18.07.2024

Как зависит от температуры сопротивление металлических проводников: Зависимость сопротивления проводника от температуры

Содержание

Зависимость сопротивления проводника от температуры

  

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

 

где ρ и ρ0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, [α] = град-1.

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

 

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

 С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

 

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α <0.

 

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

 

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

 Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Зависимость сопротивления проводников от температуры. Сверхпроводимость

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;

2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ρt=ρ0(1+αt),

Rt=R0(1+αt),

где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества.Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

hαi=1⋅ΔρρΔT,

где hαi — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.

Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.



Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

Рис. 1

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Сверхпроводимость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Зависимость сопротивления от температуры | Электрикам

ads

Электрическое сопротивление металлов находится в прямой зависимости от температуры. Чем выше температура металлического провода, тем выше скорость теплового движения частиц. Следовательно растёт количество столкновений свободных электронов, и снижение их свободного пробега τ. Снижение свободного пробега уменьшает удельную проводимость и, одновременно, увеличивает удельное электрическое сопротивление материала.

Удельное сопротивление электролитов и угля при нагревании наоборот уменьшается, поскольку кроме уменьшения времени τ повышается концентрация носителей зарядов.

Температурный коэффициент сопротивления

В узких границах изменения температуры 0-100°С относительное приращение сопротивления Δr большинство металлических проводов пропорционально приращению температуры Δt = t1 — t2.

Обозначения через r1 и r2 сопротивления при температурах t1 и t2 можно выразить формулой

Температурный коэффициент альфа

откуда

Изменение сопротивления от температуры

где α — Температурный коэффициент сопротивления, численно равен относительному приращению сопротивления при нагревании проводника на 1°С.

Температурный коэффициент сопротивления для чистых металлов приблизительно равен  α = 0,004°С-1, это значит, что их сопротивление увеличится на 4%, при росте температуры на 10°С.

Некоторых сплавы, например, как манганин и константан обладают повышенным удельным сопротивлением и крайне низким температурным коэффициентом сопротивления. Так как обладают неправильной структурой и небольшим временем «свободного» пробега электронов. Данные сплавы нашли широкое применение при изготовлении образцовых катушек сопротивления и резисторов с постоянным (независимым от температуры) сопротивлением.

Материал такие как уголь и электролиты обладают отрицательным коэффициентом сопротивления α ≈ -0,02 на 1°С.

Явление сверхпроводимости

В ряде материалов и сплавов при снижении температуры до очень низких значений порядка единиц или десятка градусов Кельвина (0 К ≈ -273°С) возникает явление сверхпроводимости. Температура при которой наступает это явление, называется критической (Ткр) или «точкой скачка».

Проводник в котором  возникает явление сверхпроводимости называют сверхпроводником. В таком проводнике может протекать электрический ток, даже если к его концам не будет приложено напряжения иначе говоря сопротивление проводника будет стремится к нулю. В таких проводниках не выделяется тепло даже при значительной плотности тока, т.е. электроны в нём не встречают препятствий и не сталкиваются при свободном движении.

Также, сверхпроводники не имеют магнитного поля. Даже если ранее оно присутствовало, то при критических температурах поле пропадет, поскольку в поверхностном слое 10-5 см образуются токи, магнитное поле которых компенсирует внешнее магнитное поле.

Состояние сверхпроводимости разрушает как сильное внешнее магнитное поле, так и поле, вызванное большим электрическим током, проходящим через сверхпроводник. Данное обстоятельство затрудняет получение в сверхпроводнике больших токов и больших плотностей тока.

#1. Как изменится удельная проводимость и сопротивление медного провода при увеличении температуры на 20 градусов.

Изменение сопротивления от температуры

#2. Насколько изменится удельное сопротивление меди при нагревании провода до t1 = 50°C? Если начальная температура t=0°C, а сопротивление R1 = 10 Ом. Температурный коэффициент α = 0,004.

t2 — t1 = 50 — 0 = 50°C

ΔR = 50°C*α*R1 = 50*0,004*10 = 2 Ом

#3. Как изменится время свободного пробега τ при нагревании угля.

Результат

Отлично!

Попытайтесь снова(

Сопротивление проводников кратко. Как влияет нагрев на величину сопротивления

Частицы проводника (молекулы, атомы, ионы), не участвующие в образовании тока, находятся в тепловом движении, а частицы, образующие ток, одновременно находятся в тепловом и в направленном движениях под действием электрического поля. Благодаря этому между частицами, образующими ток, и частицами, не участвующими в его образовании, происходят многочисленные столкновения, при которых первые отдают часть переносимой ими энергии источника тока вторым. Чем больше столкновений, тем меньше скорость упорядоченного движения частиц, образующих ток. Как видно из формулы I = enνS
, снижение скорости приводит к уменьшению силы тока. Скалярная величина, характеризующая свойство проводника уменьшать силу тока, называется сопротивлением проводника.
Из формулы закона Ома сопротивление Ом — сопротивление проводника, в котором получается ток силой в 1 а
при напряжении на концах проводника в 1 в.

Сопротивление проводника зависит от его длины l, поперечного сечения S и материала, который характеризуется удельным сопротивлением Чем длиннее проводник, тем больше за единицу времени столкновений частиц, образующих ток, с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника. Чем меньше поперечное сечение проводника, тем более плотным потоком идут частицы, образующие ток, и тем чаще их столкновения с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника.

Под действием электрического поля частицы, образующие ток, между столкновениями движутся ускоренно, увеличивая свою кинетическую энергию за счет энергии поля. При столкновении с частицами, не образующими ток, они передают им часть своей кинетической энергии. Вследствие этого внутренняя энергия проводника увеличивается, что внешне проявляется в его нагревании. Рассмотрим, изменяется ли сопротивление проводника при его нагревании.

В электрической цепи имеется моток стальной проволоки (струна, рис. 81, а). Замкнув цепь, начнем нагревать проволоку. Чем больше мы ее нагреваем, тем меньшую силу тока показывает амперметр. Ее уменьшение происходит от того, что при нагревании металлов их сопротивление увеличивается. Так, сопротивление волоска электрической лампочки, когда она не горит, приблизительно 20 ом
, а при ее горении (2900° С) — 260 ом
. При нагревании металла увеличивается тепловое движение электронов и скорость колебания ионов в кристаллической решетке, в результате этого возрастает число столкновений электронов, образующих ток, с ионами. Это и вызывает увеличение сопротивления проводника * . В металлах несвободные электроны очень прочно связаны с ионами, поэтому при нагревании металлов число свободных электронов практически не изменяется.

* (Исходя из электронной теории, нельзя вывести точный закон зависимости сопротивления от температуры. Такой закон устанавливается квантовой теорией, в которой электрон рассматривается как частица, обладающая волновыми свойствами, а движение электрона проводимости через металл — как процесс распространения электронных волн, длина которых определяется соотношением де Бройля.
)

Опыты показывают, что при изменении температуры проводников из различных веществ на одно и то же число градусов сопротивление их изменяется неодинаково. Например, если медный проводник имел сопротивление 1 ом
, то после нагревания на 1°С
он будет иметь сопротивление 1,004 ом
, а вольфрамовый — 1,005 ом.
Для характеристики зависимости сопротивления проводника от его температуры введена величина, называемая температурным коэффициентом сопротивления. Скалярная величина, измеряемая изменением сопротивления проводника в 1 ом, взятого при 0° С, от изменения его температуры на 1° С, называется температурным коэффициентом сопротивления α
. Так, для вольфрама этот коэффициент равен 0,005 град -1
, для меди — 0,004 град -1 .
Температурный коэффициент сопротивления зависит от температуры. Для металлов он с изменением температуры меняется мало. При небольшом интервале температур его считают постоянным для данного материала.

Выведем формулу, по которой рассчитывают сопротивление проводника с учетом его температуры. Допустим, что R 0
— сопротивление проводника при 0°С
, при нагревании на 1°С
оно увеличится на αR 0
, а при нагревании на
— на αRt°
и становится R = R 0 + αR 0 t°
, или

Зависимость сопротивления металлов от температуры учитывается, например при изготовлении спиралей для электронагревательных приборов, ламп: длину проволоки спирали и допускаемую силу тока рассчитывают по их сопротивлению в нагретом состоянии. Зависимость сопротивления металлов от температуры используется в термометрах сопротивления, которые применяются для измерения температуры тепловых двигателей, газовых турбин, металла в доменных печах и т. д. Этот термометр состоит из тонкой платиновой (никелевой, железной) спирали, намотанной на каркас из фарфора и помещенной в защитный футляр. Ее концы включаются в электрическую цепь с амперметром, шкала которого проградуирована в градусах температуры. При нагревании спирали сила тока в цепи уменьшается, это вызывает перемещение стрелки амперметра, которая и показывает температуру.

Величина, обратная сопротивлению данного участка, цепи, называется электрической проводимостью проводника
(электропроводностью). Электропроводность проводника Чем больше проводимость проводника, тем меньше его сопротивление и тем лучше он проводит ток. Наименование единицы электропроводности Проводимость проводника сопротивлением 1 ом
называется сименс.

При понижении температуры сопротивление металлов уменьшается. Но есть металлы и сплавы, сопротивление которых при определенной для каждого металла и сплава низкой темп

План урока на тему «Зависимость сопротивления проводников от температуры» (10 класс)

Зависимость сопротивления проводников от температуры.

Сверхпроводимость.

Цель урока: объяснить физическую природу зависимости сопротивления проводников от температуры; ввести понятие температурного коэффициента сопротивления и сверхпроводимости.

Задачи урока:

Образовательные:

  • на основе демонстрации опытов объяснить увеличения сопротивления металлов от температуры и уменьшения у электролитов, получить формулу связи R от t ;

  • ознакомить с явлением сверхпроводимости

Развивающие:

  • развитие речи, умения выражать и защищать свою точку зрения;

  • развитие познавательных умений

Воспитательные:

  • вовлечь всех учащихся в творческую работу;

  • воспитание мотивов учения, положительного отношения к знаниям

Тип урока: комбинированный.

Формы организации урока: фронтальная, индивидуальная.

Методы: рассказ, демонстрация опытов, исследование, записи на доске, беседа.

Тип урока: комбинированный.

Формы организации урока: фронтальная, индивидуальная.

Методы: рассказ, демонстрация опытов, исследование, записи на доске, беседа.

Оборудование к уроку:

1) прибор для показа зависимости сопротивления металлов от температуры;

2) спиртовка, спичка;

3) раствор медного купороса;

4) амперметр постоянного тока;

5)гальванометр

6)U-образная трубка

7) источник постоянного тока.

8) ПК, мультимедиа-проектор, компьютерная презентация.

Ход урока

I. Оргмомент.

II. Фронтальный опрос (Слайд 1)

Электрический ток в металлах

а) Что называют электрическим током?

б) Сформулируйте закон Ома для полной цепи.

в) Перечислите хорошие проводники электрического тока.

г) Какой проводимостью обладают металлы? Чем это объясняется?

Носители свободных зарядов в металлах

— свободные электроны, которые упорядоченно перемещаются вдоль проводника под действием электрического поля с постоянной средней скоростью (из-за тормозного действия положительно заряженных ионов кристаллической решетки) (Слайд 4,5)

Металлы обладают электронной проводимостью.

III.Зависимость сопротивления проводника R от температуры:

а) Как можно рассчитать сопротивление проводника?

б) Что такое ρ?

Различные вещества имеют разные удельные сопротивления (см. § 104).

Проблемный вопрос. Зависит ли сопротивление от состояния проводника? от его температуры? Выслушать мнение учащихся. Ответ должен дать опыт.

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется. (Опыт№1, рис 1.) Учащиеся наблюдают уменьшение накала спирали и уменьшение силы тока в цепи.

Вопросы учащимся: Как обьяснить данный опыт?

Как меняется сопротивление спирали в зависимости от температуры?

Выслушать рассуждения учащихся.

Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление. (Слайд 7)

Если при температуре, равной 0°С, сопротивление проводника равно Rо, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.

Удельное сопротивление проводника зависит от температуры:

где ρ0 — удельное сопротивление при 0 градусов,

t — температура,

α — температурный коэффициент сопротивления

( т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)

Для металлов и сплавов

Обычно для чистых металлов принимается

Таким образом, для металлических проводников с ростом температуры

Рис 1

увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается электрический ток в цепи.

Сопротивление проводника при изменении температуры можно рассчитать по формуле:

R = Ro (1 + αt)

где Ro — сопротивление проводника при 0 градусов Цельсия

t — температура проводника

α — температурный коэффициент сопротивления

(Слайды 8,9)

Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока более чем в 10 раз.

У некоторых сплавов, например, у сплава меди с никелем (константан), температурный коэффициент сопротивления очень мал: α ≈ 10-5 K-1. Удельное сопротивление константана велико: ρ ≈ 10-6 Ом∙м. Такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Вывод. Удельное сопротивление (соответственно и сопротивление) металлов растет линейно с увеличением температуры.

(Дополнительно.) У растворов электролитов оно уменьшается при увеличении температуры. (рис.2)

(Опыт №2.) Учащиеся наблюдают увеличение силы тока, проходящего через раствор медного купороса при нагревании раствора.

Вопрос учащимся: Как обьяснить данный опыт?

Выслушать мнение учащихся по наблюдаемому опыту.

Уменьшение сопротивления объясняется увеличением степени диссоциации и образованием свободных носителей зарядов

(Слайд 10)

Рис. 2

IV. Явление сверхпроводимости

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Сверхпроводник – вещество, которое может переходить в сверхпроводящее состояние.

Открытие низкотемпературной сверхпроводимости:

1911г. — голландский ученый Камерлинг — Онес

наблюдается при сверхнизких температурах (ниже 25 К) во многих металлах и сплавах;

при таких температурах удельное сопротивление этих веществ становится исчезающе малым.

(Слайды 11,12)

В 1957 г. дано теоретическое объяснение явления сверхпроводимости:

Купер (США), Боголюбов (СССР)

1957г. опыт Коллинза: ток в замкнутой цепи без источника тока не прекращался в течение 2,5 лет.

В 1986 г. открыта (для металлокерамики) высокотемпературная сверхпроводимость (при 100 К).

Трудность достижения сверхпроводимости:

— необходимость сильного охлаждения вещества

Применение явления сверхпроводимости (Слайд 13)

1)Экранирование

Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное излучение. Используется в микроволновых устройствах, а также при создании установок для защиты от излучения при ядерном взрыве

2)Магниты

— научно-исследовательское оборудование

— магнитная левитация

— получение сильных магнитных полей;

— мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах.

НТСП магниты используются в ускорителях частиц и установках термоядерного синтеза

Интенсивно проводятся работы по созданию поездов на магнитной подушке. Прототип в Японии использует НТСП.

3)Передача энергии

4)Аккумулирование

Возможность аккумулировать электроэнергию в виде циркулирующего тока

5)Вычислительные устройства

Комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструировании аппаратуры.

В настоящий момент в энергетике существует большая проблема

— большие потери электроэнергии при передаче ее по проводам.

Возможное решение проблемы:

при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются

Вещество с самой высокой температурой сверхпроводимости. В марте 1988 г. в Исследовательском центре компании ИБМ в Сан-Хосе, штат Калифорния, США, при температуре –148°С было получено явление сверхпроводимости. Проводником служила смесь оксидов таллия, кальция, бария и меди – Тl2Са2Ва2Сu3Оx.

???

1. Когда электрическая лампочка потребляет большую мощность: сразу после включения ее в сеть или спустя несколько минут?

2. Если бы сопротивление спирали электроплитки не менялось с температурой, то ее длина при номинальной мощности должна быть большей или меньшей?

V. Закрепление изученного материала методом решения задач. (Слайды 14-17)

1.Сопротивление медного провода при 00С равно 4 Ом. Найдите его сопротивление при 500С. Если температурный коэффициент сопротивления меди α = 4,3∙10-3 К-1.

2.(№864-Р). При какой температуре сопротивление серебряного проводника станет 2 раза больше, чем при 00С?

3.(868 №) На сколько процентов изменится мощность, потребляемая электромагнитом, обмотка которого выполнена из медной проволоки. При изменении температуры от 0 до 300С?

4. (№869-Р) На баллоне электрической лампы написано 220 В, 100 Вт. Для измерения сопротивления нити накала в холодном состоянии на лампу подали напряжение 2 В, при этом сила тока была 54 мА. Найти приблизительно температуру накала вольфрамовой нити

Решения задач:

  1. (№864)

  1. (868)

Ответ: уменьшится на 11%

  1. (869)

1+=;

На дом:§113,114.

№865,870

  1. Сопротивление вольфрамовой нити лампы при 20˚С равно 20 Ом, а при 3000˚С равно 250 Ом. Найти α вольфрамовой нити (0,0042 град-1)

Дополнительный материал к уроку

Металлический термометр сопротивления

Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления — платиновые термометры. Это объясняется тем, что платина имеет высокий температурный коэффициент сопротивления и высокую стойкость к окислению. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом не менее 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте впервые отказались от нормирования конкретных номинальных сопротивлений. Сопротивление изготовленного термометра может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает погрешность не лучше 0,1 °C (класс АА при 0 °C). Термометры сопротивления на основе напыленной на подложку плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов составляет 660 °C (класс С), для плёночных 600 °C (класс С).

Краткая теория сверхпроводимости.

Современная теория сверхпроводимости состоит в том, что при температурах, близких к нулю Кельвина, происходит особое взаимодействие между электронами (с порождением и поглощением фотонов), которое характеризуется притяжением между электронами. При таком взаимодействии фотонное притяжение электронов сильнее кулоновского отталкивания. А поэтому все электроны проводимости образуют связанный коллектив, который не может отдавать энергию малыми порциями. Энергия коллективизированных электронов не расходуется на тепловые колебания ионов. А поэтому сопротивление проводника практически равно нулю. Критическая температура (при которой удельное сопротивление резко падает) для сверхпроводников находится по таблице. Сверхпроводники применяются для получения мощных электромагнитов в ускорительных приборах.

Литература

1.Г.Я.Мякишев. Б.Б. Буховцев, Н.Н. Сотский. Физика 10

2. А.П. Рымкевич. Сборник задач по физике

http://class-fizika.narod.ru/10_9.htm

http://www.electrolibrary.info/history/sverkhprovodimost.htm

http://www.nado5.ru/e-book/zavisimost-soprotivleniya-provodnika-ot-temperatury

http://do.gendocs.ru/docs/index-380436.html?page=3

http://elementy.ru/lib/430825/430831

Свойства проводниковых материалов и зависимость их от состава и внешних факторов

К основным свойствам проводниковых материалов относятся:

  • Удельная проводимость или обратная ей величина – удельное сопротивление;
  • Температурный коэффициент удельного сопротивления;
  • Удельная теплопроводность;
  • Контактная разность потенциалов и термоэлектродвижущая сила;
  • Предел прочности при растяжении и относительное удлинение при разрыве.

Удельное сопротивление проводников. Величину, обратную удельной проводимости g называют удельным сопротивлением r и для проводника с постоянным поперечным сечением определяют по формуле:

(4.3)

Единицей удельного сопротивления в СИ является Ом×м, однако в практике чаще пользуются внесистемной единицей мкОм×м.

Следует отметить, что в отличие от диэлектриков диапазон удельных сопротивлений металлических проводников достаточно мал – от 0,016мкОм×м. для серебра и примерно до 10 мкОм×м. для железо-хромо-кобальто-алюминиевых сплавов, т.е. занимает всего три порядка.

Температурная зависимость удельного сопротивления металлических проводников. Как было показано ранее в идеально чистых металлах единственной причиной, которая ограничивает длину свободного пробега, являются тепловые колебания узлов кристаллической решетки (фононы). Удельное сопротивление металла, обусловленное этим фактором, обозначим как ρТ.. С ростом температуры возрастают амплитуды фононов и связанные с этим флюктуации периодического поля решетки. Это повышает рассеивание электронов, уменьшает длину свободного пробега и вызывает возрастание удельного сопротивления. Для упрощенной одномерной модели решетки длина свободного пробега электронов определяется как:



(4.4)

где λсв — длина свободного пробега;

Δa — амплитуда фононов;

N — концентрация атомов в металле.

Потенциальная энергия атома, отклоненного на Δa от узла решетки:

Wn = ½ · Kупр (Δa)2(4.5)

где Купр — коэффициент упругости связи.

Согласно классической статистике средняя энергия одномерного гармоничного осциллятора равняется КТ. Тогда:

½ · Kупр (Δa)2 = КТ (4.6)

где К — постоянная Больцмана.

Тогда из (4.5), (4.6) получим:

(4.7)

Если подставить (4.7) в (4.2) получим:

(4.8)

То есть с ростом температуры удельное сопротивление чистых металлов должно возрастать линейно. В действительности эта зависимость является более сложной (рисунок 4.2)

На участке 3 при комнатных температурах зависимость ρ = ¦(Т) линейна, как это видно из (4.8). То есть с ростом температуры возрастает амплитуда тепловых колебаний узлов кристаллической решетки, что уменьшает длину свободного пробега электронов.


На участке 4 вблизи температуры плавления имеет некоторая нелинейность, что объясняется другими механизмами рассеивания электронов.

При переходе металла из твердого состояния в жидкое (температура плавления Тпл) может иметь место как резкое возрастание удельного сопротивления (а), так и его уменьшение (б). Это связано с изменением структуры кристаллической решетки. Если при плавлении объем металла возрастает, что имеет место для большинства металлов, то расстояние между атомами тоже возрастает, металлическая связь уменьшается, а амплитуда фононов возрастает, что уменьшает длину свободного пробега электронов, следовательно, сопротивление металла возрастает. Для некоторых металлов (висмут, галлий) при плавлении объем металла уменьшается, что усиливает связи между атомами, амплитуда фононов уменьшается и удельное сопротивление тоже уменьшается.

На участке 5 металлы находятся в жидком состоянии и сохраняют кристаллическую решетку, поэтому зависимость удельного сопротивления от температуры поясняется аналогично участку 3.

На участке 2, ниже температуры Дебая (ТД) изменяется частота тепловых колебаний узлов кристаллической решетки, поэтому зависимость ρ = ¦(Т) нелинейна и подчиняется закону:

ρ = A·Tn (4.9)

где n — изменяется от 1 до 5.

На участке 1 некоторые металлы имеют конечное сопротивление (rост) даже при температуре Т=0 К. Это объясняется наличием в металле статических дефектов решетки, прежде всего примесей. Это позволяет оценивать чистоту металлов на основании отношения:

ρ300K / ρ4K

где ρ300K , ρ4K — соответственно удельное сопротивление металла при 300 К и 4,2 К (температура кипения жидкого гелия). Чем меньше это отношение, тем чище металл.

У некоторых металлов при температуре ниже Тсв наблюдается резкое уменьшение удельного сопротивления до нуля. Такое явление называют сверхпроводимостью.

Таким образом, согласно (4.9) металлические проводники в обычных условиях имеют линейную зависимость удельного сопротивления от температуры.

Влияние примесей на удельное сопротивление металлических проводников.Как уже говорилось, причинами рассеяния электронов в металлах являются не только тепловые колебания узлов кристаллической решетки, но и наличие статических дефектов, которые, прежде всего связанные с примесями. Рассеивание на статических дефектах не зависит от температуры. Поэтому при абсолютном нуле сопротивление реальных металлов остается конечным. Из этого следует правило Маттиссена об аддитивности удельного сопротивления:

ρпр = ρт + ρост (4.10)

где ρпр — полное сопротивление металла с примесью;

ρт — сопротивление, обусловленное рассеянием электронов на фононах;

ρост — остаточное сопротивление, обусловленное рассеиванием электронов на статических дефектах решетки.

Наибольший вклад в остаточное сопротивление вносит рассеяние на примесных атомах, которые практически всегда имеются в металлах. Поэтому длина свободного пробега электронов в металлах с примесью состоит из:

1/lсв = 1/λТ +1/λд (4.11)

где lТ, lД — длина свободного пробега электронов, ограниченная фононами и примесями, соответственно.

Длина пробега lД:

1/λд ≈ Nd Sd (4.12)

где Nd — концентрация атомов примеси;

Sd – эффективная плоскость рассеивания электронов атомами примеси.

Тогда удельное сопротивление проводника с примесью:

(4.13)

То есть наличие примесь увеличивает удельное сопротивление металла, но его зависимости от температуры остается линейной (рис. 4.3)

Различные примеси по-разному влияют на сопротивление металла. Это зависит от деформаций кристаллической решетки атомами примеси. Чем большая разность в размерах собственных и примесных атомов, тем больше остаточное сопротивление. То есть выполнится правило Линде:

ост = а +b(DZ)2 (4.14)

где ост — изменение остаточного сопротивления при изменении примеси;

DZ — разность валентностей собственного атома и атома примеси;

а, b — константы.

Таким образом, на сопротивление металлов меньшее влияние оказывают примесные атомы металла, а большее – атомы металлоидов.

В технике очень широко используют металлические сплавы, имеющие значительную концентрацию атомов примеси, со структурой неупорядоченного твердого раствора. Статическое распределение атомов разного вида в узлах кристаллической решетки вызывает значительные флюктуации периодического поля кристалла, рассеивающего электроны. Но в неупорядоченных твердых растворах, преимущественно с добавкой примеси, изменяется только период решетки. Поэтому действителен закон Нордгейма:

ocт = C.xA.xB = C. xB (1-xB) = C.xA(1-xA) (4.15)

де С — константа;

xА, xВ — атомные доли компонентов в сплаве.

То есть в бинарных твердых растворах А-В остаточное сопротивление возрастает, как при добавлении атомов металла В к металлу А, так и при добавленные атомов металла А к металлу В (рис. 4.4). Остаточное сопротивление достигает максимума при xА = xВ = 0,5.

Закон Нордгейма описывает изменение остаточного сопротивления для непрерывных неупорядоченных твердых растворов. Если сплав отжечь, то он может стать упорядоченным и, если при этом возникают интерметаллические соединения, которые имеют собственную кристаллическую решетку, то зависимость остаточного сопротивления разделяется на части, соответственно числу интерметаллических соединений. Таким образом, удельное сопротивление металлических сплавов всегда выше сопротивления чистых металлов. Это свойство используется для получения высокоомных проводниковых материалов.

Изменение удельного сопротивления при упругих деформациях объясняется изменением амплитуды колебания узлов кристаллической решетки металла. Увеличение амплитуды колебания узлов решетки металла приводит к уменьшению длины свободного пробега носителей заряда и удельное сопротивление возрастает. Пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки. При рекристаллизации путем термической обработки (отжига) удельное сопротивление может вновь снижено до первоначальных значений.

Температурный коэффициент удельного сопротивления.В диа­пазоне температуры, где зависимость r от t близка к линейной (рис. 4.2, участок 3) допустима линейно-кусочная аппроксимация этой зависимости, и величина удельного сопротивления в конце диапазона температу­ры t может быть подсчитана по формуле

rt = r0(1+art) (4.16)

где r0—удельное сопротивление в начале диапазона.

Величину arиз выражения (4.) называют средним темпера­турным коэффициентом удельного сопротивления в данном диа­пазоне температуры:

, К-1 (4.17)

Дифференциальное выражение для arимеет вид

, К-1 (4.18)

Значения arчистых металлов в твердом состоянии близки друг к другу, и поэтому приближенно можно считать ar » 0,004 , К-1.

Исключение составляют элементы, относящиеся к ферромагнетикам — железо, никель, кобальт, гадолиний, а также натрий, ка­лий, хром и др., однако и для них ar отличается от приведенной величины только в 1,5—2 раза.

Наличие примесей уменьшает значение αρ. У некоторых сплавов αρ. даже может приобретать небольшие отрицательные значения (рис.4.5). Это объясняют тем, что при более сложных составе и структурax по сравнению с чистыми металлами сплавы нельзя рассматривать как класси­ческие металлы, т. е. изменение проводи­мости их обусловливается не только из­менением подвижности носителей заряда но в некоторых случаях и частичным возрастанием концентрации носителей при повышении температуры. Сплав, у кото­рого уменьшение подвижности с увеличе­нием температуры компенсируется воз­растанием концентрации носителей заря­да, имеет нулевой температурный коэф­фициент удельного сопротивления.

Это явление используется для изготовления термостабильных сплавов, например, константана, манганина ). Константан — сплав с 60% Ni и 40% Сu имеет большое сопротивление (~0,5 мкОм×м) и очень малый температурный коэффициент (меньше 10-6 К-1), отсюда и его название.

Удельная теплопроводность металлов. Высокая теплопроводность металлов легко объясняется посредством передачи тепловой энергии атомов нагретого участка металла атомам холодного участка за счет переноса этой энергии коллективизированными электронами. Так как механизм электропроводности и теплопроводности в металлах обусловлен одними и теми же факторами: движением электронного газа и его плотностью, очевидно, что металлы с высокой электропроводностью являются также хорошими проводниками тепла, а диэлектрики обладают не только низкой электропроводностью, но и низкой теплопроводностью. Так, медь имеет удельную теплопроводность 406 Вт/К×м, серебро 453 Вт/К×м, алюминий 218 Вт/К×м, что значительно выше чем у диэлектриков. Удельная теплопроводность и электропроводность металлов связаны законом Видемана-Франца:

lТ / σ = L0Т (4.19)

где lТ — удельная теплопроводность.

σ — удельная электропроводность.

L0число Лоренца.

Поскольку на участке комнатных температур удельная электропроводность падает пропорционально температуре, то согласно (4.19), удельная теплопроводность металлов не должна зависеть от температуры. Это следствие из закона Видемана-Франца выполняется для большинства металлов. Это свойство применяют в технике, при использовании металлов как радиаторов для охлаждения мощных полупроводниковых приборов.

Для этой цели необходимо использовать металлы с большим значением удельной теплопроводности. Чаще всего, это сплавы на основе алюминия (силумин), которые имеют хорошие тепловые, механические и антикоррозийные свойства. Медь нельзя использовать вследствие её плохой коррозионной стойкости, а серебро — вследствие высокой стоимости.

Контактные явления и термоэлектродвижущая сила (термо-э.д.с.)

При соприкосновении двух разных металлов, между ними возникает контактная разность потенциалов. Согласно квантовой теории причиной этого является различная энергия Ферми соприкасающихся металлов. Пусть в изолированном состоянии электронный газ в металлах А и В имеет энергию Ферми WFA и WFB, отсчитываемую от дна зоны проводимости (рис.4.6).

Термодинамическая работа выхода электронов из металла равняется, соответственно, cА и cВ. Поскольку кинетическая энергия электронов, которые находятся на уровне Ферми в разных металлах различна, то при контакте материалов возникает значительный переход электронов из металла В с большим значением энергии Ферми в металл, где эта энергия меньше. Например, из металла В в металл А. Вследствие этого металл В заряжается положительно, а металл А — отрицательно. Между ними возникает разность потенциалов, которая блокирует дальнейший переход носителей заряда. Равновесие наступит, если:

eUK = WFB — WFA(4.20)

где UK — контактная разность потенциалов.

Наличие контактного поля обеспечивает равновесие потоков электронов из одного металла в другой. Равновесие вследствие большой скорости теплового движения устанавливается очень быстро (приблизительно за 10-16 с). Двойной слой d, который возникает при этом в области контакта, будет очень тонким (приблизительно равным периоду решетки), поэтому он не влияет на прохождение электрического тока через контакт. Поскольку энергия Ферми в металлах значительна, то контактная разность потенциалов достигает несколько вольт.

Термоэлемент, который построен из двух различных металлических проводников с замкнутой цепью, называют термопарой (рис.4.7).

Вольтметр в такой цепи будет показывать разность потенциалов, которую называют термоэлектродвижущей силой (термо-э.д.с.). Термо-э.д.с. равняется:

U @ aT 2 — Т1) (4.21)

где aT — относительная удельная термо-э.д.с.

Значение aT зависит от природы материалов и температуры и включает в себя три составляющих. Первая обусловлена температурной зависимостью контактной разности потенциалов, поскольку с ростом температуры уровень Ферми в металлах незначительно, но смещается.

Вторая составляющая обусловлена диффузией носителей заряда от горячих спаев к холодным. Поскольку существует градиент температуры от контакта к контакту, то возникает диффузия электронов от горячего контакта к холодному, что дает некоторый вклад в возникающую разность потенциалов.

Третья составляющая возникает вследствие захвата электронов квантами тепловой энергии. Их поток тоже передвигается к холодному контакту. Значение aT приблизительно равняется нескольким мкВ/К.

Термопары часто используют для измерения температуры. Если температуру холодного контакта поддерживать 0 ОС, то вольтметр будет показывать напряжение пропорциональное температуре горячего контакта. Достоинством термопар является высокая линейность, возможность измерения температуры в широком интервале температур, независимость значения термо-э.д.с. от длины проводников.

Вследствие того, что значение aT зависит от состава материала и незначительно от температуры, термопары градуируют, используя точки плавления металлов: свинца, олова, серебра и других.

Наиболее распространенными термопарами являются:

· Хромелькопель (типа ХК). Она позволяет измерять температуры до 600 ОС и имеет при этой температуре термо-э.д.с. приблизительно 50 мВ.

· Хромель-алюмель (типа ХА). Она используется к температурам 1000 ОС и имеет при этой температуре термо-э.д.с. приблизительно 40 мВ.

· Медь-константан. Ее используют при низких температурах до 350 ОС. При этой температуре термо-э.д.с. достигает 15 мВ.

· Платинородий-платина (типа ПП или ППР). Ее применяют до температуры 71600 ОС. Термо-э.д.с. у этой термопары невелика (приблизительно 14 мВ при 1600 ОС). Но она позволяет обеспечить наиболее точные и стабильные измерения температуры.

Однако явление термо-э.д.с. имеет и отрицательные стороны. В реальных условиях исключить градиенты температур практически невозможно. Поэтому, если контактируют различные металлы, то возможно возникновение паразитной термо-э.д.с. Для устранения этого в цепях (прежде всего электроизмерительных устройств), надо подбирать контактирующие металлы с малыми значениями термо-э.д.с. Такой парой, например, является медь-манганин.

«Зависимость сопротивления проводников от температуры. Сверхпроводимость.»

Урок физики в 8 классе по теме:

«Зависимость сопротивления проводника от температуры. Сверхпроводимость».

Цель урока:

  • Способствовать формированию знаний о линейной зависимости металлического сопротивления проводника от температуры, о физическом смысле температурного коэффициента сопротивления, о зависимости сопротивления электролитов от температуры, практическом применении зависимости металлического сопротивления проводника от температуры, о сверхпроводимости.

  • Способствовать формированию общеучебных умений и навыков: строить монологические ответы, решать задачи, наблюдать, делать выводы, работать с таблицей, обобщать.

  • Способствовать умению выслушивать друг друга, работать самостоятельно, проводить самооценку своих знаний, работать в группах по созданию презентации и умению представить её.

Этап урока 1. Подготовка к восприятию нового материала.

1. Что понимают под сопротивлением проводника? (физ. величина, характеризующая проводник и показывающая, как проводник препятствует направленному движению заряженных частиц т. е. току)

2. От чего зависит сопротивление проводника? (от размеров проводника и от материала из которого он изготовлен).

3. Какая формула отображает эту зависимость? ( R = , где:ρ – удельное l — сопротивление проводника, s – удельное сопротивление проводника).

Этап урока 2. Создание проблемной ситуации

А как вы думаете зависит ли сопротивление металлического проводника от температуры? (обычно мнения ребят разделяются: одни считают- ДА, другие НЕТ)

Записывается тема урока.

Ставятся задачи перед учениками:

  • Выяснить зависит ли сопротивления проводника от температуры.

  • Если зависит, то как?

Давайте обратимся к опыту. Включим в цепь, содержащую батарею аккумуляторов, стальную спираль (см. рис.)следовательно с ней включим лампу, по свечению которой можно судить об изменении силы тока в цепи (вместо лампы можно использовать амперметр демонстрационный).

Нагревая спираль при помощи горелки, видим. Что яркость лампы уменьшилась. Следовательно ток в цепи уменьшился. Значит при нагревании стального проводника сопротивление проводника увеличивается. Заменяя стальную спираль другими металлическими проводниками, можно убедиться в том, что при повышении температуры сопротивление всех металлических проводников растет

Ожидаемые результаты:

Ученики наблюдают и делают вывод: 1) при нагревании металлического проводника сопротивление его увеличивается.

2)При повышении температуры сопротивление всех металлических проводников растет, но у одних рост сопротивления сильнее, чем у других.

Этап 3 Объяснение учителя, работа с таблицей № 9 «Температурный коэффициент сопротивления металлов и сплавов»

Многочисленные опыты и электронная теория

Проводимости металлов показывает, что каждое вещество можно характеризовать постоянной для него величиной, называемой температурным коэффициентом сопротивления . Этот коэффициент равен относительному изменению удельного сопротивления при его нагревании на 1 К:

= ; где: — удельное сопротивление при температуре = 00С, — сопротивление при температуре Отсюда зависимость удельного сопротивления металлического проводника от температуры выражается линейной функцией:

ρ = ⋅(1+ )

Графически эту зависимость можно представить так:

ρo

0

t0

ρ

Работа с таблицей.

  1. Найдите в таблице вещество с наименьшим температурным коэффициентом сопротивления (константан = 0, 00003,К -1 удельное сопротивление константана велико: ρ = 10-6 Ом⋅м), такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т. е. в тех случаях, когда требуется , чтобы сопротивление заметно не менялось при колебаниях температуры..

  2. Что показывает это число? (относительное изменение удельного сопротивления проводника при его нагревании на 1 К)

  3. Какое вещество обладает наибольшим температурным коэффициентом сопротивления? (сталь = 0, 006,К -1) Почему я его использовала в опыте самым первым? (он обладает наибольшим коэффициентом сопротивления).

  4. Что показывает это число? (относительное изменение удельного сопротивления проводника при его нагревании на 1 К)

  5. Проанализируйте данные таблицы и предложите вещество для изготовления термометра , какими преимуществами он обладает по сравнению с жидкостным?

Объяснение на основе молекулярного строения вещества зависимости сопротивления проводника от температуры

Этпап 4

Фрагмент презентации учителя (слайд 1)

Термометр сопротивления

Основной частью термометра служит платиновая проволока, намотанная на керамический каркас.

Достоинства:

можно пользоваться для измерения очень высоких температур и весьма низких;

высокая точность (измеряют температуру с точностью до тысячных долей градуса)

Ответьте на вопросы

Вольтамперная характеристика вольфрамовой нити лампы накаливания при ее работе.

Почему зависимость I=I(U) не прямо пропорциональная ?

  1. Сопротивление металлического проводника с ростом температуры…

  2. При прохождении тока через сверхпроводник наблюдаются такие действия тока, как…

  3. В сильном магнитном поле сверхпроводящие свойства становятся…

  4. Какой график на рисунке соответствует зависимости сопротивления проводника от температуры?

5. Как изменятся сила тока, сопротивление и концентрация носителей заряда с ростом температуры медного проводника?

Физические величины Изменение

А) сила тока 1) уменьшится

Б) сопротивление 2) увеличится

В) концентрация 3) не изменится

(7-8 мин. Самопроверка, выставление оценки)

Ответы

  1. Увеличивается, 2. Магнитное, 3. Исчезают. 4. 3,

5.

А

Б

В

1

2

3

Реши задачи

  • Каков температурный коэффициент электрического сопротивления материала проводника, если при нагревании от 0°С до 100°С его электрическое сопротивление увеличилось на 0,001?

  • Электрическое сопротивление вольфрамовой нити электрической лампы при 0 °С равно 3,6 Ом. Найдите электрическое сопротивление нити при 2700К.

Этап 5

Как зависит сопротивление проводника при низких температурах?

Презентация «Сверхпроводимость» (подготовил ученик с хорошей успехами в изучении физики)

Слад 1

Сопротивление металлических проводников уменьшается при понижении температуры. Однако до конца XIX в. нельзя было проверить, как зависит сопротивление проводников от температуры в области очень низких температур.

Слайд 2

В начале XX в. голландскому учёному Г. Камерлинг-Оннесу удалось превратить в жидкое состояние гелий (Tкип = 4,2 К). Это дало возможность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой температуры.

Слайд 3

В 1911 г. работа Камерлинг–Оннеса завершилась крупнейшим открытием. Исследуя сопротивление ртути при её постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. Показан график зависимости удельного сопротивления охлаждения ртути в жидком гелии от температуры.

Слайд 4

Металлы, их температура сверхпроводящего перехода,

Tc, К, год опубликования обнаружения

Слайд 5

  • Оннес не только обнаружил сверхпроводимость ртути, олова и свинца, но и нашел первые сверхпроводящие сплавы — сплавы ртути с золотом и оловом.

  • С тех пор эта работа продолжалась, «на сверхпроводимость» проверялись всё новые соединения и постепенно класс сверхпроводников расширялся.

  • Сверхпроводимость – полная потеря металлом электрического сопротивления при определенной температуре.

Слайд 6

Описаны опыты со свинцовым кольцом

Удивительное свойство сверхпроводимости особенно наглядно было продемонстрировано на заре открытия этого явления в опытах со свинцовым кольцом, находящимся при температуре, близкой к абсолютному нулю.

Если создать в цепи ток, а затем отключить источник питания, то в обычных проводниках он быстро затухает. Ток же, возникающий в сверхпроводнике может сохраняться неограниченно долго благодаря отсутствия сопротивления.

Слайд 7

  • Не все материалы могут стать сверхпроводниками, но их число достаточно велико.

  • Выяснилось, что при протекании сильных токов по чистым металлам вокруг них создаётся сильное магнитное поле и сверхпроводимость у них пропадает.

  • Выход из положения был найден – некоторые сплавы металлов сохраняют сверхпроводимость при протекании по ним сильного тока

Слайд 8

  • Высокотемпературные сверхпроводники могут сделать переворот в энергетике. Сверхпроводящие кабели могут без потерь передавать энергию на большие расстояния. Они могут служить обмотками, создающими сильные магнитные поля.

  • Высокотемпературные сверхпроводники могут служить в качестве накопителей энергии.

Слайд 9

проволочек из сплава ниобия с оловом и трубочек, по

которым течёт жидкий гелий, запрессован в медную

оболочку.

Слайд 10

в различных отраслях техники: электроэнергетике (сверхпроводящие обмотки и кабели), транспорте (поезд на магнитной подушке) и др.

Подведение итога урока

Дома: п. 40 доклад

Температурная зависимость — электрическое сопротивление полупроводников

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
            • 0003000

          • FORMULAS
            • Математические формулы
            • Алгебраные формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 0003000

            • 000 CALCULATORS
            • 000
            • 000 Калькуляторы по химии 900 Образцы документов для класса 6
            • Образцы документов CBSE для класса 7
            • Образцы документов CBSE для класса 8
            • Образцы документов CBSE для класса 9
            • Образцы документов CBSE для класса 10
            • Образцы документов CBSE для класса 1 1
            • Образцы документов CBSE для класса 12
          • Вопросники предыдущего года CBSE
            • Вопросники предыдущего года CBSE, класс 10
            • Вопросники предыдущего года CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Класс 11 Физика
            • HC Verma Solutions Класс 12 Физика
          • Решения Лакмира Сингха
            • Решения Лахмира Сингха класса 9
            • Решения Лахмира Сингха класса 10
            • Решения Лакмира Сингха класса 8
          • 9000 Класс

          9000BSE 9000 Примечания3 2 6 Примечания CBSE

        • Примечания CBSE класса 7
        • Примечания

        • Примечания CBSE класса 8
        • Примечания CBSE класса 9
        • Примечания CBSE класса 10
        • Примечания CBSE класса 11
        • Класс 12 Примечания CBSE
      • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
      • CBSE Примечания к редакции класса 10
      • CBSE Примечания к редакции класса 11
      • Примечания к редакции класса 12 CBSE
    • Дополнительные вопросы CBSE
      • Дополнительные вопросы по математике класса 8 CBSE
      • Дополнительные вопросы по науке 8 класса CBSE
      • Дополнительные вопросы по математике класса 9 CBSE
      • Дополнительные вопросы по науке
      • CBSE Class 9 Вопросы
      • CBSE Class 10 Дополнительные вопросы по математике
      • CBSE Class 10 Science Extra questions
    • CBSE Class
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8 Класс 9
      • Класс 10
      • Класс 11
      • Класс 12
    • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT

      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT

      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9, глава 7
      • Решения NCERT

      • для математики класса 9, глава 8
      • Решения NCERT для математики класса 9, глава 9
      • Решения NCERT для математики класса 9, глава 10
      • Решения NCERT

      • для математики класса 9, глава 11
      • Решения

      • NCERT для математики класса 9 Глава 12
      • Решения NCERT

      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для науки класса 9 Глава 6
      • Решения NCERT для науки класса 9 Глава 7
      • Решения NCERT для науки класса 9 Глава 8
      • Решения NCERT для науки класса 9 Глава 9
      • Решения NCERT для науки класса 9 Глава 10
      • Решения NCERT для науки класса 9 Глава 12
      • Решения NCERT для науки класса 9 Глава 11
      • Решения NCERT для науки класса 9 Глава 13
      • Решения NCERT

      • для науки класса 9 Глава 14
      • Решения NCERT для класса 9 по науке Глава 15
    • Решения NCERT для класса 10
      • Решения NCERT для класса 10 по социальным наукам
    • Решения NCERT для математики класса 10
      • Решения NCERT для математики класса 10 Глава 1
      • Решения NCERT для математики класса 10, глава 2
      • Решения NCERT для математики класса 10, глава 3
      • Решения NCERT для математики класса 10, глава 4
      • Решения NCERT для математики класса 10, глава 5
      • Решения NCERT для математики класса 10, глава 6
      • Решения NCERT для математики класса 10 Глава 7
      • Решения NCERT для математики класса 10 Глава 8
      • Решения NCERT для математики класса 10 Глава 9
      • Решения NCERT для математики класса 10 Глава 10
      • Решения NCERT для математики класса 10 Глава 11
      • Решения NCERT для математики класса 10 Глава 12
      • Решения NCERT для математики класса 10 Глава ter 13
      • Решения NCERT для математики класса 10 Глава 14
      • Решения NCERT для математики класса 10 Глава 15
    • Решения NCERT для науки класса 10
      • Решения NCERT для класса 10 науки Глава 1
      • Решения NCERT для класса 10 Наука, Глава 2
      • Решения NCERT для Науки Класса 10 Глава 3
      • Решения NCERT для Науки Класса 10 Глава 4
      • Решения NCERT для Науки Класса 10 Глава 5
      • Решения NCERT для Науки Класса 10 Глава 6

.

Что такое сопротивление в физике?

Какое определение сопротивления в физике?

Что такое сопротивление проводника
Движение электрона вызывает прохождение тока через металлы. Движущиеся электроны сталкиваются друг с другом, а также с положительными ионами, присутствующими в металлическом проводнике. Эти столкновения замедляют скорость электронов и, следовательно, препятствуют прохождению электрического тока.
Свойство проводника, благодаря которому он препятствует прохождению через него электрического тока, называется его сопротивлением .

  • Мера сопротивления проводника току известна как сопротивление проводника . Разные проводники имеют разное сопротивление току.
  • Сопротивление обозначается буквой R.
  • Сопротивление R проводника определяется как отношение разности потенциалов V на проводнике к току I, протекающему по нему.
    Таким образом:
  • Единица сопротивления в системе СИ — ом. Ом обозначается греческой буквой (Ω), которая называется омега.
  • Сопротивление — это скалярная величина.
  • Один Ом — это сопротивление проводника, когда разность потенциалов в 1 вольт, приложенная к его концам, вызывает протекание через него тока в 1 ампер.

Люди также спрашивают

Какие факторы влияют на сопротивление проводника?

  • В телекоммуникационной и энергетической отраслях очень важно выбрать подходящие электрические кабели для передачи электрического тока для различных целей.
  • Наиболее важным фактором, который следует учитывать при выборе кабеля, является сопротивление проводников в кабеле.
  • На сопротивление проводника влияет тип материала, из которого он сделан, а также его длина, толщина и температура.

Факторы, от которых зависит сопротивление проводника

  1. Влияние длины на сопротивление проводника
    Сопротивление проводника прямо пропорционально длине.То есть сопротивление проводника ∝ Длина проводника.
  2. Влияние площади поперечного сечения на сопротивление проводника
    Сопротивление проводника обратно пропорционально его площади поперечного сечения.
    То есть сопротивление проводника;

    Если площадь поперечного сечения проводника увеличивается вдвое, его сопротивление уменьшается вдвое.

  3. Влияние температуры на сопротивление проводника
    Сопротивление всех чистых металлов увеличивается с повышением температуры.Сопротивление сплавов очень незначительно увеличивается с повышением температуры. Для металла при повышении температуры сопротивление увеличивается, а для полупроводников при повышении температуры сопротивление уменьшается.
  4. Влияние природы материала на сопротивление проводника
    Некоторые материалы имеют низкое сопротивление, тогда как другие имеют гораздо более высокое сопротивление. Как правило, сплав имеет более высокое сопротивление, чем чистые металлы, полученные из сплава.
    * Медь, серебро, алюминий и др., имеют очень низкое сопротивление.
    * Нихром, константан и др. Обладают более высокой стойкостью. Нихром используется для изготовления нагревательных элементов нагревателей, тостеров, утюга и т. Д.

Таким образом, сопротивление R данного проводника:

  • прямо пропорционально его длине, l (R∝ l)
  • Is обратно пропорционально площади его поперечного сечения, A (R ∝ 1 / A)
  • Зависит от типа материала или удельного сопротивления, ρ
  • Влияет на температуру

В таблице обобщены факторы, влияющие на сопротивление, и их отношения.

Факторы, влияющие на сопротивление провода Эксперимент

Цель: Изучить факторы, влияющие на сопротивление.
Проблема: Какие факторы влияют на сопротивление проводящего провода?
Материалы: Эврика проволока 50 см (SWG 24), проволока из константана 50 см (SWG 24, SWG 30, SWG 34), медная проволока 50 см (SWG 24), проволока из константана 100 см (SWG 24)
Аппаратура: Амперметр (0 — 1 А), вольтметр (0 — 5 В), держатель батареи, реостат (0 — 15 Ом), переключатель, соединительные провода, три 1.5 В сухие элементы

A. Как тип материала влияет на экспериментальное сопротивление

Гипотеза: При фиксированной длине и толщине используемого проводящего провода на его сопротивление влияет тип материала.
Переменные:
(a) Управляемая переменная: Типы материала проволоки
(b) Реагирующая переменная: сопротивление, R
(c) Фиксированная переменная: толщина, длина и температура проволоки
Оперативное определение: Сопротивление , R токопроводящего провода определяется отношением показания вольтметра к показанию амперметра.
Метод:

  1. Установлена ​​электрическая схема, показанная на рисунке.
  2. Провод P (провод Eureka 50 см с swg 24) подключен к клеммам X и Y.
  3. Переключатель замкнут, и реостат настроен на фиксацию показания амперметра для тока, I = 0,5 А. Показание вольтметр для разности потенциалов, V заносят в таблицу.
  4. Рассчитывается значение сопротивления R = V / I.
  5. Шаги с 2 по 4 повторяются путем замены провода P на:
    (a) Провод Q: провод из константана длиной 50 см на s.w.g. 24
    (b) Провод 5: медный провод 50 см с н.в. 24

Результаты:

Выводы:

  1. Сопротивление R провода эврики самое высокое, а сопротивление R медного провода самое низкое.
  2. Мера способности материала противодействовать прохождению тока также известна как удельное сопротивление p материала. Таким образом, мы можем сделать вывод, что для фиксированной длины и толщины провода сопротивление зависит от типа материала, из которого изготовлена ​​проволока.

B. Как длина провода влияет на сопротивление эксперимента

Гипотеза: Сопротивление проводящего провода увеличивается с увеличением его длины.
Переменные:
(a) Управляемая переменная: длина провода, l
(b) Реагирующая переменная: сопротивление, R
(c) Фиксированная переменная: толщина, тип провода и температура провода
Оперативное определение: Сопротивление R проводника определяется отношением показания вольтметра к показанию амперметра.
Метод:

  1. Используется та же электрическая схема, что и на рисунке.
  2. Проволока из константана длиной 100 см из нерж. 24 подключается к клеммам X и Y.
  3. Длина провода регулируется до l = 20 см.
  4. Переключатель замыкается, и реостат настраивается так, чтобы зафиксировать показания амперметра для тока I = 0,5 А. Показания вольтметра для разности потенциалов V записываются в таблицу.
  5. Шаги с 3 до 4 повторяются для l = 40 см, 60 см, 80 см и 100 см.
  6. Значение сопротивления R = V / I рассчитывается для каждого значения длины провода l.
  7. Построен график зависимости R от l.

Результаты:

  1. Табулирование результатов.
  2. График зависимости R от l.

Вывод:
Сопротивление R токопроводящего провода прямо пропорционально длине провода l. Гипотеза принята. Сопротивление R провода увеличивается с увеличением его длины l.

C. Как площадь поперечного сечения (толщина провода) влияет на эксперимент по сопротивлению

Гипотеза: При фиксированной длине проводящего провода, чем толще провод, тем меньше сопротивление.
Переменные:
(a) Управляемая переменная: Толщина проволоки
(b) Реагирующая переменная: Сопротивление, R
(c) Фиксированная переменная: Тип, длина и температура проволоки
Оперативное определение:
(a) Толщина проводника определяется величиной его s.w.g.
(b) Сопротивление R проводящего провода определяется отношением показания вольтметра к показанию амперметра.
Метод:

  1. Используется та же электрическая схема, что и на рисунке выше.
  2. Провод Q (константановый провод длиной 50 см с SWG 24) подключен к клеммам X и Y.
  3. Переключатель замкнут, и реостат настроен на фиксацию показаний амперметра для тока, I = 0,5 А. Показание вольтметр для разности потенциалов, В. записывают в таблицу.
  4. Рассчитывается значение сопротивления R = V / I.
  5. Шаги 2–4 повторяются с использованием проволоки из константана длиной 50 см с н.в.г. 30 и s.w.g. 34.

Результаты:

Обсуждение:

  1. Значение s.w.g. проволоки соответствует ее диаметру. Провод с большим с.в.г. имеет меньший диаметр.
  2. Площадь поперечного сечения A провода может быть определена по его диаметру D по формуле:

Вывод:
Сопротивление R провода обратно пропорционально его площади поперечного сечения, А.Чем толще провод, тем меньше сопротивление. Гипотеза принята. .

D. Как температура влияет на сопротивление. Эксперимент

Гипотеза: Когда температура лампы накаливания увеличивается, ее сопротивление увеличивается.
Переменные:
(a) Управляемая переменная: температура нити накала
(b) Реагирующая переменная: сопротивление, R
(c) Фиксированная переменная: Тип используемой лампы
Оперативное определение:
(a) Температура нить накала определяется яркостью колбы.
(b) Сопротивление R нити накала определяется отношением показания вольтметра к показанию амперметра.
Метод:

  1. Используется та же электрическая схема, что и на рисунке выше, с заменой провода P лампой накаливания.
  2. Переключатель замкнут и реостат выставлен на максимум, чтобы лампочка не загоралась. Показания амперметра по току I и вольтметра по разности потенциалов V заносятся в таблицу.
  3. Шаг 2 повторяется путем регулировки реостата до тех пор, пока лампа не будет тускло освещена, затем немного ярче и очень яркой.
  4. Рассчитывается значение сопротивления R = V / I.

Результатов:

Обсуждение:
Яркость лампочки соответствует температуре лампочки. Чем ярче колба, тем выше ее температура.
Вывод:
Сопротивление нити накала увеличивается с повышением ее температуры.Гипотеза принята.

.

Зависимость сопротивления от температуры — удельное электрическое сопротивление

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
            • 0003000

          • FORMULAS
            • Математические формулы
            • Алгебраные формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 0003000

            • 000 CALCULATORS
            • 000
            • 000 Калькуляторы по химии 900 Образцы документов для класса 6
            • Образцы документов CBSE для класса 7
            • Образцы документов CBSE для класса 8
            • Образцы документов CBSE для класса 9
            • Образцы документов CBSE для класса 10
            • Образцы документов CBSE для класса 1 1
            • Образцы документов CBSE для класса 12
          • Вопросники предыдущего года CBSE
            • Вопросники предыдущего года CBSE, класс 10
            • Вопросники предыдущего года CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Класс 11 Физика
            • HC Verma Solutions Класс 12 Физика
          • Решения Лакмира Сингха
            • Решения Лахмира Сингха класса 9
            • Решения Лахмира Сингха класса 10
            • Решения Лакмира Сингха класса 8
          • 9000 Класс

          9000BSE 9000 Примечания3 2 6 Примечания CBSE

        • Примечания CBSE класса 7
        • Примечания

        • Примечания CBSE класса 8
        • Примечания CBSE класса 9
        • Примечания CBSE класса 10
        • Примечания CBSE класса 11
        • Класс 12 Примечания CBSE
      • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
      • CBSE Примечания к редакции класса 10
      • CBSE Примечания к редакции класса 11
      • Примечания к редакции класса 12 CBSE
    • Дополнительные вопросы CBSE
      • Дополнительные вопросы по математике класса 8 CBSE
      • Дополнительные вопросы по науке 8 класса CBSE
      • Дополнительные вопросы по математике класса 9 CBSE
      • Дополнительные вопросы по науке
      • CBSE Class 9 Вопросы
      • CBSE Class 10 Дополнительные вопросы по математике
      • CBSE Class 10 Science Extra questions
    • CBSE Class
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8 Класс 9
      • Класс 10
      • Класс 11
      • Класс 12
    • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT

      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT

      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9, глава 7
      • Решения NCERT

      • для математики класса 9, глава 8
      • Решения NCERT для математики класса 9, глава 9
      • Решения NCERT для математики класса 9, глава 10
      • Решения NCERT

      • для математики класса 9, глава 11
      • Решения

      • NCERT для математики класса 9 Глава 12
      • Решения NCERT

      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для науки класса 9 Глава 6
      • Решения NCERT для науки класса 9 Глава 7
      • Решения NCERT для науки класса 9 Глава 8
      • Решения NCERT для науки класса 9 Глава 9
      • Решения NCERT для науки класса 9 Глава 10
      • Решения NCERT для науки класса 9 Глава 12
      • Решения NCERT для науки класса 9 Глава 11
      • Решения NCERT для науки класса 9 Глава 13
      • Решения NCERT

      • для науки класса 9 Глава 14
      • Решения NCERT для класса 9 по науке Глава 15
    • Решения NCERT для класса 10
      • Решения NCERT для класса 10 по социальным наукам
    • Решения NCERT для математики класса 10
      • Решения NCERT для математики класса 10 Глава 1
      • Решения NCERT для математики класса 10, глава 2
      • Решения NCERT для математики класса 10, глава 3
      • Решения NCERT для математики класса 10, глава 4
      • Решения NCERT для математики класса 10, глава 5
      • Решения NCERT для математики класса 10, глава 6
      • Решения NCERT для математики класса 10 Глава 7
      • Решения NCERT для математики класса 10 Глава 8
      • Решения NCERT для математики класса 10 Глава 9
      • Решения NCERT для математики класса 10 Глава 10
      • Решения NCERT для математики класса 10 Глава 11
      • Решения NCERT для математики класса 10 Глава 12
      • Решения NCERT для математики класса 10 Глава ter 13
      • Решения NCERT для математики класса 10 Глава 14
      • Решения NCERT для математики класса 10 Глава 15
    • Решения NCERT для науки класса 10
      • Решения NCERT для класса 10 науки Глава 1
      • Решения NCERT для класса 10 Наука, глава 2
      • Решения NCERT для класса 10, глава 3
      • Решения NCERT для класса 10, глава 4
      • Решения NCERT для класса 10, глава 5
      • Решения NCERT для класса 10, глава 6
      • Решения NCERT для класса 10 Наука, глава 7
      • Решения NCERT для класса 10, глава 8,
      • Решения NCERT для класса 10, глава 9
      • Решения NCERT для класса 10, глава 10
      • Решения NCERT для класса 10, глава 11
      • Решения NCERT для класса 10 Наука Глава 12
      • Решения NCERT для класса 10 Наука Глава 13
      • NCERT S Решения для класса 10 по науке Глава 14
      • Решения NCERT для класса 10 по науке Глава 15
      • Решения NCERT для класса 10 по науке Глава 16
    • Программа NCERT
    • NCERT
  • Commerce
    • Class 11 Commerce Syllabus
      • Учебный план класса 11
      • Учебный план бизнес-класса 11 класса
      • Учебный план экономического факультета 11
    • Учебный план по коммерции 12 класса
      • Учебный план класса 12
      • Учебный план бизнес-класса 12
      • Учебный план

      • Класс 12 Образцы документов для коммерции
        • Образцы документов для коммерции класса 11
        • Образцы документов для коммерции класса 12
      • TS Grewal Solutions
        • TS Grewal Solutions Class 12 Accountancy
        • TS Grewal Solutions Class 11 Accountancy
      • Отчет о движении денежных средств 9 0004
      • Что такое предпринимательство
      • Защита потребителей
      • Что такое основные средства
      • Что такое баланс
      • Что такое фискальный дефицит
      • Что такое акции
      • Разница между продажами и маркетингом
    • 03

    • Образцы документов ICSE
    • Вопросы ICSE
    • ML Aggarwal Solutions
      • ML Aggarwal Solutions Class 10 Maths
      • ML Aggarwal Solutions Class 9 Maths
      • ML Aggarwal Solutions Class 8 Maths
      • ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
    • Решения Селины
      • Решения Селины для класса 8
      • Решения Селины для класса 10
      • Решение Селины для класса 9
    • Решения Фрэнка
      • Решения Фрэнка для математики класса 10
      • Франк Решения для математики 9 класса

      9000 4

    • ICSE Class
      • ICSE Class 6
      • ICSE Class 7
      • ICSE Class 8
      • ICSE Class 9
      • ICSE Class 10
      • ISC Class 11
      • ISC Class 12
  • IC
    • 900 Экзамен по IAS
    • Экзамен по государственной службе
    • Программа UPSC
    • Бесплатная подготовка к IAS
    • Текущие события
    • Список статей IAS
    • Мок-тест IAS 2019
      • Мок-тест IAS 2019 1
      • Мок-тест IAS4

      2

    • Комиссия по государственным услугам
      • Экзамен KPSC KAS
      • Экзамен UPPSC PCS
      • Экзамен MPSC
      • Экзамен RPSC RAS ​​
      • TNPSC Group 1
      • APPSC Group 1
      • Экзамен BPSC
      • Экзамен WPSC
      • Экзамен JPSC
      • Экзамен GPSC
    • Вопросник UPSC 2019
      • Ответный ключ UPSC 2019
    • 900 10 Коучинг IAS
      • Коучинг IAS Бангалор
      • Коучинг IAS Дели
      • Коучинг IAS Ченнаи
      • Коучинг IAS Хайдарабад
      • Коучинг IAS Мумбаи
  • JEE4
  • 9000 JEE 9000 JEE 9000 Advanced

  • Образец статьи JEE
  • Вопросник JEE
  • Биномиальная теорема
  • Статьи JEE
  • Квадратное уравнение
  • NEET
    • Программа BYJU NEET
    • NEET 2020
    • NEET Eligibility
    • NEET Eligibility
    • NEET Eligibility 2020 Подготовка
    • NEET Syllabus
    • Support
      • Разрешение жалоб
      • Служба поддержки
      • Центр поддержки
  • Государственные советы
    • GSEB
      • GSEB Syllabus
      • GSEB

        Образец статьи

        003 GSEB Books

    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы статей
      • MSBSHSE Вопросники
    • AP Board
    • AP Board
    • AP Board
        9000

      • AP 2 Year Syllabus
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board
      • Assam Board
      • Assam Board Документы
    • BSEB
      • Bihar Board Syllabus
      • Bihar Board Учебники
      • Bihar Board Question Papers
      • Bihar Board Model Papers
    • BSE Odisha
      • Odisha Board
      • Odisha Board
        • Odisha Board 9000
        • ПСЕБ 9 0002
        • PSEB Syllabus
        • PSEB Учебники
        • PSEB Вопросы и ответы
      • RBSE
        • Rajasthan Board Syllabus
        • RBSE Учебники
        • RBSE
        • 000 RBSE
        • 000 HPOSE

        • 000 HPOSE
        • 000
        • 000 HPOSE

        • 000 HPOSE
        • 000
        • 000

          000 HPOSE

        • 000 HPOSE
        • 000

          000 Контрольные документы

      • JKBOSE
        • JKBOSE Syllabus
        • JKBOSE Образцы документов
        • JKBOSE Образец экзамена
      • TN Board
        • TN Board Syllabus
        • 9000 Papers 9000 TN Board Syllabus

          9000 Книги

      • JAC
        • Программа обучения JAC
        • Учебники JAC
        • Вопросники JAC
  • .

    Список факторов, влияющих на сопротивление

    factors affecting resistance Сопротивление — это свойство материала, ограничивающее поток электронов. На сопротивление влияют четыре фактора: температура, длина провода, площадь поперечного сечения провода и характер материала.
    Когда в проводящем материале есть ток, свободные электроны движутся сквозь материал и иногда сталкиваются с атомами. Эти столкновения заставляют электроны терять часть своей энергии, и, таким образом, их движение ограничивается.Это ограничение различается и определяется типом материала. Свойство материала, ограничивающее поток электронов, называется сопротивлением.
    Когда через какой-либо материал, обладающий сопротивлением, проходит ток, в результате столкновений свободных электронов и атомов выделяется тепло. Следовательно, провод, который обычно имеет очень маленькое сопротивление, нагревается, когда через него проходит достаточный ток.
    См. Также: Типы электрического заряда
    Что такое единица измерения сопротивления?
    Сопротивление R выражается в омах и обозначается греческой буквой омега (Ом).
    «Сопротивление один Ом (1 Ом) существует, если в материале присутствует ток в один ампер (1 А), когда на материал подается один вольт (1 В)».
    Что такое проводимость?
    Сопротивление обратно пропорционально проводимости, обозначаемой буквой G. Это мера легкости установления тока. Формула:

    G = 1 / R

    Единицей измерения проводимости является Siemens, сокращенно S. Например, проводимость резистора 22 кОм составляет G = 1/22 кОм = 45,5 мкс. Иногда для измерения проводимости все еще используется устаревшая единица mho.
    См. Также: Закон Кулона

    Список факторов, влияющих на сопротивление

    Сопротивление уменьшается с увеличением температуры. Термистор — это резистор, зависящий от температуры, и его сопротивление уменьшается с ростом температуры. Термистор используется в цепи, которая определяет изменение температуры. Есть четыре фактора, от которых зависит сопротивление.

    • Длина (L)
    • его площадь поперечного сечения (A)
    • тип материала
    • природа материала

    Сопротивление провода зависит как от площади поперечного сечения, так и от длины провода и от характера материала проволоки.Толстая проволока имеет меньшее сопротивление, чем тонкая. Более длинные провода имеют большее сопротивление, чем короткие. Медная проволока имеет меньшее сопротивление тонкой стальной проволоки того же размера. Электрическое сопротивление также зависит от температуры. При определенной температуре и для конкретного вещества.

    Как длина провода влияет на сопротивление?

    Сопротивление R провода прямо пропорционально длине провода:

    R α L… .. (1)

    Это означает, что если мы удвоим длину провода, его сопротивление также увеличится вдвое, и если его длина уменьшится вдвое, его сопротивление станет наполовину.

    Связь сопротивления с площадью:

    Сопротивление R провода обратно пропорционально площади поперечного сечения A провода как:

    R α 1 / A …… (2)

    Это означает, что толстая проволока будет иметь меньшее сопротивление, чем тонкая проволока. После объединения уравнений (1) и (2) получаем:

    R α L / A

    R = ρL / A…. (3)

    Где ρ — константа пропорциональности, известная как удельное сопротивление. Его значение зависит от типа проводника i.Медь, железо, олово и серебро будут иметь разные значения ρ. Из уравнения (3) имеем:

    ρ = R A /L….(4)

    Если L = 1 м, A = 1 м², то ρ = R. Таким образом, уравнение (4) дает определение.
    См. Также: Разница между напряжением и током

    Что такое удельное сопротивление?

    Сопротивление куба вещества длиной один метр равно его удельному сопротивлению. Единица измерения ρ — ом-метр (Ом · м). Ниже приведена таблица некоторых металлов с удельным сопротивлением:

    Удельное сопротивление металла (10-8 Ом)
    • серебро 1.7
    • Медь 1,69
    • Алюминий 2,75
    • Вольфрам 5,25
    • Платина 10,6
    • Железо 9,8
    • Никель-хром 100
    • Графит 3500

    Что такое проводники?
    Материал или объект, который проводит тепло, электричество, свет или звук, называют проводниками. Металлические провода являются хорошими проводниками электричества и обладают меньшим сопротивлением току.Почему металлы проводят электричество?… Металлы, такие как серебро и медь, имеют избыток свободных электронов, которые не удерживаются прочно с каким-либо конкретным атомом металла. Эти свободные электроны беспорядочно перемещаются во всех направлениях внутри металлов. Когда мы прикладываем внешнее поле, эти электроны могут легко двигаться в определенном направлении.
    Это движение свободных электронов в определенном направлении под действием внешнего поля вызывает протекание тока в металлических проводах.

    Как сопротивление увеличивается с температурой?

    Проводники имеют низкое сопротивление.Сопротивление проводников увеличивается с повышением температуры. Это связано с увеличением количества столкновений электронов с собой и с атомами металлов. Золото, серебро, медь, алюминий и другие металлы являются хорошими примерами проводников. Земля также является очень хорошим и большим проводником.
    Что такое изоляторы?
    Материал, который с трудом передает энергию, например электрический ток или тепло, называется изоляторами. почему изоляторы не проводят электричество ?.Все материалы содержат электроны. Однако электроны в изоляторах, таких как резина, не могут двигаться. Они прочно связаны внутри атомов. Следовательно, ток не может течь через изолятор, потому что они не являются свободными электронами для протекания тока. Изоляторы имеют очень большое значение сопротивления. Стекло, дерево, пластик, мех, шелк и т. Д.

    Комбинации сопротивлений в электрической цепи

    Есть две возможные комбинации сопротивлений в электрических цепях:

    • Комбинация серий
    • Параллельная комбинация
    1. Последовательная комбинация:

    В последовательных комбинациях резисторы подключаются встык, и электрический ток проходит через цепь одним путем.Это означает, что ток, проходящий через каждый резистор, одинаков. Resistance in series combination
    Ток одинаковый во всех точках последовательной цепи. Ток через каждый резистор в последовательной цепи такой же, как ток через все резисторы, включенные последовательно с ним. На приведенном выше рисунке три резистора подключены последовательно к источнику постоянного напряжения.
    В любой точке этой цепи ток в этой точке должен быть равен току из этой точки. Также обратите внимание, что ток на каждом резисторе должен равняться току на каждом резисторе, потому что нет места, где часть тока может ответвиться и уйти в другое место.
    Следовательно, ток в каждой секции цепи такой же, как ток во всех других секциях. У него есть только один путь, идущий от положительной (+) стороны источника к отрицательной (_) стороне.

    Общее последовательное сопротивление:

    Общее последовательное сопротивление последовательной цепи равно сумме сопротивлений каждого отдельного последовательного резистора. Когда резисторы подключаются последовательно, значения резисторов складываются, потому что каждый резистор оказывает сопротивление току прямо пропорционально его сопротивлению.Чем больше количество резисторов, подключенных последовательно, тем больше сопротивление току. Чем больше сопротивление току, тем выше сопротивление. Таким образом, каждый раз, когда резистор добавляется последовательно, общее сопротивление увеличивается.
    См. Также: Типы электрического заряда

    Формула полного сопротивления в последовательном соединении:

    Для любого количества отдельных резисторов, соединенных последовательно, общее сопротивление является суммой каждого из отдельных значений.

    Rt = R1 + R2 + R3 + R4 + ……….. + Rn

    Где Rt — полное сопротивление, а Rn — последний резистор в последовательной цепочке. Например, если есть 3 последовательно подключенных резистора. Формула общего сопротивления будет

    Rt = R1 + R2 + R3

    Если есть шесть последовательно подключенных резисторов (n = 6), формула общего сопротивления будет:

    Rt = R1 + R2 + R3 + R4 + R5 + R6

    2: Параллельная комбинация:

    Когда два или более резистора подключены по отдельности между одними и теми же двумя отдельными точками, они параллельны друг другу.Параллельная цепь обеспечивает более одного пути для тока. resistance in parallel combination

    Каждый текущий путь называется ветвью . Параллельная цепь — это еще одна цепь, имеющая более одной ветви. Три резистора подключены параллельно, как показано на рисунке выше. Когда резисторы соединены параллельно, ток имеет более одного пути. Количество путей тока равно количеству параллельных ветвей.

    Формула для общего параллельного сопротивления:

    Поскольку Vs — это напряжение на каждом из параллельных резисторов на приведенном выше рисунке, по закону Ома I = Vs / R :

    Vs / Rt = Vs / R1 + Vs / R2 + Vs / R3 …….(1)

    Член Vs может быть исключен из правой части уравнения и отменен с помощью Vs в левой части, оставив только члены сопротивления.

    1 / Rt = 1 / R1 + 1 / R2 + 1 / R3 …… (2)

    Напомним, что величина, обратная сопротивлению (1 / R), называется проводимостью , что равно , обозначенному G. единица проводимости — Сименс (ы). Уравнение (2) может быть выражено в терминах проводимости как:

    Gt = G1 + G2 + G2

    Решите относительно Rt в уравнении (2), взяв обратную величину, инвертирующую обе части уравнения.

    Rt = 1 / (1 / R1) + (1 / R2) + (1 / R3)

    Связанные темы:

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *