19.01.2025

Какие полупроводники бывают: Ваш браузер не поддерживается

Содержание

Полупроводники (Диоды). Виды и особенности. Неисправности

Существуют полупроводники в зависимости от их применения и назначения. Рассмотрим основные виды диодов.

Диоды Шоттки

Эти полупроводниковые диоды имеют незначительное падение напряжения, имеют высокую скорость работы, в отличие от обычных диодов, которые не смогут заменить в действии диод Шоттки и выйдут из строя. Свое название диод имеет по изобретателю из Германии. В конструкции в качестве потенциального барьера используется переход «металл-полупроводник» вместо р-n перехода. Его допустимое напряжение при обратном подключении 1200 В. Практически они применяются в цепях низкого напряжения.

Стабилитроны

Они предотвращают увеличение напряжения свыше допустимого значения на участке схемы, могут защищать и ограничивать схему от повышенных значений тока. Стабилитроны могут работать только на постоянном токе, поэтому при включении их в цепь соблюдение полярности является обязательным. Стабилитроны одного типа можно соединять по последовательной схеме для увеличения напряжения, либо создания делителя напряжения.

Основным свойством таких полупроводников является стабилизирующее напряжение.

Варикапы

Этот полупроводник еще называют емкостным диодом. Он изменяет значение сопротивления при изменении напряжения питания. Используется в качестве управляемого конденсатора с изменяемой емкостью. Может применяться для настраивания контуров колебаний высокой частоты.

Тиристоры

Полупроводники могут находиться в двух устойчивых положениях:
  1. Закрытое (низкая проводимость).
  2. Открытое (высокая проводимость).

То есть, он может переходить под воздействием сигнала из одного состояния в другое.

У тиристора имеется три электрода. Кроме обычных катода и анода, есть еще и электрод управления, который служит для подачи сигнала управления для перевода полупроводника в состояние включения. Современные тиристоры иностранного производства производятся в различных корпусах.

Такие полупроводники включают в схемы для регулирования мощности, плавного запуска электромоторов, подключения освещения. Тиристоры дают возможность включать большие токи, достигающие наибольшего тока 5 кА, напряжением до 5 киловольт в закрытом виде. Мощные силовые приборы на основе тиристоров используются в управляющих панелях электромоторами и других устройствах.

Симисторы

Эти полупроводники применяются в схемах, подключенных к переменному напряжению. Прибор условно состоит из двух тиристоров, подключенных встречно-параллельно, и пропускающих ток в любую сторону.

Светодиоды

Они испускают световой поток при подключении к ним напряжения, используются для создания индикации параметров, в электронных схемах, различных электронных гаджетах, дисплеях, в качестве источников света, при этом бывают многоцветными и одного цвета.

Инфракрасные диоды

Это светодиоды, выдающие световой поток в инфракрасном спектре. Они используются для измерительных и контрольных приборов оптического вида, в пультах управления, коммутационных устройствах, линиях связи без проводов и т.д. Обозначаются на схемах как обычные светодиоды. Инфракрасные лучи не видны человеку. Их можно увидеть с помощью смартфона в камеру.

Фотодиоды

Они работают при попадании на их чувствительный элемент света, преобразуя его в электрический ток. Используются для преобразования потока света в сигнал электрического тока.

Фотодиоды обычно сравнивают по принципу работы с батареями на солнечных элементах.

Неисправности диодов

Полупроводники иногда могут выходить из строя вследствие естественного старения и амортизации внутренних материалов, либо по другим причинам:
  • Пробивание перехода кристалла. Его следствием является то, что по сути полупроводник приобретает свойства обычного проводника, так как он лишен основных качеств полупроводимости и уже пропускает ток практически в любую сторону. Такая неисправность быстро обнаруживается с помощью обычного мультитестера. Измерительный прибор выдает сигнал звука и на дисплее видно значение очень малого сопротивления диода.
  • Обрыв. В этом случае действует обратный процесс – полупроводник не пропускает ток ни в каком направлении, так как внутри кристалла нарушена проводимость, вследствие полного обрыва проводника, то есть, диод, по сути, стал диэлектриком. Чтобы точно выяснить обрыв, нужно применять мультиметры с исправными щупами. Иначе можно получить ложную диагностику этой неисправности. У диодов на основе сплавов эта неисправность является редкой.
  • Утечка. Эта поломка возникает из-за повреждения корпуса полупроводника, вследствие чего нарушается герметичность корпуса диода, и его нормальное функционирование становится невозможным.

Пробой перехода

При чрезмерном повышении обратного напряжения может возникнуть пробой электронного прибора. Существуют специальные полупроводники, в которых используется это свойство, которые называются стабилитронами.

Такие неисправности возникают в случаях, когда величина обратного тока резко возрастает из-за достижения обратного напряжения чрезмерных значений, выше допустимых.

Существует несколько типов пробоя переходов:
  • Тепловые пробои. Они вызываются внезапным возрастанием температуры с дальнейшим перегревом.
  • Электрические пробои. Появляются от действия большого электрического тока на полупроводниковый переход.

Электрический пробой

Такой вид пробоя не является фатальным, и является обратимым процессом, так как при этом не произошло разрушения кристалла полупроводника. Поэтому при медленном снижении напряжения возможно восстановление характеристик диода и его рабочего состояния.

Такие пробои разделяют на два подвида:
  • Туннельные пробои. Они возникают при протекании повышенного напряжения по узким проходам кристалла полупроводника. Это позволяет отдельным электронам проскакивать через него. Чаще всего туннельные пробои образуются в случае наличия в полупроводнике большого числа различных недопустимых примесей. При таком пробое обратный ток внезапно стремится к возрастанию, а напряжение продолжает оставаться на прежнем уровне.
  • Лавинные пробои. Они могут возникнуть вследствие действия повышенных значений электрических полей, которые разгоняют электроны выше допустимой границы скорости. Поэтому они выбивают из атомов некоторое количество валентных электронов, вылетающих в область проводимости. Такой процесс происходит с лавинообразной скоростью, поэтому и получил такое название.

Тепловой пробой

Образование теплового пробоя может происходить из-за возникновения различных причин. Это может быть недостаточный отвод тепла от корпуса полупроводника, а также перегрева перехода кристалла, возникающего по причине прохождения электрического тока повышенной величины, выше допустимого.

Вследствие увеличения режима температуры в переходе полупроводника и областях, находящихся рядом, появляются такие отрицательные последствия:
  • Возрастание колебания атомов, которые входят в состав материала кристалла диода.
  • Залетание электронов в зону проводимости.
  • Чрезмерное внезапное возрастание температуры.
  • Повреждение и деформация кристаллической решетки полупроводника.
  • Неисправность и выход из строя диода.
Похожие темы:

Полупроводники типы проводимости — Справочник химика 21

зоны расплава вдоль всего слитка можно достигнуть равномерного распределения примеси и получить образцы с определенным типом проводимости и с определенной концентрацией подвижных носителей заряда в примесном полупроводнике. [c.262]

    Подобный дрейф электронов эквивалентен перемещению дырок в противоположном направлении, т. е. к катоду. Таким образом, перенос электричества в полупроводниках осуществляется как электронами, перешедшими в зону проводимости, так и дырками в валентной зоне, т. е. имеет место электронная (л-типа) и дырочная (р-типа ) проводимость. [c.118]

    Тройные окислы, образованные членами одного ряда, имеют ясную тенденцию сохранять тип проводимости, свойственный бинарным окислам. Комбинация изолятора с полупроводником ведет себя подобно полупроводнику, однако свойства соединений, образованных полупроводниками различного типа, не могут быть заранее предсказаны. [c.22]

    В восстанавливаемых системах могут существовать только не-восстанавливающиеся окислы и сульфиды, т. е. окислы всех метал- лов (за исключением уже обсуждавшихся металлических катализаторов) и большинство сульфидов (за исключением сульфидов благородных металлов). Кроме того, нестехиометрический избыток кислорода (или серы), необходимый для создания проводимости р-типа, не может быть сохранен при условиях восстановления. Поэтому окись хрома и окись марганца становятся изоляторами или полупроводниками м-типа. В окислительных условиях полупроводники п-типа имеют тенденцию становиться стехиометрическими, но р-тип проводимости появляется при избытке кислорода и серы. [c.28]

    Дефекты структур кристаллов также влияют на электропроводность полупроводников, обычно вызывая дырочную проводимость. В зависимости от преобладания того ИЛИ иного типа проводимости различают полупроводники п-типа и полупроводники р-типа. [c.151]

    Применение ударных волн, с помощью которых в изученных оксидах были достигнуты давления от 9 до 30 ГПа, дало значительное повышение каталитической активности на 2…3 порядка. Существенным является то, что такой эффект имел место для оксидов титана и цинка, которые представляют собой полупроводники с электронным типом проводимости. Обработка ударным сжатием монооксида никеля, который является полупроводником с дырочным типом проводимости, показала, что каталитическая активность его осталась неизменной. Возможно, что усиление каталитической активности указанных оксидов объясняется частичным их восста- [c.218]

    Одним из основных условий применимости этого метода является отсутствие р—п-перехода, т. е. можно изучать диффузию атомов, создающих проводимость, аналогичную собственному типу проводимости пластины. Иногда запирающий р—п-переход создают специально, чтобы обеспечить возможность непосредственного измерения диффузионного слоя. Таким способом можно изучать диффузию доноров в полупроводнике р-типа, и наоборот. Измерения проводимости при этом осуществляются четырехзондовым методом. При измерении удельного сопротивления на плоской отполированной поверхности полупровод никового материала устанавливают четыре точечных зонда, располо женных достаточно близко друг от друга и далеко от границ образ ца, чтобы последние не влияли на электрическое поле вблизи контак тов. Внешние зонды —токовые, а два внутренних — потенциальные Расстояния между зондами обычно принимают равными 0,5—1,5 мм Необходимо располагать зонды таким образом, чтобы они лежали на одной прямой. Удельное сопротивление больших образцов рассчитывают по формуле [c.157]

    Глубина контактного поля. При возникновении контакта между областями полупроводника с различным типом проводимости начинается взаимная диффузия основных носителей заряда. Электроны переходят из и-полупроводника, где их концентрация выше, в р-полупроводник, где диффузия дырок идет в противоположном направлении. Возникновение диффузионных потоков приводит к разделению зарядов, вследствие чего появляется объемный заряд, положительный в п-области и отрицательный в р-области, и в области контакта возникает электрическое поле, направленное от -области к р-области (рис. 188, а). [c.458]

    Большинство собственных полупроводников путем введения соответствующих примесей может быть выполнено как п- или р-тип. Такие полупроводники называют амфотерными. Например, примеси элементов VI группы (S, Se, Те) к полупроводникам типа A i сообщает им п-проводимость, а добавки элементов II группы (Mg, Zn, d) — проводимость p-типа. Однако некоторые полупроводники бывают только в виде одного типа. Например, ZnO и dS — только электронные, а Си О — только дырочный. С другой стороны, изменяя состав и характер примесей в амфотерном полупроводнике, можно получить смешанную проводимость (гибридные полупроводники). [c.459]

    В последнее время применяются так называемые эпитаксиальные пленки. Их получают наращиванием полупроводника на основной кристалл. Пленки должны точно повторять кристаллическую структуру подложки, но могут отличаться типом проводимости, вследствие чего можно создать р—л-переходы с заданной концентрацией носителей зарядов, получить низкоомные слои на высокоомных полупроводниках и наоборот. Широко используются в промышленности методы наращивания эпитаксиальных пленок кремния и германия в случае восстановления тетрахлоридов очень чистым водородом при повышенной температуре  [c.249]

    Полупроводниковые кристаллы-активные среды полупроводниковых лазеров. Излучение в них генерируется в результате переходов между энергетич. уровнями зоны проводимости и валентной зоны. Иссюльзуют [юлу-проводники типа А В , А «В , А В . Активные элементы изготовляют из монокристаллов (напр., dS, GaAs, InAs, PbS), содержащих в своем объеме области, для к-рых характерен электронно-дырочный переход (р — и-переход), и из кристаллич. гетероструктур, образованных чередованием кристаллич. слоев, различающихся по хим. составу, но имеющих одинаковый период кристаллич. решетки. Наиб, распространены гетероструктуры, образованные слоями полупроводников типа А «В на основе арсенидов, фосфидов, антимонидов Ga и А1 и их твердых р-ров. Гетероструктуры получают также на основе многокомпонентных (тройных и более) твердых р-ров замещения (напр., Al,Ga, As), в к-рых при изменении состава в широких пределах период решетки не меняется. Полупроводниковые монокристаллы [юлучают из особо чистых исходных в-в кристаллизацией из расплавов (метод Чохральского, горизонтально направленная или зонная кристаллизация в контейнере, бестигельная зонная плавка) и эпитаксиальным выращиванием тонких кристаллич. слоев при кристаллизации из газовой фазы или расплавов твердых р-ров. Необходимые характеристики достигаются введением примесей в расплав или методом ионного внедрения примесных атомов. В качестве легирующих примесей используют, напр., элементы П (Zn, d, Mg акцепторы электронов), IV, VI (Sn, Те, Se, S доноры) групп. Благодаря разнообразию полупроводниковых кристаллов созданы лазеры, излучающие в диапазоне длин волн 0,3-30 мкм, обладающие малой инерционностью ( 10 с) и высоким кпд (до 50%), работающие как в импульсном, так и в непрерывном режиме (мощности 10 Вт при длительности импульса 3 НС и 10 Вт соответственно). Лучевая прочность полупроводниковых Л. м. ограничивает выходную мощность лазеров. [c.566]

    Применение германия. Наличие у германия двух типов проводимости обусловливает его применение в качестве полупроводника в электронике и радиотехнике (транзисторы). [c.192]

    Если кислород или другое электроотрицательное вещество химически адсорбируется на поверхности полупроводника л-типа, например на оксиде цинка, на германии и др., то атомы кислорода отбирают электроны от полупроводника и образуют на поверхности отрицательные ионы. Отрицательный заряд ионов кислорода может компенсироваться положительным пространственным зарядом в полупроводнике (в поверхностном барьере). Увеличение адсорбции повышает высоту барьера, из-за чего уменьшается скорость адсорбции и она ограничивается. Поглощение каждого атома кислорода уменьшает поверхностную проводимость полупроводника, так как в нем уменьшается число основных носителей заряда (число электронов). При значительной химической адсорбции кислорода на п-германии в объеме, примыкающем к поверхности, может даже возникнуть р-тип проводимости. Толщина слоя с обращенной проводимостью (инверсионный слой) достигает 1 мкм. [c.251]

    Если погруженный в раствор полупроводник обладает проводимостью р типа, вблизи контактной поверхности кристалла образуется р —р переход с весьма высоким уровнем токов насыщения. Естественно, что вольт-амперная характеристика такого контакта ничем не отличается от приведенных выше характеристик для контакта металл—электролит. Таким образом, в некоторых случаях контакт полупроводника с электролитом может являться выпрямляющим и обладает примерно такой же вольт-амперной характеристикой, как р — п переход.[c.202]

    Первое условие легко выполнимо для кремния в инфракрасной области. При больших концентрациях носителей диэлектрическая постоянная полупроводников в инфракрасной области является функцией концентрации носителей. Поэтому данным методом легко можно определять толщину пленки на подложке с малым удельным сопротивлением, даже если пленка и подложка имеют один и тот же тип проводимости. Интерференционный метод дает точность 5% однако его трудно применять, если толщина пленки неравномерна. [c.144]

    В методе термической диффузии на поверхность полупроводниковой пластины наносят тонкий слой соответствующего элемента, атомы которого в условиях нагрева в вакуумной печи диффундируют в толщу полупроводника и создают нужный тип проводимости. Используют таклметод газовой диффузии в твердый полупроводник. В связи с развитием микроминиатюризации радио- [c.309]

    При высоких температурах это соотношение выполняется, при низких большую роль по сравнению с собственной играет так называемая примесная электропроводность. Атом примеси может отдавать свой электрон (быть донором). Если энергетический уровень электрона примеси окажется вблизи от верхней зоны, то электрон может от примеси перейти к верхнюю зону и превратиться в электрон проводимости. Такие полупроводники называются полупроводниками -типа, или электронными. [c.655]

    При наложении электрического поля электроны, перешедщие в зону проводимости, перемещаются к аноду. В валентной же зоне электрон, находящийся рядом с дыркой, перемещается на это свободное место и освобождается новая дырка, на которую перемещается следующий электрон, оставляющий после себя дырку, и т. д. Подобный дрейф электронов эквивалентен перемещению дырок в противоположном направлении, т. е. к катоду. Таким образом, перенос электричества в полупроводниках (рис. 68) осуществляется как электронами, перешедшими в зону проводимости, так и дырками в валентной зоне, т. е. имеет место электронная (л-типа) и дырочная (/7-типа) проводимость (п-тип от латинского negative — отрицательный, а р-тип от positive — положительный).[c.108]

    Важнейшие области применения. Основн 1Я область применения индия — производство полупроводников. Как к галлий, он является акцепторной примесью, сообщающей германию и кремнию дырочный тип проводимости. Поэтому применяется для создания п—р-переходов. Широкому его применению благоприятствуег то, что он легко смачивает поверхность германия и хорошо сплавляется с ним при низкой температуре. Фосфид, арсенид и антимонид, индия — полупроводники, представляющие большой практический интерес. В частности, антимонид индия обладает исключительно большой подвижностью электронов. Это соединение используется для изготовления датчиков эффекта Холла в приборах для измерения магнитных полей и инфракрас- [c.299]

    В полупроводниках ге-типа проводимость обусловлена перемещением электронов, а в полупроводниках р-типа проводимость обусловлена перемещением дырок , т. е. катионных вакансий. [c.20]

    Пленки нестехиометрических продуктов химической коррозии на металлах являются полупроводниками с двумя типами проводимости — ионной и электронной (см. гл. 2, 7). В зависимости от характера проводимости различают три типа окисных пленок 1) р-полупроводники, которые растут вследствие передви- [c.62]

    При наличии В полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дь[рочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве нримсси имеются атом[,1 мьпиьяка (4.s 4p ), При образовании связей с окружаю1и,ими атомами кремния As Sp ) атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора (2s 2p ) приводит к валентной ненасыщенности атомов Si, т, е. усиливает у полупроводника дырочную проводимость (рис. 69). В зависимости от преобладания того или иного вида проводимости различают полупроводники л-типа и полупроводники /)-ти1га.[c.109]

    При невысоких температурах доля электронов, переп1едших в возбужденные состояния, невелика. Поэтому у полупроводников с собственной проводимостью валентная зона почти заполнена (свободные состояния имеются лишь у верхнего края зоны), а зона проводимости почти свободна (заняты состояния у дна 301И11). Соответственно почти пустая зона проводимости у полупроводника /г-типа и почти заполненная валентная зона у полупроводника / -типа. Как мы уже отмечали, поведение электронов почти пустой зоны аналогично поведению свободных электронов с массой т [формула (УП1. 47) для кинетической энергии и формула (УИ1.45) для энер[ етической плотности состояний]. Состояние электронов почти заполненной валентной зоны может быть. описано путем рассмотрения движения свободных квазичастиц — дырок [формулы (УП1.48) и (УП1.49)]. Соответственно говорят об электронной проводимости, обусловленной электронами зоны проводимости, и дырочной проводимости, обусловленной движением электронов ( дырок ) валентной зоны. В случае полупроводников с собственной проводимостью осуществляются оба механизма проводимости — электронный и дырочный. В случае полупроводников п-типа имеет мес- [c.194]

    Кристаллические кремний и германий образуют твердые растворы замещения с очень ограниченным числом атомов sp-элементов IIIA и VA подгрупп, что приводит к появлению различных типов проводимости в таких полупроводниках. Этим пользуются для получения р—п-переходов, что имеет громадное практическое значение (см. гл. IX). [c.142]

    Электролитическое травление и полирование широко применяются для исследования свойств и обработки полупроводниковых материалов и в технологии изготовления полупроводниковых приборов. В случае полупроводников процесс анодного растворения оказывается сильно зависящим от типа проводимости образца. Травление и полирование полупроводников п-типа в общем случае протекает значительно труднее, чем р-типа. Влияние типа проводимости на скорость анодного растворения наиболее изучено для германия. На образцах германия прямым экспериментом было доказано участие дырок в анодном процессе (Брэттен, Гэрретт). [c.217]


Внешний полупроводник — Extrinsic semiconductor

Внешний полупроводниковый является тот , который был легированного ; Во время изготовления полупроводникового кристалла микроэлемент или химическое вещество, называемое легирующим агентом , было химически включено в кристалл с целью придания ему электрических свойств, отличных от чистых полупроводниковых кристаллов, которые называются внутренними полупроводниками . В примесном полупроводнике именно эти чужеродные легирующие атомы в кристаллической решетке в основном обеспечивают носители заряда, которые переносят электрический ток через кристалл. Используемые легирующие агенты бывают двух типов, что дает два типа примесных полупроводников. Примесь донора электронов представляет собой атом, который при включении в кристалл высвобождает подвижный электрон проводимости в кристаллическую решетку. Примесный полупроводник, который был легирован электронодонорными атомами, называется полупроводником n-типа , потому что большинство носителей заряда в кристалле представляют собой отрицательные электроны. Примесь акцептора электронов — это атом, который принимает электрон из решетки, создавая вакансию, в которой электрон следует называть дыркой, которая может перемещаться через кристалл как положительно заряженная частица. Примесный полупроводник, который был легирован электроноакцепторными атомами, называется полупроводником p-типа , потому что большинство носителей заряда в кристалле являются положительными дырками.

Допирование является ключом к чрезвычайно широкому диапазону электрических характеристик, которые могут проявлять полупроводники, а внешние полупроводники используются для изготовления полупроводниковых электронных устройств, таких как диоды , транзисторы , интегральные схемы , полупроводниковые лазеры , светодиоды и фотоэлектрические элементы . Сложные процессы производства полупроводников, такие как фотолитография, позволяют имплантировать различные легирующие элементы в разные области одной и той же полупроводниковой кристаллической пластины, создавая полупроводниковые устройства на поверхности пластины. Например, общий тип транзистора, биполярный транзистор npn , состоит из внешнего полупроводникового кристалла с двумя областями полупроводника n-типа, разделенными областью полупроводника p-типа, с металлическими контактами, прикрепленными к каждой части.

Проводимость в полупроводниках

Твердое вещество может проводить электрический ток, только если оно содержит заряженные частицы, электроны , которые могут свободно перемещаться и не прикреплены к атомам. В металлическом проводнике именно атомы металла обеспечивают электроны; Обычно каждый атом металла высвобождает один из своих внешних орбитальных электронов, чтобы стать электроном проводимости, который может перемещаться по кристаллу и переносить электрический ток. Следовательно, количество электронов проводимости в металле равно количеству атомов, а это очень большое количество, что делает металлы хорошими проводниками.

В отличие от металлов, атомы, составляющие объемный кристалл полупроводника, не обеспечивают электронов, отвечающих за проводимость. В полупроводниках электропроводность обеспечивается подвижными носителями заряда , электронами или дырками, которые образуются примесями или атомами примеси в кристалле. В примесном полупроводнике концентрация легирующих атомов в кристалле в значительной степени определяет плотность носителей заряда, которая определяет его электрическую проводимость , а также множество других электрических свойств. Это ключ к универсальности полупроводников; их проводимостью можно управлять на много порядков с помощью легирования.

Легирование полупроводников

Легирование полупроводников — это процесс, который превращает собственный полупроводник во внешний полупроводник. Во время легирования примесные атомы вводятся в собственный полупроводник. Атомы примесей — это атомы другого элемента, чем атомы собственного полупроводника. Примесные атомы действуют как доноры или акцепторы собственного полупроводника, изменяя концентрацию электронов и дырок в полупроводнике. Примесные атомы классифицируются как донорные или акцепторные в зависимости от того, какое влияние они оказывают на собственный полупроводник.

Атомы донорной примеси имеют больше валентных электронов, чем атомы, которые они замещают в собственной решетке полупроводника. Донорные примеси «отдают» свои дополнительные валентные электроны в зону проводимости полупроводника, обеспечивая избыточные электроны собственному полупроводнику. Избыточные электроны увеличивают концентрацию электронных носителей (n 0 ) в полупроводнике, делая его n-типом.

Атомы акцепторной примеси имеют меньше валентных электронов, чем атомы, которые они замещают в собственной решетке полупроводника. Они «принимают» электроны из валентной зоны полупроводника. Это создает избыточные дырки в собственном полупроводнике. Избыточные дырки увеличивают концентрацию дырочных носителей (p 0 ) в полупроводнике, создавая полупроводник p-типа.

Полупроводники и легирующие атомы определяются столбцом периодической таблицы, в который они попадают. Определение столбца полупроводника определяет, сколько валентных электронов имеют его атомы и действуют ли атомы примеси в качестве доноров или акцепторов полупроводника.

Полупроводники группы IV используют атомы группы V в качестве доноров и атомы группы III в качестве акцепторов.

Полупроводники группы III – V , сложные полупроводники , используют атомы группы VI в качестве доноров и атомы группы II в качестве акцепторов. Полупроводники группы III – V могут также использовать атомы группы IV в качестве доноров или акцепторов. Когда атом группы IV замещает элемент группы III в решетке полупроводника, атом группы IV действует как донор. И наоборот, когда атом группы IV замещает элемент группы V, атом группы IV действует как акцептор. Атомы группы IV могут действовать как доноры, так и акцепторы; поэтому они известны как амфотерные примеси.

Собственный полупроводник Донорные атомы (полупроводник n-типа) Атомы-акцепторы (полупроводник p-типа)
Полупроводники IV группы Кремний , Германий Фосфор , мышьяк , сурьма Бор , алюминий , галлий
Полупроводники III – V групп Алюминий фосфид , арсенида алюминия , арсенида галлия , нитрида галлия Селен , теллур , кремний , германий Бериллий , цинк , кадмий , кремний , германий

Два типа полупроводников

Полупроводники N-типа

Зонная структура полупроводника n-типа. Темные круги в зоне проводимости — это электроны, а светлые круги в валентной зоне — дырки. Изображение показывает, что электроны являются основным носителем заряда.

N-тип полупроводники создаются путем легирования собственного полупроводника с помощью электронного донора элемента в процессе изготовления. Термин n-тип происходит от отрицательного заряда электрона. В полупроводниках n-типа электроны являются основными носителями, а дырки — неосновными носителями . Обычной легирующей примесью кремния n-типа является фосфор или мышьяк . В полупроводнике n-типа уровень Ферми больше, чем у собственного полупроводника, и расположен ближе к зоне проводимости, чем валентная зона .

Примеры — фосфор , мышьяк , сурьма и др.

Полупроводники P-типа

Зонная структура полупроводника p-типа. Темные круги в зоне проводимости — это электроны, а светлые круги в валентной зоне — дырки. На изображении видно, что дырки являются основным носителем заряда.

Р-тип полупроводники создаются путем легирования собственного полупроводника с помощью электронного акцептора элемента в процессе изготовления. Термин p-тип относится к положительному заряду дырки. В отличие от полупроводников n-типа, полупроводники p-типа имеют большую концентрацию дырок, чем концентрацию электронов. В полупроводниках p-типа дырки являются основными носителями, а электроны — неосновными. Обычной легирующей примесью p-типа кремния является бор или галлий . Для полупроводников p-типа уровень Ферми находится ниже собственного полупроводника и расположен ближе к валентной зоне, чем к зоне проводимости.

Примеры — бор , алюминий , галлий и др.

Использование внешних полупроводников

Внешние полупроводники являются компонентами многих обычных электрических устройств. Полупроводниковый диод (устройства, пропускающие ток только в одном направлении) состоит из полупроводников p-типа и n-типа, соединенных друг с другом. В настоящее время в большинстве полупроводниковых диодов используется легированный кремний или германий.

Транзисторы (устройства, позволяющие переключать ток) также используют внешние полупроводники. Биполярные переходные транзисторы (BJT), которые усиливают ток, являются одним из типов транзисторов. Наиболее распространены BJT типа NPN и PNP. Транзисторы NPN имеют два слоя полупроводников n-типа, между которыми расположен полупроводник p-типа. Транзисторы PNP состоят из двух слоев полупроводников p-типа, между которыми расположен полупроводник n-типа.

Полевые транзисторы (FET) — это еще один тип транзисторов, которые усиливают ток с помощью внешних полупроводников. В отличие от BJT, они называются униполярными, потому что они включают работу с одной несущей — либо N-канал, либо P-канал. Полевые транзисторы разделены на два семейства: полевые транзисторы с переходным затвором (JFET), которые представляют собой три оконечных полупроводника, и полевые транзисторы с изолированным затвором ( IGFET ), которые представляют собой четыре оконечных полупроводника.

Другие устройства, реализующие внешний полупроводник:

Смотрите также

Рекомендации

внешняя ссылка

Виды проводимости полупроводников | Электротехника

Полупроводниковые материалы имеют твердую кристаллическую структуру и по своему удельному сопротивлению (r = 10-4…1010 Ом ?см) занимают промежуточную область между проводниками электрического тока (r = 10-6…10-4 Ом ?см) и диэлектриками (r = 1010…1016 Ом ?см). При изготовлении полупроводниковых приборов и интегральных микросхем наиболее широко используются германий, кремний и арсенид галлия. К полупроводникам относятся также селен, теллур, некоторые окислы, карбиды и сульфиды.

Характерным свойством полупроводников является сильное изменение удельного сопротивления под влиянием электрического поля, облучения светом или ионизированными частицами, а также при внесении в полупроводник примеси или его нагреве. Если при нагреве удельное сопротивление проводников увеличивается, то полупроводников и диэлектриков – уменьшается. Это свидетельствует о различном характере проводимости названных материалов.

Для выяснения характера проводимости полупроводников рассмотрим некоторый объем идеальной кристаллической решетки германия со строго упорядоченным расположением атомов в узлах решетки – элемента IV группы периодической системы элементов Менделеева. На рис. 1.1, а объемная кристаллическая решетка германия, элементарной геометрической фигурой которой является тетраэдр, представлена в виде плоскостной решетки. В процессе формирования кристалла атомы германия располагаются в узлах кристаллической решетки и связаны с другими атомами посредством четырех валентных электронов. Двойные линии между узлами решетки условно изображают ковалентную связь между каждой парой электронов, принадлежащих двум разным атомам.

Электронная структура (а) и энергетические зоны (б) кристалла беспримесного германия

, (1.2)

где Nn и Np – эффективные плотности состояний соответственно в зоне проводимости и валентной зоне; ЕF – уровень Ферми, под которым понимается такой энергетический уровень, вероятность заполнения которого электроном равна половине; k = 1,38?10-23 Дж/К – постоянная Больцмана; Т – абсолютная температура, К.

Перемножив равенства (1.1) и (1.2) с учетом того, что эффективная масса дырки примерно равна массе электрона, при котором Nn » Np = N, получим

. (1.3)

Поскольку в состоянии термодинамического равновесия концентрация электронов в зоне проводимости беспримесного полупроводника ni равна концентрации дырок в валентной зоне pi , из уравнения (1.3) находим

, (1.4)
.

Следовательно, концентрация носителей заряда тем больше, чем выше температура и чем меньше ширина запрещенной зоны. При этих же условиях (ni= pi) из выражений (1.1) и (1.2) находим

. (1.5)

Таким образом, уровень Ферми в беспримесном полупроводнике при любой температуре расположен посредине запрещенной зоны.

Под действием тепловой энергии электроны в зоне проводимости так же, как и дырки в валентной зоне, совершают хаотическое тепловое движение. При этом возможен процесс захвата электронов зоны проводимости дырками валентной зоны. Такой процесс исчезновения пар электрон-дырка называется рекомбинацией. Число рекомбинаций пропорционально концентрации носителей заряда.

Если к кристаллу приложить внешнее электрическое поле, то движение электронов и дырок приобретает направленность. Таким образом, при температуре выше абсолютного нуля кристалл приобретает способность проводить электрический ток. Его проводимость тем больше, чем интенсивней процесс генерации пар электрон-дырка и определяется движением обоих видов носителей электронов и дырок. Общую проводимость находят по формуле

, (1.6)

где qn и qp – заряд электрона и дырки; mn и mp – подвижность электронов и дырок соответственно.

Такая проводимость называется собственной проводимостью, а беспримесные полупроводники – полупроводниками с собственной проводимостью или полупроводниками типа i (индекс i в формулах 1.4-1.6 характеризует соответствующие величины собственного полупроводника). Собственная проводимость обычно невелика. Причем, как электронная, так и дырочная проводимости обусловлены движением в полупроводнике только электронов. Однако в первом случае движутся электроны, находящиеся на энергетических уровнях зоны проводимости, в направлении, противоположном направлению электрического поля. Во втором случае перемещаются электроны валентной зоны, заполняя вакантные энергетические уровни (дырки), в направлении, противоположном перемещению дырок.

Если в кристалл германия добавить примесь элементов III или V группы таблицы Менделеева, то такой полупроводник называется примесным. Примесные полупроводники обладают значительно большей проводимостью по сравнению с полупроводниками с собственной проводимостью.

При внесении в предварительно очищенный германий примеси пятивалентного элемента (например, мышьяка) атомы примеси замещают в узлах кристаллической решетки атомы германия. При этом четыре валентных электрона атома мышьяка, объединившись с четырьмя электронами соседних атомов германия, налаживают систему ковалентных связей, а пятый электрон оказывается избыточным. Энергетический уровень примеси ЕД лежит в запрещенной зоне вблизи дна зоны проводимости. Поэтому уже при комнатной температуре избыточные электроны приобретают энергию, равную очень небольшой энергии их связи с атомами примеси (DЕД = Ее—ЕД), и переходят в зону проводимости.

Таким образом, в узлах кристаллической решетки германия, занимаемых атомами примеси, образуются положительно заряженные ионы, а в объеме кристалла перемещаются избыточные электроны, имеющие энергию зоны проводимости.

Если освободившиеся электроны находятся вблизи своих ионов, то микрообъем, в целом, остается электронейтральным. При уходе электронов из микрообъема в последнем образуется положительный объемный заряд. Поскольку DЕД << DЕ, то количество электронов, переходящих под действием тепловой или другого вида энергии в зону проводимости с примесного уровня, значительно превышает количество

электронов, переходящих в зону проводимости из валентной зоны, участвующих в генерации пар электрон-дырка. Следовательно, число электронов в кристалле при внесении пятивалентной примеси превышает число дырок. Такой полупроводник обладает, в основном, электронной проводимостью, или проводимостью n-типа (n-полупроводник), а примесь, способная отдавать электроны, называется донорной. Основными носителями заряда в полупроводнике n-типа являются электроны, а неосновными – дырки.

При добавлении в кристалл германия примеси элементов III группы (например, индия) атомы индия замещают в узлах кристаллической решетки атомы германия. Однако в этом случае при комплектовании ковалентных связей одного электрона не хватает, поскольку атомы индия имеют лишь три валентных электрона (рис. 1.1, а). Так как примесный уровень индия Еа лежит в запрещенной зоне вблизи валентной зоны, то достаточно очень небольшой энергии DЕа = DЕ Еv << DE (например, за счет тепла окружающей среды), чтобы электроны из верхних уровней валентной зоны переместились на уровень примеси, образовав недостающие связи. В результате в валентной зоне образуются избыточные вакантные энергетические уровни (дырки), а атомы индия превращаются в отрицательные ионы. Следовательно, число дырок в полупроводнике при внесении трехвалентной примеси превышает число электронов. Такой полупроводник обладает дырочной проводимостью или проводимостью типа p (p-полупроводник). Примесь, введение которой обусловливает образование дырок в валентной зоне, называется акцепторной. В полупроводнике типа p основными носителями являются дырки, а неосновными – электроны.

Раздел 1. Проводимость — Основы цифровой схемотехники

Проводник

        Проводник – тело, проводящее электрический ток. Различают проводники первого и второго рода.
   К первому роду относят: все металлы и их сплавы.
   Ко второму роду относят: водные растворы кислот, солей и щелочей.
Чем выше температура тела, тем меньше оно проводит электрический ток, и, наоборот, со снижением температуры проводимость увеличивается.
        Металлы с высокой проводимостью используют для кабелей, проводов, обмоток трансформаторов. Металлы и сплавы с низкой проводимостью применяются в лампах накаливания, электронагревательных приборах, реостатах.
        Основной параметр, характеризующий проводник – это электрическое сопротивление. Оно выражается отношением падения напряжения в проводнике к току, протекающему по нему, и зависит от температуры окружающей среды.     Применение проводников:
       Проводники используют для заземления электроустановок. В качестве заземляющих проводников и заземлителей используют металлические конструкции сооружений и зданий, соблюдая при этом непрерывность и проводимость цепи. Для заземляющих проводников используют обычно сталь. Если необходимы гибкие перемычки и в других случаях, применяют медь.
        Проводники также могут использоваться для выравнивания потенциалов.
        Проводники используют в громоотводе, отводя молнию в землю, чтобы она не нанесла никаких повреждений.
        Существуют проводники с высоким удельным сопротивлением, которые стойкие к окислению. Такие материалы применяют в электронагревательных приборах, они обладают высокой пластичностью и могут вытягиваться в тонкую проволоку и выкатываться в фольгу. Одним из таких проводником является алюминий.

    Механизм проводимости:

    Кристаллы имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких t°C у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик (вещества, которые плохо проводят или совсем не проводят электрический ток).
Свойства диэлектриков:

  • Физико – механические и химические свойства диэлектриков
  • Влажностные свойства диэлектриков
  • Тепловые свойства диэлектриков
  • Поляризация К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы, многие виды резины.

        Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.
        При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.
        Диэлектрики используются не только как изоляционные материалы.
        Электрический ток — направленное движение заряженных частиц в электрическом поле.
        Электрический ток протекает в различных средах:

  • Металлах
  • Жидкостях
  • Газах
  • Полупроводниках
  • Вакууме

        Полупроводники — твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения). Полупроводниками назвали класс веществ, у которых с повышением t°C увеличивается проводимость, уменьшается электрическое сопротивление.

Занимают по проводимости промежуточное
положение между проводниками и диэлектриками

Полупроводники чистые (без примесей)

            Если полупроводник чистый (без примесей), то он обладает собственной проводимостью.
    Собственная проводимость бывает двух видов:    1) электронная (проводимость «n » — типа)
Рассмотрим проводимость полупроводников на основе кремния Si

Кремний – 4 валентный химический элемент. Каждый атом имеет
во внешнем электронном слое по 4 электрона, которые используются
для образования парноэлектронных (ковалентных) связей с 4 соседними атомами. 

            При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении t°C кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны — сопротивление уменьшается.

  • Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
  • Электронная проводимость полупроводников обусловлена наличием свободных электронов.

    2) дырочная (проводимость » p» — типа)
Рассмотрим изменения в полупроводнике при увеличении t°C.

свободный электрон
Под воздействием электрического поля электроны и дырки
начинают упорядоченное (встречное) движение, образуя электрический ток.

        При увеличении t°C разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами образуются места с недостающим электроном — «дырка».

  • Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда.
  • Перемещение дырки происходит в направлении вектора напряженности электрического поля.

    Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц — дырок.
        При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается.

Полупроводники при наличии примесей

            Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают:
    1) донорные примеси (отдающие)

При легировании 4 – валентного кремния Si 5 – валентным мышьяком As,
один из 5 электронов мышьяка становится свободным
Таким образом изменяя концентрацию мышьяка, можно в широких
пределах изменять проводимость кремния. 

            Дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

  • Это проводники » n » — типа, т.е. полупроводники с донорными примесями, где основной носитель заряда — электроны, а неосновной — дырки.

    2) акцепторные примеси (принимающие)
Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка.

Изменяя концентрацию индия, можно в широких пределах
изменять проводимость кремния, создавая полупроводник с
заданными электрическими свойствами.

  • создают «дырки» , забирая в себя электроны. 
  • это полупроводники » p «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда — дырки, а неосновной — электроны.

                    Итак, существует 2 типа полупроводников, имеющих большое практическое применение:

                Помимо основных носителей в полупроводнике существует очень малое число неосновных носителей заряда, количество которых растет при увеличении t°C.

Физические свойства и применение

            Основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

            Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

            Наиболее важные для техники полупроводниковые приборы — диоды, транзисторы, тиристоры основаны на использовании замечательных материалов с электронной или дырочной проводимостью.

       Полупроводниковый диод – это p – n переход, заключенный в корпус.

Транзистор – это полупроводниковый прибор, в котором полупроводниковые
пластинки соприкасаются таким образом, что возникает два p-n перехода.

            Широкое применение полупроводников началось сравнительно недавно, а сейчас они получили очень широкое применение. Они преобразуют световую и тепловую энергию в электрическую и, наоборот, с помощью электричества создают тепло и холод. Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе — лазере, в крошечной атомной батарее и в микропроцессорах. Инженеры не могут обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность. 

Историческая справка

            О. В. Лосев (1923) доказал возможность использования контактов полупроводник-металл для усиления и генерации колебаний (кристаллический детектор). Однако в последующие годы кристаллические детекторы были вытеснены электронными лампами и лишь в начале 50 — х годов с открытием транзисторов (США 1949 год) началось широкое применение полупроводников (главным образом германия и кремния в радиоэлектронике. Одновременно началось интенсивное изучение свойств полупроводников, чему способствовало совершенствование методов очистки кристаллов и их легированию (введение в полупроводник определенных примесей).

Полупроводниковый ток. Электрический ток в различных средах. Прямой p-n переход

Урок № 41-169 Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы.

Полупроводник — вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость увеличивается. Наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик. Если полупроводник чистый(без примесей), то он обладает собственной проводимостью (невелика).

Собственная проводимость бывает двух видов:

1)электронная (проводимость «п
«-типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; При увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны — сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2)дырочная (проводимость «р»-типа). При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном — «дырка». Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны нагреванием, освещением (фотопроводимость) и действием сильных электрических полей.

Зависимость R
(t
): термистор

— дистанционное измерение t;

— противопожарная сигнализация

Зависимость R
от освещенности: Фоторезистор

— фотореле

— аварийные выключатели

Общая проводимость чистого полупроводника складывается из проводимостей «р» и «n
» -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У них существует собственная и примесная проводимость. Наличие примесей сильно увеличивает проводимость. При изменении концентрации примесей изменяется число носителей электрического тока — электронов и дырок. Возможность управления током лежит в основе широкого применения полупроводников. Существуют следующие примеси:

1) донорные примеси (отдающие) — являются дополнительными

поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике. Это проводники » n
» — типа, т.е. полупроводники с донорными примесями, где основной носитель заряда — электроны, а неосновной — дырки. Такой полупроводник обладает электронной примесной проводимостью (пример – мышьяк).

2) акцепторные примеси (принимающие) создают «дырки», забирая в себя электроны. Это полупроводники » р «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда –

дырки, а неосновной — электроны. Такой полупроводник обладает

дырочной примесной проводимостью (пример – индий).

Электрические свойства «р-
n

» переходов.

«р-п» переход (или электронно-дырочный переход) — область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия, электронов и дырок и образуется запирающий

электрический слой. Электрическое поле запирающего слоя препятствует

дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

В нешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего электрического поля ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны,

переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

П ри запирающем (обратном направлении внешнего электрического поля) ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой

утолщается, его сопротивление увеличивается.

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковый диод
— полупроводник с одним «р-п» переходом.

П олупроводниковые диоды основные элементы выпрямителей переменного тока.

При наложении электрического поля: в одном направлении сопротивление полупроводника велико, в обратном — сопротивление мало.

Транзисторы.
(от английских слов transfer — переносить, resistor – сопротивление)

Рассмотрим один из видов транзисторов из германия или кремния с введенными в них донорными и акцепторными примесями. Распределе­ние примесей таково, что создает­ся очень тонкая (порядка несколь­ких микрометров) прослойка полупроводника п-типа между дву­мя слоями полупроводника р-типа (см. рис.).

Эту тонкую прослойку называют основанием
или базой.
В кристалле образуются два р
-n
-перехода, прямые направле­ния которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изо­браженную на рисунке. При данном включении левый р
-n
-пе­реход является прямым
и отделяет базу от области с проводимостью р-типа, называемую эмиттером.
Если бы не было правого р
-n
-перехода, в цепи эмиттер — база су­ществовал бы ток, зависящий от напряжения источников (батареи Б1
и источника переменного напряжения) и со­противления цепи, включая малое сопротивление прямо­го перехода эмиттер — база.

Батарея Б2
включена так, что правый р
-n
-переход в схеме (см. рис.) является обратным.
Он отделяет базу от правой области с проводимостью р-типа, называ­емой коллектором.
Если бы не было левого р
-n
-перехо­да, сила тока в цепи коллектора была бы близка к ну­лю, так как

сопротивление обратного перехода очень велико. При существовании же тока в левом р
-n
-пере­ходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере (если на эмиттер подано отрицательное напряжение, то левый р
-n
-переход будет обратным и ток в цепи эмиттера и в цепи коллек­тора будет практически отсутствовать). При создании напряжения между эмиттером и базой основные носители полупровод­ника р-типа — дырки проникают в базу, где они явля­ются уже неосновными носителями. Поскольку толщина базы очень мала и число основных носителей (электро­нов) в ней невелико, попавшие в нее дырки почти не объ­единяются (не рекомбинируют) с электронами базы и про­никают в коллектор за счет диффузии. Правый р
-n
-переход закрыт для основных носителей заряда ба­зы — электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. выше) плоскости много меньше сечения в верти­кальной плоскости.

Сила тока в коллекторе, практически равная силе то­ка в эмиттере, изменяется вместе с током в эмиттере. Со­противление резистора R

мало влияет на ток в коллекто­ре, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника перемен­ного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе R
.

При большом сопротивлении резистора изменение напря­жения на нем может в десятки тысяч раз превышать изме­нение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R

можно полу­чить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.

Применение транзисторов
Свойства р
-п-перехода в полупроводниках использу­ются для усиления и генерации электрических колебаний.

>>Физика: Электрический ток в полупроводниках

В чем главное отличие полупроводников от проводников? Какие особенности строения полупроводников открыли им доступ во все радиоустройства, телевизоры и ЭВМ?
Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растет, как у металлов (рис.16.3
), а, наоборот, чрезвычайно резко уменьшается (рис.16.4
). Такие вещества и называют полупроводниками
.

Из графика, изображенного на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведет себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.
Строение полупроводников
. Для того чтобы включить транзисторный приемник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придется вникнуть в природу связей
, удерживающих атомы полупроводникового кристалла друг возле друга.
Для примера рассмотрим кристалл кремния.
Кремний — четырехвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанных с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Схема структуры кристалла кремния изображена на рисунке 16.5.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью
. В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отделяются от атома, которому они принадлежат (коллективируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.
Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.
Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы «цементирующим раствором», удерживающим кристаллическую решетку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.
Электронная проводимость.
При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторенные пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, создавая электрический ток (рис.16.6
).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью
. При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/м 3 . Это приводит к уменьшению сопротивления.
Дырочная проводимость.
При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном. Его называютдыркой
. В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).
Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.
Если напряженность электрического поля в образце равна нулю, то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток, связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов (рис.16.7
).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряженности поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.
Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью
.
Мы рассмотрели механизм проводимости чистых полупроводников. Проводимость при этих условиях называют собственной проводимостью
полупроводников.
Проводимость чистых полупроводников (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость).

???
1. Какую связь называют ковалентной ?
2. В чем состоит различие зависимости сопротивления полупроводников и металлов от температуры?
3. Какие подвижные носители зарядов имеются в чистом полупроводнике?
4. Что происходит при встрече электрона с дыркой?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока


конспект урока

опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика


задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации


аудио-, видеоклипы и мультимедиа

фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения


рефераты

статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике

обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей


идеальные уроки

календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой
.

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок — дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называютсядонорными
(примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными
(примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями — электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.

Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим
.

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда — свободные электроны в п-полупроводнике и дырки в р-полупроводнике — будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля — обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.

Полупроводники находят широкое применение в современной электронной технике.

Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах — терморезисторах
. Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами
.

Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает — нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Дрейфовый ток

В полупроводниках свободные электроны и дырки на­ходятся в состоянии хаотического движения. Поэтому, если выбрать произвольное сечение внутри объема полупровод­ника и подсчитать число носителей заряда, проходящих через это сечение за единицу времени слева направо и справа налево, значения этих чисел окажутся одинаковы­ми. Это означает, что электрический ток в данном объеме полупроводника отсутствует.

При помещении полупроводника в электрическое поле напряженностью Е на хаотическое движение носителей зарядов накладывается составляющая направленного дви­жения. Направленное движение носителей зарядов в элек­трическом поле обусловливает появление тока, называе­мого дрейфовым (Рисунок 1.6, а) Из-за столкновения носителей зарядов с атомами кристал- лической решетки их движение в направ­лении действия электрического поля

прерывисто и харак­теризуется подвижностью m. Подвижность равна сред­ней скорости , приобретаемой носителями заряда в направлении действия электрического поля напряженностью Е = 1 В/м, т. е.

Подвижность носителей зарядов зависит от механизма их рассеивания в кристаллической решетке. Исследова­ния показывают, что подвижности электронов m n и дырок m p имеют различное значение (m n > m p) и определяются температурой и концентрацией примесей. Увеличение тем­пературы приводит к уменьшению подвижности, что зави­сит от числа столкновений носителей зарядов в единицу времени.

Плотность тока в полупроводнике, обусловленного дрей­фом свободных электронов под действием внешнего элек­трического поля со средней скоростью , определяется выражением .

Перемещение (дрейф) дырок в валентной зоне со сред­ней скоростью создает в полупроводнике дырочный ток, плотность которого . Следовательно, полная плот­ность тока в полупроводнике содержит электронную j n и дырочную j р составляющие и равна их сумме (n и p — концентрации соответственно электронов и дырок).

Подставляя в выражение для плотности тока соотноше­ние для средней скорости электронов и дырок (1.11), по­лучаем

(1.12)

Если сравнить выражение (1.12) с законом Ома j =sЕ, то удельная электропроводность полупроводника опреде­ляется соотношением

У полупроводника с собственной электропроводностью кон­центрация электронов равна концентрации дырок (n i = p i), и его удельная электропроводность определяется выра­жением

В полупроводнике n-типа > , и его удельная электропроводность с достаточной степенью точности мо­жет быть определена выражением

.

В полупроводнике р-типа > , и удельная элек­тропроводность такого полупроводника

В области высоких температур концентрация электро­нов и дырок значительно возрастает за счет разрыва ковалентных связей и, несмотря на уменьшение их подвижно­сти, электропроводность полупроводника увеличивается по экспоненциальному закону.

Диффузионный ток

Кроме теплового возбуждения, приводящего к возник­новению равновесной концентрации зарядов, равномерно распределенных по объему полупроводника, обогащение полупроводника электронами до концентрации n p и дыр­ками до концентрации p n может осуществляться его осве­щением, облучением потоком заряжённых частиц, введе­нием их через контакт (инжекцией) и т. д. В этом случае энергия возбудителя передается непосредственно носите­лям заряда и тепловая энергия кристаллической решетки остается практически постоянной. Следовательно, избы­точные носители заряда не находятся в тепловом равнове­сии с решеткой и поэтому называются неравновесными. В отличие от равновесных они могут неравномерно распре­деляться по объему полупроводника (рисунок 1.6, б)

После прекращения действия возбудителя за счет реком­бинации электронов и дырок концентрация избыточных но­сителей быстро убывает и достигает равновесного значения.

Скорость рекомбинации неравновесных носителей про­порциональна избыточной концентрации дырок (p n — ) или электронов (n p — ):

где t p — время жизни дырок; t n — время жизни электронов. За время жизни концентрация неравновесных носите­лей уменьшается в 2,7 раза. Время жизни избыточных носителей составляет 0,01…0,001 с.

Носители зарядов рекомбинируют в объеме полупро­водника и на его поверхности. Неравномерное распределение неравновесных носите­лей зарядов сопровождается их диффузией в сторону мень­шей концентрации. Это движение носителей зарядов обу­словливает прохождение электрического тока, называемо­го диффузионным (рисунок 1.6, б).

Рассмотрим одномерный случай. Пусть в полупровод­нике концентрации электронов n(x) и дырок p(x) являют­ся функциями координаты. Это приведет к диффузионно­му движению дырок и электронов из области с большей их концентрацией в область с меньшей концентрацией.

Диффузионное движение носителей зарядов обуслов­ливает прохождение диффузионного тока электронов и дырок, плотности которых определяют­ся из соотношений:

; (1.13) ; (1.14)

где dn(x)/dx, dp(x)/dx — градиенты концентраций электронов и дырок; D n , D p — коэффициенты диффузии электро­нов и дырок.

Градиент концентрации характери­зует степень неравномерности распределения зарядов (электронов и дырок) в полупроводнике вдоль какого-то выбранного направления (в данном случае вдоль оси x). Коэффициенты диффузии показывают количество носителей заряда, пересекающих в единицу времени еди­ничную площадку, перпендикулярную к выбранному направ­лению, при градиенте концентрации в этом направлении, рав­ном единице. Коэффициенты

диффузии связаны с подвижностями носителей зарядов соотношениями Эйнштейна:

; .

Знак «минус» в выражении (1.14) означает противопо­ложную направленность электрических токов в полупро­воднике при диффузионном движении электронов и дырок в сторону уменьшения их концентраций.

Если в полупроводнике существует и электрическое поле, и градиент концентрации носителей, проходящий ток будет иметь дрейфовую и диффузионную составляющие. В таком случае плотности токов рассчитываются по следую­щим уравнениям:

; .

Электрический ток в полупроводниках
Цель урока: сформировать представление о свободные
носители электрического заряда в полупроводниках и о
природе электрического тока в полупроводниках.
Тип урока: урок изучения нового материала.
ПЛАН УРОКА
Контроль знаний 5 мин. 1. Электрический ток в металлах.
2. Электрический ток в электролитах.
3. Закон Фарадея для электролиза.
4. Электрический ток в газах
Демонстрации
5 мин. Фрагменты видеофильма «Электрический ток в
полупроводниках»
Изучение нового
материала
28
мин.
1. Носители зарядов в полупроводниках.
2. Примесная проводимость полупроводников.
3. Электронно-дырочный переход.
4. Полупроводниковые диоды и транзисторы.
5. Интегральные микросхемы
Закрепление
изученного
материала
7 мин. 1. Качественные вопросы.
2. Учимся решать задачи
ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА
1. Носи зарядов в полупроводниках Удельные сопротивления полупроводников при комнатной
температуре имеют значения, которые находятся в широком
интервале, т.е. от 10-3 до 107 Ом·м, и занимают
промежуточное положение между металлами и диэлектриками.
Полупроводники — вещества, удельное сопротивление которых
очень быстро убывает с повышением температуры.
К полупроводникам относятся многие химические элементы
(бор, кремний, германий, фосфор, мышьяк, селен, теллур и др.),
огромное количество минералов, сплавов и химических
соединений. Почти все неорганические вещества окружающего
мира — полупроводники.
За достаточно низких температур и отсутствия внешних
воздействий
освещения или нагревания)
полупроводники не проводят электрический ток: при этих
условиях все электроны в полупроводниках являются
связанными.
Однако связь электронов со своими атомами в
полупроводниках не такой крепкий, как в диэлектриках. И в
случае повышения температуры, а так же за яркого освещения
некоторые электроны отрываются от своих атомов и становятся
свободными зарядами, то есть могут перемещаться по всем
образцом.
Благодаря этому в полупроводниках появляются
отрицательные носители заряда — свободные электроны.
электронов, называют электронной.
Когда электрон отрывается от атома, положительный заряд
этого атома становится некомпенсированным, т.е. в этом месте
появляется лишний положительный
Этот
положительный заряд называют «дыркой». Атом, вблизи
которого образовалась дырка, может отобрать связанный
электрон у соседнего атома, при этом дырка переместится до
соседнего атома, а тот атом, в свою очередь, может «передать»
дырку дальше.
Такое «естафетне» перемещение связанных электронов можно
рассматривать как перемещение дырок,
то есть
положительных зарядов.
Проводимость полупроводника, обусловленная движением
(например,
заряд. Проводимость полупроводника, обусловленная движением
дырок, называется дырочной.
отличие дырочной проводимости от
Таким образом,
электронной заключается в том, что электронная проводимость
обусловлена перемещением в полупроводниках свободных
электронов, а дырочная — перемещением связанных электронов.
В чистом полупроводнике (без примесей) электрический ток
создает одинаковое количество свободных электронов и дырок.
Такую проводимость называют собственной проводимостью
полупроводников.
2. Примесная проводимость полупроводников
Если добавить в чистый расплавленный кремний
незначительное количество мышьяка (примерно 10-5 %), после
твердения образуется обычная кристаллическая решетка
кремния, но в некоторых узлах решетки вместо атомов кремния
будут находиться атомы мышьяка.
Мышьяк, как известно, пятивалентный элемент. Чотиривалентні
электроны образуют парные электронные связи с соседними
атомами кремния. Пятом же валентному электрону связи не
хватит, при этом он будет так слабо связан с атомом Мышьяка,
который легко становится свободным. В результате каждый
атом примеси даст один свободный электрон.
Примеси, атомы которых легко отдают электроны, называются
донорными.
Электроны из атомов кремния могут становиться свободными,
образуя дыру, поэтому в кристалле могут одновременно Примеси, которые «захватывают» электроны атомов
называются
существовать и свободные электроны и дырки. Однако
свободных электронов во много раз будет больше, чем дырок.
Полупроводники, в которых основными носителями зарядов
являются электроны, называют полупроводниками n-типа.
Если в кремний добавить незначительное количество
трехвалентного индию,
то характер проводимости
полупроводника изменится. Поскольку индий имеет три
валентных электрона, то он может установить ковалентная
связь только с тремя соседними атомами. Для установления
связи с четвертым атомом электрона не хватит. Индий
«одолжит» электрон в соседних атомов, в результате каждый
атом Индия образует одно вакантное место — дырку.
кристаллической решетки полупроводников,
акцепторными.
В случае акцепторной примеси основными носителями заряда
во время прохождения электрического тока через
полупроводник есть дыры. Полупроводники, в которых
основными носителями зарядов являются дырки, называют
полупроводниками р-типа.
Практически все полупроводники содержат и донорные, и
акцепторные примеси. Тип проводимости полупроводника
определяет примесь с более высокой концентрацией носителей
заряда — электронов и дырок.
3. Электронно-дырочный переход
Среди физических свойств, присущих полупроводникам,
наибольшее применение получили свойства контактов (р-n-
перехода) между полупроводниками с разными типами
проводимости.
В полупроводнике n-типа электроны участвуют в тепловом
движении и диффундируют через границу в полупроводника р-
типа, где их концентрация значительно меньше. Точно так же
дырки будут диффундировать из полупроводника р-типа в
полупроводник п-типа. Это происходит подобно тому, как
атомы растворенного вещества диффундируют из крепкого
раствора в слабый в случае их столкновения.
В результате диффузии приконтактна участок обедняется
основными носителями заряда: в полупроводнике n-типа уменьшается концентрация электронов, а в полупроводнике р-
типа — концентрация дырок.
Поэтому сопротивление
приконтактної участка оказывается очень значительным.
Диффузия электронов и дырок через р-n-переходе приводит к
тому, что полупроводник n-типа, из которого идут электроны,
заряжается положительно, а р-типа — отрицательно. Возникает
двойной электрический слой, что создает электрическое поле,
которое препятствует дальнейшей диффузии свободных
носителей тока через контакт полупроводников. По некоторой
напряжения между двойным заряженным слоем дальнейшее
обнищание приконтактної участка основными носителями
прекращается.
Если теперь полупроводник присоединить к источнику тока
так, чтобы его электронная область соединялась с
отрицательным полюсом источника, а дырочная — с
положительным, то электрическое поле, созданное источником
тока, будет направлено так, что оно перемещать основные
носители тока в каждом участке полупроводника с р-n-
перехода.
При контакте участок будет обогащаться основными
носителями тока, и его сопротивление уменьшится. Через
контакт будет проходить заметный ток. Направление тока в
этом случае называют пропускным, или прямым.
Если же присоединить полупроводник n-типа к
положительному, а р-типа к отрицательному полюсу источника,
то приконтактна участок расширяется. Сопротивление области
значительно увеличивается. Ток через переходный слой будет
очень мал. Это направление тока называют замыкающим, или
обратным.
4. Полупроводниковые диоды и транзисторы
Следовательно, через границу раздела полупроводников n-типа
и р-типа электрический ток идет только в одном направлении —
от полупроводника p-типа к полупроводнику n-типа.
Это используют в устройствах, которые называют диодами.
Полупроводниковые диоды используют для выпрямления тока
переменного направления (такой ток называют переменным), а
также для изготовления светодиодов. Полупроводниковые
выпрямители имеют высокую надежность и длительный срок
использования. устройствах:
Широко применяют полупроводниковые диоды в
радиотехнических
радиоприемниках,
видеомагнитофонах, телевизорах, компьютерах.
Еще более важным применением полупроводников стал
транзистор. Он состоит из трех слоев полупроводников: по
краям расположены полупроводники одного типа, а между
ними — тонкий слой полупроводника другого типа. Широкое
применение транзисторов обусловлено тем, что с их помощью
можно усиливать электрические сигналы. Поэтому транзистор
стал основным элементом многих полупроводниковых
приборов.
5. Интегральные микросхемы
Полупроводниковые диоды и транзисторы являются
«кирпичиками» очень сложных устройств, которые называют
интегральными микросхемами.
Микросхемы работают сегодня в компьютерах и телевизорах,
мобильных телефонах и искусственных спутниках,
в
автомобилях, самолетах и даже в стиральных машинах.
Интегральную схему изготавливают на пластинке кремния.
Размер пластинки — от миллиметра до сантиметра, причем на
одной такой пластинке может размещаться до миллиона
компонентов — крошечных диодов, транзисторов, резисторов и
др.
Важными преимуществами интегральных схем является
высокое быстродействие и надежность, а также низкая
стоимость. Именно благодаря этому на основе интегральных
схем и удалось создать сложные, но многим доступны приборы,
компьютеры и предметы современной бытовой техники.
ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА
Первый уровень
1. Какие вещества можно отнести к полупроводниковых?
2. Движением которых заряженных частиц создается ток в
полупроводниках?
3. Почему сопротивление полупроводников очень сильно
зависит от наличия примесей? 4. Как образуется p-n-переход? Какое свойство имеет p-n-
переход?
5. Почему свободные носители зарядов не могут пройти
сквозь p-n-переход полупроводника?
Второй уровень
1. После введения в германий примеси мышьяка концентрация
электронов проводимости увеличилась. Как изменилась при
этом концентрация дырок?
2. С помощью какого опыта можно убедиться в односторонней
проводимости полупроводникового диода?
3. Можно ли получить р-n-переход, выполнив вплавления олова
в германий или кремний?
ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА
1). Качественные вопросы
1.
Почему требования к чистоте полупроводниковых
материалов очень высоки (в ряде случаев не допускается
наличие даже одного атома примеси на миллион атомов)?
2. После введения в германий примеси мышьяка концентрация
электронов проводимости увеличилась. Как изменилась при
этом концентрация дырок?
3. Что происходит в контакте двух полупроводников n- и р-
типа?
4. В закрытом ящике находятся полупроводниковый диод и
реостат. Конце приборов выведены наружу и присоединены к
клеммам. Как определить, какие клеммы принадлежат диода?
2). Учимся решать задачи
1. Какую проводимость (электронную или дырочную) имеет
кремний с примесью галлия? индию? фосфора? сурьмы?
2. Какая проводимость (электронная или дырочная) будет в
кремния, если к нему добавить фосфор? бор? алюминий?
мышьяк? 3. Как изменится сопротивление образца кремния с примесью
фосфора, если ввести в него примесь галлия? Концентрация
атомов Фосфора и Галлия одинакова. (Ответ: увеличится)
ЧТО МЫ УЗНАЛИ НА УРОКЕ
· Полупроводники — вещества, удельное сопротивление которых
очень быстро снижается с повышением температуры.
· Проводимость полупроводника, обусловленная движением
электронов, называют электронной.
· Проводимость полупроводника, обусловленная движением
дырок, называется дырочной.
· Примеси, атомы которых легко отдают электроны, называются
донорными.
· Полупроводники, в которых основными носителями зарядов
являются электроны, называют полупроводниками n-типа.
· Примеси, которые «захватывают» электроны атомов
кристаллической решетки полупроводников,
называются
акцепторными.
· Полупроводники, в которых основными носителями зарядов
являются дырки, называют полупроводниками р-типа.
· Контакт двух полупроводников с различными видами
проводимости имеет свойства хорошо проводить ток в одном
направлении и значительно хуже в противоположном
направлении, т.е. имеет одностороннюю проводимость.
Домашнее задание
1. §§ 11, 12.

Полупроводники — презентация онлайн

1. ПОЛУПРОВОДНИКИ

Презентация сложная и
непонятная так что смотри
внимательно 😉

2. Что такое полупроводники?

Полупроводни́к — материал, который по
своей удельной проводимости занимает
промежуточное место между проводниками и
диэлектриками и отличается от проводников
сильной зависимостью удельной проводимости
от концентрации примесей, температуры и
воздействия различных видов излучения.
Полупроводниками являются кристаллические
вещества, ширина запрещённой зоны которых
составляет порядка электрон-вольта (эВ).
Например, алмаз можно отнести
к широкозонным полупроводникам

4. Где их используют???

5. Самое распространенное применение: ТРАНЗИСТОРЫ

К настоящему времени на каждого жителя Земли
произведено примерно 10 миллиардов кремниевых
полевых транзисторов, которые входят в состав
микросхем. Именно транзисторы являются самым
массовым техническим изделием за всю историю
человечества, обгоняя, к примеру, гвозди.
Транзистор — предпосылка всей современной
микроэлектроники. Если бы в обычном мобильном
телефоне вместо транзисторов использовались
катодно-лучевые трубки, устройство приобрело бы
размеры Кёльнского собора.
Круто правда? (нет)
Самое распространенное
применение: ТРАНЗИСТОРЫ

6. Полупроводники бывают разными по характеру проводимости

7. Собственная и примесная проводимость

Полупроводники, в которых свободные электроны
и «дырки» появляются в
процессе ионизации атомов, из которых построен
весь кристалл, называют полупроводниками с
собственной проводимостью. В полупроводниках с
собственной проводимостью концентрация
свободных электронов равняется концентрации
«дырок».
Для создания полупроводниковых приборов часто
используют кристаллы с примесной
проводимостью. Такие кристаллы
изготавливаются с помощью внесения примесей с
атомами трехвалентного или пятивалентного
химического элемента.
Собственная и примесная
проводимость

8. СРАЗУ ВОПРОС: ЧТО ТАКОЕ «ДЫРКА»

9. ВОТ ЧТО ТАКОЕ ДЫРКА

Во время разрыва связи между электроном и ядром
появляется свободное место в электронной
оболочке атома. Это обуславливает переход
электрона с другого атома на атом со свободным
местом. На атом, откуда перешёл электрон, входит
другой электрон из другого атома и т. д. Этот
процесс обуславливается ковалентными связями
атомов. Таким образом, происходит перемещение
положительного заряда без перемещения самого
атома. Этот условный положительный заряд
называют дыркой.
Обычно подвижность дырок в полупроводнике
ниже подвижности электронов.
ВОТ ЧТО ТАКОЕ ДЫРКА

10. ПОЛУПРОВОДНИКИ БЫВАЮТ РАЗНЫМИ ПО ВИДУ ПРОВОДИМОСТИ

11. ВОТ ТАК)0)

Термин «n-тип» происходит от слова «negative»,
обозначающего отрицательный заряд основных
носителей. Этот вид полупроводников имеет примесную
природу. В четырёхвалентный полупроводник
(например, кремний) добавляют примесь
пятивалентного полупроводника (например, мышьяка)
Термин «p-тип» происходит от слова «positive»,
обозначающего положительный заряд основных
носителей. Этот вид полупроводников, кроме примесной
основы, характеризуется дырочной природой
проводимости. В четырёхвалентный полупроводник
(например, в кремний) добавляют небольшое
количество атомов трехвалентного элемента
(например, индия)

12. Метод получения:

13. ИНТЕРЕСНО (НЕТ)

Свойства полупроводников зависят от способа
получения, так как различные примеси в процессе
роста могут изменить их. Наиболее дешёвый способ
промышленного получения монокристаллического
технологического кремния — метод Чохральского.
Для очистки технологического кремния используют
такжеметод зонной плавки.
Для получения монокристаллов полупроводников
используют различные методы физического и
химического осаждения. Наиболее прецизионный и
дорогой инструмент в руках технологов для роста
монокристаллических плёнок —
установки молекулярно-лучевой эпитаксии,
позволяющей выращивать кристалл с точностью до
монослоя.
ИНТЕРЕСНО (НЕТ)

14. НУ И КОНЕЧНО ЖЕ СПИСОК ПОЛУПРОВОДНИКОВ

ПРОСТЫЕ
полупроводниковые
материалы — собственно
химические элементы: бор
B, углерод C, германий Ge,
кремний Si, селен Se, сера
S, сурьма Sb, теллур Te и
йод I. Самостоятельное
применение широко нашли
германий, кремний и селен.
Остальные чаще всего
применяются в качестве
легирующих добавок или в
качестве компонентов
сложных
полупроводниковых
материалов
СЛОЖНЫЕ
химические соединения из
двух, трёх и более химических
элементов.
Полупроводниковые
материалы из двух элементов
называют бинарными, и так
же, как это принято в химии,
имеют наименование того
компонента, металлические
свойства которого выражены
слабее. Так, бинарные
соединения, содержащие
мышьяк,
называют арсенидами, серу —
сульфидами, теллур —
теллуридами, углерод —
карбидами

16. На этом все

Спасибо за внимание (нет)

Что такое полупроводники?

Что такое полупроводники?

Полупроводники — это материалы с проводимостью между
проводники (как правило, металлы) и непроводники или изоляторы
(например, большинство керамических изделий). Полупроводники могут быть чистыми элементами, такими как кремний.
или германий, или такие соединения, как арсенид галлия или селенид кадмия. В
процесс, называемый легированием, небольшое количество примесей добавляется к чистому
полупроводники, вызывающие большие изменения проводимости материала.

Из-за их роли в производстве электронных устройств полупроводники
важная часть нашей жизни. Представьте себе жизнь без электронных устройств.
Не было бы ни радио, ни телевизоров, ни компьютеров, ни видеоигр, и бедных
медицинское диагностическое оборудование. Хотя многие электронные устройства можно было сделать
использование технологии электронных ламп, разработки в области полупроводниковой техники
за последние 50 лет сделали электронные устройства меньше, быстрее и больше
надежный.Подумайте на минутку обо всех ваших встречах с электронным
устройств. Сколько из перечисленного вы видели или использовали за последний
двадцать четыре часа? Каждый имеет важные компоненты, которые были изготовлены
с электронными материалами.

микроволновая печь электронные весы видеоигры
радио телевизор видеомагнитофон
часы проигрыватель компакт-дисков стерео
компьютер свет кондиционер
калькулятор телефон

диагностическое оборудование

музыкальное диагностическое оборудование часы холодильник
автомобиль охранные устройства плита

Достижения в области электроники могут и дальше улучшать нашу жизнь.Изучение электронных материалов может помочь вам понять и научиться
участвовать в сферах коммуникации, компьютеров, медицины, основных
науки и техники. Во всех этих областях широко используется электроника.

Следующая тема: Историческая хронология
Полупроводники Содержание
Домашняя страница MAST

1. Свойства полупроводников: Hitachi High-Tech GLOBAL

Название «полупроводник» широко известно, но что такое полупроводники?
Полупроводники обладают определенными электрическими свойствами.Вещество, проводящее электричество, называется проводником, а вещество, не проводящее электричество, называется изолятором. Полупроводники — это вещества со свойствами где-то между ними.
Электрические свойства могут быть обозначены удельным сопротивлением. Такие проводники, как золото, серебро и медь, имеют низкое сопротивление и легко проводят электричество. Изоляторы, такие как резина, стекло и керамика, обладают высоким сопротивлением и плохо пропускают электричество. Полупроводники обладают чем-то средним между этими двумя свойствами.Их удельное сопротивление может изменяться, например, в зависимости от температуры. При невысокой температуре через них почти не проходит электричество. Но при повышении температуры электричество через них легко проходит.
Полупроводники, почти не содержащие примесей, почти не проводят электричество. Но когда к полупроводникам добавляются какие-то элементы, электричество легко проходит через них.
Полупроводники, состоящие из одного элемента, называются элементарными полупроводниками, включая знаменитый полупроводниковый материал кремний.С другой стороны, полупроводники, состоящие из двух или более соединений, называются составными полупроводниками и используются в полупроводниковых лазерах, светодиодах и т. Д.

Энергетический диапазон

Атом состоит из ядра и электронов, вращающихся вокруг ядра.
Электроны не могут вращаться вокруг ядра на любом расстоянии в атомном пространстве, окружающем ядро, но разрешены только определенные, очень специфические орбиты, и они существуют только на определенных дискретных уровнях.Эти энергии называются энергетическими уровнями. Большое количество атомов собирается в кристалл и взаимодействует в твердом материале, а затем энергетические уровни становятся настолько близко расположенными, что образуют полосы. Это энергетическая полоса.
Металлы, полупроводники и изоляторы отличаются друг от друга своей зонной структурой. Их ленточная структура показана на рисунке ниже.

В металлах зона проводимости и валентная зона очень близки друг к другу и могут даже перекрываться, причем энергия Ферми (Ef) находится где-то внутри.Это означает, что в металле всегда есть электроны, которые могут свободно перемещаться и поэтому всегда могут проводить ток. Такие электроны известны как свободные электроны. Эти свободные электроны ответственны за ток, протекающий через металл.

В полупроводниках и изоляторах валентная зона и зона проводимости разделены запрещенной энергетической щелью (Eg) достаточной ширины, а энергия Ферми (Ef) находится между валентной зоной и зоной проводимости. Чтобы попасть в зону проводимости, электрон должен набрать достаточно энергии, чтобы перескочить через запрещенную зону.Как только это будет сделано, его можно будет проводить.

В полупроводниках при комнатной температуре ширина запрещенной зоны меньше, тепловой энергии достаточно, чтобы позволить электронам довольно легко перепрыгивать через зазор и переходить в зону проводимости, учитывая ограниченную проводимость полупроводника. При низкой температуре ни один электрон не обладает достаточной энергией, чтобы занять зону проводимости, и поэтому движение заряда невозможно. При абсолютном нуле полупроводники являются идеальными изоляторами. Плотность электронов в зоне проводимости при комнатной температуре не так высока, как в металлах, поэтому они не могут проводить ток так же хорошо, как металл.Электропроводность полупроводника не такая высокая, как у металла, но и не такая плохая, как у электрического изолятора. Именно поэтому этот вид материала называется полупроводником, то есть полупроводником.

Ширина запрещенной зоны изоляторов велика, поэтому очень немногие электроны могут перепрыгнуть через нее. Следовательно, ток в изоляторах не течет легко. Разница между изоляторами и полупроводниками заключается в величине запрещенной зоны. В изоляторе, где запрещенная зона очень велика, и в результате энергия, необходимая электрону для перехода в зону проводимости, практически достаточно велика.Изоляторы плохо проводят электричество. Это означает, что электрическая проводимость изолятора очень низкая.

Полупроводниковый кристалл, используемый для ИС и т. Д., Представляет собой монокристаллический кремний высокой чистоты с содержанием 99,999999999%, но при фактическом создании схемы добавляются примеси для контроля электрических свойств. В зависимости от добавленных примесей они становятся полупроводниками n-типа и p-типа.

Пятивалентный фосфор (P) или мышьяк (As) добавляют в кремний высокой чистоты для полупроводников n-типа.Эти примеси называются донорами. Энергетический уровень донора расположен близко к зоне проводимости, то есть запрещенная зона мала. Затем электроны на этом уровне энергии легко возбуждаются в зону проводимости и вносят свой вклад в проводимость.

С другой стороны, трехвалентный бор (B) и т. Д. Добавляется в полупроводник p-типа. Это называется акцептором. Уровень энергии акцептора близок к валентной зоне. Поскольку здесь нет электронов, здесь возбуждаются электроны в валентной зоне.В результате в валентной зоне образуются дырки, которые вносят вклад в проводимость.

Название «полупроводник» широко известно, но что такое полупроводники?
Полупроводники обладают определенными электрическими свойствами. Вещество, проводящее электричество, называется проводником, а вещество, не проводящее электричество, называется изолятором. Полупроводники — это вещества со свойствами где-то между ними.
Электрические свойства могут быть обозначены удельным сопротивлением.Такие проводники, как золото, серебро и медь, имеют низкое сопротивление и легко проводят электричество. Изоляторы, такие как резина, стекло и керамика, обладают высоким сопротивлением и плохо пропускают электричество. Полупроводники обладают чем-то средним между этими двумя свойствами. Их удельное сопротивление может изменяться, например, в зависимости от температуры. При невысокой температуре через них почти не проходит электричество. Но при повышении температуры электричество через них легко проходит.
Полупроводники, почти не содержащие примесей, почти не проводят электричество.Но когда к полупроводникам добавляются какие-то элементы, электричество легко проходит через них.
Полупроводники, состоящие из одного элемента, называются элементарными полупроводниками, включая знаменитый полупроводниковый материал кремний. С другой стороны, полупроводники, состоящие из двух или более соединений, называются составными полупроводниками и используются в полупроводниковых лазерах, светодиодах и т. Д.

Энергетический диапазон

Атом состоит из ядра и электронов, вращающихся вокруг ядра.
Электроны не могут вращаться вокруг ядра на любом расстоянии в атомном пространстве, окружающем ядро, но разрешены только определенные, очень специфические орбиты, и они существуют только на определенных дискретных уровнях. Эти энергии называются энергетическими уровнями. Большое количество атомов собирается в кристалл и взаимодействует в твердом материале, а затем энергетические уровни становятся настолько близко расположенными, что образуют полосы. Это энергетическая полоса.
Металлы, полупроводники и изоляторы отличаются друг от друга своей зонной структурой.Их ленточная структура показана на рисунке ниже.

В металлах зона проводимости и валентная зона очень близки друг к другу и могут даже перекрываться, причем энергия Ферми (Ef) находится где-то внутри. Это означает, что в металле всегда есть электроны, которые могут свободно перемещаться и поэтому всегда могут проводить ток. Такие электроны известны как свободные электроны. Эти свободные электроны ответственны за ток, протекающий через металл.

В полупроводниках и изоляторах валентная зона и зона проводимости разделены запрещенной энергетической щелью (Eg) достаточной ширины, а энергия Ферми (Ef) находится между валентной зоной и зоной проводимости.Чтобы попасть в зону проводимости, электрон должен набрать достаточно энергии, чтобы перескочить через запрещенную зону. Как только это будет сделано, его можно будет проводить.

В полупроводниках при комнатной температуре ширина запрещенной зоны меньше, тепловой энергии достаточно, чтобы позволить электронам довольно легко перепрыгивать через зазор и переходить в зону проводимости, учитывая ограниченную проводимость полупроводника. При низкой температуре ни один электрон не обладает достаточной энергией, чтобы занять зону проводимости, и поэтому движение заряда невозможно.При абсолютном нуле полупроводники являются идеальными изоляторами. Плотность электронов в зоне проводимости при комнатной температуре не так высока, как в металлах, поэтому они не могут проводить ток так же хорошо, как металл. Электропроводность полупроводника не такая высокая, как у металла, но и не такая плохая, как у электрического изолятора. Именно поэтому этот вид материала называется полупроводником, то есть полупроводником.

Ширина запрещенной зоны изоляторов велика, поэтому очень немногие электроны могут перепрыгнуть через нее. Следовательно, ток в изоляторах не течет легко.Разница между изоляторами и полупроводниками заключается в величине запрещенной зоны. В изоляторе, где запрещенная зона очень велика, и в результате энергия, необходимая электрону для перехода в зону проводимости, практически достаточно велика. Изоляторы плохо проводят электричество. Это означает, что электрическая проводимость изолятора очень низкая.

Полупроводниковый кристалл, используемый для ИС и т. Д., Представляет собой монокристаллический кремний высокой чистоты с содержанием 99,999999999%, но при фактическом создании схемы добавляются примеси для контроля электрических свойств.В зависимости от добавленных примесей они становятся полупроводниками n-типа и p-типа.

Пятивалентный фосфор (P) или мышьяк (As) добавляют в кремний высокой чистоты для полупроводников n-типа. Эти примеси называются донорами. Энергетический уровень донора расположен близко к зоне проводимости, то есть запрещенная зона мала. Затем электроны на этом уровне энергии легко возбуждаются в зону проводимости и вносят свой вклад в проводимость.

С другой стороны, трехвалентный бор (B) и т. Д.добавлен к полупроводнику p-типа. Это называется акцептором. Уровень энергии акцептора близок к валентной зоне. Поскольку здесь нет электронов, здесь возбуждаются электроны в валентной зоне. В результате в валентной зоне образуются дырки, которые вносят вклад в проводимость.

4. История полупроводников: Hitachi High-Tech GLOBAL

История рождения полупроводников восходит к изобретению выпрямителя (преобразователя переменного тока в постоянный) в 1874 году.Десятилетия спустя Бардин и Браттейн из Bell Laboratories в США изобрели точечный транзистор в 1947 году, а Шокли изобрел переходной транзистор в 1948 году. Это ознаменовало наступление эры транзисторов. В 1946 году Пенсильванский университет в США построил компьютер с использованием электронных ламп. Компьютер был настолько большим, что его электронные лампы занимали все здание, потребляли огромное количество электроэнергии и выделяли много тепла. Позже был разработан инновационный транзисторный вычислитель (компьютер), и с тех пор компьютеры выросли не по дням, а по часам.В 1956 году Нобелевская премия по физике была присуждена совместно Шокли, Бардину и Браттейну за их вклад в исследования полупроводников и разработку транзисторов.
После изобретения транзистора полупроводниковая промышленность быстро росла. В 1957 году он уже перевалил за 100 миллионов долларов. В 1959 году биполярная интегральная схема (ИС) была изобретена Килби из Texas Instruments и Нойсом из Fairchild Semiconductor в США. Это изобретение оказало большое влияние на историю полупроводников и ознаменовало начало эры IC.Будучи небольшими по размеру и легким, ИС широко использовалась в различных электроприборах.
В 1967 году компания Texas Instruments разработала настольный электронный калькулятор (калькулятор) с использованием микросхемы IC. В Японии производители электронного оборудования один за другим выпускали калькуляторы, и ожесточенные «калькуляторы» продолжались до конца 1970-х годов. Интеграция ИС продвинулась еще дальше, и была разработана крупномасштабная интегральная схема (БИС). Технологии продолжают развиваться. СБИС (от 100 тысяч до 10 миллионов электронных компонентов на микросхему) была разработана в 1980-х годах, а ULSI (более 10 миллионов электронных компонентов на микросхему) была разработана в 1990-х годах.В 2000-х годах системная БИС (многофункциональная БИС с множеством функций, интегрированных в одну микросхему) была запущена в серийное производство. По мере того, как IC прогрессирует в направлении высокой производительности и множественности функций, область ее применения широко расширяется. Полупроводники сейчас используются во всех уголках нашего общества и поддерживают повседневную жизнь.

О полупроводниках | SIA | Ассоциация полупроводниковой промышленности

Сильная полупроводниковая промышленность жизненно важна для экономической мощи Америки, национальной безопасности и глобальной конкурентоспособности.

Полупроводники — это основополагающая технология практически для всех сфер нашей экономики. Полупроводники были изобретены в Америке, и США по-прежнему лидируют в мире по передовым технологиям производства и дизайна.

В полупроводниковой промышленности напрямую занято около 250 000 рабочих в Соединенных Штатах, и на каждую прямую работу приходится 4,89 рабочих мест, поддерживаемых в других частях экономики США. Это составляет более 1 миллиона дополнительных рабочих мест в результате процветающей полупроводниковой промышленности США.Еще более впечатляющим является то, что за работу в полупроводниковой промышленности платят в среднем в 2,5 раза больше, чем средняя зарплата всех рабочих в США.

Полупроводники — четвертый по величине экспорт Америки после самолетов, рафинированного масла и автомобилей. Вопреки распространенному мнению, что большая часть высокотехнологичного производства была перенесена в Азию, передовое производство полупроводников остается сильным в США. Фактически, около половины производственной базы американских полупроводниковых компаний находится в Соединенных Штатах.

Ключ к поддержанию достижений, которые питают нашу промышленность и экономику США, — это исследования. К сожалению, доля инвестиций США в НИОКР в ВВП за последние десятилетия снизилась. Например, доля валовых внутренних расходов США на НИОКР, финансируемых государством, снизилась с 47,1 процента в 1981 году до 33,4 процента в 2011 году. (Источник: ОЭСР) За последние десять лет расходы на НИОКР как доля от экономического производства оставались почти постоянна в США, но увеличилась почти на 50 процентов в Южной Корее и почти на 90 процентов в Китае.(Источник: NSF S&E Indicators 2012)

компаний-членов SIA продолжают инвестировать и расширяться в США, строя новые и расширенные современные производственные мощности по всей стране. В целом американские полупроводниковые компании сохраняют около 50 процентов доли мирового рынка на высококонкурентном рынке. (Источник: SIA / iSuppli / WSTS)

Процветающая полупроводниковая промышленность США означает сильную американскую экономику, высокооплачиваемые рабочие места и огромное влияние на страну.Проще говоря, полупроводники укрепляют нашу страну.

полупроводников | Введение в химию

Цель обучения
  • Сравните полупроводники N-типа и P-типа, отличив их от полупроводников и изоляторов, используя зонную теорию.

Ключевые точки
    • Собственные полупроводники состоят только из одного материала.
    • Внешние полупроводники состоят из внутренних полупроводников, в которые были добавлены другие вещества для изменения их свойств (они были легированы другим элементом).
    • Есть два типа примесных полупроводников: p-тип (p для положительного: дырка была добавлена ​​в результате легирования элементом III группы) и n-типа (n для отрицательного: дополнительный электрон был добавлен в результате легирования элементом III группы). элемент группы-V).

Условия
  • полупроводник — вещество с электрическими свойствами между хорошими проводниками и хорошими изоляторами
  • проводники: то, что может передавать электричество, тепло, свет или звук
  • легированный: описание полупроводника, в который было добавлено небольшое количество элементов для создания носителей заряда.

Полупроводники — это материалы, которые обладают свойствами как обычных проводников, так и изоляторов.Полупроводники делятся на две большие категории:

  • Собственные полупроводники состоят только из одного вида материала; кремний и германий — два примера. Их также называют «нелегированные полупроводники» или «полупроводники i-типа. «
  • Внешние полупроводники, с другой стороны, являются внутренними полупроводниками с добавлением других веществ для изменения их свойств, то есть они были легированы другим элементом.

Внутренние полупроводники

В классических кристаллических полупроводниках электроны могут иметь энергию только в определенных диапазонах (диапазонах уровней энергии).Энергия этих зон находится между энергией основного состояния и энергией свободного электрона (энергия, необходимая для полного выхода электрона из материала). Энергетические зоны соответствуют большому количеству дискретных квантовых состояний электронов. Большинство состояний с низкой энергией (ближе к ядру) занято, вплоть до определенной зоны, называемой валентной зоной.

Полупроводники и изоляторы отличаются от металлов населенностью электронов в каждой зоне.Валентная зона в любом металле почти заполнена электронами при обычных условиях. В полупроводниках только несколько электронов существуют в зоне проводимости чуть выше валентной зоны, а в изоляторе почти нет свободных электронов.

Иллюстрация электронной зонной структуры полупроводника Это исчерпывающая иллюстрация молекулярных орбиталей в массивном материале. По мере увеличения энергии в системе электроны покидают валентную зону и переходят в зону проводимости.

Полупроводники и изоляторы также отличаются относительной шириной запрещенной зоны. В полупроводниках ширина запрещенной зоны мала, что позволяет электронам заселять зону проводимости. В изоляторах он большой, что затрудняет прохождение электронов через зону проводимости.

Внешние полупроводники

Название «внешний полупроводник» может ввести в заблуждение. В то время как изолирующие материалы могут быть легированы, чтобы стать полупроводниками, собственные полупроводники также могут быть легированы, что приводит к примесному полупроводнику.Есть два типа примесных полупроводников, которые возникают в результате легирования: атомы с дополнительным электроном (n-тип для отрицательного элемента из группы V, например, фосфор) и атомы с одним электроном меньше (p-тип для положительного элемента из группы III. , например бор).

При производстве полупроводников легирование преднамеренно вводит примеси в чрезвычайно чистый или собственный полупроводник с целью изменения его электрических свойств. Примеси зависят от типа полупроводника.Слабо- и умеренно легированные полупроводники относятся к примерам примесей. Когда полупроводник легирован до такого высокого уровня, что он больше похож на проводник, чем на полупроводник, его называют вырожденным.

Полупроводники N-типа

Полупроводники

N-типа представляют собой тип примесных полупроводников, в которых атомы примеси способны обеспечивать дополнительные электроны проводимости для материала-хозяина (например, фосфор в кремнии). Это создает избыток отрицательных (n-типа) электронных носителей заряда.

Полупроводник N-типа После легирования материала фосфором появляется дополнительный электрон.

Легирующий атом обычно имеет на один валентный электрон больше, чем один тип основных атомов. Наиболее распространенный пример — атомное замещение в твердых телах IV группы элементами V группы. Ситуация становится более неопределенной, когда хозяин содержит более одного типа атомов. Например, в полупроводниках III-V, таких как арсенид галлия, кремний может быть донором, когда он замещает галлий, или акцептором, когда он замещает мышьяк.У некоторых доноров меньше валентных электронов, чем у хозяина, например щелочные металлы, которые являются донорами в большинстве твердых тел.

Полупроводники P-типа

Полупроводник p-типа (p означает «положительный») создается путем добавления к полупроводнику атома определенного типа с целью увеличения количества свободных носителей заряда. Когда легирующий материал добавляется, он забирает (принимает) слабосвязанные внешние электроны у атомов полупроводника. Этот тип легирующего агента также известен как акцепторный материал, а вакансия, оставленная электроном, известна как дырка.Целью легирования p-типа является создание большого количества дырок.

Полупроводник P-типа После того, как материал был легирован бором, в структуре отсутствует электрон, оставляя дырку. Это позволяет упростить поток электронов.

В случае кремния трехвалентный атом замещен в кристаллической решетке. В результате один электрон отсутствует в одной из четырех ковалентных связей, обычно являющихся частью решетки кремния. Следовательно, атом примеси может принять электрон от ковалентной связи соседнего атома, чтобы завершить четвертую связь.Вот почему эти легирующие примеси называют акцепторами.

Когда атом примеси принимает электрон, это вызывает потерю половины одной связи с соседним атомом, что приводит к образованию дырки. Каждая дырка связана с ближайшим отрицательно заряженным легирующим ионом, и полупроводник в целом остается электрически нейтральным. Однако, как только каждая дырка переместится в решетку, один протон в атоме в месте расположения дыры будет «обнажен» и больше не будет нейтрализован электроном.У этого атома будет три электрона и одна дырка, окружающие конкретное ядро ​​с четырьмя протонами.

По этой причине отверстие ведет себя как положительный заряд. Когда добавляется достаточно большое количество акцепторных атомов, дырок намного превышает количество термически возбужденных электронов. Таким образом, дырки являются основными носителями, а электроны становятся неосновными носителями в материалах p-типа.

Показать источники

Boundless проверяет и курирует высококачественный контент с открытой лицензией из Интернета.Этот конкретный ресурс использовал следующие источники:

Что они из себя представляют и как они сделаны —

Для такой важной части технологических достижений полупроводники не получают той славы, которой они заслуживают много раз. Полупроводники лежат в основе микропроцессорных микросхем, поэтому все, что связано с компьютеризацией, то есть ваш смартфон, ноутбук, планшет и т. Д., Имеет полупроводники, которые следует благодарить за их функциональные возможности! Чтобы оценить их истинную ценность, полезно знать, что такое полупроводники и как они производятся.

Что такое полупроводники?

Полупроводники — это кристаллические или аморфные твердые тела, которые могут проводить электричество при определенных обстоятельствах, что делает их хорошей средой для контроля электрического тока. Полупроводники сделаны из материалов, в структуре которых есть свободные электроны, которые могут легко перемещаться между атомами, что способствует прохождению электричества. Самым популярным из материалов, используемых в качестве полупроводников, является кремний. Кремний имеет четыре электрона на своей внешней орбитали, что позволяет ковалентным связям образовывать решетку и, таким образом, формировать кристалл.Хотя другие материалы, такие как германий и углерод, также обладают схожими свойствами, кремний лежит в основе производства интегральных схем, поскольку он оказался эффективным полупроводником. Почему кремний — важный полупроводник?

Легирование кремниевых полупроводников

Легирование — это процесс введения в кристалл посторонних элементов, например кремния. В процессе производства кремния в полупроводник вводятся легирующие примеси, чтобы изменить его электрические свойства.В зависимости от назначения полупроводника, он может быть легирован, чтобы изменить способ проведения электричества, снова позволяя контролировать поток электрического тока. Кремний может быть преобразован в полупроводники N-типа или полупроводники P-типа. Полупроводники N-типа переносят токи в основном в виде отрицательно заряженных ионов, тогда как полупроводники P-типа переносят токи в основном в виде дефицита электронов.

Независимо от того, для какой цели будет использоваться идеальный кремниевый полупроводник, мы можем предоставить вам кремниевые пластины, подходящие для вашей работы! Мы являемся ведущим производителем кремния и с 1997 года обслуживаем наших клиентов кремниевыми пластинами высочайшего качества! Посетите нашу компанию по производству кремниевых пластин в Интернете или позвоните нам сегодня по телефону 561-842-4441, чтобы получить дополнительную информацию о ваших потребностях в кремниевых пластинах!

Определение полупроводников

Что такое полупроводник?

Полупроводник — это материальный продукт, обычно состоящий из кремния, который проводит электричество больше, чем изолятор, такой как стекло, но меньше, чем чистый проводник, такой как медь или алюминий.Их проводимость и другие свойства могут быть изменены путем введения примесей, называемых легированием, для удовлетворения конкретных потребностей электронного компонента, в котором он находится. Полупроводники, также известные как полупроводники или чипы, можно найти в тысячах продуктов, таких как компьютеры, смартфоны, бытовая техника, игровое оборудование и медицинское оборудование.

ключевые выносы

  • Полупроводник, который содержится в тысячах электронных продуктов, — это материал, который проводит электричество больше, чем изолятор, но меньше, чем чистый проводник.
  • Есть четыре основных типа полупроводников.
  • Полупроводниковая промышленность живет и умирает по простому кредо: меньше, быстрее и дешевле.
  • Инвесторам следует помнить, что полупроводниковая промышленность очень циклична и подвержена периодическим подъемам и спадам.

Понимание полупроводников

Полупроводниковые устройства могут демонстрировать ряд полезных свойств, таких как показывать переменное сопротивление, легче пропускать ток в одном направлении, чем в другом, и реагировать на свет и тепло.Их фактическая функция включает усиление сигналов, переключение и преобразование энергии. Таким образом, они находят широкое применение почти во всех отраслях промышленности, а компании, производящие и тестирующие их, считаются отличными индикаторами состояния экономики в целом.

Типы полупроводников

Вообще говоря, полупроводники делятся на четыре основные категории продукции:

  • Память: Микросхемы памяти служат в качестве временных хранилищ данных и передают информацию в мозг компьютерных устройств и обратно.Консолидация рынка памяти продолжается, в результате чего цены на память настолько низки, что лишь несколько гигантов, таких как Toshiba, Samsung и NEC, могут позволить себе остаться в игре.
  • Микропроцессоры: Это центральные процессоры, которые содержат базовую логику для выполнения задач. Доминирование Intel в сегменте микропроцессоров вытеснило почти всех конкурентов, за исключением Advanced Micro Devices, с основного рынка в более мелкие ниши или разные сегменты в целом.
  • Commodity Integrated Circuit: Иногда их называют «стандартными микросхемами», они производятся огромными партиями для повседневной обработки. Этот сегмент, в котором доминируют очень крупные азиатские производители микросхем, предлагает мизерную прибыль, с которой могут конкурировать только крупнейшие полупроводниковые компании.
  • Комплексный SOC: «Система на микросхеме» — это, по сути, создание интегральной микросхемы с возможностями всей системы на ней. Рынок вращается вокруг растущего спроса на потребительские товары, сочетающие в себе новые функции и более низкие цены.Поскольку двери на рынки памяти, микропроцессоров и товарных интегральных схем плотно закрыты, сегмент SOC, возможно, остается единственным, у которого есть достаточно возможностей для привлечения широкого круга компаний.

Полупроводниковая промышленность

Успех в полупроводниковой промышленности зависит от создания более компактных, быстрых и дешевых продуктов. Преимущество крошечности заключается в том, что на один и тот же чип можно поместить больше энергии. Чем больше транзисторов на микросхеме, тем быстрее она выполняет свою работу.Это создает жесткую конкуренцию в отрасли, а новые технологии снижают стоимость производства одного чипа, так что в течение нескольких месяцев цена нового чипа может упасть на 50%.

Это привело к наблюдениям, названным законом Мура, который гласит, что количество транзисторов в плотной интегральной схеме удваивается примерно каждые два года. Это наблюдение названо в честь Гордона Мура, соучредителя Fairchild Semiconductor и Intel, который в 1965 году написал статью с описанием этого наблюдения.В настоящее время период удвоения часто обозначается как 18 месяцев — цифру, которую приводит исполнительный директор Intel Дэвид Хаус.

В результате на производителей микросхем постоянно оказывается давление, чтобы они изобрели что-то лучше и даже дешевле, чем то, что определяло современное состояние всего несколько месяцев назад. Поэтому полупроводниковым компаниям необходимо поддерживать большие бюджеты на исследования и разработки. Ассоциация исследования рынка полупроводников IC Insights сообщила, что 10 крупнейших полупроводниковых компаний потратили в среднем 13.0% продаж на НИОКР в 2017 году, в пределах от 5,2% до 24,0% для отдельных компаний.

Традиционно полупроводниковые компании контролировали весь производственный процесс, от проектирования до производства. Тем не менее, многие производители микросхем теперь делегируют все больше и больше продукции другим представителям отрасли. Литейные компании, единственной сферой деятельности которых является производство, в последнее время вышли на первый план, предлагая привлекательные варианты аутсорсинга. Помимо литейных заводов, ряды дизайнеров, специализирующихся на производстве, и тестировщиков микросхем начинают пополняться.Компании по производству микросхем становятся все более экономичными и эффективными. Производство чипсов теперь напоминает кухню ресторана изысканной кухни, где повара выстраиваются в очередь, чтобы добавить в смесь нужные специи.

В 80-е годы производители микросхем жили с доходностью (количество работающих устройств от всего произведенного) 10–30%. Однако, чтобы быть конкурентоспособными сегодня, производители микросхем должны поддерживать доходность 80-90%. Это требует очень дорогих производственных процессов. В результате многие компании, производящие полупроводники, занимаются проектированием и маркетингом, но предпочитают отдать часть или все производство на аутсорсинг.Известные как производители микросхем без фабрики, эти компании имеют высокий потенциал роста, поскольку они не обременены накладными расходами, связанными с производством или «изготовлением».

Инвестиции в полупроводниковую промышленность

Помимо инвестирования в отдельные компании, есть несколько способов контролировать инвестиционные показатели всего сектора. К ним относятся эталонный индекс PHLX Semiconductor Index, известный как SOX, а также его производные формы в биржевых фондах.Есть также индексы, которые делят сектор на производителей микросхем и производителей оборудования для микросхем. Последний разрабатывает и продает оборудование и другую продукцию, используемую для разработки и тестирования полупроводников.

Кроме того, некоторые зарубежные рынки, такие как Тайвань, Южная Корея и в меньшей степени Япония, сильно зависят от полупроводников, и поэтому их индексы также дают представление о состоянии мировой промышленности.

Особые соображения при инвестировании в полупроводники

Если инвесторы в полупроводники могут помнить одну вещь, это должно быть то, что полупроводниковая промышленность очень циклична.Производители полупроводников часто сталкиваются с циклами «подъема и спада», основанными на базовом спросе на продукты на основе микросхем. В хорошие времена прибыль производителей микросхем может быть очень высокой; Однако когда спрос падает, цены на микросхемы могут резко упасть и оказать серьезное влияние на цепочки поставок во многих отраслях.

Спрос обычно отслеживает спрос со стороны конечного рынка на персональные компьютеры, сотовые телефоны и другое электронное оборудование. В хорошие времена такие компании, как Intel и Toshiba, не могут производить микрочипы достаточно быстро, чтобы удовлетворить спрос.Когда наступают тяжелые времена, они могут быть совершенно жестокими. Например, низкие продажи ПК могут поставить отрасль — и цены на ее акции — в штопор.

В то же время нет смысла говорить о «цикле чипа», как если бы это было событием особого характера. В то время как полупроводники по-прежнему остаются сырьевым бизнесом, их конечные рынки настолько многочисленны — ПК, коммуникационная инфраструктура, автомобили, потребительские товары и т. Д. — что маловероятно, что избыток производственных мощностей в одной области приведет к падению всего дома.

Риски цикличности

Удивительно, но цикличность отрасли может в определенной степени утешить инвесторов. В некоторых других технологических секторах, таких как телекоммуникационное оборудование, никогда нельзя быть полностью уверенным в том, является ли состояние циклическим или светским. Напротив, инвесторы могут быть почти уверены, что рынок в какой-то момент в не столь отдаленном будущем развернется.
Хотя цикличность дает некоторое утешение, она также создает риск для инвесторов. Производители фишек должны регулярно участвовать в азартных играх с высокими ставками.Большой риск связан с тем, что после крупного проекта разработки компаниям может потребоваться много месяцев или даже лет, чтобы выяснить, сорвали ли они джекпот или все сорвали. Одной из причин задержки является переплетенная, но фрагментированная структура отрасли: различные секторы достигают пика и минимума в разное время. Например, нижняя точка для литейных производств часто наступает намного раньше, чем для разработчиков микросхем. Другой причиной является длительное время выполнения заказа в отрасли: на разработку микросхемы или создание литейного цеха уходят годы, и еще больше времени, прежде чем продукты приносят прибыль.

Компании, производящие полупроводники, сталкиваются с классической загадкой: движет ли рынок технология, или рынок движет технологией. Инвесторы должны признать, что оба они применимы для полупроводниковой промышленности.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *