Занимательная радиотехника. Проходит ли ток через конденсатор? Конденсатор какой ток пропускает


Какой ток пропускает конденсатор. Электрический конденсатор. Виды конденсаторов

О заряде конденсатора.

Замкнем цепь. В цепи пойдет ток заряда конденсатора. Это значит что с левой обкладки конденсатора часть электронов уйдет в провод, а из провода на правую обкладку зайдет такое же количество электронов. Обе обкладки будут заряжены разноименными зарядами одинаковой величины.

Между обкладками в диэлектрике будет электрическое поле.

А теперь разомкнем цепь. Конденсатор останется заряженным. Закоротим куском провода его обкладки. Конденсатор мгновенно разрядится. Это значит что с правой обкладки уйдет в провод избыток электронов, а из провода на левую обкладку войдет недостаток электронов. На обоих обкладках электронов будет одинаково, конденсатор разрядится.

До какого напряжения заряжается конденсатор?

Он заряжается до такого напряжения, которое к нему приложено с источника питания.

Сопротивление конденсатора.

Замкнем цепь. Конденсатор начал заряжаться и сразу стал источником тока, напряжения, Э. Д. С.. На рисунке видно что Э. Д. С. конденсатора направлена против заряжающего его источника тока.

Противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора называется емкостным сопротивлением.

Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом емкостное сопротивление является реактивным, т.е. не вызывающим безвозвратных потерь энергии.

Почему постоянный ток не проходит через конденсатор, а переменный ток проходит?

Включим цепь постоянного тока. Лампа вспыхнет и погаснет, почему? Потому что в цепи прошел ток заряда конденсатора. Как только конденсатор зарядится до напряжения батареи ток в цепи прекратится.

А теперь замкнем цепь переменного тока. В I четверти периода напряжение на генераторе возрастает от 0 до максимума. В цепи идет ток заряда конденсатора. Во II четверти периода напряжение на генераторе убывает до нуля. Конденсатор разряжается через генератор. После этого конденсатор вновь заряжается и разряжается. Таким образом в цепи идут токи заряда и разряда конденсатора. Лампочка будет гореть постоянно.

В цепи с конденсатором ток проходит во всей замкнутой цепи, в том числе и в диэлектрике конденсатора. В заряжающемся конденсаторе образуется электрическое поле которое поляризует диэлектрик. Поляризация это вращение электронов в атомах на вытянутых орбитах.

Одновременная поляризация огромного количества атомов образует ток, называемый током смещения. Таким образом в проводах идет ток и в диэлектрике причем одинаковой величины.

Емкостное сопротивление конденсатора определяется по формуле

Рассматривая график делаем вывод: ток в цепи с чисто емкостным сопротивлением опережает напряжение на 90 0 .

Возникает вопрос каким образом ток в цепи может опережать напряжение на генераторе? В цепи идет ток от двух источников тока поочередно, от генератора и от конденсатора. Когда напряжение на генераторе равно нулю ток в цепи максимален. Это ток разряда конденсатора.

О реальном конденсаторе

Реальный конденсатор имеет одновременно два сопротивления: активное и емкостное. Их следует считать включенными последовательно.

Напряжение приложенное генератором к активному сопротивлению и ток идущий по активному сопротивлению совпадают по фазе.

Напряжение приложенное генератором к емкостному сопротивлению и ток идущий по емкостному сопротивлению сдвинуты по фазе на 90 0 . Результирующее напряжение приложенное генератором к конденсатору можно определить по правилу параллелограмма.

На активном сопротивлении напряжение U акт и ток I совпадают по фазе. На емкостном сопротивлении напряжение U c отстает от тока I на 90 0 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 0 .

Определение результирующего сопротивления конденсатора

Результирующее сопротивление конденсатора нельзя находить суммируя величины его активного и емкостного сопротивлений. Это делается по формуле

При включении какого-либо конденсатора в электрическую цепь постоянного тока, происходит возникновение быстрого кратковременного импульса. С его помощью конденсатор заряжается до такой же степени, как источник энергии, после чего, всяческое движение электрического тока прекращается. Если его отключить от источника тока, то в очень скором времени, под воздействием нагрузки наступит полная разрядка. Когда в качестве индикатора подключается лампа, она моргает один раз, а, затем, гаснет, поскольку разрядка конденсатора при постоянном токе происходит в виде кратковременного импульса.

Работа конденсатора при переменном токе

Совершенно по-другому работает конденсатор в цепи переменного тока. В данном случае, конденсатор заряжается и разряжается, чередуясь с периодичностью колебаний, возникающих при переменном напряжении. Такая же лампа накаливания, помещенная в цепь в качестве индикатора, и подключенная последовательно, будет аналогично конденсатору излучать непрерывный свет, потому что частота колебаний промышленного уровня не воспринимается человеческим глазом.

В каждом конденсаторе имеется емкостное сопротивление, от которого зависят емкость и частота циклов переменного тока. По формуле, такая зависимость получается обратно пропорциональная. При наличии такого сопротивления не происходит превращения электрической и магнитной энергии в тепловую. При более высокой частоте электрического тока, емкостное сопротивление пропорционально снижается, и, наоборот.

Эти важные свойства позволили применять конденсаторы в цепи переменного электрического тока в качестве гасящего элемента взамен резисторов в делителях напряжения. Данный фактор имеет особо важное значение при падениях напряжения. В подобной ситуации, вместо конденсатора пришлось бы применять мощные резисторы с большими размерами.

Основное свойство конденсаторов

Поскольку конденсатор в цепи переменного тока не подвержен нагреву, то и не наступает рассеивание энергии. Это обусловлено смещением между собой тока и в конденсаторе на 90 градусов. При наибольшем напряжении, ток имеет нулевое значение, а значит, не совершается никакой работы и нагрева не происходит. Поэтому, конденсаторы в большинстве случаев, вполне успешно используются взамен резисторов. При этом, у них образуется недостаток, который должен быть учтен в обязательном порядке. Он заключается в изменении переменного тока в цепи, вызывающего изменение напряжения в нагрузке. Другим недостатком является отсутствие развязки, в связи с чем применение их имеет определенные ограничения и их используют при стабильном значении сопротивления. Такими нагрузками, чаще всего, выступают нагревательные элементы.

Однако, свое широкое применение конденсаторы нашли в различных видах частотных фильтров и резонансных схемах.

Быстрое изменение силы тока и его направления, характеризующее

top-electrician.ru

Конденсатор и катушка в цепи переменного тока

Почему конденсатор хорошо пропускает высокие частоты и плохо низкие, а катушка наоборот? Не факт вообще.

смотря какой емкости конденсатор и какой проницаемости катушка) ) в принципе я с вами согласен. конденсатор режет низкие частоты, катушка верхние. если честно, не знаю почему

Не знаю как емкость в гидравлике обозначена, может простой бочкой с жидкостью. А вот индуктивность в гидравлике - это такая штука, как "трубка Перкинса", так, кажется, называется. Обычно, ставится между трубопроводом и манометром, чтобы сгладить толчки давления. Так вот катушки индуктивности тоже сглаживают подобные толчки тока. И чем выше их частота, а витков в катушке больше, тем лучше сглаживает.

Почему конденсатор вообще не пропускает постоянного тока - надеюсь, понятно. Это тупо кусок диэлектрика, т. е. разрыв в цепи. На переменном токе не всё так просто.. . Изменение электрического поля норовит распространиться в пространстве. Причём что там в этом пространстве - ему по фигу, потому что это не ток проводимости (перенос зарядов с место на место) , а ток смещения. Передаётся именно изменение поля. И передаётся оно тем лучше, чем быстрее поле изменяется, математически это выражается тем, что плотность тока смещения пропорциональна производной от напряжённости электрического поля по времени. Для синуса производная пропорциональна частоте. Так что чем выше частота - тем выше производная (точнее - максимум производной, мы ж имеем дело с периодической функцией...) , а значит - больше ток смещения. С индуктивностью другая фигня. Магнитное поле обладает энергией, поэтому оно инерционно. Оно не может мгновенно появиться и мгновенно исчезнуть. В этом случае аналогом магнитного поля можно считать массу, а аналогом напряжения - силу. Если у нас есть фиксированная сила, то мы может этой массе сообщить фиксированное ускорение, и за определённое время она "сдвинется" (т. е. поле изменится) на определённую величину. Но если это время уменьшается (с повышением частоты) , то - ясень пень - будет уменьшаться и "смещение массы", т. е. изменение поля. Поскольку поле катушки однозначно связано с током, который через неё протекает, то, значит, и ток будет изменяться тем меньше, чем быстрее мы будем пытаться его дёргать туда-сюда. ========== Отмазка: возникает вполне закономерный вопрос: электрическое поле в конденсаторе тоже обладает энергией, а значит - инерцией. Почему такое неравенство? ! Почему через конденсатор ток растёт, а через катушку - падает? Прикол в том, что мы неявно ставим их в ОДИНАКОВЫЕ условия - подключение к источнику напряжения (а не источнику тока; в электротехнике это разные вещи) . У источника напряжения нулевое выходное сопротивление. Это означает, что теоретически он способен выдавать сколь угодно большой ток. Что эквивалентно бесконечно большой мощности источника. А раз у него бесконечно большая мощность - значит, он может за любое сколь угодно малое время совершать ЛЮБУЮ работу. Сколь угодно большую. В частности, работу по изменению электрического поля в конденсаторе на противоположное. Ровно то же можно было бы проделать и с катушкой, если подключить её не к источнику напряжения, а к источнику тока (с бесконечно большим внутренним сопротивлением) . При таком подключении ток в катушке тоже будет тот, который идёт от источника, то есть этот источник тоже способен совершать работу по изменению поля на противоположное за любое сколь угодно малое время. Просто напряжение будет неограниченно расти...

Чем больше ёмкость конденсатора, тем более он способен пропускать низкие частоты. Пропускание тока в конденсаторе заключается в том, что увеличивающееся количество электронов на одной его обкладке, начинает отталкивать электроны со второй его обкладки, причём процесс накопления электронов в обкладке конденсатора не линейный, потому что электроны отталкиваются при сближении обратно пропорционально квадрату расстояния между ними. Главный момент торможения накопления электронов на обкладке заключается в том, что диэлектрический зазор в конденсаторе постоянная величина. Если этот зазор уменьшать, то конденсатор будет более линейно передавать изменение состояния своих электронов с одной обкладки на другую. Более лучшая линейность передачи будет и при увеличении площади обкладок. В катушке переменный ток вырабатывает магнитное поле, которое вследствие большой инерции тормозит колебательный процесс.

touch.otvet.mail.ru

Для чего нуужны конденсаторы в электрической цепи?

Они разные функции выполняют в разных цепях. Есть разделительные конденсаноры, которые пропускают только переменную составляющую тока, есть накопительные конденсаторы с большой емкостью, пример вспышка для фотоаппарата. Есть конденсаторы в колебательном контуре, параллельное соединение катушки и конденсатора, там он определяет частоту колебательного процесса. Они бывают бумажные, керамические, слюдяные, электролитические. Вобшем это маленькая наука. Удачи

накапливать эл. энергию и в нужный момент отдавать ее в цепь

Конденса́тор (от лат. condensare — «уплотнять» , «сгущать» ) — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками) , разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Скачай маленькую книжечку google.ru "радио это очень просто" и сразу все поймешь, даже если не все буквы знаешь!

Всё достаточно просто =) Как устроен конденсатор и какие они бывают, думаю, понятно и написали. Функции: 1. Фильтрация сигналов. Например, у нас есть постоянный сигнал, который нам хотелось бы видеть совсем постоянным. А какие-то приборы в цепи мешают этому - то включаются, то выключаются, немного изменяя напряжение. В этих случаях ставят конденсатор с этой линии на землю - специальный провод, относительно которого все напряжения мы и считаем. В обычном состоянии ток через конденсатор не идёт. Как только будет какие-то возмущения - они все уползут на землю через него, не добравшись до нашего важного агрегата. (иначе это Фильтр нижних частот) 2. Разделение сигнала. Как уже сказали, конденсатор проводит только изменяющийся сигнал, не пуская постоянный. И это пользуют в различных усилителях - например, звуковых. Вывод наушников, например, соединён с устройством воспроизведения через него. И модулированный звуком сигнал пчерез него свободно проходит. Кроме того, это фильтр высоких частот - чем выше частота сигнала, тем лучше он через него пролезает. 3. Запас энергии. Так как при разрядке конденсатор создаёт очень большой ток, его можно пользовать во всех приборах, где это надо: как уже приводили пример, вспышка в фотоаппарате. От батарейки такой ток забрать никак не получится. Силушки не хватит. А вот если за некоторое время зарядить конденсатор, а потом разрядить на вспышку - всё будет как надо. Это же явление можно использовать ля увеличения напряжения переменного тока. (схема - умножитель напряжения) . Конденсаторы соединены таким хитрым образом, что за половину периода заряжаются, а за другую половину разряжаются, увеличивая амплитуду напряжения) Конденсатор может использоваться как минибатарейка для ключей от домофонов. Там всего два контакта - когда таблетка подносится к замку, конденсатор внутри неё заряжается, и, пока не разрядился, микросхема отдаёт ключ замку. Дверь открывается =) И никаких батареек не надо. 4. Выделение частоты. Вот в радио используется - антенна ловит всевозможные радиосигналы всех станций, а колебательный контур (конденсатор и индуктивность) пропускают только неширокую полосу частот. Используя это, можно выделять конкретные станции из всего спектра, потом фильтром низких частот (или иначе) выделять звуковую модуляцию. . И слышать звук =) Да и много иных применений.

touch.otvet.mail.ru

Простите за тупость, но что делают резисторы, катушка индуктивности и эл. конденсатор?

Резисторы создают сопротивления в цепи что соответственно уменьшает ток в цепи и напряжение. конденсатор служит для ограничения хода постоянного тока, а также при прохождении через конденсатор переменного тока он накапливает часть прошедшего через него тока, вот например в обычной зарядке с лампочкой ты когда её из разетки выдергиваешь она потом ещё немного горит, так вот она горит за счет конденсатора который накопил ток. А катушка индуктивности в свою очередь наоборот пропускает постоянную сост тока . а переменную не пропускает.

резисторы создают сопротивление в цепи, конденсаторы в емкость цепи.

Они такое, блин, делают.. . Лучше тебе этого не знать.

Тусуют, накопляют и распределяют ток.

Резисторы сопротивляются течению через них тока. Если знаете фразу: резистентность болезни, переводится как сопротивление. Индуктивность наводит индукцию сама на себя, чем сопротивляется изменению тока. Конденсатор конденсирует постоянный ток и не дает ему теч, пока не зарядится.

в гугле деньги берут за поиск?

О, у этих радиоэлементов очеееень много профессий! - резистор, то есть элемент имеющий определённое достаточно большое (много больше проводов) сопротивление, и не имеющий (почти) ёмкости и индуктивности нужен когда хотят задать в какой-нибудь цепи определённый ток, из двух резисторов получается делитель, которым можно задать определённое напряжение, с конденсатором и (реже) с катушкой получается фильтр, он может использоваться как "нагрузка" чтобы из заданного тока получить определённо напряжение... . -катушка, то есть элемент, имеющий достаточно большую индуктивность, используется реже, в силу своей НЕТЕХНОЛОГИЧНОСТИ и НМИНИАТЮРНОСТИ, и лиюо как элемент фильтра, ибо как элемент колебателього контура. Ещё очень часто она используется в импульсных блоках питания, как элнмент, способный накопить в магнитном поле значитльную энергию. С той же целью она используется и в системах зажигания автотракторных двигателей :-) - конденсатор обычно - элемент фильтра, это его основное применение. Либо фильтрует одни чстоты от других, либо посто разделяет цепи постоянного и переменного или импульсного тока. Используется ак элемент колебательного контура. Вместе с резистором может использоваться как частотнозадающий элемнрт или как интегратор. Использутся для создания нужного сдвига фаз в сигнальных - и в силовых схемах. Например для питания асинхронных двигатлей. Как импульсные источники энергии, например для фотовспышки. Есть особые конденсаторы (ионисторы или суперконденсаторы) использующиеся в некоторых случаяк как постоянные источники энергии вместо аккумуляторов... . И это ещё не всё :-(

резисторы, создают сопротивление току катушка индуктивности накапливает магнитную энергию конденсатор накапливает статический заряд

<a rel="nofollow" href="http://www.newlibrary.ru/book/aisberg_e_d_/radio____yeto_ochen_prosto!.html" target="_blank">http://www.newlibrary.ru/book/aisberg_e_d_/radio____yeto_ochen_prosto!.html</a> Скачай эту книгу и читай, будешь самой умной в классе!!!!Очень хорошие понятные иллюстрации и про электроны и про резисторы, и про конденсаторы с катушками индуктивности...

<img src="//otvet.imgsmail.ru/download/u_8abf727e56ecd4f9e60a17a7a4116d4f_800.jpg" alt="" data-lsrc="//otvet.imgsmail.ru/download/u_8abf727e56ecd4f9e60a17a7a4116d4f_120x120.jpg" data-big="1">

touch.otvet.mail.ru

Занимательная радиотехника. Проходит ли ток через конденсатор?

Проходит электрический ток через конденсатор или не проходит? Повседневный радиолюбительский опыт убедительно говорит, что постоянный ток не проходит, а переменный проходит.

Это легко подтвердить опытами. Можно зажечь лампочку, присоединив ее к сети переменного тока через конденсатор. Громкоговоритель или телефонные трубки будут продолжать работать, если их присоединить к приемнику не непосредственно, а через конденсатор.

Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор. Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно выполняет функции изолятора в паяльниках, электроутюгах и других нагревательных приборах, исправно работающих от переменного тока.

Посредством некоторых опытов мы могли бы «доказать» еще более странный факт: если в конденсаторе заменить диэлектрик со сравнительно плохими изоляционными свойствами другим диэлектриком, который является лучшим изолятором, то свойства конденсатора изменятся так, что прохождение переменного тока через конденсатор будет не затруднено, а, наоборот, облегчено. Например, если включить лампочку в цепь переменного тока через конденсатор с бумажным диэлектриком и затем заменить бумагу таким прекрасным изолятором; как стекло или фарфор такой же толщины, то лампочка начнет гореть ярче. Подобный опыт позволит прийти к заключению, что переменный ток не только проходят через конденсатор, но что он к тому же проходит тем легче, чем лучшим изолятором является его диэлектрик.

Однако, несмотря на всю кажущуюся убедительность подобных опытов, электрический ток — ни постоянный, ни переменный — через конденсатор не проходит, Диэлектрик, разделяющий пластины конденсатора, служит надежной преградой на пути тока, каким бы он ни был — переменным или постоянным. Но это еще не означает, что тока не будет и во всей той цепи, в которую включен конденсатор.

Конденсатор обладает определенным физическим свойством, которое мы называем емкостью. Это свойство состоит в способности накапливать на обкладках электрические заряды. Источник электрического тока можно грубо уподобить насосу, перекачивающему в цепи электрические заряды. Если ток постоянный, то электрические заряды перекачиваются все время в одну сторону.

Как же будет вести себя в цепи постоянного тока конденсатор? Наш «электрический насос» будет качать заряды на одну его обкладку и откачивать их с другой обкладки. Способность конденсатора удерживать на своих обкладках (пластинах) определенную разницу количества зарядов и называется его емкостью. Чем больше емкость конденсатора, тем больше электрических зарядов может быть на одной обкладке по сравнению с другой.

В момент включения тока конденсатор не заряжен — количество зарядов на его обкладках одинаково. Но вот ток включен. «Электрический насос» заработал. Он погнал заряды на одну обкладку и начал откачиватьихс Другой. Раз в цепи началось движение зарядов, значит в ней начал протекать ток. Ток будет течь до тех пор, пока конденсатор не зарядится полностью. По достижении этого предела ток прекратится.

Следовательно, если в цепи постоянного тока есть конденсатор, то после ее замыкания ток в ней будет течь столько времени сколько нужно для полного заряда конденсатора.

Если сопротивление цепи, через которую заряжается конденсатор, сравнительно невелико, то время заряда оказывается очень коротким: оно длится ничтожные доли секунды, после чего течение тока прекращается.

 

Иное дело в цепи переменного тока. В этой цепи «насос» перекачивает электрические заряды то в одну, то в другую сторону. Едва создав на одной обкладке конденсатора превышение количества зарядов по сравнению с количеством их на другой обкладке, насос начинает перекачивать их в обратно направлении. Заряды будут циркулировать в цепи непрерывно, значит в ней, несмотря на присутствие не проводящего ток конденсатора, будет существовать ток — ток заряда и разряда конденсатора.

От чего будет зависеть величина этого тока?Под величиной тока мы понимаем количество электрических зарядов, протекающих в единицу времени через поперечное сечение проводника. Чем, больше емкость конденсатора, тем больше зарядов потребуется для его «заполнения», значит тем сильнее будет ток в цепи. Емкость конденсатора зависит от ве-, личины пластин, расстояния между ними и рода разделяющего их диэлектрика, его диэлектрической проницаемости. У фарфора диэлектрическая проницаемсклъ больше, чем у бумаги, поэтому при замене в конденсаторе бумаги фарфором ток в цепи увеличивается, хотя фарфор является лучшим изолятором, чем бумага.

Величина тока зависит также от его частоты. Чем выше частота, тем больше будет ток. Легко понять, почему это происходит, представив себе, что мы наполняем водой через трубку сосуд емкостью, например, 1 л и затем выкачиваем ее оттуда. Если этот процесс будет повторяться 1 раз в секунду, то по трубке в секунду будет проходить 2 л воды: 1 л в одну сторону и 1 л — в другую. Но если мы удвоим частоту^ процесса: будем наполнять и опорожнять сосуд 2 раза в секунду, то по трубке в секунду пройдет уже 4 л воды — увеличение частоты процесса при неизменной емкости сосуда привело к соответствующему увеличению количества воды, протекающей по трубке.

Из всего сказанного можно сделать следующие выводк: электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Но в цепи, соединяющей источник переменного тока с конденсатором, течет ток заряда и разряда этого конденсатора. Чем больше емкость конденсатора и выше частота тока, тем сильнее будет этот ток.

Эта особенность переменного тока чрезвычайно широко используется в радиотехнике. На ней основано и излучение радиоволн. Для этого мы возбуждаем в передающей антенне высокочастотный переменный ток. Но почему же ток течет в антенне, ведь она не представляет собой замкнутую цепь? Он течет потому, что между проводами антенны и противовеса или землей существует емкость. Ток в антенне представляет собой ток заряда и разряда этой емкости, этого конденсатора.

 

Л. В. Кубаркин и Е. А. Левитин, Занимательная радиотехника, Госэнергоиздат, 1956.

nauchebe.net

Конденсатор пропускает постоянный ток. Почему переменный ток проходит через конденсатор, а постоянный не проходит

>>Физика 11 класс >> Конденсатор в цепи переменного тока

§ 33 КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком .

Переменный же ток может идти по цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта.

Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания (рис. 4.13), соединенных последовательно. При включении постоянного напряжения (переключатель повернут влево, цепь подключена к точкам АА") лампа не светится. Но при включении переменного напряжения (переключатель повернут вправо, цепь подключена к точкам ВВ") лампа загорается, если емкость конденсатора достаточно велика.

Как же переменный ток может идти по цепи, если она фактически разомкнута (между пластинами конденсатора заряды перемещаться не могут)? Все дело в том, что происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, идущий в цепи при перезарядке конденсатора , нагревает нить лампы.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь (рис. 4.14).

Напряжение на конденсаторе

Сила тока, представляющая собой производную заряда по времени, равна:

Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на (рис. 4.15).

Амплитуда силы тока равна:

I m = U m C. (4.29)

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину X c , обратную произведению С циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома (см. формулу (4.17)). Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и позволяет рассматривать величину Х с как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение X c . С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты .

В заключение отметим, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

1. Как связаны между собой действующие значения силы тока и напряжения на конденсаторе в цепи переменного тока!2. Выделяется ли энергия в цепи, содержащей только конденсатор, если активным сопротивлением цепи можно пренебречь!3. Выключатель цепи представляет собой своего рода конденсатор. Почему же выключатель надежно размыкает цепь!

При включении какого-либо конденсатора в электрическую цепь постоянного тока, происходит возникновение быстрого кратковременного импульса. С его помощью конденсатор заряжается до такой же степени, как источник энергии, после чего, всяческое движение электрического тока прекращается. Если его отключить от источника тока, то в очень скором времени, под воздействием нагрузки наступит полная разрядка. Когда в качестве индикатора подключается лампа, она моргает один раз, а, затем, гаснет, поскольку разрядка конденсатора при постоянном токе происходит в виде кратковременного импульса.

Работа конденсатора при переменном токе

Совершенно по-другому работает конденсатор в цепи переменного тока. В данном случае, конденсатор заряжается и разряжается, чередуясь с периодичностью колебаний, возникающих при переменном напряжении. Такая же лампа накаливания, помещенная в цепь в качестве индикатора, и подключенная последовательно, будет аналогично конденсатору излучать непрерывный свет, потому что частота колебаний промышленного уровня не воспринимается человеческим глазом.

В каждом конденсаторе имеется емкостное сопротивление, от которого зависят емкость и частота циклов переменного тока. По формуле, такая зависимость получается обратно пропорциональная. При наличии такого сопротивления не происходит превращения электрической и магнитной энергии в тепловую. При более высокой частоте электрического тока, емкостное сопротивление пропорционально снижается, и, наоборот.

Эти важные свойства позволили применять конденсаторы в цепи переменного электрического тока в качестве гасящего элемента взамен резисторов в делителях напряжения. Данный фактор имеет особо важное значение при падени

masters220v.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.