Сравнение трансформаторного и импульсного БП. Трансформаторный блок питания или импульсный
Трансформаторные и импульсные источники питания
Достоинства и недостатки. Трансформаторный БП состоит из понижающего трансформатора или автотрансформатора. Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется.
Трансформаторные БП
Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель).
Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.
Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока
Схема простейшего трансформаторного БП c двухполупериодным выпрямителем
Габариты трансформатора
Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла): ( 1 / n ) ~ f * S * B
где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin ( f * t ), в производной f выносится за скобку), f - частота переменного напряжения, S - площадь сечения магнитопровода, B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.
Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.
Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = ( от 55 до 70 ) / S в см2.
Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).
Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.
Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).
Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.
Достоинства трансформаторных БП
- Простота конструкции
- Надёжность
- Доступность элементной базы
- Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)
- Недостатки трансформаторных БП
- Большой вес и габариты, особенно при большой мощности
- Металлоёмкость
- Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.
Импульсные БП
Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.
В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.
Принципиальная схема простейшего однотактного импульсного БП
Достоинства импульсных БП
- Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:
- меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
- значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
- меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
- сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
- широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира - Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
- наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе
Недостатки импульсных БП
- Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
- Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
- В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.
secandsafe.ru
Сравнение трансформаторного и импульсного БП: electronik_irk
Мне всегда не нравился шум блока питания компьютера.Лет 15 назад, ещё когда у меня был 286й компьютер, мне было непонятно назначение вентилятора. Ведь трансформаторные источники питания в радиоприёмниках не требовали никаких вентиляторов. А мне что-то рассказывали про огромный размер трансформатора, чтобы пропитать компьютер.
Помнится, что для снижения шума компьютера я опробовал следующую идею. Пусть комп стоит себе в комнате, и не шумит. А блок питания будет лежать в тумбочке на балконе. От блока питания до компа - толстые алюминиевые провода, сечением так 1.5-2мм. И длиной метра 4... Конечно же, моя конструкция смогла пропитать лишь CD-ROM. А комп не работал. Винт не запускался.
Так вот, суть вот в чём. Я почему-то думал, что трансформаторный источник питания должен обладать высочайшим КПД. В своей будущей квартире планирую сделать 5В розетку, для зарядки всяких девайсов. На чём же делать такую розетку? Трансформатор? Импульсник?
И вот я провёл пару экспериментов.
1) Трансформатор ТП112 на 18В + выпрямитель + 5В стабилизатор на выходе (LM2574) + нагрузка 11 Ом
Входная мощность | Выходная мощность | КПД |
20.7мА * 235В = 4.86Вт | 0 Вт(без нагрузки) | 0% |
31.3мА * 235В = 7.33Вт | 2.36Вт(стабилизатор LM2574 на 5В с нагрузкой 11 Ом) | 32% |
70.6мА * 230В = 16.2Вт | 12.26В * 12.26В / 22 Ом = 6.8Вт (без стабилизатора с нагрузкой 22 Ома) | 42% |
Входная мощность | Выходная мощность | КПД |
0.61мА * 235В = 0.143Вт | 0 Вт(без нагрузки) | 0% |
10.0мА * 235В = 2.35Вт | 2.06Вт | 87% |
Как только попадутся трансформаторы размером побольше - проведу ещё один эксперимент. В крупных трансформаторах вторичная обмотка намотана толстенным проводом - меньшие потери. Посмотрим...
electronik-irk.livejournal.com
В данном разделе представлены блоки питания (сетевые адаптеры) и зарядные устройства, распределенные по следующим подгруппам:
При подборе блока питания для Вашей бытовой аппаратуры (взамен поломанного или утраченного) соблюдайте несколько простых правил:
Информационные знаки, обозначающие полярность питания на круглых разъемах:
Примечание! Во многих случаях незначительная разница (в несколько десятых долей вольта) питающего напряжения не сказывается отрицательно на работе бытовых приборов. В большей степени это касается нестабилизированных блоков питания и блоков с переменным выходным напряжением. Если Вы не можете найти блок питания с "экзотическими" параметрами, то попробуйте применить блок с несколько меньшим напряжением.
Если Вы затрудняетесь самостоятельно подобрать блок питания для Вашего бытового прибора то принесите его и(или) старый неисправный блок питания в наш магазин - продавцы-консультанты будут рады Вам помочь, а также провести проверку на месте.
©Sergey Kitsya (KSV®) 2008г. |
tec.org.ru
их определение, технические детали и возможности
Другой термин используемый при определении блока питания — источник питания постоянного тока. Что из себя представляет данный механизм? Это своеобразное устройство, которое позволяет получить приемлемое стабильное постоянное напряжение. Ну или же просто постоянный ток. Когда, допустим, блок питания 24в постоянного тока выполняет работу и находится в режиме функции стабилизирования напряжения, он изначально способен поддерживать требуемый заданный показатель силы тока даже в случае и некоего изменения напряжения.
Особенности и классификация по мощности
Самым наиболее распространённым принципом классификации блоков питания является классификация по мощности. То есть то количество приборов, функционирующих от электричества, которое блок способен поддерживать.
Если устройство превышает допустимый предел потребляемого тока, то блок снижает потребление в сети, таким образом, предотвращая выход приборов из строя и поломку аппаратуры. Если вам необходимо обеспечить током электрическое оборудование, системы контроля, системы наблюдения (видеонаблюдения), а также всевозможных прочих устройств, которым нужно электричество и постоянное напряжение, то подобные блоки подойдут как нельзя лучше потому, что часто спроектированы для стационарного применения.
Главными выделяющимися моментами и интересующими нас качествам в подобных блоках являются:
- долгий срок службы, если не случается экстремальных ситуаций и воздействий
- высокий коэффициент полезного действия
- естественная конвекция воздуха
- подстройка выходного напряжения обладает потенциометром
- крепление возможно как на DIN-рейку, так и на стену
- большая надёжность устройства
- защита, которая срабатывает в случае перегрузки, перенапряжения
- качество исполнения — высокое
Типы блоков питания
Вообще, источники питания можно разделить на несколько типов:
- вторичный источник электропитания;
- трансформаторный или, как ещё такой называют, сетевой источник питания;
- импульсный источник питания.
Вторичный блок
Вкратце их различия можно описать так. Вторичный источник питания — своеобразное устройство, предназначаемое для обеспечения питания электроприбора энергией, при учёте напряжения и тока, путём преобразования электрической энергии других источников. Согласно правилам ГОСТа при определении в документах и бумагах слово «вторичный» благоразумно опускается.
Источник электропитания способен быть интегрированным в некую общую схему. Это либо в простых устройствах случается, либо в вариантах, когда падение напряжения на каких-то подводящих проводах, даже и незначительное, недопустимо — материнская плата какого-либо компьютера, например.
Встроенные преобразователи напряжения, которые она имеет, для питания процессора отвечают за это. Источник может также быть выполнен и расположен вообще в отдельном помещении. Распространённый пример для данного случая — расположение в отдельном помещении цеха питания. Источник может быть выполненным в виде некоего варианта модуля стойки электропитания, наиболее обычного блока, распространённого в ассоциациях и представлениях многих.
Часто и в наиболее распространённых аспектах вторичные блоки преобразуют энергию из сети переменного тока обычной промышленной частоты. Если мы рассмотри разные страны, в Российской Федерации она составляет 220 в и 50 Гц, а в Америке — 120 в и 60 Гц.
Трансформаторный блок
Трансформаторный блок питания является самым классическим. Ещё его называют сетевым. Обычно он состоит из автотрансформатора или, как вариант, понижающего трансформатора. Первичная обмотка при этом рассчитана на сетевое напряжение, после чего идёт выпрямитель.
Это устройство преобразует переменное напряжение в пульсирующее однонаправленное, говоря стандартным языком — постоянное. Выпрямитель же в данной кострукции состоит из одного диода в большинстве случаев. Или четырёх диодов, которые образуют из себя диодный мост. Бывает, что и используются более редкие, другие схемы, например, если мы взаимодействуем с выпрямителем с удвоением напряжения.
Когда выпрямитель уже на нужном месте, дальше идёт фильтр, сглаживающий колебания, именуемые проще пульсациями. Как стандартный вариант это устройство представляет из себя просто несколько большой по используемой ёмкости обычный конденсатор. В схеме, помимо вышеупомянутого, могут стоять защиты от КЗ, фильтры высокочастотных помех, а также всплесков (варисторы), стабилизаторы тока и напряжения.
Трансформаторные источники имеют свои достоинства. И относительно их можно сказать следующее. У них хорошо доступна элементная база. Они просты в своей уникальной конструкции . Их надёжность — один из их высших и важных приоритетов. Трансформаторные источники питания, тем не менее, имеют и свои минусы и о них можно рассказать следующее. Они слабостойки к броскам напряжения и пропаданию нейтрали, которая в итоговом случае ведёт к образованию фазного напряжения. У них большие габариты и вес, они металлоёмки. Для обеспечения стабильности им нужен стабилизатор, вносящий свои дополнительные потери.
Импульсный блок
Импульсные блоки питания — по сути являются инвенторной системой. Переменное входное напряжение первоначально выпрямляется в импульсных блоках.
Напряжение, что получено изначально, преобразуется в прямоугольные импульсы, частота у них повышена, а скважность же определённая, которые подаются на трансформатор или же на выходной фильтр нижних частот.
В случае когда импульсные блоки питания обладают гальванической развязкой прямо от питающей сети, то прямоугольные импульсы подаются на трансформатор, а если импульсные блоки питания не обладают гальванической развязкой, то на фильтр.
В импульсных блоках питаниях вполне могут применяться малогабаритные трансформаторы. Эффективность работы, как можно определить, с ростом частоты повышается и, соответственно, уменьшается требование к габаритам сердечника, его сечению, которое нужно для передачи достаточной необходимой эквивалентной мощности. Это всё объясняет. В наибольшем количестве случаев такой сердечник выполняется из ферромагнитных материалов и тем довольно-таки отличается от сердечников низкочастотных трансформаторов. Они выполняются из электротехнической стали.
Стабилизация напряжения в них поддерживается при посредстве обратной отрицательной связи. Отрицательная связь позволяет поддерживать искомое выходное напряжение, при этом и вне зависимости от колебаний входного, а также величины нагрузки, на относительно достаточно постоянном уровне. Если импульсный источник с гальванической развязкой, то наиболее популярным способом является использование одной из выходных обмоток или может использоваться оптрон. Так организуется обратная связь.
В зависимости от величины сигнала, которая зависит от выходного напряжения, скважность импульсов изменяется на выходе ШИМ-контроллера. При этом резистивный делитель напряжения используется, как правило, если развязка не требуется. Данный блок питания поддерживает нужное стабильное напряжение именно таким образом.
Импульсные источники не создают радиопомехи за счёт гармонических составляющих, в отличие от трансформаторных.
Оцените статью: Поделитесь с друзьями!elektro.guru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.