Физические величины, используемые в маркировке емкости керамических конденсаторов
Численные и численно-буквенные коды в маркировках конденсаторов
Способы маркировки емкости конденсатора
|
Буквенное обозначение |
Допуск, % |
Буквенное обозначение |
Допуск, % |
B |
+/- 0,1 |
M |
+/- 20 |
C |
+/- 0,25 |
N |
+/- 30 |
D |
+/- 0,5 |
Q |
-10…+30 |
F |
+/- 1 |
T |
-10…+50 |
G |
+/- 0,2 |
Y |
-10…+100 |
J |
+/- 0,5 |
S |
-20…+50 |
K |
+/- 10 |
Z |
-20…+80 |
Маркировка SMD конденсаторов
Габариты деталей, предназначенных для поверхностного монтажа, очень скромные, поэтому обозначение содержит минимум информации, нанесенной максимально лаконично. Значение напряжения наносится буквенным кодом в соответствии с таблицей, представленной выше. Другие элементы маркировки:
- первая латинская буква характеризует производителя компонента;
- вторая латинская буква – код значащей части (мантиссы) номинальной емкости;
- цифра означает степень, в которую необходимо возвести закодированное число, чтобы получить номинал емкости в пикофарадах.
Например, КT3 – конденсатор от известного производителя Kemet номинальной емкостью 5,1х103 пФ = 5,1 нФ.
Таблица кодирования мантиссы
Буква |
Мантисса |
Буква |
Мантисса |
Буква |
Мантисса |
A |
1.0 |
J |
2.2 |
S |
4.7 |
B |
1.1 |
K |
2.4 |
T |
5.1 |
C |
1.2 |
L |
2.7 |
U |
5.6 |
D |
1.3 |
M |
3.0 |
V |
6.2 |
E |
1.5 |
N |
3.3 |
W |
6.8 |
F |
1.6 |
P |
3.6 |
X |
7.5 |
G |
1.8 |
Q |
3.9 |
Y |
8.2 |
H |
2.0 |
R |
4.3 |
Z |
9.1 |
Цветовая маркировка керамических конденсаторов
Цветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9.
Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 103, желтый – 104, зеленый – 105.
В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В.
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Маркировка конденсаторов
Для того чтобы понять какого номинала конденсатор, на его корпус наносится маркировка — специальное цифровое или буквенно-цифровое обозначение. По этой маркировке можно узнать емкость конденсатора , номинальное напряжение, допустимые отклонения и другие параметры.
Маркировка конденсаторов тремя цифрами
При такой маркировке две первые цифры определяют мантиссу емкости, а последняя — показатель степени по основанию 10, другими словами в какую степень нам нужно возвести число 10, или еще проще сколько нулей нужно добавить после первых 2-х чисел.
Полученное таким образом число соответствует емкости в пикофарадах. Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ). Если последняя цифра равна «9» то это означает что показатель степени равен «-1» что мы должны мантиссу умножить на 10 в степени «-1» или другими словами разделить ее на 10.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
---|---|---|---|
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка конденсаторов четырьмя цифрами
Все тоже самое что и выше только первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах.
Пример обозначения:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Также для обозначения используют букву R, она используется для обозначения емкостей в мкФ. А если перед «R» стоит ноль, то это значит что емкость в пикофарадах.
Пример буквенно-цифровой маркировки обозначения:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
Маркировка керамических SMD конденсаторов
SMD конденсаторы также маркируются кодом, код маркировки состоит из символов, которых может быть 1 или 2 и цифры. Если в обозначении 2 символа то первый это код изготовителя, например K означает Kemet.
Второй символ это мантисса значение представлено в таблице. Цифра это показатель степени по основанию 10. По сути тоже самое что и маркировка 3-мя цифрами, только мантисса тут обозначается символом.
Пример обозначения:
B1 /по таблице определяем мантиссу: B=1.1/ = 1.1*101 пФ = 11 пФ
A3 /по таблице A=4.7/ = 1.0*103 пФ = 1000 пФ = 1 нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
---|---|---|---|---|---|---|---|
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Маркировка электролитических SMD конденсаторов
Электролитические SMD конденсаторы маркикуются 2 основными способами:
1. Способ, емкостью в микрофарадах и рабочим напряжением ,например:
10 6.3V = 10 мкФ на 6,3В.
2. Способ, при помощи буквы и три цифры
Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для
получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод.
Пример:
по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это
конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
---|---|---|---|---|---|---|---|---|---|
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0».
Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
---|---|---|---|
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
---|---|---|---|
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость [мкФ] |
---|---|
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
---|---|
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Для конденсаторов таких фирм как «Panasonic», «Hitachi» и др. маркировка осуществляется 3-мя основными способами:
1. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости можно посмотреть в таблице ниже:
Код | Емкость [мкФ] | Напряжение [В] |
---|---|---|
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
2. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.
Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
3. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение.
Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Таблица маркировки конденсаторов
Таблица маркировки конденсаторов
Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.
uF (мкФ) | nF (нФ) | pF (пФ) | Code (Код) |
---|---|---|---|
1uF | 1000nF | 1000000pF | 105 |
0.82uF | 820nF | 820000pF | 824 |
0.8uF | 800nF | 800000pF | 804 |
0.7uF | 700nF | 700000pF | 704 |
0.68uF | 680nF | 680000pF | 624 |
0.6uF | 600nF | 600000pF | 604 |
0.56uF | 560nF | 560000pF | 564 |
0.5uF | 500nF | 500000pF | 504 |
0.47uF | 470nF | 470000pF | 474 |
0.4uF | 400nF | 400000pF | 404 |
0.39uF | 390nF | 390000pF | 394 |
0.33uF | 330nF | 330000pF | 334 |
0.3uF | 300nF | 300000pF | 304 |
0.27uF | 270nF | 270000pF | 274 |
0.25uF | 250nF | 250000pF | 254 |
0.22uF | 220nF | 220000pF | 224 |
0.2uF | 200nF | 200000pF | 204 |
0.18uF | 180nF | 180000pF | 184 |
0.15uF | 150nF | 150000pF | 154 |
0.12uF | 120nF | 120000pF | 124 |
0.1uF | 100nF | 100000pF | 104 |
0.082uF | 82nF | 82000pF | 823 |
0.08uF | 80nF | 80000pF | 803 |
0.07uF | 70nF | 70000pF | 703 |
0.068uF | 68nF | 68000pF | 683 |
0.06uF | 60nF | 60000pF | 603 |
0.056uF | 56nF | 56000pF | 563 |
0.05uF | 50nF | 50000pF | 503 |
0.047uF | 47nF | 47000pF | 473 |
0.04uF | 40nF | 40000pF | 403 |
0.039uF | 39nF | 39000pF | 393 |
0.033uF | 33nF | 33000pF | 333 |
0.03uF | 30nF | 30000pF | 303 |
0.027uF | 27nF | 27000pF | 273 |
0.025uF | 25nF | 25000pF | 253 |
0.022uF | 22nF | 22000pF | 223 |
0.02uF | 20nF | 20000pF | 203 |
0.018uF | 18nF | 18000pF | 183 |
0.015uF | 15nF | 15000pF | 153 |
0.012uF | 12nF | 12000pF | 123 |
0.01uF | 10nF | 10000pF | 103 |
0.0082uF | 8.2nF | 8200pF | 822 |
0.008uF | 8nF | 8000pF | 802 |
0.007uF | 7nF | 7000pF | 702 |
0.0068uF | 6.8nF | 6800pF | 682 |
0.006uF | 6nF | 6000pF | 602 |
0.0056uF | 5.6nF | 5600pF | 562 |
0.005uF | 5nF | 5000pF | 502 |
0.0047uF | 4.7nF | 4700pF | 472 |
0.004uF | 4nF | 4000pF | 402 |
0.0039uF | 3.9nF | 3900pF | 392 |
0.0033uF | 3.3nF | 3300pF | 332 |
0.003uF | 3nF | 3000pF | 302 |
0.0027uF | 2.7nF | 2700pF | 272 |
0.0025uF | 2.5nF | 2500pF | 252 |
0.0022uF | 2.2nF | 2200pF | 222 |
0.002uF | 2nF | 2000pF | 202 |
0.0018uF | 1.8nF | 1800pF | 182 |
0.0015uF | 1.5nF | 1500pF | 152 |
0.0012uF | 1.2nF | 1200pF | 122 |
0.001uF | 1nF | 1000pF | 102 |
0.00082uF | 0.82nF | 820pF | 821 |
0.0008uF | 0.8nF | 800pF | 801 |
0.0007uF | 0.7nF | 700pF | 701 |
0.00068uF | 0.68nF | 680pF | 681 |
0.0006uF | 0.6nF | 600pF | 621 |
0.00056uF | 0.56nF | 560pF | 561 |
0.0005uF | 0.5nF | 500pF | 52 |
0.00047uF | 0.47nF | 470pF | 471 |
0.0004uF | 0.4nF | 400pF | 401 |
0.00039uF | 0.39nF | 390pF | 391 |
0.00033uF | 0.33nF | 330pF | 331 |
0.0003uF | 0.3nF | 300pF | 301 |
0.00027uF | 0.27nF | 270pF | 271 |
0.00025uF | 0.25nF | 250pF | 251 |
0.00022uF | 0.22nF | 220pF | 221 |
0.0002uF | 0.2nF | 200pF | 201 |
0.00018uF | 0.18nF | 180pF | 181 |
0.00015uF | 0.15nF | 150pF | 151 |
0.00012uF | 0.12nF | 120pF | 121 |
0.0001uF | 0.1nF | 100pF | 101 |
0.000082uF | 0.082nF | 82pF | 820 |
0.00008uF | 0.08nF | 80pF | 800 |
0.00007uF | 0.07nF | 70pF | 700 |
0.000068uF | 0.068nF | 68pF | 680 |
0.00006uF | 0.06nF | 60pF | 600 |
0.000056uF | 0.056nF | 56pF | 560 |
0.00005uF | 0.05nF | 50pF | 500 |
0.000047uF | 0.047nF | 47pF | 470 |
0.00004uF | 0.04nF | 40pF | 400 |
0.000039uF | 0.039nF | 39pF | 390 |
0.000033uF | 0.033nF | 33pF | 330 |
0.00003uF | 0.03nF | 30pF | 300 |
0.000027uF | 0.027nF | 27pF | 270 |
0.000025uF | 0.025nF | 25pF | 250 |
0.000022uF | 0.022nF | 22pF | 220 |
0.00002uF | 0.02nF | 20pF | 200 |
0.000018uF | 0.018nF | 18pF | 180 |
0.000015uF | 0.015nF | 15pF | 150 |
0.000012uF | 0.012nF | 12pF | 120 |
0.00001uF | 0.01nF | 10pF | 100 |
0.000008uF | 0.008nF | 8pF | 080 |
0.000007uF | 0.007nF | 7pF | 070 |
0.000006uF | 0.006nF | 6pF | 060 |
0.000005uF | 0.005nF | 5pF | 050 |
0.000004uF | 0.004nF | 4pF | 040 |
0.000003uF | 0.003nF | 3pF | 030 |
0.000002uF | 0.002nF | 2pF | 020 |
0.000001uF | 0.001nF | 1pF | 010 |
Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress. В продаже имеются также в большем асортименте электролитические конденсаторы. Можно приобрести набором по 10-20 различных номиналов.
Конденсаторы на Aliexpress
Автор: silver от 14-04-2017, посмотрело: 92001
Категория: Ремонт
Комментарии: 0
Оставить комментарии к этой записи
керамических, танталовых, обозначение и расшифровка
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно «ГОСТ 30668-2000 Изделия электронной техники. Маркировка», указываются буквы и цифры, обозначающие год и месяц выпуска.
«4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.»
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент — емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Заключение
Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.
маркировка и обозначение конденсаторов, керамических танталовых и прочих
Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.
Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.
Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.
Конденсатор.
Единицы измерения
Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:
C= e*S/d
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады.10-6
- 1 нанофарада – одна миллиардная часть фарады. 10-9
- 1 пикофарада -10-12 фарады.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка четырьмя цифрами
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
Маркировка конденсатора.
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.
Материал в тему: Что такое кондесатор
Планарные керамические конденсаторы
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.
Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Таблица маркировки конденсаторов по рабочему напряжению.
Планарные электролитические конденсаторы
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)
Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.
Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.
Цифро-буквенное обозначение
Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».
Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:
- p – пикофарады,
- n – нанофарады
- m – микрофарады.
При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».
Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:
1R5 =1,5 мкФ.
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Материал по теме: Как подключить конденсатор
Заключение
В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.
Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.elektrikaetoprosto.ru
www.radiostorage.net
www.gamesdraw.ru
Предыдущая
КонденсаторыЧем отличаются параллельное и последовательное соединение конденсаторов
Следующая
КонденсаторыЧем отличается пусковой конденсатор от рабочего?
Расшифровка маркировки конденсаторов | ldsound.ru
Для расшифровки обозначения, требуется знать значение первых двух цифр, которые говорят о емкости. Если устройство имеет очень маленькие габаритные размеры, не позволяющие это условие выполнить, то его маркировка осуществляется по международному стандарту EIA.
Разберем трехзначную маркировку на примере. Перед нами конденсатор с надписью “104”. Что это означает? Значение емкости в пикофарадах “10” после которой следует дописать четыре нуля, т.к. последняя цифра “4”. Получаем “100000” или 100000 пФ, что равно 0.1 мкФ.
Код | Пикофарады (пФ, pf) | Нанофарады (нФ, nf) | Микрофарады (мкФ, µf) |
109 | 1.0 | 0.001 | 0.000001 |
159 | 1.5 | 0.0015 | 0.000001 |
229 | 2.2 | 0.0022 | 0.000001 |
339 | 3.3 | 0.0033 | 0.000001 |
479 | 4.7 | 0.0047 | 0.000001 |
689 | 6.8 | 0.0068 | 0.000001 |
100* | 10 | 0.01 | 0.00001 |
150 | 15 | 0.015 | 0.000015 |
220 | 22 | 0.022 | 0.000022 |
330 | 33 | 0.033 | 0.000033 |
470 | 47 | 0.047 | 0.000047 |
680 | 68 | 0.068 | 0.000068 |
101 | 100 | 0.1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 |
221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 |
471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 |
102 | 1000 | 1.0 | 0.001 |
152 | 1500 | 1.5 | 0.0015 |
222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0.0033 |
472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 |
103 | 10000 | 10 | 0.01 |
153 | 15000 | 15 | 0.015 |
223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 |
473 | 47000 | 47 | 0.047 |
683 | 68000 | 68 | 0.008 |
104 | 100000 | 100 | 0.1 |
154 | 150000 | 150 | 0.15 |
224 | 220000 | 220 | 0.22 |
334 | 330000 | 330 | 0.33 |
474 | 470000 | 470 | 0.47 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1.0 |
Маркировка конденсаторов по рабочему напряжению
Также важным параметром конденсатора является допустимое рабочее напряжение. Не лишним будет брать конденсатор с запасом по рабочему напряжению. Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1 | I |
1.6 | R |
2.5 | M |
3.2 | A |
4 | C |
6.3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Маркировка конденсаторов.
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Коды и маркировка конденсаторов
»Электроника
Конденсаторы
имеют большое количество маркировок и кодов, в которых указано их значение, допуски и другие важные параметры.
Capacitor Tutorial:
Использование конденсатора
Типы конденсаторов
Электролитический конденсатор
Керамический конденсатор
Танталовый конденсатор
Пленочные конденсаторы
Серебряный слюдяной конденсатор
Супер конденсатор
Конденсатор SMD
Технические характеристики и параметры
Как купить конденсаторы — подсказки и подсказки
Коды и маркировка конденсаторов
Таблица преобразования
Конденсаторы имеют различные коды маркировки.Эти маркировки и коды указывают на различные свойства конденсаторов, и важно понимать их, чтобы выбрать требуемый тип.
Сегодня большинство конденсаторов маркируются буквенно-цифровыми кодами, но можно встретить более старые конденсаторы с цветовыми кодами. Эти цветовые коды конденсаторов встречаются реже, чем в предыдущие годы, но некоторые из них все еще можно увидеть.
Коды маркировки конденсаторов различаются по своему формату в зависимости от того, является ли компонент устройством для поверхностного монтажа или это устройство с выводами, а также от диэлектрика конденсатора.Размер также играет важную роль в определении того, как маркируется конденсатор — небольшие компоненты должны использовать сокращенную систему кодирования, тогда как более крупные конденсаторы, такие как алюминиевые электролитические разновидности, могут полностью указывать соответствующие параметры на корпусе.
Некоторые системы маркировки были стандартизированы EIA — Альянсом электронной промышленности, и они обеспечивают единообразие для всей отрасли.
Различные типы конденсаторов имеют разные коды и схемы маркировки
Коды маркировки конденсаторов: основы
Конденсаторы имеют разные маркировки.Существует ряд основных систем маркировки, которые используются, и разные типы конденсаторов и разные производители используют их по мере необходимости и лучше всего подходят для конкретного продукта.
Примечание: , что в некоторых случаях аббревиатура MFD используется для обозначения мкФ, а не мегафарада.
Некоторые из основных схем кодирования для различных параметров приведены ниже:
Коды температурного коэффициента
Часто необходимо маркировать конденсатор маркировкой или кодом, который указывает температурный коэффициент конденсатора.Эти коды конденсаторов стандартизированы EIA, но также могут использоваться некоторые другие общепринятые промышленные коды. Эти коды обычно используются для керамических и других пленочных конденсаторов.
Температурный коэффициент указан в миллионных долях на градус C; PPM / ° C.
Общая маркировка температурного коэффициента | ||
---|---|---|
EIA | Промышленность | Температурный коэффициент (ppm / ° C) |
C0G | NP0 | 0 |
S1G | N033 | -33 |
U1G | N075 | -75 |
P2G | N150 | -150 |
S2H | N330 | -330 |
U2J | N750 | -750 |
P3K | N1500 | -1500 |
Маркировка полярности конденсатора
Важной маркировкой поляризованных конденсаторов является полярность.При вставке этих конденсаторов в цепи необходимо соблюдать особую осторожность, чтобы обеспечить соблюдение маркировки полярности, в противном случае это может привести к повреждению компонента и, что более важно, остальной части печатной платы. Поляризованные конденсаторы фактически означают алюминиевые электролитические и танталовые типы.
Многие современные конденсаторы помечены фактическими знаками «+» и «-», что позволяет легко определить полярность конденсатора.
Другой формат маркировки полярности электролитических конденсаторов — использование полосы на компоненте.На электролитическом конденсаторе полоса указывает на отрицательный вывод .
Маркировка на электролитическом конденсаторе — полоса указывает на отрицательное соединение.
В этом случае на маркировочной полосе также имеется отрицательный знак, чтобы усилить сообщение.
Если конденсатор представляет собой осевую версию с выводами на обоих концах корпуса, полоса с маркировкой полярности может сопровождаться стрелкой, указывающей на отрицательный вывод.
Для танталовых конденсаторов с выводами маркировка полярности указывает на положительный вывод.Знак «+» находится рядом с положительным выводом. Если новый, можно использовать дополнительную полярность, потому что можно увидеть, что положительный вывод длиннее отрицательного.
Маркировка танталовых конденсаторов с выводами
Маркировка различных типов конденсаторов
Многие конденсаторы большего размера, такие как электролитические конденсаторы, дисковая керамика и многие пленочные конденсаторы, имеют достаточно большие размеры, чтобы их маркировка была нанесена на корпус.
На конденсаторах большего размера достаточно места для маркировки значения, допуска, рабочего напряжения и часто других данных, таких как пульсирующее напряжение.
Существует ряд тонких различий в кодах конденсаторов и маркировке, используемых для разных типов свинцовых конденсаторов:
- Маркировка электролитических конденсаторов: Многие свинцовые конденсаторы довольно большие, хотя некоторые меньше. Таким образом, часто можно предоставить полную стоимость и подробности в не сокращенном формате. Однако на многих электролитических конденсаторах меньшего размера необходимо иметь кодовую маркировку, поскольку для них недостаточно места.
Типичная маркировка может попадать в формат 22 мкФ 50 В. Значение и рабочее напряжение налицо. Полярность отмечена полосой для обозначения отрицательного вывода.
- Маркировка танталовых конденсаторов с выводами: Танталовые конденсаторы с выводами обычно имеют значения, указанные в микрофарадах, мкФ.
Обычно маркировка на конденсаторе может давать цифры вроде 22 и 6В. Это указывает на конденсатор 22 мкФ с максимальным напряжением 6 В.
- Маркировка керамических конденсаторов: Керамические конденсаторы обычно меньше по размеру, чем электролитические конденсаторы, и поэтому маркировка должна быть более лаконичной.Могут использоваться самые разные схемы. Часто значение может быть выражено в пикофарадах. Иногда можно увидеть такие цифры, как 10 нФ, и это указывает на конденсатор 10 нФ. Аналогично n51 указывает на конденсатор 0,51 нФ или 510 пФ и т. Д. .
- Коды керамических конденсаторов SMD: Конденсаторы для поверхностного монтажа часто бывают очень маленькими и не имеют места для маркировки. Во время производства конденсаторы загружаются в машину для захвата и установки, и нет необходимости в какой-либо маркировке.
- Маркировка танталовых конденсаторов SMD: Самая простая система маркировки танталовых конденсаторов SMD — это то, где значение указывается напрямую. Маркировка танталовых конденсаторов SMD
Также обратите внимание на полоску, указывающую на соединение + ve.В случаях, когда есть место для маркировки или кода, часто используется простой трехзначный формат, как показано ниже, особенно для конденсаторов, таких как керамические форматы. В примере кода конденсатора, показанном на схеме, две цифры 47 обозначают значащие цифры, а 5 указывает множитель 5, то есть 100000, то есть 4,7 мкФ. Маркировка танталовых конденсаторов SMD
В некоторых случаях единственная маркировка, отображаемая на конденсаторе, может быть полосой на одном конце, указывающей полярность.Это особенно важно, поскольку необходимо иметь возможность проверять полярность и иметь маркировку, определяющую полярность конденсатора. Особенно важно иметь маркировку полярности конденсатора, поскольку обратное смещение танталовых конденсаторов приводит к их разрушению.
В общем, очень легко определить, что означают различные коды конденсаторов и схемы маркировки. Хотя кажется, что существует много различных схем кодирования, они обычно очень очевидны, и если не их значение, вскоре раскрывается при обращении к руководству по кодированию.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты». . .
.
Все о маркировке конденсаторов
Конденсаторы обычно маркируются с указанием, по крайней мере, их значения емкости; Многие конденсаторы также имеют обозначение допуска значения и напряжения пробоя. Кроме того, поляризованные конденсаторы — у них есть + и — — также имеют маркировку поляризации.
Значение емкости
Значения емкости для некоторых конденсаторов напечатаны непосредственно на компоненте. Это справедливо для конденсаторов большего размера со значением 1 мкФ или выше, если только по той причине, что их больший физический размер позволяет производителю напрямую печатать значение на компоненте.
Но с другими конденсаторами не всегда все так просто. Конденсаторы меньшего размера, например дисковые 0,1 или 0,01 мкФ, используют обычную трехзначную систему маркировки для обозначения емкости и допуска. Система нумерации проста в использовании, если вы помните, что она основана на пикофарадах, а не на микрофарадах.
Число, такое как 104, означает 10 с четырьмя нулями, как в
.
100 000
или 100000 пикофарад. Чтобы выполнить преобразование, переместите десятичную точку влево на шесть пробелов: 100000 станет.1. Обратите внимание, что для значений ниже 1000 пикофарад эта система нумерации не используется. Вместо этого указывается фактическое значение в пикофарадах, например 10 (для 10 пФ).
Подобно резисторам, допуск конденсатора показывает, насколько близко напечатанное значение соответствует действительности. Для конденсаторов дискового типа меньшего размера допуск чаще всего обозначается однобуквенным кодом, который иногда помещается отдельно на корпусе конденсатора или после трехзначной отметки, например
.
104Z
Буква Z обозначает допуск от +80 до –20 процентов.Это означает, что конденсатор, рассчитанный на 0,1 мкФ, может быть на 80 процентов больше или на 20 процентов меньше. См. Ниже список кодов допуска буквенного стиля.
Таблица 1 дает быстрый взгляд на то, как несколько распространенных обозначений номеров конденсаторов преобразуются в их микрофарадные эквиваленты в мкФ.
Таблица 1. Справочное значение конденсатора. | ||||
Маркировка | Значение (мкФ) |
| Маркировка | Значение (мкФ) |
xx (число от 01 до 99) | хх пФ | |||
101 | 0.0001 | 331 | 0,00033 | |
102 | 0,001 | 332 | 0,0033 | |
103 | 0,01 | 333 | 0.033 | |
104 | 0,1 | 334 | 0,33 | |
221 | 0,00022 | 471 | 0,00047 | |
222 | 0.0022 | 472 | 0,0047 | |
223 | 0,022 | 473 | 0,047 | |
224 | 0,22 | 474 | 0.47 |
Значение напряжения пробоя диэлектрика
Напряжение пробоя диэлектрика указано только для определенных конденсаторов. Для тех, у кого он есть, напряжение указывается напрямую, например «35» или «35V». Иногда после номинального напряжения используются буквы WV . Это указывает на рабочее напряжение (на самом деле максимальное напряжение пробоя диэлектрика) конденсатора. Не следует использовать конденсатор с напряжением, превышающим это значение.
Для конденсаторов, на которых не напечатано напряжение пробоя, необходимо оценить значение в зависимости от типа используемого диэлектрика. Это сложная тема, которая не рассматривается в этой книге, и, тем не менее, редко встречается в электронике для робототехники, потому что в большинстве схем используется 12 вольт или меньше. Лишь некоторые конденсаторы рассчитаны на меньшее напряжение пробоя, и они в основном используются для таких задач, как временное резервное копирование батарей.
Маркировка поляризации
Некоторые конденсаторы поляризованы, то есть имеют клеммы + и -.Маркировка на конденсаторе указывает на клемму + или -.
Если конденсатор поляризован, крайне важно, соблюдать правильную ориентацию при установке конденсатора в схему. Если вы перевернете провода к конденсатору — например, подключите + к заземляющей шине — конденсатор может выйти из строя. Другие компоненты цепи также могут быть повреждены.
Маркировка допусков конденсатора
Помимо значения емкости (и, возможно, рабочего напряжения или напряжения пробоя) конденсатор может быть маркирован его допуском.
Используется несколько систем маркировки допусков; Здесь показаны два наиболее распространенных. Первый используется с небольшими керамическими конденсаторами и отображается как одна буква.
Второй используется для различных типов конденсаторов и обозначается уникальным набором букв и цифр, которые обозначают требования к низкой и высокой температуре (нижний и верхний допустимый температурный диапазон работы конденсатора) и его допуск в пределах этот температурный диапазон.
Маркировка допусков керамического конденсатора
Код | Допуск |
| Код | Допуск |
Б | ± 0,1 пФ | Дж | ± 5% | |
К | ± 0.25 пФ | К | ± 10% | |
D | ± 0,5 пФ | м | ± 20% | |
Факс | ± 1% | Z | + 80%, -20% | |
G | ± 2% |
Маркировка допусков конденсаторов EIA
1-я буква Обозначение | Низкая температура.Требование |
| Номер Обозначение | High Temp. Требование |
| 2-я буква Обозначение | Макс. Изменение емкости при превышении допустимой температуры |
Z | + 10 ° С | 2 | + 45 ° С | А | ± 1.0% | ||
Y | -30 ° С | 4 | + 65 ° С | Б | ± 1,5% | ||
х | -55 ° С | 5 | + 85 ° С | К | ± 2.2% | ||
6 | + 105 ° С | Д | ± 3,3% | ||||
7 | + 125 ° С | E | ± 4.7% | ||||
Факс | ± 7,5% | ||||||
пол. | ± 10.0% | ||||||
Р | ± 15,0% | ||||||
ю | ± 22.0% | ||||||
т | ± 22% ~ 33% | ||||||
U | ± 22% ~ 56% | ||||||
В | ± 22% ~ 82% |
Пример: Y5P = ± 10% изменение температуры в диапазоне от -30 ° C до + 85 ° C.
.
MLCC, X7R, C0G, Y5V … »Примечания к электронике
Керамические конденсаторы используются в огромных количествах в качестве MLCC для поверхностного монтажа и выводных устройств с различными формами керамических диэлектриков: C0G, NP0, X7R, Y5V, Z5U и т. Д.
Capacitor Tutorial:
Использование конденсатора
Типы конденсаторов
Электролитический конденсатор
Керамический конденсатор
Танталовый конденсатор
Пленочные конденсаторы
Серебряный слюдяной конденсатор
Супер конденсатор
Конденсатор SMD
Технические характеристики и параметры
Как купить конденсаторы — подсказки и подсказки
Коды и маркировка конденсаторов
Таблица преобразования
Керамический конденсатор получил свое название из-за того, что в качестве диэлектрика используются керамические материалы.
В семействе керамических конденсаторов используется множество форм керамических диэлектриков: распространенные типы включают C0G, NP0, X7R, Y5V, Z5U, хотя их гораздо больше.
Хотя керамический конденсатор уже много лет используется в качестве выводного устройства, это конденсаторы для поверхностного монтажа, конденсаторы для поверхностного монтажа, где его свойства позволяют достичь очень малых размеров конденсатора, сохраняя при этом высокие характеристики. В результате каждый год используются бесчисленные миллиарды этих керамических конденсаторов, известных как MLCC из-за своей конструкции.
Благодаря своим свойствам, включая рабочие характеристики на всех частотах, включая ВЧ, доступные диапазоны емкости, емкость для заданного объема, упругость и стабильность для некоторых форм диэлектрика, это одна из самых популярных форм доступных конденсаторов. В то время как танталовые конденсаторы и электролитические конденсаторы используются для более высоких значений, превышающих 1 мкФ, керамический конденсатор доминирует на рынке для значений менее 1 мкФ.
Керамические конденсаторы, как выводные, так и конденсаторы для поверхностного монтажа, доступны для номиналов от нескольких пикофарад до значений чуть ниже 1 мкФ.Однако наиболее широко используются компоненты для поверхностного монтажа.
Выбор керамического конденсатора с выводами
Основные керамические конденсаторы
Керамический диэлектрик, используемый в этих конденсаторах, обеспечивает множество свойств, включая низкий коэффициент потерь и приемлемый уровень стабильности, но это зависит от конкретного типа используемой керамики.
Используемая керамическая технология разрабатывалась на протяжении многих лет, и это привело к тому, что сегодня можно достичь гораздо более высоких уровней емкости и производительности, чем это было возможно ранее.
Как видно из названия, керамические конденсаторы основаны на керамических диэлектриках. Керамика, используемая в керамических конденсаторах, представляет собой смесь мелко измельченных гранул параэлектрических или сегнетоэлектрических материалов. Их смешивают с другими материалами для достижения желаемых характеристик.
Керамика спекается при высоких температурах. Сформированная таким образом керамика образует электрическую и механическую основу конденсаторов.
Толщина керамических слоев в конденсаторах часто очень мала, но зависит от материала и требуемого рабочего напряжения.Например, конденсаторы низкого напряжения могут быть толщиной до 5 мкм, но это часто ограничивается размером зерна керамического материала.
Есть несколько типов керамических конденсаторов, которые можно получить:
- Дисковый керамический конденсатор: Дисковый керамический конденсатор чаще всего используется в качестве свинцового конденсатора. Как следует из названия, он имеет форму диска с двумя выводами, выходящими из нижней части корпуса.
Весь конденсатор покрыт смолой для обеспечения физической защиты и предотвращения попадания влаги и других загрязнений.
Внутренняя конструкция дискового керамического конденсатораОсновной компонент состоит из одного диска керамического диэлектрика. На этот диэлектрик наносятся электроды, а затем провода присоединяются к электродам. Наконец, добавляется смоляное покрытие и предварительно отформовываются выводы, чтобы обеспечить любую форму, которая может потребоваться для процесса сборки.
Дисковый керамический конденсатор с выводами - Конденсатор MLCC для поверхностного монтажа:
Конденсаторы для поверхностного монтажа являются наиболее широко используемым форматом для этих компонентов в наши дни, потому что компоненты для поверхностного монтажа используются в огромных количествах для массового производства электронного оборудования.В керамическом конденсаторе для поверхностного монтажа используется так называемый многослойный керамический конденсатор конструкции MLCC.
По определению, многослойный керамический конденсатор — это конденсатор для поверхностного монтажа, который состоит из ряда отдельных слоев, которые уложены вместе параллельно с общим контактом, осуществляемым через контактные поверхности компонентов.
Поперечный разрез конденсатора MLCC, показывающий его конструкциюКорпус конденсатора обычно имеет тонкое покрытие для защиты конденсатора от проникновения влаги и других загрязнений, которые могут изменить его характеристики.Торцевое соединение конденсатора MLCC выполнено из нескольких слоев — внутренние обеспечивают хорошее соединение с электродами внутри конденсатора, а внешние предназначены для обеспечения превосходной паяемости. Во многих случаях в выводах MLCC используется либо сплав серебра и палладия (AgPd) в соотношении 65: 35, либо погруженный в серебро для соединения с самими электродами конденсатора. Затем может быть барьерный слой из плакированного никеля, и, наконец, он покрывается слоем плакированного олова (NiSn).
Выбор керамического конденсатора SMD - Проходной конденсатор: Проходные конденсаторы используются в приложениях, где требуются высокие уровни отклонения на коробках с экранами, через которые могут проходить провода.
Дисковые керамические конденсаторы с основными выводами широко используются для общей развязки и развязки, но существует гораздо больше специализированных дисковых керамических конденсаторов, в которых используются более сложные диэлектрики и которые обеспечивают высокий уровень производительности.
Аналогично версиям компонентов для поверхностного монтажа, для развязки доступны базовые конденсаторы с хорошими характеристиками, но для керамических конденсаторов для поверхностного монтажа значительно повысилась производительность, а для керамических конденсаторов для поверхностного монтажа с высокой точностью и высокой стабильностью широко доступны версии. .
Типы керамических диэлектриков
В керамическом конденсаторе
может использоваться целый ряд различных диэлектриков, в отличие от конденсаторов других типов, включая танталовые конденсаторы и электролитические конденсаторы.Эти разные диэлектрики придают конденсаторам очень разные свойства, поэтому, помимо выбора керамического конденсатора, может потребоваться второе решение о конкретном типе диэлектрика.
Часто упоминаются общие керамические диэлектрики конденсаторов, включая C0G, NP0, X7R, Y5V, Z5U и многие другие, указанные в списке дистрибьюторов. Но чтобы узнать, какой тип лучше всего, требуется небольшое дополнительное исследование.
Керамический конденсатор с маркировкой, указывающей тип диэлектрика (X7R)
Керамический конденсатор Класс диэлектрической проницаемости
Чтобы упростить выбор конденсаторов с требуемым диэлектриком, некоторые промышленные организации определили несколько классов применения керамических диэлектриков.
Эти классы приложений разделяют различные диэлектрики, доступные для керамических конденсаторов, на разные классы в соответствии с предполагаемым применением.
Классы применения диэлектрика керамических конденсаторов | ||
---|---|---|
Класс | Описание | Общие типы |
Класс 1 | Эти керамические конденсаторы обеспечивают высокий уровень стабильности и низкий уровень потерь, и они идеально подходят для использования в резонансных цепях. | NP0, P100, N33, N75 и др. |
Класс 2 | класса 2 обладают высокой объемной эффективностью, то есть большой емкостью для заданного объема для сглаживания, байпаса, связи и развязки. | X7R, X5R, Y5V, Z5U и др. |
Класс 3 | класса 3 имеют более высокий объемный КПД, чем керамические конденсаторы класса 2, но их температурная стабильность не так хороша.Типичная характеристика изменения емкости в зависимости от температуры составляет от -22% до + 56% в диапазоне от 10 ° C до 55 ° C. | Доступны только компоненты с выводами. Больше не стандартизирован. |
Эти классы керамических конденсаторов стандартизированы международными организациями, включая IEC, Международную электротехническую комиссию и EIA, Electronic Industries Alliance.
Диэлектрический керамический конденсатор класса 1
Керамические конденсаторы
, в которых используются диэлектрики класса 1, обеспечивают наивысшие характеристики с точки зрения стабильности и потерь.Они могут предоставить точные конденсаторы с высокими допусками и стабильными значениями напряжения и температурных коэффициентов. Они также обладают низкими потерями и поэтому подходят для использования в генераторах, фильтрах и т.п.
Керамические диэлектрики
класса 1 обычно основаны на тонко измельченных материалах, таких как диоксид титана (TiO 2 ), с добавками цинка, циркония, ниобия, магния, тантала, кобальта и стронция, хотя многие современные составы C0G (NP0) содержат неодим, самарий и другие оксиды редкоземельных элементов.
Коды конденсаторов класса 1:
Для определения характеристик диэлектрика керамического конденсатора используется трехзначный код, характерный для керамических диэлектриков конденсатора класса 1.
- Первый символ — это буква, которая дает значащую цифру изменения емкости в зависимости от температуры в ppm / ° C
- Второй символ числовой и дает множитель
- Третий символ представляет собой букву и дает максимальную ошибку в ppm / C
В таблице ниже подробно описано, что означает каждый из кодов EIA.
Первый символ | Второй символ | Третий символ | |||
---|---|---|---|---|---|
Письмо | Сиг Инжир * | Цифра | Множитель 10 x | Письмо | Допуск |
С | 0,0 | 0 | -1 | G | +/- 30 |
B | 0.3 | 1 | -10 | H | +/- 60 |
л | 0,8 | 2 | -100 | Дж | +/- 120 |
А | 0,9 | 3 | -1000 | К | +/- 250 |
M | 1,0 | 4 | +1 | л | +/- 500 |
п. | 1.5 | 6 | +10 | M | +/- 1000 |
2,2 | 7 | +100 | N | +/- 2500 | |
S | 3,3 | 8 | +1000 | ||
т | 4,7 | ||||
В | 5.6 | ||||
U | 7,5 |
Например, одним из распространенных типов конденсаторов класса 1 является C0G, у которого дрейф 0 с погрешностью ± 30 ppm / ° C.
C0G (NP0) — наиболее популярный состав керамических материалов EIA Class 1.
Керамика
C0G (NP0) представляет собой один из самых стабильных диэлектриков конденсаторов.Изменение емкости в зависимости от температуры составляет 0 ± 30 ppm / ° C, что составляет менее ± 0,3% ΔC от -55 ° C до + 125 ° C. Дрейф емкости или гистерезис для керамики C0G (NP0) незначителен и составляет менее ± 0,05% по сравнению с ± 2% для пленок.
Керамический диэлектрик C0G (NP0) обычно имеет «Q», превышающее 1000, и показывает небольшие изменения емкости или «Q» с частотой. В дополнение к этому, диэлектрическое поглощение обычно составляет менее 0,6%, что похоже на слюду, которая известна своим очень низким поглощением.
Выбор керамического конденсатора SMD
Диэлектрический керамический конденсатор класса 2
Керамический конденсатор, диэлектрики класса 2, имеют гораздо более высокий уровень диэлектрической проницаемости, чем их аналоги класса 1. Это дает им гораздо более высокий уровень емкости для данного объема, то есть лучшую эффективность объемной емкости. Однако это происходит за счет точности и стабильности. В дополнение к этому они демонстрируют нелинейный температурный коэффициент и емкость, которая в небольшой степени зависит от приложенного напряжения.
Благодаря этим характеристикам они идеально подходят для развязки и связи, где точное значение емкости не критично, но где пространство может быть проблемой.
Коды конденсаторов класса 2
Три кода используются для определения характеристик диэлектрика керамического конденсатора.
- Первый символ — это буква. Это дает нижнюю рабочую температуру.
- Второй — числовой и указывает на максимальную рабочую температуру.
- Третий символ — это буква, обозначающая изменение емкости в диапазоне температур.
В таблице ниже подробно описано, что означает каждый из кодов EIA.
Первый символ | Второй символ | Третий символ | |||
---|---|---|---|---|---|
Письмо | Низкая температура | Цифра | высокая температура | Письмо | Изменить |
х | -55C (-67F) | 2 | + 45C (+ 113F) | D | +/- 3.3% |
Y | -30C (-22F) | 4 | +65 (+ 149F) | E | +/- 4,7% |
Z | + 10C (+ 50F) | 5 | +85 (+ 185F) | F | +/- 7,5% |
6 | +105 (+ 221F) | P | +/- 10% | ||
7 | +125 (+ 257F) | R | +/- 15% | ||
S | +/- 22% | ||||
т | + 22% / -33% | ||||
U | + 22% / -56% | ||||
В | + 22% / -82% |
К популярным керамическим диэлектрикам класса 2 относятся X7R, диапазон температур от -55 до + 125 ° C с ΔC / C0 ± 15%, Y5V, диапазон температур от -30 до + 85 ° C с ΔC / C0 + 22 / -82% и Z5U, который имеет диапазон температур от +10 до + 85 ° C и ΔC / C0 = + 22 / -56%.
Диэлектрический керамический конденсатор класса 3
Керамические диэлектрики конденсаторов
класса 3 обеспечивают чрезвычайно высокий уровень диэлектрической проницаемости, причем значения диэлектрической проницаемости увеличиваются в 50 000 раз по сравнению с некоторыми керамическими элементами класса 2.
С другой стороны, эти конденсаторные диэлектрики намного уступают по точности и стабильности, а также по старению с течением времени, зависящей от напряжения емкости, нелинейной температурной характеристике и высоким потерям.
Еще одним недостатком этих конденсаторов является невозможность их изготовления в многослойном формате, что исключает варианты для поверхностного монтажа.
Эти конденсаторы были вытеснены другими технологиями, в результате чего они больше не стандартизированы IEC или EIA.
Диэлектрический керамический конденсатор класса 4
Это были так называемые конденсаторы барьерного слоя. Хотя они использовали диэлектрики с высокой диэлектрической проницаемостью, они были заменены другими типами и не были стандартизированы в течение некоторого времени.
Для керамических конденсаторов можно использовать самые разные диэлектрики. Их производительность тщательно адаптирована для обеспечения соответствия требуемым уровням производительности.При выборе керамического конденсатора для конкретного применения обратитесь к таблицам выше, чтобы получить необходимую информацию.
Обзор керамических конденсаторов
Керамические конденсаторы широко используются в производстве современной электроники. Хотя керамические конденсаторы первоначально появились как свинцовые электронные компоненты, по мере того, как технология поверхностного монтажа получила распространение в массовом производстве, вскоре они появились как конденсаторы для поверхностного монтажа. Сегодня многослойные керамические конденсаторы производятся в огромных количествах и дополняют характеристики других конденсаторов, таких как электролитические конденсаторы и танталовые конденсаторы, которые, как правило, используются для более высоких значений, превышающих 1 мкФ.
В приведенной ниже таблице приведены некоторые основные характеристики керамических конденсаторов.
Краткое описание керамического конденсатора | |
---|---|
Параметр | Детали |
Типичные диапазоны емкости | от 10 пФ до 0,1 мкФ (100 нФ) |
Наличие номинального напряжения | Примерно от 2 В и выше — некоторые специализированные могут иметь напряжение от 1 кВ и более. |
Преимущества |
|
Недостатки |
|
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
.Керамический конденсатор
в рабочем состоянии, разные типы и их применение
Конденсатор — это электрическое устройство, которое накапливает энергию в виде электрического поля. Он состоит из двух металлических пластин, разделенных диэлектриком или непроводящим веществом. Типы конденсаторов широко делятся на основе постоянной емкости и переменной емкости. Наиболее важными из них являются конденсаторы постоянной емкости, но также существуют конденсаторы переменной емкости. К ним относятся роторные или подстроечные конденсаторы.Конденсаторы с постоянной емкостью делятся на пленочные, керамические, электролитические и сверхпроводниковые. Перейдите по ссылке, чтобы узнать больше Различные типы конденсаторов. Более подробно керамический конденсатор описан в этой статье.
Различные типы конденсаторов
Полярность керамического конденсатора и символ
Керамические конденсаторы чаще всего встречаются в каждом электрическом устройстве, и в качестве диэлектрика используется керамический материал. Керамический конденсатор не имеет полярности, что означает, что у них нет полярности.Таким образом, мы можем подключить его в любом направлении на печатной плате.
По этой причине они обычно намного безопаснее электролитических конденсаторов. Вот символ неполяризованного конденсатора, приведенный ниже. Многие типы конденсаторов, такие как танталовые бусины, не имеют полярности.
Полярность керамического конденсатора и символ
Конструкция и свойства керамических конденсаторов
Керамические конденсаторы доступны в трех типах, хотя доступны и другие стили:
- Керамические конденсаторы с выводным диском для монтажа в сквозные отверстия, покрытые смолой.
- Многослойные керамические конденсаторы для поверхностного монтажа (MLCC).
- Дисковые неизолированные керамические конденсаторы специального типа для микроволновых печей, предназначенные для установки в разъем на печатной плате.
Различные типы керамических конденсаторов
Керамические дисковые конденсаторы изготавливаются путем покрытия керамического диска серебряными контактами с обеих сторон, как показано выше. Керамические дисковые конденсаторы имеют значение емкости от 10 пФ до 100 мкФ с широким диапазоном номинальных напряжений от 16 В до 15 кВ и более.
Для увеличения емкости эти устройства могут быть сделаны из нескольких слоев. MLCC изготовлены из смеси параэлектрических и сегнетоэлектрических материалов и в качестве альтернативы имеют металлические контакты.
После завершения процесса наслоения устройство нагревают до высокой температуры, и смесь спекается, в результате чего получается керамический материал с желаемыми свойствами. Наконец, полученный конденсатор состоит из множества конденсаторов меньшего размера, соединенных параллельно, что приводит к увеличению емкости.
MLCC состоят из более чем 500 слоев с минимальной толщиной слоя приблизительно 0,5 микрон. По мере развития технологии толщина слоя уменьшается, а емкость увеличивается в том же объеме.
Диэлектрики керамических конденсаторов различаются от одного производителя к другому, но общие соединения включают диоксид титана, титанат стронция и титанат бария.
В зависимости от диапазона рабочих температур, температурного дрейфа, допуска определяются различные классы керамических конденсаторов.
Керамические конденсаторы класса 1
Что касается температуры, то это самые стабильные конденсаторы. У них почти линейные характеристики.
Наиболее распространенными соединениями, используемыми в качестве диэлектриков, являются
- Титанат магния для положительного температурного коэффициента.
- Титанат кальция для конденсаторов с отрицательным температурным коэффициентом.
Керамические конденсаторы класса 2
Конденсаторы класса 2 демонстрируют лучшие характеристики по объемному КПД, но это происходит за счет более низкой точности и стабильности.В результате они обычно используются для развязки, соединения и байпаса, где точность не имеет первостепенного значения.
- Диапазон температур: от -50 ° C до + 85 ° C
- Коэффициент рассеяния: 2,5%.
- Точность: от средней до плохой
Керамические конденсаторы класса 3
Керамические конденсаторы класса 3 обеспечивают высокий объемный КПД при низкой точности и низком коэффициенте рассеяния. Он не выдерживает высоких напряжений. В качестве диэлектрика часто используется титанат бария.
- Конденсатор класса 3 изменит свою емкость на -22% до + 50%.
- Диапазон температур от + 10C до + 55C.
- Коэффициент рассеяния: от 3 до 5%.
- У него будет довольно низкая точность (обычно 20% или -20 / + 80%).
Тип класса 3 обычно используется для развязки или в других источниках питания, где точность не является проблемой.
Значения керамических дисковых конденсаторов
Код керамических дисковых конденсаторов обычно состоит из трехзначного числа, за которым следует буква.Найти номинал конденсатора очень просто.
Значения керамического дискового конденсатора
Первые две значащие цифры означают первые две цифры фактического значения емкости, которое составляет 47 (конденсатор выше).
Третья цифра — множитель (3), который равен × 1000. Буква J означает допуск ± 5%. Поскольку это система кодирования EIA, значение будет в пикофарадах. Следовательно, емкость указанного выше конденсатора составляет 47000 пФ ± 5%.
Таблица системы кодирования EIA
Например, если конденсатор обозначен как 484N, его значение будет 480000 пФ ± 30%.
Применение керамических конденсаторов
- Керамические конденсаторы в основном используются в резонансных контурах передающих станций.
- Конденсаторы большой мощности класса 2 используются в источниках питания высоковольтных лазеров, силовых выключателях, индукционных печах и т. Д.
- Конденсаторы для поверхностного монтажа часто используются в печатных платах и устройствах с высокой плотностью размещения.
- Керамические конденсаторы также могут использоваться в качестве конденсаторов общего назначения из-за их неполярности и доступны с большим разнообразием емкости, номинального напряжения и размеров.
- Керамические дисковые конденсаторы используются в щеточных двигателях постоянного тока для минимизации высокочастотного шума.
- MLCC, используемые в печатных платах (PCB), рассчитаны на напряжения от нескольких вольт до нескольких сотен вольт, в зависимости от области применения.
Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что в этих конденсаторах в качестве диэлектрика используется керамика. Из-за неполярности они могут подключаться к печатной плате в любом направлении. Мы надеемся, что вы лучше понимаете эту концепцию.Кроме того, любые сомнения относительно этой концепции или реализации проектов электронной инженерии, пожалуйста, оставьте свой отзыв, комментируя в разделе комментариев ниже. Вот вам вопрос, какие бывают типы керамических конденсаторов?
.