04.10.2024

Как спаять ленту диодную: Как паять светодиоды (SMD, отпаять от алюминиевой платы) обычным паяльником: инструкция

Содержание

Как паять светодиоды (SMD, отпаять от алюминиевой платы) обычным паяльником: инструкция

Сегодня светодиоды признаны обычными пользователями, радиолюбителями и промышленными предприятиями самыми экологичными, компактными и энергоэффективными источниками света. Маломощные диоды используют для подсветки мониторов, мобильных телефонов и в различных игрушках, а мощные светодиоды применяются в цеховых прожекторах и праздничной люминесценции зданий, в рекламном бизнесе. Но непривычный источник света имеет ряд особенностей обслуживания в отличие от энергосберегающих аналогов (ЭСЛ) и ламп накаливания. Не так просто, например, паять светодиоды. Этому вопросу посвящена статья.

Строение диодных элементов

Главное отличие от других ламп в том, что светодиоды имеют плюсовой и минусовой контакт (анод и катод). При пайке диода в цепи важно это учитывать.

Также нужно понимать, что бывают DIP и SMD светодиоды.

Плюсовой контакт в DIP определяется достаточно просто. Стоит внимательно взглянуть внутрь колбы. Плюсовой вывод – анод – меньше минусового. На рисунке плюс – слева.

Есть и второй способ – посмотрите на длину ножки. У положительного вывода она длиннее.

Третий способ – мультиметром. Черная клемма прибора – минусовая, красная – плюсовая. Ставим на прозвон:

Последний способ подходит для обоих типов.

Это, пожалуй, главное, что стоит знать о строении светодиода. Если интересна теория, рекомендуем посмотреть видео:

Особенности пайки

Сложностей в пайке светодиодов DIP типа обычно не возникает. Зная простые правила пайки, ошибиться сложно:

Пайка светодиодов – это в принципе несложно. Небольшие проблемы, как правильно припаять диод, появляются при работе с SMD типом. Дело в том, что эти диоды не имеют токоведущих ножек, вместо них – площадки контактов. И, как правило, SMD паяются в платы или в лентах.

Что необходимо для работы

Для самостоятельной пайки приготовьте необходимый минимум:

  • Паяльник не более 60 ВТ или термовоздушный паяльный фен.
  • Канифоль или специальная паста для пайки (подробней в главе «выбор пасты для пайки).
  • Оловянно-свинцовый припой.

Читайте также: Как сделать мигалку из светодиода: инструкции и схемы.

Опытные радиолюбители советуют использовать для SMD типа паяльники с жалом, заточенным под угол. Так, площадка пайки быстро прогреется, припой расплавится, а диод не испортится от перегрева.

Пайка smd светодиодов

Всего два основных вида пайки. Посмотрите данное видео, чтобы определиться с окончательным набором инструментов:

Дополнительно могут понадобиться:

  • Регулируемая подставка.
  • Пинцет.
  • Ножницы.
  • Бокорезы.
  • Кисточка для флюса.

Температура пайки

Если вы неопытный в пайке, тем более светодиодов, то рекомендуем пользоваться все-таки феном. Шанс перегреть диод резко понижается. Кроме этого паяльник можно подобрать не тот. Максимальная температура нагрева жала должна быть 300 °C.

Читайте также: Основные способы определения полярности у светодиода.

Конечно, можно купить паяльник с регулируемой температурой. Но это дополнительная трата денег. Впрочем, радиолюбителей со стажем нередко встречаются такие модели паяльника.

Для закрепления материала советуем посмотреть еще одну видео-инструкцию, уже конкретно по пайке феном:

Как выпаять светодиод из ленты

Другая сложность при пайке SMD типа – это замена старого элемента на новый в светодиодной ленте. Решается простым способом:

  1. Перед тем как отпаять диоды, закрепите ленту, чтобы не попасть паяльником на токопроводящие дорожки.
  2. Осторожно плавьте олово вокруг контактов и просовывайте под диод лезвие. Приподнимаем сначала с одной стороны, потом с другой, пока диод не будет свободен.

Как выпаять светодиод из LED-лампочки

Вместо лампочек накаливания или энергосберегающих ламп в патрон светодиод не вставишь, нужен как бы посредник. Им является корпус лампы, в котором на плате расположены сразу несколько кристаллов.

Для удобства рекомендуется плотно намотать медную проволоку на жало, сечением не больше 4 мм.

Пинцетом или иголкой отодвигаем кристалл вниз, параллельно контактам.

Как припаять резистор к светодиоду

Если в вашей схеме не предусмотрено ограничение тока так называемым драйвером, то можно по-старинке воспользоваться резисторами.

Подключать напрямую в сеть светодиоды нельзя, так как кроме повышенного тока, он еще и переменный. Резистор и драйвер преобразуют ток в постоянный.

Каждому светодиоду в идеале нужен отдельный резистор. Это если диодов немного. Если их, например, сотня, как в некоторых гирляндах, или пусть даже пару десятков, придется приобрести драйвер.

Если сталкиваетесь с понятиями «резистор» и «драйвер» впервые, мы подобрали наглядные инструкции:

Резистор нужно подключать в схеме после питания и до светодиода. Паяется он просто. В главе «Особенности пайки» мы оставили видео, как паять любой контакт (см.выше). Никаких особенностей здесь нет. Единственное, в чем можно сомневаться – это выбор флюса, то есть вещества, которое очищает поверхность контакта от оксидной и/или жировой пленки. Как вариант – специальная паста.

Читайте также: Как правильно подключить RGB ленту: пошаговая инструкция.

Выбор пасты для пайки

Качество любого флюса выражается в том, что при пайке он не выгорает, только едва испаряется, а продукты его разложения легко удаляются растворителем. Лучший флюс – специальные пасты. Мы выбрали топовые наименования, исходя из опыта знакомых мастеров:

  • Interflux 2005 и 8300
  • Kingbo RMA-218
  • Amtech RMA-223
  • Флюс-гель Rexant BGA и SMD

На всякий случай держите в уме старые, «дедовские» способы найти флюс и в глухой деревне. Это таблетка аспирина, фруктовый сок, оливковое масло, нашатырь с глицерином, канифоль со спиртом. Наиболее очевидный для сельской местности – смола сосны или ели. Нужно растопить смолу на слабом огне, а потом разлить по спичечным коробкам.

Ошибки при пайке

  1. Загрязнение жала паяльника. После каждой пайки советуем очищать – элементарно тряпочкой или губкой.
  2. Перегрев места пайки. Когда припой растекся, сразу убирайте паяльник, не нужно ждать, пока провод или деталь не перегреются.
  3. Мало флюса. Если его недостаточно или он некачественный, то спайка может быть недостаточно плотной, слабой.

В заключение

Как можно было убедиться, работа со светодиодами несколько сложней, чем с лампами накаливания. Однако эти сложности нивелируются качеством света. Радиолюбители в последние десять лет придумали на основе осветительных диодов десятки самоделок, которые не уступают заводским аналогам.

Если вас заинтересовала статья, пишите комментарии и делитесь информацией в социальных сетях.

2 способа — как подключить светодиодную ленту к батарейке. Без пайки и с пайкой.

Чаще всего светодиодная лента подключается через специальные блоки питания. Они понижают и выпрямляют сетевое переменное напряжение 220В до необходимых 12В или 24В, в зависимости от вида и марки изделия.

Однако можно все это дело подключить и от простой батарейки или их связки из нескольких штук.

Недостатки и преимущества

У традиционного блока питания есть несколько не очевидных на первый взгляд недостатков:

  • во-первых, его нужно правильно подобрать и рассчитать соответствующую мощность

Ошибка может привести к тому, что он либо сгорит, либо лента будет тускло светить, так и не выйдя на полную яркость. 

  • сложная схема подключения

Особенно это относится к подсветке с дополнительными усилителями, контроллерами и т.п.

  • куча проводов, которые нужно тянуть от блока питания через всю комнату до места подключения к ленте

Плюс не забывайте про провода 220В – от распредкоробки или выключателя, которыми необходимо подключить сам источник питания.

  • необходимость наличия поблизости переменного напряжения 220В
  • габариты и размеры

Если это подсветка потолка, то постоянной головной болью становится вопрос – куда же спрятать эту совсем не миниатюрных размеров коробочку. Зачастую приходится мастерить специальную нишу.

Именно исходя из этих недостатков, многие и задумываются о подключении светодиодной подсветки через батарейки. Сразу вырисовываются преимущества такого решения:

  • такой led лентой можно осветить даже те помещения, где полностью отсутствует напряжение 220В (гараж, сарай, дача без света)
  • получается удобная и безопасная подсветка на кухне (в особенности рабочей поверхности столешницы)
  • сразу же отпадает необходимость прокладки десятков метров не нужной проводки
  • ну и больше не нужно ломать голову, куда же спрятать этот большой, тяжелый блок

Условия применения led подсветки от батареек

Однако такое подключение светодиодной ленты имеет свои ограничения. И применять его можно не везде и не всегда.

Самый главный недостаток – это малая протяженность и малая мощность.

При большой длине Led ленты, например освещение по всему периметру дома или комнаты не малых размеров, все таки придется использовать обычный блок питания с традиционным сетевым напряжением 220V.

Так где же можно применять светодиодные ленты от батареек?

  • шкафы

Это могут быть как шкафчики в спальне (с одеждой и обувью), так и на кухне (с посудой и различными кухонными принадлежностями).

  • книжные полки или картины

Такая подсветка уже не будет портить внешний вид полотна уродливыми проводами, а только подчеркивать его красоту.

  • гаражные помещения небольшой площади
  • погреб в гараже или сарае

Здесь на полную сказывается главное преимущество подсветки от батареек – автономность и независимость от переменного сетевого напряжения.

  • временная подсветка помещений при аварийных ситуациях и полном отсутствии электроснабжения в доме или квартире
  • подсветка рабочей поверхности на кухне, подсветка ванной комнаты или балкона

Только не забывайте в этом случае использовать светодиодную ленту влагозащищенного и герметичного исполнения с защитой IP 55,65.

  • сценическая одежда для выступлений
  • спортивные тренажеры, велосипеды
  • салоны автомобилей

Дополнить варианты применения вы можете самостоятельно, в зависимости от ваших фантазий и потребности.

Принцип подключения

Самым главным условием запуска и продолжительной работоспособности светодиодной ленты от батареек, будет мощность и уровень заряда (емкость) источника питания.

При этом использовать можно любые типы и виды батареек, в том числе и аккумуляторные. Причем данный вариант даже более предпочтителен.

  • во-первых такой источник будет многоразовым

Заканчивается заряд, батарейку отсоединяете, подзаряжаете и пользуетесь подсветкой дальше. В большинстве своем, именно аккумуляторные модели и рекомендуется использовать на кухне и в ванной.

То есть там, где помимо светодиодного освещения, есть еще и традиционное.

  • во-вторых это экономически выгоднее

Отпадает необходимость хранить залежи запасных батареек и своевременно докупать новые.

Применять можно любые типы:

  • и даже таблетки

Главное, собрав их необходимое количество, получить требуемые 10-12 вольт.

Как подключить – 1-й способ

Для подключения вам понадобятся следующие материалы:

  • сами батарейки

Их суммарное напряжение при последовательном подключении должно быть от 8 до 12В. Есть модели А23, они сразу идут на 12В.

Правда хватит такой емкости на очень короткие, маломощные кусочки ленты до 0,5м. При непрерывной работе не более 30-60 минут.

  • паяльник
  • флюс
  • припой
  • многожильные медные провода сечением 0,5-0,75мм2
  • переключатель-тумблер
  • ну и естественно сама светодиодная лента

Самым проблематичным моментом сборки и подключения будет пайка проводов к батарейке.

Порядок пайки следующий:

  • сперва нужно хорошо зачистить контакты

Берете кусочек наждачной бумаги или маленький напильник и аккуратно зачищаете верхний слой напыления с плюса и минуса на батарейке.

  • залуживаете кончики медных проводов
  • наносите флюс и припаиваете провода к батарейке – красный к плюсу, черный – к минусу

Если это временная и очень маломощная подсветка, то некоторые не парятся с паяльником, а просто обеспечивают контакт на батарейке за счет магнитиков.

На некоторых моделях батареек даже есть отверстие, куда можно предварительно вставить проводок.

  • то же самое проделываете с кнопкой или тумблером

Только через него пропускаете всего один провод (плюсовой) и припаиваете его на вход тумблера. Выход пускаете на ленту.

  • пайку проводов на светодиодной ленте нужно выполнять с обязательным соблюдением полярности

Плюс на светодиодной ленте обычно подписывается +12V или просто ”+”. Минус – ”GND”. На RGB подсветке все цвета являются минусовыми контактами.

2-й способ (без пайки)

Чтобы сделать более универсальное устройство, вместо скрученных между собой изолентой батареек, лучше использовать, так называемую кассету или контейнер.

Это уже фактически готовый сменный корпус. Иногда даже с проводами.

Все что вам остается, это припаять тумблер к плюсовому выходу.

В таком устройстве уже не придется каждый раз распаивать-запаивать батарейки, когда они разрядятся.

Просто меняете их, вытаскивая из своих посадочных мест и устанавливаете другие. Причем собрать такую схему можно на несколько уровней напряжения.

Если проводков на кассете нет, то прикупите специальные контакты.

Таким образом вам уже не придется иметь дело с пайкой проводов к самим батарейкам. Кстати, для подключения проводов к светодиодной ленте, также не обязательно иметь паяльник.

Воспользуйтесь коннекторами.

Их существует разнообразное количество. Причем не только для подключения ленты с лентой, но и для подачи на нее питания.

Сколько времени будет светить

Как примерно высчитать, сколько времени будет работать та или иная светодиодная лента на батарейках и какие батарейки под нее лучше подобрать?

Для начала вам нужно узнать название самой ленты и какие светодиоды в ней используются. Вбиваете эту марку в гугл и ищите параметры.

Самый главный – это напряжение и потребляемый светодиодом ток.

Допустим, потребляемый ток одного светодиода RGB ленты, при работе одного канала (свечение красным цветом) будет 18мА. Если работают все 3 цвета, то ток уже достигает 54мА.

Далее подсчитываете, сколько таких светодиодов будет в вашей подсветке. И умножаете этот ток на их количество.

Например, при 50 диодах и свечении ленты на максимальной мощности, общий потребляемый ток будет составлять – 2700мА.

Довольно существенная величина. Такой ток могут выдать аккумуляторные батарейки 18650. Для 12 вольтовой подсветки вам понадобится собрать их в магазине минимум 3 штуки.

Емкость аккумулятора 18650 в самых популярных моделях составляет 2600мА/ч. Есть больше и меньше. Эти цифры означают – данная подсветка на батарейках 18650 при токе потребления 2600мА, будет непрерывно светиться около 1 часа.

Если потребляемый ток превышает номинальный ток разряда аккумулятора, соответственно и лента будет гореть значительно меньший временной промежуток, и наоборот.

Только при этом не забывайте, что у неб

Как подключить светодиодную ленту к проводам без пайки

После того, как вы приобрели светодиодную ленту и изучили ее конструкцию, сразу же возникает вопрос, а можно ли подключить и соединить ее без пайки или даже без спец.коннекторов.

Неужели для монтажа небольшой подсветки на кухне, в спальне или возле компьютерного стола, придется еще изучать все премудрости пайки. Плюс покупать паяльник, канифоль, олово и т.д.

Ведь действительно, не в каждом доме есть паяльник. И приобретать его только ради этой задачи не имеет смысла.

Китайские коннекторы для соединения лент, многим не внушают доверия. Мало того, что они хлипкие и часто ломаются, так и контактное пятно прижима не всегда хорошего качества.

В силу разных причин. Однако есть и исключения, в виде прокалывающих зажимов.

Читайте о них в статье ниже.

Мы же рассмотрим два других более простых способа подключения и соединения светодиодной ленты. Благодаря им, абсолютно любой человек с минимальными затратами, может самостоятельно смонтировать свою подсветку без всякой пайки.

Подготовка светодиодной ленты

На светодиодной ленте, вдоль всей ее протяженности расположены медные дорожки. В верхней части они закрыты защитным слоем.

Есть также специальные места, где ленту можно резать на кусочки. Там никакой зашиты нет и дорожки оголены.

В этих точках, как раз таки и происходит подключение и соединение. Сама медная дорожка здесь может быть покрыта слоем прозрачного лака, который от высокой температуры паяльника обычно сгорает.

Но так как ниже приведенные способы не предусматривают пайки, необходимо легкими движениями лезвия ножа, зачистить и снять этот слой лака.

Иначе лента может моргать или вообще не загореться.

Если у вас герметичная лента в силиконе, то силикон также аккуратно срезается.

После зачистки, медные контакты должны приобрести более светлый цвет и немного блестеть.

Подключение светодиодной ленты через клеммную колодку

Первый способ подразумевает применение самых дешевых и распространенных болтовых клеммников.

Купить их можно за сущие копейки, буквально в любом магазине. У многих такие зажимы изначально уже есть в домашнем хозяйстве.

Они часто применялись и применяются в местах подключения люстр, бра и других светильников. 

Чтобы уменьшить их размеры, срежьте пластиковую изоляцию. Сделать это можно, разрезав обыкновенным канцелярским ножом одну из сторон клеммника.

Для начала выкручиваете болты, и удерживая клемму пассатижами, делаете аккуратный надрез ножом. Этими же пассатижами и отверткой достаете металлическую часть наружу.

После снятия защитной пластмассы, вворачиваете болтики на свои места.

Если контакты светодиодной ленты маленькие, то их можно увеличить, сняв с лицевой стороны необходимое количество защитного слоя.

После этого, между дорожками светодиодной ленты следует сделать надрез, таким образом, чтобы в каждый клеммник свободно входила защищенная часть ленты.

Даже можно немного подрезать ленту по краям, если она будет не помещаться во внутрь.

Такой надрез свободно делается практически до самого светодиода. В местах разреза имеются обозначения мест подключения плюса и минуса от источника питания.

Теперь необходимо вставить подготовленную светодиодную ленту в отверстие клеммника, чтобы закручиваемый болт прижал защищенную часть контакта ленты к ее стенке.

Безусловно, все это соединение нужно заизолировать. Оставлять оголенные части зажимов нельзя.

Термоусадку выбирайте такой длины, чтобы она целиком закрывала клеммник и другие оголенные участки.

После этого, обычной зажигалкой нагреваете трубку до полной усадки. Если появится нагар, желательно его удалить. Подойдет обычная тряпочка смоченная в воде.

Кстати, если нет термоусадки, вполне сгодится и изолента. Оберните ею оголенные части соединения. А чтобы изоляция со временем не отклеилась, прогрейте ее зажигалкой.

На этом все подключение закончено. Осталось подать напряжение от источника питания и проверить работоспособность подсветки и надежность контактов. 

Подключение штекером папа-мама

Второй способ более быстрый, но для него необходимы два разъема питания, в простонародии называемые папа-мама.

Один разъем должен быть с гнездом (мама), а другой со штекером (папа).

Недостатки таких клеммников в том, что они рассчитаны на ток не более двух ампер.

А болтики в них настолько малы, что обычной маленькой отверткой электрика, не особо то и подлезешь. Однако есть даже заводское подключение таким способом.

Полное название этих штекеров:

  • разъем питания 5,5*2,1*10мм гнездо с клеммной колодкой
  • разъем питания 5,5*2,1*10мм штекер с клеммной колодкой

Светодиодная лента подготавливается таким же образом, как и в первом случае.
После чего выкручиваете болты в клеммной колодке, вставляете в нее концы ленты и затягиваете винтики обратно.

Разъемное соединение получается довольно хорошим и относительно надежным. Далее подключаете штекер с разъемом питания к блоку 12В и включаете подсветку.

Безусловно, оба способа проигрывают по надежности в сравнении с пайкой, однако имеют право на жизнь.

Какой из способов выбрать, решать конечно вам, в зависимости от наличия под рукой тех или иных материалов.

как паять светодиодную ленту

Паять светодиодную ленту приходится при использовании ее отрезков различной длины для изготовления светильников, подсветки автомобилей и многих других применений.

Места, в которых можно отрезать ленту нужной длины, представляют собой линию между двумя парами контактных площадок. Места реза показаны красными стрелками.

Места резки led ленты на отрезки.

Как правило, кратность резки одноцветной диодной ленты 3528 составляет 2,5 см, 5см или 10 см в зависимости от количества smd светодиодов в 1 метре ленты – 30, 60 или 120 штук. У ленты с напряжением питания 12 вольт в каждом сегменте расположены включенные последовательно 3 диода и резистор, а все сегменты подключены параллельно к шинам питания, проходящим по краям ленты.

Пайка светодиодной ленты должна производиться маломощным паяльником мощностью не более 40 Вт с использованием пинцета или зажима. Жало должно быть зачищено и залужено. Нельзя допускать перегрева дорожек, светодиодов и резисторов.

Паяльная станция для припаивания проводов к led ленте 3528.

Хорошие результаты при пайке и лужении дает использование специального флюса-геля, но его остатки желательно смывать спиртом, иначе пайка подвергается коррозии и темнеет, хотя есть флюсы, не требующие смывания.

Для пайки светодиодной ленты лучше использовать нейтральные Флюсы.

Пайка необходима для подключения к ленте двух питающих проводов разного цвета необходимой длины. При длине отрезка менее метра сечение провода может быть от 0,2 мм кв. Провод для пайки подготавливают заранее: концы проводов для пайки к ленте зачищают на 2-3 мм и хорошо лудят с помощью олова и канифоли/флюса.

Концы проводов для припаивания к отрезкам диодной ленты хорошо залуживаем.

Контактные площадки на ленте также залуживают и после этого припаивают провода к светодиодной ленте.
При необходимости, площадки перед лужением надо аккуратно зачистить скальпелем.

Припаиваем провод к контактным площадкам светодиодной ленты 3528-120.

Спаять светодиодную ленту с целью соединения ее отрезков для увеличения общей длины можно внахлест, предварительно залудив фольгу контактных площадок. Площадки верхней (накладываемой) ленты надо залудить с двух сторон.

Для пайки светодиодной ленты лучше использовать проверенные временем оловянно-свинцовые припои.

Припои оловянно-свинцовые (ПОС) применяются для пайки в промышленности и в быту, цифра обозначает количество олова в процентах, остальное – свинец. Для примера: ПОС-40 содержит 40% олова, 60% свинца; ПОС-61 содержит 61% олова и 39% свинца и т.д.

Подключение диодной ленты с помощью коннектора.

И еще надо помнить, что лента ленте рознь, т. к. некоторые производители в качестве материала токопроводящих дорожек внутри ленты используют сплавы меди, лужение которых затруднено.

  • Напряжение на светодиоде
  • Схема светодиодной лампы на 220в
  • Лампа ЭРА А65 13Вт
  • Общедомовой учет тепла
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Как соединить диодную ленту: способы соединения светодиодной ленты

    Светодиодные ленты продаются в стандартных катушках. Однако при формировании системы подсветки иногда требуются длинные участки, для которых не хватает размеров стандартных бобинных отрезков. Отдельные участки ленты важно правильно соединить друг с другом. В статье вы узнаете, как же соединить диодную ленту в один отрезок.

    Способы соединения диодной ленты

    Светодиодные ленты продаются в катушках стандартными длинами по 5 метров. Если формировать длинные, непрерывные светящиеся «орнаменты», то полосы одной катушки может не хватить. Существуют разные способы соединения диодной ленты в один непрерывный блок. У каждого из них есть как преимущества, так и недостатки. Рассмотрим подробнее каждый из способов.

    Соединение ленты с помощью пайки

    Это универсальный способ, позволяющий соединить отдельные звенья диодной ленты в единое целое. Целые LED-ленты поделены на звенья, разрезать ленту в других местах не по перфорации недопустимо – это нарушает правила пожарной безопасности. Кроме того, именно на линии перфорации проводников предусмотрены участки для потенциальной спайки.

    Ниже представлен подробный алгоритм, как соединить диодную ленту с помощью паяльника:

    1. Соединение диодной ленты следует начинать с подготовки паяльника. Его жало необходимо очистить от любых посторонних элементов с помощью металлической щетки, и в холодном состоянии протереть мокрой губкой. Работать предстоит с проводником, чья толщина сопоставима с фольгой, так что рекомендуется использовать тонкий припой с канифолью, а температура паяльника не должна превышать 300-350°С. Если будет больше, то участки проводки будут повреждаться при малейшем прикосновении и создать целостную цепь не получится.
    2. Перед тем как соединять диодные ленты между собой, следует зачистить кромки звеньев, которые будут спаиваться, от защитного покрытия. Сверху led-лента заламинирована, а нижняя поверхность имеет клеящий слой. Все эти покрытия будут мешать качественной пайке цепи питания.
    3. При соединении диодных лент между собой главной задачей является спаивание двух проводников (условных «+» и «–») у двух соединяемых в единую цепь звеньев. Поэтому после того, как места спайки очищены от защитных покрытий, их нужно залудить, использовав для этого немного припоя (тонким слоем).
    4. Затем следует наложить кромки лент немного внахлест друг на друга и закрепить в таком положении, зафиксировав их скотчем.
    5. После начинайте прогревать паяльником каждое место предполагаемой спайки вместе с припоем. Когда металл расплавится, аккуратно сформируйте каплю и дайте ей остыть. Сделайте так со всеми жилами.

    В итоге у вас получится единая лента, на которой не будет заметно никаких разрывов. Это особенно важно при установке подсветки в интерьере, например потолочной подсветки светодиодной лентой.

    Особенности способа спайки:

    • Спайка – это универсальный, качественный метод соединения проводов. Но перед тем как соединить диодную ленту данным способом, следует задуматься о своих навыках. Пайка проводников, толщиной с фольгу – это все равно что сваривать стальные листы, толщиной в 2 мм: если с крупным стальными деталями справится и новичок, то варить тонкие листы может только квалифицированный мастер. Равно как и паять фольгу.
    • Если у вас не приспособленный для данных проводников паяльник, например, слишком мощный или же выбран неверный температурный режим, то процедура соединения диодной ленты между собой обернется порчей одного участка за другим. В результате вряд ли получится создать безопасно работающую единую электрическую цепь, а это уже касается вопросов безопасного функционирования лед-подсветки.

    Как соединить диодную ленту без пайки

    Если под рукой нет необходимого оборудования или расходных материалов для процедуры спаивания жил, то соединить отдельные участки светодиодной ленты можно с помощью коннекторов.

     

    Коннектор – это специализированное приспособление, состоящее из двух гнезд и соединяющих медные одножильные провода. Каждое гнездо оборудовано приспособлением, позволяющим плотно и надежно прижать концы проводников светодиодных лент, объединяя их жилы в единую электрическую цепь.

     

    Вот алгоритм того, как соединить диодную ленту в единую цепь с помощью коннекторов:

    1. Каждая светодиодная лента разделена маркером или перфорацией на равные отрезки по 50 мм. Разрезать ленту можно только по данным местам. Здесь также удобнее всего производить зачистку жил проводников цепи.
    2. Каждое гнездо коннектора предназначено для закрепления в нем своего конца led-ленты. Однако перед тем, как соединить диодную ленту с коннектором, следует зачистить каждую жилу. Для этого с помощью монтажного ножа следует с лицевой стороны снять ламинирующий силиконовый слой, а с оборотной стороны – клеящее покрытие, обнажив, таким образом, конец каждого проводника электрической цепи.
    3. На гнезде коннектора следует приподнять прижимную пластину, после чего туда нужно вставить подготовленный, то есть, зачищенный от предохраняющих покрытий конец светодиодной ленты, прямо по направляющим канавкам.
    4. Далее необходимо продвинуть его максимально вперед до плотной фиксации. Контакторы коннектора при этом прижмутся к жилам ленты и образуют с ними безопасное и надежное соединение. Прижимную пластину гнезда далее следует закрыть.

    Точно таким же образом выполняется соединение другого участка ленты. Способ, как соединить диодную ленту без помощи паяльника, иногда называют «холодной пайкой». Это не совсем верно, но коннекторы действительно позволяют полностью обойтись без ответственной процедуры спаивания, а значит, не нужны никакие дополнительные навыки.

    У такого соединения светодиодных лент с помощью коннекторов также есть свои преимущества и недостатки.

    Из преимуществ

    • Соединение лент с помощью коннекторов при условии наличия всех необходимых материалов выполняется меньше, чем за минуту: разрезать, зачистить, соединить.
    • Если присутствует неуверенность на тему, как соединить светодиодную ленту с помощью пайки, то однозначно нужно делать выбор в пользу коннекторного соединения электроцепи. Здесь практически невозможно ошибиться, а самые ответственные места – контакты, будут соединены максимально надежно.

    Однако есть и недостатки:

    • В отличии от соединения пайкой коннекторная цепь не позволяет создать видимость единой ленты. Между двумя соединяемыми отрезками будет определенный промежуток. Коннектор – это пара гнезд, соединенных промежуточными одножильными проводами сечением 0,75 мм2. Поэтому даже если и удастся расположить гнезда концов лент рядом друг с другом, то все равно между сияющими кристаллами лент будет заметен промежуток, длиной, минимум, в 2 коннекторных гнезда.

    Перед тем как присоединить дополнительный отрезок диодной ленты к уже сформированному участку, следует проверить, рассчитан ли ваш блок питания на образующуюся нагрузку. Выход за пределы расчетной потребляемой мощности блока питания – характерная ошибка при любом способе наращивания длины светодиодной ленты. Однако именно при коннекторном способе она дает о себе знать чаще всего – блоки перегреваются и выходят из строя.

     

    Перед тем, как соединять диодную ленту, увеличивая ее длину, нужно предварительно просчитывать ее общую потребляемую электрическую мощность и заменять блок питания на более производительный. А также необходимо помнить, что у блока должен быть запас мощности 25%.

     

    Светодиодные ленты потребляют не такую значительную мощность, как телевизор или электрический чайник. Но жилы проводов их электрической цепи имеют существенно меньшее сечение, а значит, соединять их нужно аккуратно и с осторожностью. Если у вас есть нужные навыки, а также требуется, чтобы соединенная лента представляла собой единое целое, то делайте выбор в пользу пайки. Если же с паяльником не хочется связываться, а соединить отрезки нужно быстро и без дополнительных сложностей, то ваш выбор – коннекторное соединение.

     

    Пайка светодиодной ленты-Как соединить светодиодную ленту пайкой

    Светодиодная лента – это такой универсальный продукт, благодаря тому, что они легко могут быть разрезаны на заданных линиях разреза и соединены в любой точке с помощью медных контактных точек, длина разреза варьируется в зависимости от типа ленты. Смотрите подробное руководство пайка светодиодной ленты RGB 4х-проводной светодиодной ленты и вы узнаете Как соединить светодиодную ленту пайкой. Пайка светодиодной ленты не сложный процесс если соблюдать некоторые правила.

    Пайка светодиодной ленты – инструменты для пайки

    Прежде чем приступить к пайке светодиодной ленты, важно убедиться, что у вас есть подходящие инструменты.  Пайка светодиодной ленты требует оснастку некоторым инструментом.Для этого мы рекомендуем использовать любой паяльник 30W-60W, который регулируется температурой и способен паять при температуре около 500-600 ° F. Лучше использовать более мощное железо, так что вам не нужно тратить много времени на нагрев и припой, чтобы не повредить компоненты светодиодной ленты. В то же время слишком разогретый паяльник может также повредить компоненты светодиодной ленты. Мы также рекомендуем использовать тонкое жало паяльника и канифоль. Обязательно иметь влажную губку или металлическую губку для чистки кончика вашего паяльника.

     

    Чистка паяльника

    Важно, чтобы паяльник был чистым, чтобы ваши паяные соединения не перекрывались. Регулярно очищайте кончик вашего припоя, чтобы жало паяльника было чистым, насколько это возможно.

    Фиксация во время пайки

    Во время пайки светодиодной ленты используйте несколько кусочков маскировочной ленты, чтобы закрепить ленту, чтобы она не двигалась во время припоя.

    Лужение провода

    Как только ваш паяльник будет достаточно горячим, покройте оловом соединительный провод, нанеся небольшое количество припоя непосредственно на многожильный провод.После того, как вы закончите этот шаг, ваш провод должен быть серебристым в цвете и не скручиваться. Пайка светодиодной ленты.

    Пайка светодиодной ленты

    Как только вы закрепили ленту и про лудили провод, и медные точки на светодиодной ленте, теперь вы можете соединить светодиодную ленту пайкой и приступить к пайке светодиодной ленты. Индивидуально поместите провод в медные точки, а затем поместите паяльник на оба, чтобы нагреть каждый припой, чтобы расплавить контактное соединение. Обязательно держитесь достаточно долго, чтобы не создавать замыканий.

    Визуальная проверка

    Как только вы правильно соедините все провода с вашей светодиодной лентой, ваш конечный результат должен выглядеть примерно так. Обратите внимание, что паяные соединения чистые и не перекрывают друг друга.

    Проверка

    После того как вы выполнили шаг пайка светодиодной ленты
    После остывания припоя подсоедините свежеприпаянную светодиодную ленту к соответствующему источнику питания и проверьте соединение.

    Изоляция

    Удалите клеевое основание скотча 3M достаточно, чтобы прикрыть паяное соединение термоусадочным материалом. Если у вас нет термоусадки, вы можете использовать небольшое количество горячего клея.

    Фиксация

    Используйте тепловой пистолет, чтобы сжать термоусадочную пленку, для защиты ваши паяных соединений, а затем проведите проверку еще раз, чтобы убедиться в правильности подключения светодиодной ленты.

    Как подключить уличную светодиодную ленту?

    Как подключить светодиодную ленту ?

    Как паять — Учебное пособие по пайке

    Как паять — Учебное пособие

    Как припаять


    Пайка определяется как «соединение металлов плавлением сплавов с относительно низкими температурами плавления». Другими словами, вы используете металл с низкой температурой плавления, чтобы склеить склеиваемые поверхности. Учтите, что пайка больше похожа на склеивание расплавленным металлом, в отличие от сварки, при которой основные металлы фактически плавятся и соединяются.Пайка также является обязательным навыком для всех видов работ с электрикой и электроникой. Это также навык, которому нужно правильно обучать и развивать с практикой.

    В этом руководстве будут рассмотрены наиболее распространенные типы пайки, необходимые для работы с электроникой. Это включает в себя пайку компонентов на печатных платах и ​​пайку сварного соединения проводов.

    Паяльное оборудование

    Паяльник / пистолет
    Первое, что вам понадобится, это паяльник, который является источником тепла для плавления припоя.Утюги мощностью от 15 до 30 Вт подходят для большинства работ с электроникой и печатными платами. Если мощность выше, вы рискуете повредить компонент или плату. Если вы собираетесь паять тяжелые компоненты и толстую проволоку, вам нужно будет приобрести утюг большей мощности (40 Вт и выше) или один из больших паяльных пистолетов. Основное различие между утюгом и пистолетом заключается в том, что утюг имеет форму карандаша и разработан с точечным источником тепла для точной работы, в то время как пистолет имеет знакомую форму пистолета с большим наконечником высокой мощности, нагреваемым за счет протекания электрического тока непосредственно через него. .


    Паяльник мощностью 30 Вт
    Паяльный пистолет
    A 300 Вт

    Для использования электроники любителями паяльник, как правило, является предпочтительным инструментом, поскольку его небольшой наконечник и низкая теплоемкость подходят для работы с печатными платами (например, для сборочных комплектов). Паяльный пистолет обычно используется при пайке в тяжелых условиях, например, для соединения толстых проводов, пайки кронштейнов с шасси или работы с витражами.

    Следует выбирать паяльник с трехконтактной заземляющей вилкой. Заземление поможет предотвратить накопление паразитного напряжения на жало паяльника и потенциально повредить чувствительные (например, CMOS) компоненты. По своей природе паяльные пистолеты довольно «грязны» в этом отношении, так как тепло генерируется за счет короткого замыкания тока (часто переменного тока) через наконечник из формованной проволоки. Оружие будет гораздо реже использоваться в электронике для любителей, поэтому, если у вас есть только один выбор инструмента, утюг — это то, что вам нужно.Для новичка лучше всего подходит диапазон от 15 Вт до 30 Вт, но имейте в виду, что на конце этого диапазона 15 Вт у вас может не хватить мощности для соединения проводов или более крупных компонентов. По мере роста вашего мастерства утюг мощностью 40 Вт станет отличным выбором, поскольку он способен выполнять несколько более крупных работ и очень быстро делает соединения. Имейте в виду, что часто лучше использовать более мощный утюг, чтобы не тратить много времени на нагревание стыка, что может повредить компоненты.

    Разновидностью основного пистолета или утюга является паяльная станция, в которой паяльный инструмент подключен к источнику переменного тока.Паяльная станция может точно контролировать температуру паяльного жала, в отличие от стандартного пистолета или утюга, где температура жала будет увеличиваться в режиме ожидания и уменьшаться при нагревании соединения. Однако цена паяльной станции часто в десять-сто раз превышает стоимость базового паяльника и, таким образом, действительно не подходит для рынка хобби. Но если вы планируете выполнять очень точную работу, например, поверхностный монтаж, или проводить 8 часов в день за паяльником, вам следует подумать о паяльной станции.

    В оставшейся части этого документа предполагается, что вы используете паяльник, так как это то, что требуется для большинства электронных работ. Методы использования паяльного пистолета в основном такие же, с той лишь разницей, что тепло выделяется только при нажатии на спусковой крючок.

    Припой
    Выбор припоя также важен. Доступно несколько видов припоя, но только некоторые из них подходят для работы с электроникой.Самое главное, вы будете использовать только канифольный припой для сердечников. Кислотный припой с сердечником широко используется в хозяйственных магазинах и магазинах товаров для дома, но предназначен для пайки медных водопроводных труб, а не электронных схем. Если в электронике используется припой с кислотным сердечником, кислота разрушит следы на печатной плате и разъедает выводы компонентов. Он также может образовывать проводящий слой, ведущий к коротким замыканиям.

    Для большинства работ с печатными платами используется припой диаметром 0.Желательно от 75 мм до 1,0 мм. Можно использовать более толстый припой, который позволит быстрее паять более крупные соединения, но затруднит пайку мелких соединений и повысит вероятность образования перемычек для пайки между близко расположенными контактными площадками печатной платы. Сплав 60/40 (60% олова, 40% свинца) используется для большинства электронных работ. В наши дни также доступно несколько бессвинцовых припоев. Припой Kester «44» Rosin Core уже много лет является основным продуктом электроники и продолжает оставаться доступным. Он доступен в нескольких диаметрах и имеет неагрессивный флюс.

    Для больших стыков, таких как пайка кронштейна к шасси с помощью паяльного пистолета высокой мощности, потребуется отдельное нанесение кисти на флюс и припой толщиной в несколько миллиметров.

    Помните, что при пайке флюс в припое выделяет пары при нагревании. Эти пары вредны для ваших глаз и легких. Поэтому всегда работайте в хорошо проветриваемом помещении и избегайте вдыхания образующегося дыма. Горячий припой тоже опасен.На удивление легко плеснуть на себя горячий припой, а это очень неприятное занятие. Также рекомендуется защита глаз.

    Подготовка к пайке

    Лужение паяльного жала
    Новое или очень грязное паяльное жало перед использованием следует залудить. «Лужение» — это процесс нанесения на жало паяльника тонкого слоя припоя. Это способствует теплопередаче между наконечником и компонентом, который вы паяете, а также дает припою основу, из которой он вытекает.
    Шаг 1. Разогрейте утюг
    Тщательно прогрейте паяльник или пистолет. Убедитесь, что он полностью нагрелся, потому что вы собираетесь расплавить на нем много припоя. Это особенно важно, если утюг новый, поскольку на него могло быть нанесено какое-либо покрытие для предотвращения коррозии.
    Шаг 2. Подготовьте немного места
    Пока паяльник разогревается, подготовьте немного места для работы.Смочите немного губки и поместите ее в основание подставки для паяльника или в посуду поблизости. Положите кусок картона на случай, если капнет припой (возможно, так и будет), и убедитесь, что у вас есть место для комфортной работы.
    Шаг 3: Тщательно покрыть кончик припоем

    Тщательно покройте жало паяльника припоем. Очень важно покрыть весь наконечник. Во время этого процесса вы будете использовать значительное количество припоя, и он будет стекать, так что будьте готовы.Если вы оставите какую-либо часть наконечника непокрытой, он будет собирать остатки флюса и не будет хорошо проводить тепло, поэтому пропустите припой вверх и вниз по наконечнику и полностью вокруг него, чтобы полностью покрыть его расплавленным припоем.

    Шаг 4. Очистите жало паяльника
    Убедившись, что наконечник полностью покрыт припоем, протрите наконечник влажной губкой, чтобы удалить все остатки флюса. Сделайте это немедленно, чтобы флюс не успел высохнуть и затвердеть.

    Шаг 5: Готово!
    Вы только что залудили жало паяльника. Это необходимо делать каждый раз, когда вы заменяете жало или чистите его, чтобы утюг сохранял хорошую теплопередачу.

    Вы также можете посмотреть процесс лужения на видео ниже (требуется Flash):

    Пайка печатной платы (PCB)

    Пайка печатной платы — вероятно, самая распространенная задача пайки, которую выполняет любитель электроники.Базовые техники довольно легко усвоить, но для овладения этим навыком потребуется немного практики. Лучший способ попрактиковаться — купить простой комплект электроники или собрать простую схему (например, светодиодный чейзер) на монтажной плате. Не покупайте этот дорогой комплект и не погружайтесь в огромный проект после того, как спаяете всего несколько стыков.

    Пайка компонентов на печатную плату включает подготовку поверхности, размещение компонентов и затем пайку стыка.

    Шаг 1: Подготовка поверхности:
    Чистая поверхность очень важна, если вы хотите получить прочное паяное соединение с низким сопротивлением.Все паяемые поверхности должны быть хорошо очищены. Подушечки 3M Scotch Brite, приобретенные в магазине товаров для дома, в магазине промышленных товаров или в автомастерской, являются хорошим выбором, поскольку они быстро удаляют потускнение поверхности, но не истирают материал печатной платы. Обратите внимание, что вам понадобятся промышленные подушечки , а не подушечки для чистки кухни, пропитанные очистителем / мылом. Если у вас есть особенно сильные отложения на доске, то допускается использование тонкой стальной ваты, но будьте очень осторожны с досками с жесткими допусками, поскольку мелкая стальная стружка может застрять между подушками и в отверстиях.

    После того, как вы очистили плату до блестящей меди, вы можете использовать растворитель, такой как ацетон, для очистки любых остатков чистящей салфетки, которые могут остаться, и для удаления химических загрязнений с поверхности платы. Метилгидрат — еще один хороший растворитель, и он менее вонючий, чем ацетон. Имейте в виду, что оба этих растворителя могут удалить чернила, поэтому, если ваша доска покрыта шелкографией, сначала проверьте химические вещества, прежде чем промывать всю доску из шланга.

    Несколько струй сжатого воздуха высушат доску и удалят весь мусор, который мог скопиться в отверстиях.

    Также никогда не помешает быстро протереть выводы компонентов, чтобы удалить клей или потускнение, которые могли образоваться со временем.

    Шаг 2: Размещение компонентов
    После того, как компонент и плата будут очищены, вы готовы разместить компоненты на плате. Если ваша схема не проста и не содержит только несколько компонентов, вы, вероятно, не будете размещать все компоненты на плате и паять их сразу.Скорее всего, вы будете паять несколько компонентов за раз, прежде чем переворачивать плату и устанавливать другие. В общем, лучше всего начинать с самых маленьких и плоских компонентов (резисторы, ИС, сигнальные диоды и т. Д.), А затем переходить к более крупным компонентам (конденсаторы, силовые транзисторы, трансформаторы) после того, как мелкие детали будут готовы. Благодаря этому плата остается относительно плоской, что делает ее более устойчивой во время пайки. Также лучше всего сохранить чувствительные компоненты (полевые МОП-транзисторы, ИС без разъемов) до конца, чтобы уменьшить вероятность их повреждения во время сборки остальной схемы.

    При необходимости согните провода и вставьте компонент в соответствующие отверстия на плате. Чтобы удерживать деталь на месте во время пайки, вы можете согнуть выводы в нижней части платы под углом 45 градусов. Это хорошо работает с деталями с длинными выводами, такими как резисторы. Компоненты с короткими выводами, такие как гнезда для микросхем, можно удерживать на месте с помощью небольшой малярной ленты, или вы можете согнуть выводы, чтобы закрепить их на контактных площадках печатной платы.

    На изображении ниже резистор готов к пайке и удерживается на месте слегка изогнутыми выводами.

    Шаг 3: нанесите тепло
    Нанесите очень небольшое количество припоя на кончик утюга. Это помогает проводить тепло к компоненту и плате, но именно припой , а не припой , будет составлять соединение. Чтобы нагреть соединение, положите конец утюга так, чтобы он упирался как в вывод компонента , так и на плату . Очень важно нагреть вывод и плату, в противном случае припой просто скапливается и откажется прилипать к неотгретому предмету.Небольшое количество припоя, нанесенного на наконечник перед нагревом соединения, поможет установить контакт между платой и выводом. Обычно требуется секунда или две, чтобы соединение стало достаточно горячим для пайки, но более крупные компоненты и более толстые контактные площадки / дорожки будут поглощать больше тепла и это время может увеличиться.

    Если вы видите, что область под площадкой начинает пузыриться, прекратите нагрев и снимите паяльник, потому что вы перегреваете площадку и она может подняться. Дайте ему остыть, затем осторожно нагрейте еще раз гораздо меньше времени.

    Шаг 4: Нанесите припой на соединение
    После того, как вывод компонента и паяльная площадка нагреются, можно приступать к нанесению припоя. Прикоснитесь концом жилы припоя к выводу компонента и контактной площадке, но не , а наконечником паяльника. Если все достаточно горячее, припой должен свободно течь по выводу и контактной площадке. Вы увидите, как расплав флюса также разжижается, пузырится вокруг стыка (это часть его очищающего действия), вытекает и выпускает дым.Продолжайте добавлять припой в соединение, пока контактная площадка не будет полностью покрыта, и припой не образует небольшой холмик со слегка вогнутыми сторонами. Если он начинает скручиваться, вы использовали слишком много припоя или контактная площадка на плате недостаточно горячая.

    После того, как поверхность контактной площадки будет полностью покрыта, вы можете прекратить добавление припоя и удалить паяльник (в указанном порядке). Не перемещайте соединение в течение нескольких секунд, так как припою нужно время, чтобы остыть и снова затвердеть. Если вы переместите сустав, вы получите то, что называется «холодным суставом».Об этом свидетельствует его характерный тусклый и зернистый вид. Многие холодные соединения можно исправить, повторно нагревая и нанося небольшое количество припоя, а затем давая им остыть, не нарушая их.

    Шаг 5. Осмотр стыка и очистка
    После того, как соединение выполнено, вы должны его осмотреть. Проверьте, нет ли холодных стыков (описано немного выше и подробно ниже), шорт с прилегающими накладками или плохой текучести. Если соединение проходит, переходите к следующему.Чтобы обрезать вывод, используйте небольшой набор боковых ножей и разрежьте верхнюю часть паяного соединения.

    После выполнения всех паяных соединений рекомендуется удалить с платы все лишние остатки флюса. Некоторые флюсы гигроскопичны (они поглощают воду) и могут медленно поглощать достаточно воды, чтобы стать слегка проводящими. Это может быть серьезной проблемой во враждебной среде, например в автомобильной среде. Большинство флюсов легко очищаются с помощью метилгидрата и тряпки, но для некоторых потребуется более сильный растворитель.Используйте соответствующий растворитель для удаления флюса, затем продуйте плату сжатым воздухом.

    Посмотреть видео
    На видео ниже вы можете посмотреть, как паяется несколько стыков.

    Конформные покрытия
    Если печатная плата, которую вы только что припаяли, будет использоваться в агрессивной среде, где она подвержена воздействию влаги, грязи или химикатов, может быть хорошей идеей нанести защитное покрытие, например, изготовленное MG Chemicals.Эти покрытия наносятся на печатную плату для защиты от вредных воздействий окружающей среды. Покрытия обычно на основе лака, силикона или уретана наносятся на обе стороны платы после того, как она полностью собрана и протестирована .

    Соединения холодной пайки

    «Холодное паяное соединение» может возникнуть, когда компонент, плата или то и другое нагревается недостаточно сильно. Другой распространенной причиной является перемещение компонента до того, как припой полностью остынет и затвердеет.Холодный сустав хрупкий и склонен к физическим повреждениям. Это также обычно соединение с очень высоким сопротивлением, которое может повлиять на работу цепи или вызвать ее полный отказ.

    Холодные стыки часто можно распознать по характерному зернистому тускло-серому цвету, но это не всегда так. Холодное соединение часто может выглядеть как шарик припоя, сидящий на контактной площадке и окружающий вывод компонента. Кроме того, вы можете заметить трещины в припое, и соединение может даже сдвинуться.Ниже приведено шокирующее изображение каждого примера плохого паяного соединения, которое вы когда-либо видели. Похоже, что этот комплект FM-передатчика был собран с использованием техники «нанести припой на железо, а затем капнуть на стык». Если ваши суставы выглядят так, то прекратите и потренируйтесь, перечитав эту страницу. Обратите внимание, что ни одно из этих соединений не является приемлемым, но, что удивительно, схема работала.

    Большинство соединений холодной пайки легко фиксируются. Обычно все, что требуется, — это повторно нагреть соединение и нанести еще немного припоя.Если на стыке уже слишком много припоя, то стык придется распаять, а затем снова спаять. Для этого сначала удалите старый припой с помощью инструмента для удаления припоя или просто нагрейте его и стряхните утюгом. Как только старый припой будет удален, вы можете спаять соединение, тщательно нагревая его и оставляя неподвижным, пока он остынет.

    Пайка проводного соединения или сращивания

    Другой очень распространенной задачей является пайка соединения между двумя или более проводами.В отличие от пайки печатной платы, где компонент обычно удерживается только самим паяным соединением, стык между проводами должен быть физически прочным до его пайки. Обычно это означает правильное скручивание проводов, а затем их пайку. Области, где вы увидите паяные соединения проводов, — это ремонт кабелей и автомобильная проводка. В этих случаях стык также необходимо заизолировать после пайки.

    Шаг 1. Зачистите соединяемые провода, наденьте изоляцию
    Термоусадочные трубки обычно являются предпочтительным методом изоляции стыков проводов.Доступны два основных типа термоусадки; Клейкая подкладка и неклейкая подкладка. Неклейкая трубка образует только изолирующий барьер и поэтому подходит для использования только тогда, когда соединение не будет подвергаться воздействию влаги, химикатов или других агрессивных сред. Термоусадочная трубка с клеевым покрытием покрыта термочувствительным клеем, который плавится для герметизации соединения при нагревании трубки. Таким образом, он образует полностью герметичное соединение и используется, когда стык будет подвергаться воздействию влаги или других элементов, которые могут повлиять на соединение.Например, при ремонте шнура лампы вы можете использовать термоусадочную трубку без клейкой пленки, а при установке автомобильной стереосистемы использовать трубки с клейкой подкладкой.

    Используйте термоусадочную трубку диаметром примерно в 1,5–2 раза больше диаметра соединяемых проводов. Отрежьте трубку такой длины, чтобы она выходила за каждую сторону соединения не менее чем на 0,5 дюйма, а затем наденьте ее на один из концов проволоки.

    Теперь снимите примерно 2,5 см изоляции с каждого конца провода.Если вы соединяете довольно толстый провод (толще, чем 12 калибр), вы можете снять немного больше изоляции, чтобы упростить скручивание провода.

    Шаг 2. Скрутите провода вместе
    Перед пайкой проводов необходимо прочное механическое соединение, поэтому их необходимо скрутить вместе. Провода будут скручиваться в так называемое «соединение обходчика», где провода соединяются по прямой линии, а не скручиваются вместе в форме буквы «V».

    Удерживайте оголенные концы проводов вместе в форме «X», чтобы их середины пересекались друг с другом, а затем скрутите один из проводов по длине другого провода. Затем закрутите вторую сторону в тон. В результате вы получите прочное соединение проволоки, которое обычно не намного толще самой проволоки.

    Шаг 3: нанесите тепло
    Нагрейте нижнюю часть стыка проводов и используйте более толстую часть паяльного жала.Если вы нагреете верхнюю часть провода, вы получите большие потери тепла из-за его повышения. Более толстая часть паяльного наконечника будет проводить больше тепла в стыке проводов. Это также помогает слегка намочить кончик паяльника, чтобы улучшить теплопередачу. Чем толще стык проволоки, тем больше тепла потребуется. Будьте осторожны, потому что на тонких проводах с дешевой изоляцией вы можете немного расплавить их, если перегреете соединение. Как только соединение станет достаточно горячим (хорошая подсказка — когда припой, который вы использовали для смачивания кончика утюга, попадает в соединение), вы можете переходить к нанесению припоя.

    После того, как вы припаяете несколько таких стыков, вы сможете оценить, сколько тепла необходимо приложить, исходя из толщины провода.

    Шаг 4: Нанесите припой на соединение
    При полностью нагретом стыке нанесите припой на стык чуть выше паяльного жала. Если он не начнет таять сразу, вам понадобится больше тепла.Как только припой начнет плавиться, он потечет в стык вокруг паяльника. По мере того, как припой течет, перемещайте наконечник вдоль стыка проводов, нанося припой. Соединение должно начать втягивать припой по мере его нанесения. Если вы обнаружите, что припой скапливается в месте соприкосновения с соединением, но не течет внутри, вам потребуется больше тепла. Продолжайте добавлять припой, пока соединение не будет полностью покрыто. Вы по-прежнему должны видеть очертания отдельных жил проводов, но не должно быть видно меди на проводе.Если вы добавите слишком много припоя до того момента, когда соединение превратится в каплю, вы получите хрупкое соединение, и излишки припоя необходимо будет удалить.

    Шаг 5: Очистите флюс
    Если стык проводов должен быть герметизирован или использоваться в зоне, подверженной воздействию влаги, необходимо удалить флюс. Некоторые флюсы впитывают влагу или другие химические вещества и вызывают коррозию стыков. Хотя существуют химические вещества для удаления флюса, большинство флюсов можно очистить с помощью метилгидрата, доступного в любом хозяйственном магазине.Некоторые даже растворимы в воде.
    Шаг 6: Изолируйте стык
    Сдвиньте термоусадочную трубку так, чтобы она равномерно покрывала стык, и приложите тепло для ее усадки. В идеале вам понадобится тепловая пушка для этого, но можно использовать и простую зажигалку, если вы поддерживаете движение пламени, чтобы избежать ожога трубки или провода. Если вы использовали термоусадочную пленку с клеевым покрытием, вам нужно нагреть трубку до тех пор, пока она полностью не сожмется вокруг провода и на концах не вытечет немного клея.Термоусадку без футеровки можно нагревать до плотного прилегания к стыку. У вас можно перегреть эту фигню. Если будет использовано слишком много тепла, изоляция под ней начнет разрушаться и может образовать пузырь. Пузырьки также могут возникнуть, если нагреть трубки с клеевым покрытием до точки, при которой они закипят.

    Готово! А теперь просто посмотрите видео
    Вот и все! Теперь ваше проволочное соединение готово. Вы можете посмотреть этот процесс на видео ниже:

    Советы и хитрости

    Пайка — это то, что нужно практиковать.Эти советы должны помочь вам добиться успеха, чтобы вы могли перестать заниматься и приступить к серьезному строительству.

    1. Используйте радиаторы. Радиаторы необходимы для выводов чувствительных компонентов, таких как микросхемы и транзисторы. Если у вас нет зажима на радиаторе, то вместо него можно использовать плоскогубцы.
    2. Держите наконечник утюга в чистоте. Чистый железный наконечник означает лучшую теплопроводность и лучшее соединение. Используйте влажную губку, чтобы очистить наконечник между стыками.Держите кончик хорошо луженым.
    3. Двойная проверка стыков. При сборке сложных схем рекомендуется проверять соединения после их пайки. Используйте увеличительное стекло, чтобы осмотреть соединение, и измеритель, чтобы проверить сопротивление.
    4. Сначала припаивайте мелкие детали. Припаяйте резисторы, перемычки, диоды и любые другие мелкие детали перед тем, как паять более крупные детали, такие как конденсаторы и транзисторы. Это значительно упрощает сборку.
    5. Устанавливайте чувствительные компоненты в последнюю очередь. Устанавливайте КМОП ИС, МОП-транзисторы и другие компоненты, чувствительные к статическому электричеству, в последнюю очередь, чтобы не повредить их во время сборки других деталей.
    6. Используйте соответствующую вентиляцию. Запрещается вдыхать большинство флюсов для пайки. Избегайте вдыхания образующегося дыма и убедитесь, что в помещении, в котором вы работаете, имеется достаточный воздушный поток для предотвращения скопления вредных паров.

    Безопасность при пайке

    Хотя пайка, как правило, не является опасным занятием, следует помнить о нескольких вещах.Первое и наиболее очевидное — это высокие температуры. Паяльники будут иметь температуру 350F или выше и очень быстро вызовут ожоги. Обязательно используйте подставку для поддержки утюга и держите шнур вдали от мест с интенсивным движением. Сам припой может капать, поэтому имеет смысл избегать пайки открытых частей тела. Всегда работайте в хорошо освещенном месте, где есть место, где можно разложить детали и передвигаться. Избегайте пайки лицом прямо над стыком, потому что пары флюса и других покрытий будут раздражать дыхательные пути и глаза.Большинство припоев содержат свинец, поэтому не прикасайтесь к лицу во время работы с припоем и всегда мойте руки перед едой.

    Вернуться на страницу электроники | Напишите мне | Поиск

    Основы пайки

    Содержание:

    Прежде чем начать

    Вам понадобится следующее оборудование:

    1. Паяльник с регулируемой температурой мощностью 25 Вт или более
    2. Очиститель наконечников, например латунная губка или влажная губка
    3. Припой (с выводами легче работать, чем с бессвинцовыми)
    4. (Необязательно) Руки помощи
    5. Защитные очки

    Примечание: расплавленный припой очень горячий! Утюги нагреваются до температуры примерно в два раза выше температуры кипения воды, поэтому будьте предельно осторожны.При пайке надевайте защитные очки.

    Шаг 1. Нагрейте утюг до подходящей температуры

    Для компонентов со сквозными отверстиями в печатной плате вам понадобится 600-700 градусов по Фаренгейту.

    Если вы паяете более крупные соединения с большим количеством меди, которая рассеивает тепло, вам может потребоваться немного более высокая температура. С утюгом с регулируемой температурой вы можете увидеть, что работает, и соответственно отрегулировать.

    Шаг 2. Обеспечьте механическую устойчивость соединения

    Пока ваш утюг нагревается, вы можете работать над тем, чтобы ваши компоненты оставались на месте без вашей помощи.Здесь могут пригодиться ваши руки помощи. Используйте их, чтобы помочь вам расположить компоненты так, чтобы они были стабильными, и вам не нужно ничего держать. Если вы припаиваете компонент со сквозным отверстием в печатной плате, вы можете согнуть выводы компонента в форме буквы V, чтобы он оставался на месте вплотную к плате. Для компонентов без длинных выводов вы можете использовать кусок ленты, чтобы закрепить их на месте.

    Шаг 3. Очистите кончик утюга

    Вы можете проверить, приближается ли ваше железо к конечной температуре, прикоснувшись припоем к концу утюга и проверив, плавится ли он.Когда вы это сделаете, вы увидите, как выходит дым. Это не испарение металла, а скорее горит флюс внутри него. Флюс — это мягкая кислота, которая разъедает слой окисления, образующийся на поверхности горячих металлов. Без флюса в припое для очистки поверхностей вам будет очень сложно намочить припой.

    Очистите утюг с помощью латунной губки или влажной губки, чтобы удалить окисление или излишки припоя с жала. Не забывайте всегда держать жало в чистоте во время пайки.Грязный наконечник покрыт оксидами металла, которые плохо переносят тепло и могут привести к плохой пайке соединений.

    Шаг 4: Нанесите тепло и припой

    Прикоснитесь плоской частью наконечника утюга к одной стороне соединения, одновременно подавая припой с другой стороны соединения. Идея состоит в том, чтобы нагреть все соединение до температуры плавления припоя, чтобы при прикосновении припоя к поверхностям он плавился. Единственный способ обеспечить хорошее электрическое соединение — это позволить припою течь по компонентам, которые вы соединяете.Не наносите припой прямо на кончик утюга. Для компонентов со сквозным отверстием прижмите утюг к проводу и подушке.

    Маленькие суставы могут нагреться за несколько секунд, а большие — за минуту или две. После извлечения утюга держите соединение в неподвижном состоянии в течение нескольких секунд, так как припою нужно время, чтобы остыть. Помните, что косяк сейчас горячий! не трогайте его пальцами сразу.

    Шаг 5: Осмотрите стык

    Припой должен был смочить обе поверхности.На контактных площадках печатной платы припой должен покрывать всю контактную площадку, и он должен образовывать форму вулкана между контактной площадкой и выводом, что свидетельствует о хорошей адгезии. Когда соединение станет идеальным, закрепите выводы компонентов со сквозным отверстием.

    Типичные ошибки, или что НЕ делать

    Теперь, когда мы рассмотрели, что делать, позвольте мне сказать вам, чего НЕ делать.

    Не наносите каплю припоя на утюг, а затем пытайтесь перенести его на соединение. Это сжигает весь флюс в припое, что не позволяет флюсу очищать металлические поверхности.Кроме того, каплю припоя легко отвести от паяльника, фактически не смачивая стык. Я гарантирую вам, что это приведет к ужасному электрическому соединению, поэтому не делайте этого.

    Твердотельные диоды и характеристики диодов [Analog Devices Wiki]

    В электронике диод представляет собой двухконтактный компонент с асимметричной характеристикой тока и напряжения, с низким (идеально нулевым) сопротивлением току в одном направлении и высоким (идеально бесконечным) в другом.Кремниевый полупроводниковый диод, наиболее распространенный тип, представляет собой монокристаллический кусок полупроводникового материала с PN-переходом, подключенным к двум электрическим выводам.

    5.1 PN-переход

    PN-переход формируется путем соединения полупроводников p-типа и n-типа вместе в монокристаллическую решетку. Термин «переход» относится к границе раздела, где встречаются две области полупроводника. Если бы переход был построен из двух отдельных частей, это привело бы к разрыву в кристаллической решетке, поэтому PN-переходы создаются в монокристалле полупроводника путем введения определенных примесей, называемых легирующими добавками, например, ионной имплантацией, диффузией или эпитаксией (выращиванием). слой кристалла, легированного примесями n-типа, поверх слоя кристалла, легированного примесями p-типа, например).

    PN-переходы являются элементарными строительными блоками почти всех полупроводниковых электронных устройств, таких как диоды, транзисторы, солнечные элементы, светодиоды и интегральные схемы; они являются активными сайтами, где происходит электронное действие устройства. Например, обычный тип транзистора, транзистор с биполярным соединением, состоит из двух последовательно соединенных PN-переходов в форме NPN или PNP.

    5.1.1 Свойства PN-перехода

    PN-переход демонстрирует некоторые интересные свойства, которые находят полезное применение в твердотельной электронике.Полупроводник, легированный p-примесью, относительно проводящий. То же самое верно и для полупроводника с примесью n-типа, но переход между областями p- и n-типа является непроводником. Этот непроводящий слой, называемый обедненным слоем, возникает из-за того, что электрически заряженные носители, электроны в кремнии n-типа и дырки в кремнии p-типа, диффундируют в материал другого типа (, т.е. электронов в p-типе и дырки в n -type) и устраняют друг друга в процессе, называемом рекомбинацией. Эта диффузия заряда вызывает встроенную разность потенциалов в области истощения.Путем манипулирования этим непроводящим слоем PN-переходы обычно используются как диоды: элементы схемы, которые пропускают электрический ток в одном направлении, но не в другом (противоположном) направлении. Это свойство объясняется в терминах прямого смещения и обратного смещения, где термин смещение относится к приложению электрического напряжения к PN-переходу. PN-переход будет проводить ток, когда приложенное внешнее напряжение превышает встроенный потенциал перехода.

    5.1.2 Равновесие (нулевое смещение)

    В PN-переходе без внешнего приложенного напряжения достигается состояние равновесия, при котором на переходе образуется разность потенциалов.Эта разность потенциалов называется встроенным потенциалом, В BI .

    На стыке полупроводников p-типа и n-типа более высокая концентрация электронов в области n-типа вблизи границы раздела PN имеет тенденцию диффундировать в область p-типа. Когда электроны диффундируют, они оставляют положительно заряженные ионы (доноры) в n-области. Точно так же более высокая концентрация дырок на стороне p-типа вблизи границы раздела PN начинает диффундировать в область n-типа, оставляя фиксированные ионы (акцепторы) с отрицательным зарядом.Области, непосредственно прилегающие по обе стороны от интерфейса PN, теряют свою нейтральность и заряжаются, образуя область пространственного заряда или обедненный слой (см. Рисунок 5.1).

    Рисунок 5.1 PN-переход в состоянии равновесия

    Электрическое поле, создаваемое областью пространственного заряда, препятствует процессу диффузии как для электронов, так и для дырок. Есть два одновременных явления: процесс диффузии, который имеет тенденцию генерировать больший объемный заряд, и электрическое поле, создаваемое объемным зарядом, которое стремится противодействовать диффузии.В состоянии равновесия эти две силы уравновешивают друг друга. Профиль концентрации носителей в равновесии показан на рисунке 5.1 синими и красными линиями. Также показаны два уравновешивающих явления, которые устанавливают равновесие.

    Область пространственного заряда — это зона с чистым зарядом, обеспечиваемым фиксированными ионами (донорами или акцепторами), которые остались открытыми из-за диффузии основных носителей заряда. Когда равновесие достигнуто, плотность заряда аппроксимируется ступенчатой ​​функцией, показанной на рисунке 5.2 Q (x) график. Фактически, область полностью обеднена основными носителями (оставляя плотность заряда равной чистому уровню легирования), а граница между областью пространственного заряда и нейтральной областью довольно резкая. Область пространственного заряда имеет одинаковый заряд по обе стороны от интерфейса PN, поэтому она простирается дальше в менее легированную сторону (сторона n на рисунках 5.1 и 5.2).

    5.1.3 Прямое смещение

    При прямом смещении положительное напряжение подается на сторону p-типа по отношению к стороне n-типа перехода.При приложении напряжения таким образом дырки в области p-типа и электроны в области n-типа выталкиваются в сторону перехода. Это уменьшает ширину истощающего слоя. Положительный заряд, приложенный к материалу p-типа, отталкивает дырки, тогда как отрицательный заряд, приложенный к материалу n-типа, отталкивает электроны. Расстояние между электронами и дырками уменьшается по мере того, как они движутся к стыку. Это снижает встроенный потенциальный барьер. С увеличением напряжения прямого смещения обедненный слой в конечном итоге становится достаточно тонким, чтобы встроенное электрическое поле больше не могло противодействовать движению носителей заряда через PN-переход, что, в свою очередь, снижает электрическое сопротивление.Электроны, которые пересекают PN-переход в материал p-типа (или дырки, которые проникают в материал n-типа), будут диффундировать в почти нейтральную область. Следовательно, степень диффузии неосновной части в зонах, близких к нейтральной, определяет величину тока, который может протекать через диод.

    Только основные носители (электроны в материале n-типа или дырки в материале p-типа) могут проходить через полупроводник на макроскопическую длину. Имея это в виду, рассмотрим поток электронов через переход.Прямое смещение вызывает силу на электронах, толкающую их со стороны N в сторону P. При прямом смещении область обеднения достаточно узкая, чтобы электроны могли пересекать переход и инжектироваться в материал p-типа. Однако они не продолжают течь через материал p-типа бесконечно, потому что для них энергетически выгодно рекомбинировать с дырками. Средняя длина, которую электрон проходит через материал p-типа до рекомбинации, называется диффузионной длиной, и обычно она составляет порядка микрон.

    Хотя электроны проникают в материал p-типа только на короткое расстояние перед рекомбинацией, электрический ток продолжается непрерывно, потому что дырки (основные носители) начинают течь в противоположном направлении, заменяя те, с которыми рекомбинируются электроны неосновных носителей. Полный ток (сумма токов электронов и дырок) постоянен в пространстве, потому что любое изменение вызовет накопление заряда с течением времени (это текущий закон Кирхгофа). Поток дырок из области p-типа в область n-типа в точности аналогичен потоку электронов от N к P (электроны и дырки меняются ролями, и знаки всех токов и напряжений меняются местами).

    Таким образом, макроскопическая картина протекания тока через диод включает в себя электроны, текущие через область n-типа к переходу, дырки, протекающие через область p-типа в противоположном направлении к переходу, и два вида носителей, постоянно рекомбинирующие в близость (определяемая диффузионной длиной) перехода. Электроны и дырки движутся в противоположных направлениях, но у них также есть противоположные заряды, поэтому общий ток идет в одном направлении с обеих сторон диода, если требуется.

    5.1.4 Обратное смещение

    Обратное смещение обычно относится к тому, как диод используется в цепи. Если диод смещен в обратном направлении, напряжение на катоде выше, чем на аноде. Следовательно, ток не будет течь, пока электрическое поле не станет настолько сильным, что диод не сломается.

    Поскольку материал p-типа теперь подключен к отрицательной стороне приложенного напряжения, отверстия в материале p-типа отодвигаются от перехода, в результате чего толщина обедненного слоя увеличивается.Точно так же, поскольку область n-типа подключена к положительной стороне, электроны также будут отводиться от перехода. Следовательно, обедненный слой расширяется и увеличивается с увеличением напряжения обратного смещения. Это увеличивает барьер напряжения, вызывая высокое сопротивление потоку носителей заряда, таким образом, позволяя только очень небольшому электрическому току протекать через PN-переход.

    Напряженность электрического поля обедненного слоя увеличивается с увеличением напряжения обратного смещения.Как только напряженность электрического поля превышает критический уровень, слой истощения PN-перехода разрушается, и начинает течь ток, обычно в результате процессов пробоя Зенера или лавинного пробоя. Оба этих процесса пробоя являются неразрушающими и обратимыми, пока величина протекающего тока не достигает уровней, которые вызывают перегрев полупроводникового материала и вызывают термическое повреждение.

    Этот эффект используется в схемах стабилизаторов на стабилитронах.Стабилитроны имеют четко определенное низкое обратное напряжение пробоя по своей конструкции. Типичное значение напряжения пробоя составляет, например, 6,2 В. Это означает, что напряжение на катоде никогда не может быть более чем на 6,2 В выше, чем напряжение на аноде, потому что диод выйдет из строя и, следовательно, станет проводящим, если напряжение станет выше. Это эффективно ограничивает напряжение на диоде.

    Другое применение, где используются диоды с обратным смещением, — это варакторные диоды (переменные конденсаторы).Слой обеднения действует как изолятор между двумя проводящими пластинами или выводами диода. Емкость зависит от ширины изоляционного слоя и его площади. Ширина зоны истощения любого диода изменяется в зависимости от приложенного напряжения. Это изменяет емкость диода. Варакторы специально спроектированы так, чтобы одна сторона PN-перехода была слегка легированной, поэтому на этой стороне диода будет большая область обеднения. Эта более толстая область также больше зависит от приложенного напряжения смещения, и, таким образом, изменение емкости диода (ΔC / ΔV) будет сильно зависеть от приложенного напряжения смещения.

    Сводка раздела

    Свойства прямого смещения и обратного смещения PN-перехода предполагают, что он может использоваться в качестве диода. Диод с PN-переходом позволяет электрическим зарядам течь в одном направлении, но не в противоположном; отрицательные заряды (электроны) могут легко проходить через переход от N к P, но не от P к N, и обратное верно для дырок. Когда PN-переход смещен в прямом направлении, электрический заряд течет свободно из-за пониженного сопротивления PN-перехода.Однако, когда PN-переход имеет обратное смещение, барьер перехода (и, следовательно, сопротивление) становится больше, и поток заряда очень мал.

    5.2 Фактические диоды

    На рисунке 5.3 ниже схематично изображен диод (a) и показан типичный лабораторный диод (b). Диоды — довольно распространенные и полезные устройства. Можно представить себе диод как устройство, позволяющее току течь только в одном направлении. Это чрезмерное упрощение, но хорошее приближение.

    Рисунок 5.3: (a) Схематический символ диода (b) малосигнальный диод.

    Как обсуждалось ранее, полупроводниковые диоды изготавливаются в виде двухслойной структуры, образующей PN переход. Полупроводники, такие как кремний или германий, могут быть легированы небольшими концентрациями определенных примесей, чтобы получить материал, который проводит электричество через перенос электронов (n-тип) или через дырки (p-тип). Когда слои из этих двух типов легированных полупроводников построены так, чтобы образовать PN-переход, электроны мигрируют от стороны n-типа, а дырки мигрируют от стороны p-типа, как показано на рисунке.5.1. Это перераспределение заряда приводит к появлению потенциального промежутка В, , BI, , поперек перехода, как показано на рисунке. Этот зазор равен VBI ~ 0 . 7 В для кремния и ~ 0 . 3 V для германия.

    Рисунок 5.4 PN-переход, образующий промежуток напряжения на переходе

    Когда этот диод с PN-переходом теперь подключен к внешнему напряжению, это может эффективно увеличивать или уменьшать встроенный потенциальный зазор.Это приводит к очень разному поведению в зависимости от полярности этого внешнего напряжения, как показано на типичном графике В — I на рисунке. 5.5. Когда диод смещен в обратном направлении, как показано на рисунке 5.6, зазор увеличивается, и через переход проходит очень небольшой ток (до тех пор, пока в конечном итоге в этом примере не произойдет пробой поля ~ 6,2 В). И наоборот, конфигурация с прямым смещением уменьшает зазор, приближаясь к нулю для внешнего напряжения, равного напряжению зазора, и ток может течь легко.

    Выражение для напряжения на диоде (прямое смещение) В D выглядит следующим образом:

    (5.1)

    Где:
    В D = приложенное напряжение на диоде
    k = постоянная Больцмана (1,38E-23 Дж / Кельвин)
    T = абсолютная температура в Кельвинах
    q = заряд электрона (1,6E-19 Кулонов)
    I D = фактический ток через диод
    I S = ток диффузии (постоянная, зависящая от устройства)
    (Так называемое тепловое напряжение, В T , составляет кТ / q = 26 мВ при комнатной температуре.)

    Приведенное выше уравнение можно изменить, чтобы получить I D :

    (5.2)

    Таким образом, при обратном смещении диод ведет себя как разомкнутый переключатель; и при прямом смещении для токов примерно 10 мА или больше диод дает почти постоянное падение напряжения ~ 0,7 В . Диффузионный ток I S, зависит от уровня легирования примесей n-типа и p-типа, площади диода и (в очень большой степени) от температуры.Разумной отправной точкой для диода на интегральной схеме с малой геометрией является I S = 1E -16 .

    Рисунок 5.5: Зависимость напряжения В D от тока, поведение диода I D

    Противоположные заряды в полупроводниковом переходе ничем не отличаются от зарядов на пластинах конденсатора. Итак, у каждого перехода есть емкость; но поскольку расстояние между электронами и дырками, обедненный слой, изменяется с приложенным напряжением, емкость зависит от приложенного напряжения.Чем ниже напряжение, тем выше емкость, и она будет увеличиваться прямо в область прямого смещения.

    Рисунок 5.6 Характеристики напряжения в зависимости от тока стабилитрона на 6,2 В

    Еще одна вещь, на которую следует обратить внимание в отношении реальных диодов, — это последовательное сопротивление в полупроводниковом материале, не воспринимаемое областью обеднения. Для обычной концентрации 5E 15 (количество атомов примеси на кубический сантиметр, что дает практическое напряжение пробоя в ИС около 25 В), объемное удельное сопротивление составляет около 1 Ом · см для кремния, легированного фосфором (n-типа), и 3 Ом-см для бора (р-тип).Для сравнения, такой металл, как алюминий, имеет удельное сопротивление 2,8 мкОм-см, медь — 1,7 мкОм-см. Объемное удельное сопротивление (ρ или rho) измеряется между противоположными поверхностями куба материала с длиной стороны (w, h, l) 1 см (10 мм).

    5.3 Температурные характеристики диодов

    Из уравнения для напряжения диода 5.1 мы можем видеть, что оно содержит член абсолютной температуры T. Кроме того, диффузионный ток I S на самом деле не является постоянным, но сильно зависит от температуры.На нижнем наборе графиков на рисунке 5.7 смоделированное напряжение диода в зависимости от температуры показано для четырех различных токов диода (зеленый = 1 мА , синий = 2 мА , красный = 5 мА и голубой = 10 мА). Из графиков видно, что напряжение на диоде имеет довольно сильную отрицательную температурную зависимость.

    На верхнем графике показана разница между кривыми 2 мА и 1 мА, а также разница между кривыми 5 мА и 10 мА. Эти два результата лежат точно друг на друге.Причина этого станет очевидной, если мы рассмотрим уравнение напряжения на диоде более внимательно.

    Рисунок 5.7 Зависимость напряжения диода от температуры при 1 мА, 2 мА, 5 мА и 10 мА

    (5,3)

    Переставляя и принимая I S1 = I S2 , получаем:

    (5,4)

    Теперь сильный температурный эффект I S выпадает из уравнения, и мы остаемся только с абсолютным температурным членом T, который делает ΔV D пропорциональным абсолютной температуре (PTAT).Оба V D2 V D1 и V D4 V D3 имеют одинаковое соотношение 2: 1 для своих токов, и, таким образом, кривые ΔV D будут точно лежать на друг над другом. При комнатной температуре тепловое напряжение В T составляет около 26 мВ , что при умножении на ln (2) составляет примерно 18 мВ, видимое на графике при 25 градусах.

    5.4 Линейная модель

    Линейная модель диода аппроксимирует экспоненциальные характеристики I — V прямой линией, касательной к реальной кривой в точке смещения постоянного тока.На рис. 5.8 показана кривая с касательной в точке ( V D , I D ). Кривая пересекает горизонтальную ось при напряжении В, , , D0, . Для небольших изменений в V D и I D относительно точки касания касательная линия дает хорошее приближение к фактической кривой.

    Рисунок 5.8 Характеристики I — V с касательной в ( V D , I D )

    Наклон касательной определяется по формуле:

    (5.5)

    I D часто намного больше, чем I S , поэтому уравнение часто упрощается до:

    (5,6)

    Уравнение касательной:

    (5,7)

    5.5 Модель слабого сигнала

    Поскольку уравнение диода для I D как функции V D является нелинейным, инструменты линейного анализа цепи не могут применяться к схемам, содержащим диоды, так же, как это было бы для схемы, содержащей только резисторы.Однако, если ток диода известен для конкретного напряжения, можно использовать линейный анализ цепи для прогнозирования изменения тока при заданном изменении напряжения, при условии, что это изменение будет постепенно небольшим. Такой подход называется анализом слабого сигнала. Несколько слов об обозначениях:

    Где:
    V D и I D — значения смещения постоянного тока, а v d и i d — малосигнальные изменения значений смещения.

    Сопротивление слабого сигнала определяется как отношение v d к i d и определяется как:

    (5,8)

    Это приводит к тому же r d , что и в модели линейного касательного диода на рисунке 5.8. Таким образом, слабосигнальная модель диода при прямом смещении представляет собой резистор номиналом r d . Значение r d обратно пропорционально протекающему через него току. Каждый раз, когда ток удваивается, сопротивление уменьшается вдвое.Из модели линейного диода следует, что r d можно графически интерпретировать как обратную величину наклона кривой i D относительно v D в точке ( V D , I D ) .

    Сводка раздела

    1. Полупроводники содержат два типа мобильных носителей заряда: положительно заряженные дырки и отрицательно заряженные электроны.

    2. Полупроводник может быть легирован донорными примесями (легирование n-типа), так что он содержит подвижные заряды, которые являются электронами.

    3. Полупроводник может быть легирован акцепторными примесями (легирование p-типа), так что он содержит подвижные заряды, которые являются дырками.

    4. Есть два важных механизма протекания тока в полупроводнике:

      1. диффузия носителей в результате градиента концентрации; и

      2. дрейф носителей в электрическом поле.

    5. В состоянии равновесия через PN-переход создается встроенный потенциальный или потенциальный барьер В, BI, вольт.
    6. При приложении напряжения прямого смещения В DF встроенный потенциал снижается до В BI В D , и ток течет через диод, когда В DF больше V BI .
    7. При приложении напряжения обратного смещения В DR высота потенциального барьера увеличивается до В BI + В DR , и ток может протекать незначительно.
    8. Когда В BI + В DR больше некоторого критического напряжения, когда электрическое поле выше, чем электрическая прочность полупроводника, происходит обратный пробой перехода и течет ток.
    9. Полный ток диода I D связан с приложенным напряжением В D соотношением

    ADALM1000 Лабораторное занятие 2. Диод I vs.Кривые напряжения V
    Лабораторная работа ADALM1000, зависимая от напряжения емкость PN перехода

    Лабораторное занятие ADALM2000 2. Кривые зависимости диода I от V
    Лабораторное занятие ADALM2000, зависимая от напряжения емкость PN-перехода
    Лабораторное занятие ADALM2000: датчик дифференциальной температуры

    Вернуться к предыдущей главе

    Перейти к следующей главе

    Вернуться к содержанию

    вуз / курсы / электроника / текст / глава-5.txt · Последнее изменение: 06 июня 2017 г., 16:58, автор: dmercer

    % PDF-1.4
    %
    904 0 объект
    >
    endobj

    xref
    904 158
    0000000016 00000 н.
    0000004449 00000 н.
    0000004608 00000 п.
    0000006146 00000 п.
    0000006189 00000 п.
    0000006333 00000 п.
    0000006477 00000 н.
    0000006621 00000 н.
    0000007161 00000 п.
    0000007701 00000 н.
    0000008359 00000 п.
    0000008937 00000 н.
    0000009611 00000 п.
    0000010206 00000 п.
    0000010317 00000 п.
    0000010831 00000 п.
    0000011256 00000 п.
    0000011434 00000 п.
    0000011471 00000 п.
    0000011522 00000 п.
    0000011585 00000 п.
    0000011655 00000 п.
    0000011739 00000 п.
    0000011851 00000 п.
    0000011965 00000 п.
    0000013208 00000 п.
    0000013477 00000 п.
    0000013734 00000 п.
    0000013971 00000 п.
    0000014250 00000 п.
    0000014456 00000 п.
    0000015803 00000 п.
    0000016155 00000 п.
    0000016527 00000 н.
    0000018052 00000 п.
    0000019353 00000 п.
    0000019757 00000 п.
    0000021160 00000 п.
    0000021554 00000 п.
    0000022648 00000 п.
    0000023139 00000 п.
    0000023317 00000 п.
    0000023717 00000 п.
    0000024082 00000 п.
    0000025225 00000 п.
    0000067540 00000 п.
    0000067805 00000 п.
    0000069297 00000 п.
    0000071174 00000 п.
    0000071528 00000 п.
    0000071857 00000 п.
    0000073421 00000 п.
    0000073809 00000 п.
    0000074105 00000 п.
    0000074289 00000 п.
    0000074652 00000 п.
    0000075139 00000 п.
    0000075546 00000 п.
    0000075947 00000 п.
    0000101059 00000 н.
    0000101098 00000 п.
    0000133242 00000 н.
    0000133281 00000 н.
    0000158393 00000 н.
    0000158432 00000 н.
    00001 00000 н.
    00001 00000 н.
    0000215727 00000 н.
    0000215766 00000 н.
    0000247910 00000 п.
    0000247949 00000 п.
    0000252775 00000 н.
    0000257728 00000 н.
    0000261038 00000 п.
    0000263393 00000 н.
    0000263753 00000 п.
    0000264248 00000 н.
    0000264478 00000 н.
    0000264561 00000 н.
    0000264616 00000 н.
    0000264860 00000 н.
    0000264943 00000 н.
    0000264998 00000 н.
    0000265117 00000 н.
    0000265140 00000 н.
    0000265218 00000 н.
    0000265294 00000 н.
    0000265371 00000 п.
    0000265492 00000 п.
    0000265641 00000 п.
    0000265989 00000 н.
    0000266055 00000 н.
    0000266171 00000 н.
    0000266194 00000 н.
    0000266272 00000 н.
    0000266393 00000 п.
    0000266542 00000 н.
    0000266893 00000 н.
    0000266961 00000 п.
    0000267079 00000 п.
    0000267103 00000 п.
    0000267182 00000 н.
    0000267258 00000 н.
    0000267335 00000 п.
    0000267459 00000 н.
    0000267610 00000 н.
    0000267962 00000 н.
    0000268031 00000 н.
    0000268149 00000 н.
    0000269297 00000 н.
    0000269571 00000 н.
    0000270255 00000 н.
    0000270554 00000 н.
    0000275004 00000 н.
    0000275321 00000 н.
    0000276307 00000 н.
    0000276576 00000 н.
    0000284228 00000 п.
    0000284269 00000 н.
    0000308219 00000 п.
    0000308260 00000 н.
    0000331639 00000 н.
    0000331680 00000 н.
    0000371050 00000 н.
    0000371091 00000 н.
    0000402928 00000 н.
    0000402969 00000 н.
    0000438955 00000 п.
    0000438996 00000 н.
    0000474904 00000 н.
    0000474945 00000 н.
    0000511920 00000 н.
    0000511961 00000 н.
    0000512039 00000 н.
    0000512117 00000 н.
    0000512241 00000 н.
    0000512389 00000 н.
    0000512508 00000 н.
    0000512656 00000 н.
    0000512742 00000 н.
    0000512866 00000 н.
    0000513014 00000 н.
    0000513138 00000 н.
    0000513286 00000 н.
    0000513363 00000 н.
    0000513441 00000 п.
    0000513565 00000 н.
    0000513713 00000 н.
    0000513860 00000 н.
    0000513937 00000 н.
    0000514060 00000 н.
    0000514208 00000 н.
    0000514355 00000 н.
    0000518670 00000 н.
    0000597840 00000 н.
    0000598525 00000 н.
    0000004250 00000 н.
    0000003456 00000 н.
    трейлер
    ] / Назад 1132052 / XRefStm 4250 >>
    startxref
    0
    %% EOF
    1061 0 объект
    > поток
    h ޤ SYHTQ80d, j-fF! R «& hD Vz, Բ [OU / 1TDT, z; ÿ_

    Лучшая цена на диодную ленту на — Отличные предложения на диодную ленту от глобальной диодной ленты к продавцам

    Отличные новости !!! Вы попали в нужное место для диодной ленты.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта верхняя диодная лента должна в кратчайшие сроки стать одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что наклеили диодную ленту на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

    Если вы все еще не уверены в диодной ленте и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести diode tape on to по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

    SMT PCB Assembly — Онлайн-ценовое предложение на печатную плату — Полнофункциональный заказ прототипа печатной платы по низкой цене

    Тип платы
    :

    Сторона сборки:

    Мы предлагаем выбрать панель, если количество одной печатной платы превышает 20 шт. Или любая сторона одной платы меньше 50 мм.

    * Количество:

    Укажите общее количество отдельных печатных плат.

    Количество
    Уникальные детали:
    Номер
    Детали SMT:
    Номер
    Сквозное отверстие
    Запчасти:


    Дополнительные опции
    Больше

    Ниже представлены варианты, их стоимость не включена в онлайн-предложение

    Подробная информация
    сборки:

    Цена не включает изготовление печатной платы или стоимость компонентов, точное предложение будет обновлено после того, как все файлы, которые вы загрузили, пройдут проверку или обратитесь в службу Service @ pcbway.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *