenavi span.current,.entry.woocommerce div.product .woocommerce-tabs ul.tabs li.active a{ border-bottom-color: #4f4f4f!important; }

.search-expand,
#nav-topbar.nav-container { background-color: #282828}@media only screen and (min-width: 720px) {
#nav-topbar .nav ul { background-color: #282828; }
} #header { background-color: #dddddd; }
@media only screen and (min-width: 720px) {
#nav-header .nav ul { background-color: #dddddd; }
]]>




Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

При большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой, которая как устранить проверить и проверить конденсатор? Хороший, плохой (мертвый), короткий или открытый?

Здесь мы можем проверить конденсатор аналоговым (измеритель AVO, т. Е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо он в хорошем состоянии, либо следует заменить его новым..

Примечание. Чтобы определить значение емкости, вам понадобится цифровой измеритель с функциями измерения емкости.

Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание .

Связанные сообщения:

Метод 1.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов. Будьте осторожны, выполняя эту практику, так как это опасно.Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2–6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждение и рекомендации по тестированию конденсатора методом 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство по проверке конденсатора этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
  5. Отсоедините предохранительные провода от источника питания 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (пожалуйста, сделайте это осторожно и убедитесь, что у вас есть защитные очки).
  7. Если возникает сильная искра, то конденсатор исправен .
  8. Если дает слабую искру, то это конденсатор плохой и немедленно замените его на новый.

Похожие сообщения:

Метод 2.

Проверка конденсатора аналоговым мультиметром

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.

  1. Убедитесь, что предполагаемый конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Обратите внимание на показания и сравните со следующими результатами.
  6. Короткие конденсаторы : Закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
  8. Good Capacitors : Сначала сопротивление будет низким, а затем постепенно увеличится до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра (DMM), выполните следующие действия.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
  3. Подключите выводы измерителя к клеммам конденсатора.
  4. Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. А потом сразу вернется в OL (Open Line).Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5. Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, значит Конденсатор не работает .

Вы также можете проверить:

Метод 4.

Проверка конденсатора с помощью мультиметра в режиме емкости

Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или мультиметр с функцией проверки емкости.Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (значение, напечатанное на коробке контейнера конденсатора).
  7. Если вы читаете значительно меньшую емкость или ее отсутствие вообще, то конденсатор мертв, и вам следует его заменить.

Связанные сообщения:

Метод 5.

Тестирование конденсатора простым вольтметром.

  1. Обязательно отсоедините один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатор от цепи (при необходимости вы также можете полностью отключить его)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем нижеприведенном примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд до номинального значения. (не до точного значения, но меньше этого i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Убедитесь, что положительный (красный) вывод источника напряжения подключен к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательную и положительную клеммы конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.
  5. Запишите начальное значение напряжения на вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания очень малы, значит, конденсатор мертв. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Связанные сообщения:

Метод 6.

Найдите значение конденсатора, измерив значение постоянной времени

Мы можем найти значение конденсатора, измерив постоянную времени (TC или τ = Тау), если известно значение емкости конденсатора в микрофарадах (обозначено мкФ), напечатанное на нем i.е. конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки около 63,2% приложенного напряжения при зарядке через резистор известного значения, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:

τ = RxC

Где:

  • R = Известный резистор
  • C = Значение емкости
  • τ = TC или τ = Tau (постоянная времени)

Например, если напряжение питания 9V , затем 63.2% из этого составляет около 5,7В .

Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.

Обязательно отключите, а также разрядите конденсатор от платы.

Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от него составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени) .

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, поскольку он не работает должным образом.

Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% от пикового напряжения.

Полезная информация : Можно также измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать так же, как в формуле, чтобы найти емкость конденсатора.

Связанные сообщения:

14 символов мультиметра и их значения

Примечание: это сообщение может содержать партнерские ссылки.Это означает, что мы можем бесплатно для вас заработать небольшую комиссию за соответствующие покупки.

Они не делают их так, как раньше. Вы все еще можете купить старый аналоговый мультиметр своего дедушки в любом хозяйственном магазине или в Интернете, и они все еще находят применение.

Лучшие современные мультиметры полностью цифровые, и они доминируют на рынке. Неудивительно, что благодаря числовому дисплею, который отображает измеренное значение с максимальной точностью, старые аналоги ушли на второй план.

А что означают символы на мультиметре ? Не беспокойтесь об этом, мы вас поддержим.

Что такое мультиметр?

Давайте начнем с простого: мультиметр — это инструмент, который электрики или все, кому нужно, используют для проверки тока (в амперах), напряжения (в вольтах) и сопротивления (в омах) устройства, которое выводит электричество. Мультиметры бывают аналоговыми, как упоминалось выше, и используют иглу для получения показаний, но цифровые мультиметры гораздо более распространены.

Мультиметр состоит из четырех основных компонентов:

  1. Экран дисплея , на котором отображаются выполненные измерения
  2. Различные кнопки , управляющие инструментом.
  3. Поворотный переключатель , который позволяет вам выбрать, какую единицу измерения вы хотите использовать.
  4. Входные порты для подключения измерительных проводов.

Как читать символы на мультиметре?

К счастью, текущие символы на мультиметрах были более или менее стандартизированы одной из самых популярных марок мультиметров, Fluke.

Единственное различие, которое вы, вероятно, увидите между мультиметрами, — это дополнительные символы вокруг поворотного переключателя, которые вы можете прочитать с помощью кнопки функции / переключения (№4 ниже).

1. Кнопка удержания

Когда вы сняли показания, вы можете нажать кнопку удержания, чтобы зафиксировать измерение. Это чрезвычайно полезно, если вам нужно иметь под рукой измерения, пока вы работаете над своим проектом.

2. Кнопка Min / Max

Сохранение введенных значений. Мультиметр подаст звуковой сигнал при превышении верхнего / нижнего значения, и новое значение будет сохранено.

3. Кнопка диапазона

Позволяет переключаться между диапазонами измерителя.

4. Функциональная кнопка

Позволяет активировать вторичные функции вокруг шкалы, обычно обозначаемые желтым текстом или значками. Сравнимо с клавишей Ctrl или Alt на клавиатуре.

5. Напряжение переменного тока

Обозначается буквой V с волнистой линией наверху. На принципиальной схеме, однако, символы вольтметра обычно представлены заглавной буквой V внутри круга. Это параметр, который вы будете использовать чаще, чем что-либо другое, и он измеряет напряжение объекта, с которым вы работаете.

6. Напряжение постоянного тока

Обозначается заглавной буквой V с тремя дефисами над ней и одной линией над ней. Думайте об этом как о букве V с частью дороги над ней. Вы будете использовать кнопку напряжения постоянного тока при измерении цепей меньшего размера.

7. Милливольты переменного тока

Обозначается милливольтами и волнистой линией наверху для тестирования небольших цепей с использованием низкого напряжения переменного тока. Точно так же есть кнопка милливольт постоянного тока, три дефиса с прямой линией над ними, и обычно она находится рядом с кнопкой милливольт переменного тока.Вы должны использовать функциональную кнопку, чтобы переключиться на настройку постоянного тока.

8. Сопротивление

Выглядит как омега-буква и измеряет сопротивление, чтобы помочь вам получить точное значение сопротивления. Это также может помочь вам определить, перегорел ли предохранитель, по отображению букв OL.

9. Непрерывность

Обозначается символом, который вы обычно видите для обозначения звуковых волн. Это измеряет, есть ли две точки непрерывности, и помогает определить, есть ли у вас обрыв или короткое замыкание.

10. Тест диодов

Обозначается стрелкой, указывающей вправо, со знаком плюс рядом с ней. Определяет, исправен ли у вас диод или нет.

11. Переменный ток

Обозначается заглавной буквой A с волнистой линией наверху, которая может измерять нагрузку, которую использует объект.

12. Постоянный ток

Обозначается заглавной буквой A с тремя дефисами и линией над ней. Измеряет постоянный ток объекта, с которым вы работаете.

13. Выключатель

Не требует пояснений

14.Auto-V / LoZ

На некоторых моделях предотвращает ложные измерения из-за паразитного напряжения.

Надеюсь, это руководство помогло полностью разобраться в сложных функциях мультиметра, чтобы вы могли максимально использовать его в своем следующем проекте. Хотя это устройство может показаться сложным, если вы будете придерживаться основ, вы быстро станете экспертом.

Похожие сообщения:

Как читать мультиметр

У каждого электрика и инженера должен быть мультиметр для работы.Этот инструмент может быть полезен электрикам, но его следует правильно интерпретировать, иначе он окажется менее полезным. Новым электрикам и инженерам очень сложно читать и интерпретировать мультиметр из-за того, что надписи и язык на нем понятны только неспециалисту. Надо выучить и знать, что означает каждый знак и метка на мультиметре. Невыполнение этого требования будет означать, что они не смогут использовать устройство. В этом посте мы упростили задачу для новичков, показав им, как считывать показания счетчика и интерпретировать значения на устройстве.

Как прочитать настройки циферблата

Обычно V является знаком напряжения, волнистая линия показывает переменный ток, а прямая или пунктирная линия показывает постоянный ток. Эта линия может отображаться рядом с буквой или над ней.

  • Настроить мультиметр на измерение тока

Ток измеряется в амперах, поэтому он обозначается как «A». Выберите постоянный или переменный ток, в зависимости от того, для какой цепи вы тестируете.Обычно аналоговые мультиметры не могут измерять ток.

  • Определите настройку сопротивления

Обычно обозначается греческой буквой Ω. Этот знак используется для обозначения Ом, которое является единицей измерения сопротивления. В некоторых старых конструкциях используется R для сопротивления.

Если у вашего мультиметра есть эта настройка, оставьте его на dc +. Но если он не читается, dc + и dc- могут быть связаны и настроены на dc-, чтобы устранить проблему.

Помимо настроек тока, напряжения, сопротивления, частоты и емкости, мультиметр имеет несколько других символов, которые человек должен выучить и уметь их использовать.

Обычно мультиметры идут с разными портами. Вы должны прочитать их, прежде чем вставлять в них зонды.

Считывание результата аналогового мультиметра

  • Определите идеальную шкалу аналогового счетчика

Аналоговая шкала имеет иглу за стеклянным окошком. Он перемещается, чтобы указать результаты. Обычно за иглой печатают три дуги. Это три различных шкалы: постоянный и переменный ток для напряжения, Ом для считывания сопротивления и шкала в дБ.

  • Создайте показание шкалы напряжения в соответствии с вашим диапазоном

Считайте шкалу напряжения в соответствии с вашим диапазоном. Это может быть как постоянный, так и переменный ток.

  • Приблизительное значение между числами

Шкала напряжения аналогового мультиметра работает аналогично обычной линейке. Но шкала сопротивления является логарифмической, что означает, что одно и то же расстояние означает различное изменение значения в зависимости от того, где вы находитесь на шкале.

  • Умножьте значение сопротивления на аналоговом измерителе

Проверьте настройку диапазона, на который установлена ​​шкала мультиметра. Он должен предоставить вам число, на которое можно умножить показание.

  • Дополнительная информация по шкале БД

Шкала децибел, также обозначаемая сокращенно как «дБ», на самом деле является самой низкой и самой маленькой на аналоговом измерителе. Чтобы использовать его, требуется дополнительное обучение. Шкала представляет собой логарифмическую шкалу, измеряющую отношение напряжения к соотношению.

Используйте мультиметр для поиска и устранения неисправностей

Начните с установки диапазона мультиметра. Если у вас есть мультиметр с автоматическим выбором диапазона, то для каждого режима можно выбрать различные настройки: напряжение, ток и сопротивление. Перед подключением измерительных проводов к цепи выберите диапазон, в котором вы хотите выполнить поиск неисправностей. Установите диапазон выше более высокого значения, чем тот, который вы хотите проверить.

Измерения мультиметром на частотно-регулируемых приводах с помощью нового цифрового мультиметра Fluke 289

Калибровка и обслуживание контура

Примечание по применению для калибровки и обслуживания контура Введение Технологические контрольно-измерительные приборы требуют периодической калибровки и обслуживания для обеспечения правильной работы.Это примечание по применению содержит

Дополнительная информация

Основные электрические концепции

Основные электрические концепции Введение Современные автомобили включают в себя множество электрических и электронных компонентов и систем: Аудиосистема Освещение Навигация Управление двигателем Управление коробкой передач Торможение и тяга

Дополнительная информация

Токовые клещи i410 / i1010 переменного / постоянного тока

/ i1010 Токовые клещи переменного / постоянного тока. Лист с инструкциями по безопасности XW Прочтите в первую очередь: Информация по безопасности Для обеспечения безопасной эксплуатации и обслуживания токовых клещей выполните следующие инструкции:

Дополнительная информация

10 Мультиметр.Руководство пользователя

10 Мультиметр Руководство пользователя 1991-2001 Fluke Corporation, Все права защищены. Напечатано в США. Все названия продуктов являются товарными знаками соответствующих компаний. 10 МУЛЬТИМЕТР m m Mk ВЫБОР ДИАПАЗОНА ВЫКЛ VDC VAC

Дополнительная информация

Ручной мультиметр для измерения дальности

Руководство пользователя Руководство по измерению дальности MultiMeter, модель 82345 ВНИМАНИЕ: Перед использованием этого продукта прочтите, усвойте и соблюдайте Правила безопасности и Инструкции по эксплуатации, содержащиеся в данном руководстве.! Безопасность! Операция! Обслуживание!

Дополнительная информация

13 распространенных причин выхода из строя мотора

13 распространенных причин отказа двигателя Рекомендации по применению На что обращать внимание и как увеличить время безотказной работы оборудования Двигатели используются повсюду в промышленных средах, и они становятся все более сложными.

Дополнительная информация

= V пик 2 = 0,707 В пик

ОСНОВНАЯ ЭЛЕКТРОНИКА — НАЗНАЧЕНИЕ РЕКТИФИКАЦИИ И ФИЛЬТРА Предположим, вы хотите создать простой электронный блок питания постоянного тока, который работал бы от входа переменного тока (например,g., то, что вы можете подключить к стандартному

Дополнительная информация

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ИНВЕРТОРА TIG

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ИНВЕРТОРА TIG Содержание Предупреждение Общее описание Блок-схема Основные параметры Принципиальная схема Установка и эксплуатация Предостережение Техническое обслуживание Список запасных частей Поиск и устранение неисправностей 3 4 4

Дополнительная информация

Цифровой мультиметр с автоматическим выбором диапазона

Руководство пользователя Цифровой мультиметр с автоматическим выбором диапазона Модель No.82139 ВНИМАНИЕ: Перед использованием данного продукта прочтите, усвойте и соблюдайте Правила техники безопасности и Инструкции по эксплуатации, содержащиеся в данном руководстве. Техника безопасности при эксплуатации

Дополнительная информация

Основы цифровых мультиметров

IDEAL INDUSTRIES INC. Основы цифровых мультиметров Руководство, которое поможет вам понять основные характеристики и функции цифрового мультиметра. Автор: Патрик Эллиотт, инженер по продажам, IDEAL Industries,

Дополнительная информация

Что такое мультиметр?

Что такое мультиметр? Мультиметр — это устройство, используемое для измерения напряжения, сопротивления и тока в электронике и электрическом оборудовании.Он также используется для проверки целостности цепи между 2 точками, чтобы убедиться, что

Дополнительная информация

Оборудование для обогрева ископаемого топлива

Принципы работы с оборудованием, работающим на ископаемом топливе, и методы поиска и устранения неисправностей Примечание по применению Эта информация по применению была написана, чтобы дать вам понимание основных принципов нагрева ископаемого топлива

Дополнительная информация

Широтно-импульсная модуляция (ШИМ)

Руководство по технологиям управления приводами переменного тока с ШИМ, редакция 1.0 с широтно-импульсной модуляцией (PWM) На рисунке 1.8 показана блок-схема блока преобразования мощности в приводе PWM. В этом типе привода выпрямитель диодный мост

Дополнительная информация

Лабораторная работа E1: Введение в схемы.

E1.1 Лабораторная работа E1: Введение в схемы Цель этой лабораторной работы — познакомить вас с некоторыми основными приборами, используемыми в электрических схемах. Вы научитесь пользоваться источником постоянного тока, цифровым мультиметром

.

Дополнительная информация

Электрический тестер T + и T + PRO

Инструкция к электрическим тестерам T + и T + PRO Введение Электрические тестеры Fluke T + и T + PRO (тестер) имеют следующие функции: измерение переменного и постоянного напряжения, от 12 В до 600 В, с или

Дополнительная информация

Фанкойл Управление двигателем EC

Fan Coil EC Motor Control G3 PWM BARD Плата Enviro-Tec Generation 3 PWM (G3 PWM) передает сигнал с широтно-импульсной модуляцией (PWM) на EC-двигатель для управления скоростью вращения вентилятора.Плата запрограммирована на заводе

Дополнительная информация

Инжектор AXIS T81B22 DC 30 Вт

РУКОВОДСТВО ПО УСТАНОВКЕ Инжектор AXIS T81B22 DC 30 Вт РУССКИЙ Об этом документе Этот документ содержит инструкции по установке AXIS T81B22 в вашей сети. Предыдущий опыт работы в сети будет полезен

Дополнительная информация

Лаборатория 3 Выпрямительные схемы

ECET 242 Электронные схемы Лаборатория 3 Выпрямительные схемы Страница 1 из 5 Название: Задача: Студенты, успешно завершившие это лабораторное упражнение, будут выполнять следующие задачи: 1.Узнайте, как построить

Дополнительная информация

7-ФУНКЦИОНАЛЬНЫЙ ЦИФРОВОЙ МУЛЬТИМЕТР

7 ФУНКЦИОНАЛЬНЫЙ ЦИФРОВОЙ МУЛЬТИМЕТР 90899 ИНСТРУКЦИИ ПО ЭКСПЛУАТАЦИИ 3491 Mission Oaks Blvd., Camarillo, CA 93011 Посетите наш веб-сайт http://www.harborfreight.com Авторские права 2004 г., компания Harbor Freight Tools. Все права

Дополнительная информация

Анализ мощности приводов двигателей с ШИМ

Анализ мощности приводов с ШИМ-управлением. Примечание по применению 1.Введение Трехфазные двигатели переменного тока были рабочей лошадкой промышленности с первых дней развития электротехники. Они надежны, эффективны,

Дополнительная информация

ИНДИКАТОР ПОЛОЖЕНИЯ ТОЧЕК PPI4

ИНДИКАТОР ПОЛОЖЕНИЯ ТОЧЕК PPI4 Расширенный PPI с регулируемой яркостью и упрощенным подключением Контролирует кратковременное положительное рабочее напряжение на двигателях точек при их переключении Загорается соответствующий

Дополнительная информация

Цифровой мультиметр с семью функциями

Семифункциональный цифровой мультиметр 98025: инструкция по установке и эксплуатации, распространяемая исключительно компанией Harbor Freight Tools.3491 Mission Oaks Blvd., Camarillo, CA 93011 Посетите наш веб-сайт: http://www.harborfreight.com

Дополнительная информация

Руководство пользователя. ProcessMeter

787 ProcessMeter Руководство пользователя Апрель 1997 г., ред. 3, 12/01 1997, 1898, 2000, 2001 Fluke Corporation, Все права защищены. Напечатано в США. Все названия продуктов являются товарными знаками соответствующих компаний. LIMITED

Дополнительная информация

Устранение неисправностей генераторов соли

Устранение неисправностей солевых генераторов ПРИМЕЧАНИЕ Отключите питание устройства перед тем, как приступить к обслуживанию или ремонту.Проблемы и меры по их устранению Проблема Возможная причина Действие по устранению Низкий уровень хлора или его отсутствие. Низкий стабилизатор

Дополнительная информация

Лабораторная работа 1: Цифровой осциллограф.

PHYSICS 220 Лаборатория физической электроники 1. Цифровой осциллограф. Цель: познакомиться с осциллографом, широко распространенным инструментом для наблюдения и измерения электронных сигналов. Аппарат: Tektronix

Дополнительная информация

Основы сигнатурного анализа

Основы сигнатурного анализа Углубленный обзор тестирования при отключении питания с использованием аналогового сигнатурного анализа www.huntron.com 1 www.huntron.com 2 Содержание РАЗДЕЛ 1. ВВЕДЕНИЕ … 7 ЦЕЛЬ …

Дополнительная информация

Основы инверторных двигателей

Основы двигателей с инверторным питанием. Техническое руководство 10/02 MN780 Содержание Стр. Растущее использование инверторов ………………………….. ……………………………. 1 Как инверторы влияют на двигатели ……….. …………………………………………………

Дополнительная информация

LOXONE 12-канальный усилитель

12-канальный усилитель LOXONE Артикул: 200110 Благодарим вас за покупку 12-канального усилителя Loxone. Универсальность усилителя делает его идеальным выбором практически для любого типа пользовательских мультирум

.

Дополнительная информация

Talon VFD / Inverter Meter

Подана заявка на патент на ЧРП / инверторный расходомер Talon.Авторское право 2009. Стр. 1 из 37 Содержание Talon VFD / Inverter meter … 1 Содержание … 2 ПРЕДУПРЕЖДЕНИЕ … 3 Краткое описание продукта … 4 Предостережения относительно продукта и предположения

Дополнительная информация

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *