25.11.2024

Машины переменного тока синхронные: Принцип действия и устройство электрических машин переменного тока. Синхронные машины

Содержание

Принцип действия и устройство электрических машин переменного тока. Синхронные машины


Машины переменного тока по устройству несколько отличаются от машин постоянного тока. Каждая машина состоит из двух основных частей: неподвижной части, называемой статором, и вращающейся части, называемой ротором. В отличие от машин постоянного тока, у машин переменного тока на статоре обычно укладывают обмотку якоря, а на роторе — обмотку возбуждения. Вместо коллектора на роторе имеются изолированные кольца, по которым ток проводится в обмотку возбуждения.


Синхронными называют такие машины переменного тока, у которых скорость вращения ротора и частота переменного тока в обмотках изменяются одновременно и пропорционально друг другу, т. е. синхронно. С изменением частоты тока у таких машин одновременно (синхронно) меняется число оборотов.


Как правило, у синхронных машин по обмотке возбуждения проходит постоянный ток от постороннего источника. Синхронные машины обратимы, т.е. могут работать в качестве генераторов и электродвигателей. Конструкция синхронного двигателя почти не отличается от конструкции синхронного генератора.


Так как на судах морского флота сети переменного тока питаются от трехфазных синхронных генераторов, то остановимся на их устройстве и принципе работы.


Обмотка якоря трехфазного синхронного генератора располагается в статоре и состоит из трех отдельных обмоток — фаз, сдвинутых относительно друг друга на 120° (1/3 периода) с таким расчетом, чтобы индуктируемая э.д.с. в каждой фазе достигала своего максимума спустя 1/3 периода после максимума э.д.с. соседней фазы. Обмотку возбуждения укладывают на роторе и источником питания для нее может быть небольшой генератор постоянного тока (возбудитель), смонтированный на одном валу с синхронным генератором, или аккумуляторная батарея.


Обмотки статора соединяются между собой звездой или треугольником, при этом во внешнюю цепь от обмоток статора отходят три провода (три контакта).
Продольный разрез синхронного генератора трехфазного переменного тока с возбудителем показан на рис. 172.


Ротор состоит из сердечников полюсов 1, катушки обмотки возбуждения 2, питаемого постоянным током через контактные кольца 5. Статор состоит из активной стали якоря 3, служащей магнитопроводом, и станины 6, служащей для крепления стали якоря и установки машины на фундамент. Активная сталь якоря набирается из листов специальной стали толщиной 0,5 или 0,35 мм. Листы изолируются с обеих сторон специальным лаком. Обмотка 4 укладывается в пазах, выштампованных в стали статора.


На рис. 173, а показано размещение трехфазной обмотки статора (на одной четвертой его части), а на схемах б и в — соединение обмотки статора в треугольник и в звезду. При соединении в треугольник начало первой фазы I соединяется с концом II, начало II — с концом III и начало III — с концом I.


При соединении обмоток статора звездой концы всех фаз соединяются в одну точку, называемую нулевой, а начала всех фаз остаются свободными и к ним присоединяется внешняя цепь, в которую подается вырабатываемая генератором электрическая энергия.


Синхронные трехфазные генераторы являются в настоящее время основными источниками электрической энергии как на береговых, так и на судовых электрических станциях любой мощности.
За последние годы на морских судах получили широкое распространение синхронные генераторы, у которых обмотка возбуждения питается током статора, предварительно выпрямленным с помощью выпрямителей. При этом схема возбуждения этих машин обеспечивает такое изменение тока возбуждения, при котором напряжение на клеммах генератора поддерживается практически постоянным. Такие генераторы называются синхронными генераторами с самовозбуждением и саморегулированием напряжения.


Конструкция синхронного двигателя принципиально не отличается от конструкции синхронного генератора. Для того чтобы синхронный генератор работал в режиме двигателя, нужно отключить первичный двигатель и к фазным обмоткам статора подвести трехфазный ток из сети.


В этом случае генератор станет синхронным Электродвигателем, потребляющим ток. Проходя по фазным обмоткам, переменный трехфазный ток создает вращающееся магнитное поле, которое, взаимодействуя с электромагнитом ротора, увлекает его в сторону своего вращения. В результате ротор будет вращаться с такой же скоростью, как вращающееся магнитное поле. При этом генератор не остановится, даже если дать ему нагрузку, соединив с каким-нибудь механизмом. В этом и заключается сущность работы синхронного электродвигателя.


Регулирование скорости вращения ротора синхронного двигателя производится изменением частоты тока сети, а изменение направления вращения ротора — переключением двух любых фаз, т.е. взаимным пересоединением двух питающих проводов.

Похожие статьи

Классификация и устройство машин переменного тока

Основные виды машин переменного тока

Машины переменного тока по количеству фаз делятся на много фазные и однофазные. Наиболее часто машины выполняются трехфазными в соответствии с применяемой в энергетических установках системой трехфазного тока. Для автоматических устройств и для бытовых электроприборов применяются двухфазные машины и иногда однофазные. В основе работы многофазных машин и некоторых однофазных лежит образование вращающегося магнитного поля.

Каждая машина переменного тока, так же как машина постоянного тока, состоит из статора и ротора. По способу образования магнитного поля статора и ротора машины переменного тока делятся на две группы: асинхронные и синхронные.
А. Асинхронная машина. Асинхронной машиной называется машина переменного тока, у которой скорость вращения ротора зависит от нагрузки. Магнитное поле в асинхронной машине создается переменным током обмоток статора и ротора. Скорость вращения ротора отличается от скорости вращения поля.

Асинхронные машины делятся на бесколлекторные и коллекторные. Бесколлекторные асинхронные машины являются наиболее распространенными электрическими машинами в народном хозяйстве и применяются главным образом в качестве двигателей. Коллекторные асинхронные машины имеют большее разнообразие характеристик по сравнению с бесколлекторными, используются также в качестве двигателей, но имеют ограниченное применение.
Основным типом асинхронной бесколлекторной машины является трехфазный двигатель в двух главных исполнениях: двигатель с фазной обмоткой ротора (рис. 1,а) и двигатель с короткозамкнутой обмоткой ротора (рис. 1,6). Конструктивные схемы этих машин показаны на рис. 1, где 1 — сердечник статора, собранный из листовой электротехнической стали, 2 — трехфазная обмотка статора, включаемая в сеть переменного тока, 3 — сердечник ротора, 4 — фазная обмотка ротора, 5 — контактные кольца для соединения с пусковым или регулировочным реостатом, 6 — короткозамкнутая обмотка ротора.

Рис. 1. Конструктивная схема трехфазного асинхронного двигателя: а — с фазной обмоткой ротора, б — с короткозамкнутой обмоткой ротора
Б Синхронная машина. Синхронной машиной называется такая машина переменного тока, скорость вращения ротора которой равна скорости вращения первой гармоники поля статора и определяется

Рис. 2. Конструктивная схема трехфазного синхронного генератора

частотой / переменного тока в обмотке статора и количеством пар полюсов машины

(1)
Как правило, магнитное поле в синхронной машине создается обмоткой постоянного тока ротора и обмоткой переменного тока статора. В синхронных машинах малой мощности вместо обмотки постоянного тока на роторе используются постоянные магниты (магни-

тоэлектрические синхронные машины) или же магнитное поле создается только переменным током обмотки статора (реактивные синхронные машины). Синхронные машины широко применяются в качестве генераторов трехфазного переменного тока на электростанциях и используются также в качестве электродвигателей.
На рис. 2 изображена конструктивная схема трехфазной синхронной машины. Здесь 1 — сердечник статора, 2 — трехфазная обмотка статора, 3 — полюсы ротора с обмоткой постоянного тока, 4 — кольца для соединения обмотки ротора с источником постоянного тока, 5 — вентиляторы.

Рис. 3. Основные типы синхронных машин: а — с явнополюсным ротором, б — с неявнополюсным ротором

По устройству ротора различают два типа синхронной машины: машина с явнополюсным ротором, в которой катушки обмотки постоянного тока размещены на выступающих полюсах (рис. 3,а) и машина с неявнополюсным ротором, в котором распределенная обмотка постоянного тока уложена в пазы ротора (рис. 3,6).
Явнополюсная синхронная машина изготовляется для скорости вращения до 1500 об /мин и используется в качестве генератора или двигателя. Наиболее крупные синхронные машины устанавливаются на гидроэлектростанциях и приводятся во вращение водяными турбинами со скоростью до 300 об/мин.

Неявнополюсная синхронная машина используется в основном как генератор на тепловых электростанциях и приводится во вращение паровой турбиной со скоростью обычно 3000 об/мин (при частоте 50 Гц).

Общие элементы устройства и теории машин переменного тока

Обмотки статора обычно присоединяются к сети переменного тока и создают вращающееся магнитное поле, поэтому устройство этой части асинхронных и синхронных машин получается одинаковым. Сердечник статора изготовляется из листовой электротехнической

стали толщиной 0,5 мм.

На внутренней поверхности статора имеются пазы, в которые уложена обмотка. Форма паза зависит главным образом от мощности машины.

Рис. 4. Частично открытый паз

При мощности до 100 кет и напряжении до 500 в применяются частично открытие пазы (рис. 4). Изоляция обмотки от сердечника обычно трехслойная: два слоя электрокартона и между ними слой лакоткани или синтетической пленки. Общая толщина изоляции 0,3—0,7 мм. Стороны 1 мягких катушек из круглого провода укладывают через открытие 3 паза по одному или по нескольку проводников, затем края изоляции загибают и, таким образом, закрывают каждый паз. Стороны катушки в пазу удерживаются клином 2 из дерева или слоистого пластика.

Рис. 5. Частично закрытый паз и изоляция обмотки

1 — прокладка из электрокартона пропитанного, толщиной 0,2 мм,
2 — лента миткалевая впритык, толщиной 0,15 лык, 3 — прокладка из электрокартона, толщиной 0,5 мм, 4— электрокартон пропитанный, толщиной 0,20 мм в 1 слой, 5 — лакоткань черная толщиной 0,3 мм в 1 слой, в — электрокартон пропитанный, толщиной 0,10 мм

впритык, 7 — прокладка из электрокартона толщиной 0,2 мм

Рис. 6. Открытый паз и изоляция обмотки
1 — прокладка из электрокартона (толщиной 0,5 лик), 2 — прокладка из миканита (толщиной 0,2 лык), 3 — микафолий (9 слоев толщиной 0,25 лш), 4 — электрокартон (1 слой толщиной 0.15 лык), 5 — прокладка из электрокартона толщиной 1,7 лык

Частично закрытые пазы (рис. 5) применяются для машин мощностью до 400 кет и напряжением до 500 в. В этом случае каждая катушка состоит из двух полукатушек, намотанных прямоугольным проводом. Полукатушкам придают окончательную форму на специальных шаблонах до укладки в пазы.

В машинах большой мощности и при напряжении выше 500 в катушки изготовляются из прямоугольного провода и изолируются до укладки в прямоугольные пазы (рис. 6).

Устройство и принцип действия синхронной машины

Устройство синхронных машин.

Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

 

 

 

 

 

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах.

 

 

 

 

 

 

Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

 

 

 

 

 

 

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора.

Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4).

При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС  , где B – магнитная индукция в воздушном зазоре между статором и ротором;  l – активная длина проводника;  – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось,  что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив, получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически  (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где  – обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 1200, и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя.

Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора.  Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и, которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС.

При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора.

В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .

При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине.

Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора  и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины.

Частота вращения магнитного поля статора .

Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а).

Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 900 (поперечная реакция якоря).

При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0 на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 900 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 900 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ().

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 900 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 900 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину  ().

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора.

Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

Тема 9.3. Синхронные машины переменного тока

Синхронные электрические машины

1 Синхронные электрические машины Общие сведения и элементы конструкции Лекции профессора Полевского В.И. Синхронными машинами называются электрические машины переменного тока, у которых магнитное поле,

Подробнее

Общие сведения об электродвигателях

Общие сведения об электродвигателях Электродвигатель. Виды электродвигателей и их конструктивные особенности. Устройство и принцип действия электродвигателя Электродвигатель преобразует электроэнергию

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики, электротехники и автоматики ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

Подробнее

Тема 8.2. Двигатели постоянного тока

Тема 8.2. Двигатели постоянного тока Вопросы темы 1. ринцип работы двигателя постоянного тока. 2. Способы возбуждения двигателей постоянного тока. 1. ринцип работы двигателя постоянного тока Рис. 9. ринцип

Подробнее

ТЕМА 2. ТРЕХФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ

ТЕМА 2. ТРЕХФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ Задание 1. Начертите эскиз поперечного разреза двухполюсного асинхронного двигателя (АД). Задание 2. Изобразите картину результирующего магнитного поля статора

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

Асинхронные электрические машины

1 Асинхронные электрические машины Лекции профессора Полевского В.И. Устройство и принцип действия 3- фазных асинхронных двигателей Лекция 1 Асинхронные машины (АМ) в настоящее время являются самыми распространенными

Подробнее

Тема 1. Линейные цепи постоянного тока.

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 системы и технологии» Тема 1. Линейные цепи постоянного тока. 1. Основные понятия: электрическая цепь, элементы электрической цепи, участок электрической цепи. 2. Классификация

Подробнее

7. АСИНХРОННЫЕ ДВИГАТЕЛИ Основные понятия

7. АСИНХРОННЫЕ ДВИГАТЕЛИ 7.1. Основные понятия Асинхронные машины относятся к классу электрических машин переменного тока. Мощность асинхронных машин может быть от долей ватта до нескольких тысяч киловатт.

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА.

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА. 1. Общие сведения о машинах переменного тока.. Вращающееся магнитное поле. 3. Устройства и принцип действия асинхронного двигателя. 4. Влияния скольжения на ЭДС,

Подробнее

Генератор постоянного тока

Министерство образования Российской Федерации Томский государственный педагогический университет И.С. Кашинская Генератор постоянного тока методическое указание Томск 2003 УДК 621.3 Печатается по решению

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра автоматики и электротехники ЭЛЕКТРИЧЕСКИЕ МАШИНЫ Методические указания к лабораторным

Подробнее

КОНТРОЛЬНАЯ ЛАМПА ГЕНЕРАТОРА

КОНТРОЛЬНАЯ ЛАМПА ГЕНЕРАТОРА «Что означает красная лампочка с изображением аккумулятора, загорающаяся на приборной панели моего автомобиля?» В общем случае это значит, что напряжение на выходе генератора

Подробнее

ГЕНЕРАТОР ПОСТОЯННОГО ТОКА

ГЕНЕРАТОР ПОСТОЯННОГО ТОКА 1. Общие сведения о машинах постоянного тока. 2. Принцип действия генератора постоянного тока. 3. Принцип работы двигателя постоянного тока. 4. Рабочий процесс машины постоянного

Подробнее

Е.И. Забудский ЛАБОРАТОРНАЯ РАБОТА 5 ИССЛЕДОВАНИЕ ТРЕХФАЗНОГО АСИНХРОННОГО ГЕНЕРАТОРА Оглавление 1. Цель работы… 3 2. Программа работы 3 3. Основы теории… 4. Экспериментальные исследования… 4 4.1.

Подробнее

Тема 3.2 Переменный ток

. Вращение рамки в магнитном поле. Переменный ток 3. Трансформаторы Тема 3. Переменный ток. Вращение рамки в магнитном поле Явление электромагнитной индукции применяется для преобразования механической

Подробнее

ÎÁÙÀß ÝËÅÊÒÐÎÒÅÕÍÈÊÀ

È. À. Äàíèëîâ ÎÁÙÀß ÝËÅÊÒÐÎÒÅÕÍÈÊÀ àñòü 2 УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 2-е издание, исправленное и дополненное Êíèãà äîñòóïíà â ýëåêòðîííîé áèáëèîòå íîé ñèñòåìå biblio-online.ru Ìîñêâà

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики, электротехники и автоматики ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Методические

Подробнее

ОСНОВЫ ТЕОРИИ ЭЛЕКТРИЧЕСКИХ МАШИН

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВОДНОГО ТРАНСПОРТА» САМАРСКИЙ ФИЛИАЛ ФГБОУ ВО «ВГАВТ» УПРАВЛЕНИЕ СПО САМАРСКИЙ РЕЧНОЙ

Подробнее

Рисунок Простейшая схему ЭС

Тема: Уравнение движения ротора генератора. Характеристика мощности электропередачи с регулируемыми генераторами План лекции: 1) Вывод уравнения движения ротора 2)Уравнение движения ротора генератора;

Подробнее

Четыре закона электромеханики

Четыре закона электромеханики Содержание: 1. Общие сведения 1.1. Преобразование энергии связано с вращающимися магнитными полями 1.2. Для обеспечения непрерывного преобразования энергии необходимо, чтобы

Подробнее

Электротехника Асинхронный двигатель

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ имени первого Президента России Б.Н.Ельцина» Кафедра «Электротехника и электротехнологические системы»

Подробнее

СЕКЦИЯ: ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ

Морякова А.В., Никитаева Т.В. Лабораторная установка для исследования асинхронного электродвигателя // V-я Всероссийская научно-практическая конференция «Особенности применения образовательных технологий

Подробнее

Теоретические вопросы

Теоретические вопросы 1 Применение, устройство и виды трансформаторов 2 Принцип действия трансформатора, режимы работы 3 Схема замещения трансформатора и его внешняя характеристика 4 Опыты холостого хода

Подробнее

Однофазный трансформатор.

050101. Однофазный трансформатор. Цель работы: Ознакомиться с устройством, принципом работы однофазного трансформатора. Снять его основные характеристики. Требуемое оборудование: Модульный учебный комплекс

Подробнее

ГЛАВА 1. ЦЕПИ ПОСТОЯННОГО ТОКА

ПРЕДИСЛОВИЕ ГЛАВА 1. ЦЕПИ ПОСТОЯННОГО ТОКА 1.1.Электрическая цепь 1.2.Электрический ток 1.3.Сопротивление и проводимость 1.4.Электрическое напряжение. Закон Ома 1.5.Связь между ЭДС и напряжением источника.

Подробнее

Конструкции асинхронных и синхронных машин переменного тока

По принципу действия машины переменного тока делятся на:
1. Асинхронные машины, у которых скорость вращения вала не равна скорости вращения магнитного поля статора.
2. Синхронные машины, у которых скорость вращения вала равна скорости вращения магнитного поля статора.

Асинхронные машины по конструкции ротора делятся на машины с короткозамкнутым ротором и машины с фазным ротором (или машины с контактными кольцами).

Синхронные машины по конструкции ротора делятся на машины с явновыраженными полюсами и машины с неявновыраженными полюсами.

Конструкция статора и у асинхронных и у синхронных машин одинаковая. Статор машин переменного тока состоит из корпуса. В зависимости от мощности машин корпус может быть литым чугунным, литым стальным и литым сварным. По всей окружности корпуса статора с внутренней стороны запрессовывается статорное железо, которое набирается из отдельных листов электротехнической стали. В железе статора штампуются пазы, которые также как пазы якоря машины постоянного тока могут быть закрытыми грушевидной формы и открытыми с параллельными стенками.

Также как и в пазы якоря машины постоянного тока, в пазы статора машины переменного тока укладывается обмотка с такой же изоляцией. В закрытые пазы укладывается всыпная обмотка, в открытые пазы с параллельными стенками укладывается жесткая обмотка с проводниками прямоугольного сечения. Отличается обмотка тем, что под одним полюсным делением должны лежать катушки всех трех фаз.

Схема трехфазной волновой обмотки машины переменного тока с Z=12, 2p=2, m=3.

В одних и тех же пазах должна лежать одна и та же фаза. Катушки одной фазы соединяются между собой. Число катушек в одной фазе всегда равно числу полюсов.

y1 = (Z / 2p) ± E = 6

Последовательное соединение катушек обмотки машины переменного тока, одна параллельная ветвь.

Под одни полюсом 180 электрических градусов.

Если машина четырехполюсная, то катушки в каждой фазе можно включить тремя способами: с одной параллельной ветвью, с двумя параллельными ветвями и четырьмя параллельными ветвями.

Включение катушек с одной параллельной ветвью в машине переменного тока.

Включение катушек с двумя параллельными ветвями в машине переменного тока.

Включение катушек с тремя параллельными ветвями в машине переменного тока.

p

1

2

3

a

1, 2

1, 2, 4

1, 2, 3, 6

a – число параллельных ветвей.

Три фазы обмотки статора могут соединяться либо в звезду, либо в треугольник. В разветвительную коробку машины выводятся начала C1, C2, C3 и концы C4, C5, C6.

A: C1-C4
B: C2-C5
C: C3-C6

Роторы асинхронных машин могут быть короткозамкнутыми и иметь следующую конструкцию: на вал напрессовывается железо с пазами. Пазы ротора имеют грушевидную форму.

Пулузакрытые (а), полуоткрытые (б), открытые (в) пазы статоров машин переменного тока.

В эти пазы под давлением, чтобы избежать образования раковин, заливается алюминий.

Если ротор фазный, то в пазы ротора укладывается, так же как и в статоре, трехфазная обмотка, но в отличие от статора, который может собираться в звезду или в треугольник, обмотка ротора всегда собирается в звезду внутри машины, а три свободных конца подключаются к контактным кольцам. Контактные кольца напрессовываются на вал. Обмотка ротора имеет то же число пар полюсов как и обмотка статора.

Роторы синхронных машин бывают двух типов: с явновыраженными полюсами и неявновыраженными полюсами. Рассмотрим конструкцию ротора с явновыраженными полюсами: на вал большого диаметра закрепляются полюса, которые набираются из отдельных листочков железа специальной формы.

Полюсы явнополюсной синхронной машины переменного тока: 1 — обмотка возбуждения; 2 — сердечник полюса с полюсным наконечником и Т-образным хвостом; 3 — междукатушечные соединения; 4 — шпилька для крепления междукатушечного соединения; 5 — пружина для сжатия обмотки; 6 — клинья.

Полюса соединяются в электрическую схему таким образом, чтобы они чередовались: С-Ю-С-Ю. Гидрогенераторы вращаются со скоростью 125 об/мин. Так как скорость вращения, роторы такой конструкции работают устойчиво.

У турбогенераторов скорость вращения ротора составляет 1500 и 3000 об/мин. Явновыраженные полюса будут срезаться под действием сил инерции, чтобы этого не происходило, используются роторы с неявновыраженными полюсами. Для этого вал ротора большого диаметра делится на сегменты, в котором вырезаются пазы.

Машины переменного тока. Синхронные машины (СМ). Общие сведения. (Лекция 6)

Машины переменного тока ч.2
(продолжение)
Синхронные машины (СМ).Общие сведения.
Синхронные генераторы (СГ)
Синхронные двигатели(СД)
Синхронные компенсаторы(СК)
Устройство синхронной трёхфазной машины
Системы возбуждения СМ
Принцип действия СГ и СД
Разновидности СМ большой мощности

2. Общие сведения о СМ

СМ являются машинами переменного тока.
СМ применяют в качестве генераторов и
двигателей.
В СМ при установившемся режиме работы ротор и
магнитное поле статора вращаются с одинаковой
скоростью n2=n1.
СМ являются обратимыми машинами, т. е. они
могут работать как в режиме генератора, так и в
режиме двигателя.

3. Синхронные генераторы

СГ установлены почти на всех электростанциях и
служат основным источником электрической
энергии для промышленных сетей
энергоснабжения.
СГ получают механическую мощность и
приводятся во вращение гидравлическими,
паровыми, газовыми турбинами или, при меньшей
мощности, — дизелями и двигателями внутреннего
сгорания.
СГ служат также источником автономного
электроснабжения на транспорте, на передвижных
электростанциях, на строительных машинах и
другой технике.

4. Синхронные двигатели

СД применяют там, где требуется постоянство
частоты вращения.
Они находят широкое применение в качестве
привода прокатных станов на металлургических
заводах, компрессоров и насосов на газо — и
нефтеперекачивающих станциях магистральных
газопроводов, в промышленности строительных
материалов.
Специальные СД малой мощности используют в
устройствах с программным управлением,
самопишущих приборах и др.

5. Синхронные компенсаторы

Весьма ценным качеством СД является их
способность работать при токе, опережающим по
фазе питающее напряжение.
Такие двигатели называют синхронными
компенсаторами и используют для улучшения
параметров, в частности cos φ электрических сетей.

6. Устройство синхронной машины

СМ независимо от назначения и их использования
состоят из двух основных частей: неподвижного
статора и вращающегося внутри него ротора.
Ротор и статор разделены воздушным зазором.

7. Статор синхронной машины

Статор трехфазной СМ аналогичен статору
трехфазного АД и содержит шихтованный
цилиндрический сердечник из электротехнической
стали с пазами на внутренней поверхности, в
которых располагают фазы трехфазной обмотки
статора.
Концы обмотки статора выведены на клеммную
панель.

8. Общий вид статора синхронной машины

Рис.1.Общий вид статора СМ

9. Ротор синхронной машины

Ротор СМ представляет собой электромагнит
постоянного тока, который образует магнитное
поле, вращающееся вместе с ротором.
На роторе располагают обмотку возбуждения,
концы которой через специальные медные кольца
на роторе и неподвижные графитовые щетки
подсоединяют к источнику постоянного тока,
называемому возбудителем.

10. Типы роторов синхронной машины

Роторы СМ бывают двух типов:
с явно выраженными полюсами;
с неявно выраженными полюсами.

11. Устройство синхронной машины

Рис.2
Вращающийся ротор – служит
индуктором.
Неподвижный статор –
выполняет функции якоря,
Два типа роторов:
1. Явнополюсный а)
2. Неявнополюсный б)
Явнополюсный ротор –
имеет выступающие
полюсы. Применяют в
машинах с частотой
вращения до
1000, 1500 об/мин.
Неявнополюсный ротор –
имеет вид цилиндра с
пазами. Применяют при
скоростях 1500 и 3000
об/мин.

12. Поперечное сечение а)явнополюсного и б)неявнополюсного ротора с обмоткой возбуждения (рис.6)

1 – башмак сердечника полюса ротора; 2 – обмотка
возбуждения ротора,

13. Устройство явнополюсного ротора

Рис.3.Явнополюсный ротор

14. Роторы с явно выраженными полюсами

Роторы с явно выраженными полюсами
применяют в сравнительно тихоходных машинах,
число оборотов которых не превышает 1000 об/мин.
Такие роторы, например, приводят в действие
тихоходные водяные турбины ГЭС.
На полюсах роторов размещают катушки обмотки
возбуждения.
У СД с такими роторами витки пусковой к.з.
обмотки типа «беличья клетка» закладывают в
башмаки полюсов ротора и по торцам замыкают
короткозамыкающими кольцами.
Башмаки – это расширяющиеся части сердечников
полюсов ротора, обращённые к статору.

15. Общий вид неявнополюсного ротора

Рис.4. Неявнополюсный ротор

16. Ротор с неявно выраженными полюсами

Ротор с неявно выраженными полюсами
обладает повышенной динамической
прочностью, так как его выполняют из
цельной стальной поковки цилиндрической
формы.
На внешней поверхности поковки
фрезеруют пазы, в которые закладывают
обмотку возбуждения.

17. Особенности синхронных машин

СМ проектируют и изготавливают так, чтобы
количество полюсов магнитного поля ротора и
поля, создаваемого обмоткой статора, было
одинаковым.
Поскольку частоты вращения
ротора и магнитного поля
одинаковы, в обмотке ротора
не индуцируются токи.
Поэтому обмотка ротора
получает питание от источника
постоянного тока.
Ротор СМ представляет собой
систему вращающихся
электромагнитов, которые
питаются постоянным током,
поступающим в ротор через
контактные кольца и щетки от
внешнего источника (клеммы
слева на рис.5) Ротор в некоторых
случаях изготовляют в виде
Рис.5. Поперечный разрез СМ постоянных магнитов.
а)
Рис.7.Вид а) явнополюсного и
б)неявнополюсного ротора
б)
19
Возбуждение синхронных машин
Основным способом возбуждения СМ является
электромагнитное возбуждение, сущность которого состоит в
том, что на полюсах ротора располагают обмотку
возбуждения. При прохождении по этой обмотке постоянного
тока возникает МДС возбуждения, которая наводит в
магнитной системе машины магнитное поле.
До последнего времени для питания обмотки
возбуждения
применяли
специальные
генераторы
постоянного тока независимого возбуждения, называемые
возбудителями (В) (рис.8,а), обмотка возбуждения которого
(ОВ) получала питание постоянным током от другого
генератора (параллельного возбуждения), называемого
подвозбудителем (ПВ). Ротор синхронной машины и якори
возбудителя и подвозбудителя располагаются на общем валу
и вращаются одновременно.
Рис.8. Контактная (а) и бесконтактная (б) системы
электромагнитного возбуждения СГ
Находит применение в СГ бесконтактная система
электромагнитного возбуждения, при которой синхронный
генератор не имеет контактных колец на роторе.
В качестве возбудителя в этом случае применяют
генератор переменного тока (рис. 8, б), у которого
обмотка 2, в которой наводится ЭДС (обмотка якоря),
расположена на роторе, а обмотка возбуждения 1
расположена на статоре.
В результате обмотка якоря возбудителя и обмотка
возбуждения СМ оказываются вращающимися, и их
электрическое соединение осуществляется непосредственно,
без контактных колец и щеток.
Но так как возбудитель является генератором
переменного тока, а обмотку возбуждения необходимо
питать постоянным током, то на выходе обмотки якоря
возбудителя включают полупроводниковый
преобразователь 3, закрепленный на валу синхронной
машины и вращающийся вместе с обмоткой возбуждения
СМ и обмоткой якоря возбудителя.
Питание постоянным током обмотки возбуждения 1
возбудителя осуществляют от подвозбудителя (ПВ) —
генератора постоянного тока.
Отсутствие скользящих контактов в цепи возбуждения
СМ позволяет повысить ее эксплуатационную надежность и
увеличить КПД.
В СГ, в том числе гидрогенераторах получил
распространение принцип самовозбуждения (рис. 9, а),
когда энергия переменного тока, необходимая для
возбуждения, отбирается от обмотки статора СГ и через
понижающий трансформатор и выпрямительный
полупроводниковый преобразователь (ПП) преобразуется в
энергию постоянного тока.
Принцип самовозбуждения основан на том, что
первоначальное возбуждение генератора происходит за счет
остаточного магнетизма магнитопровода машины.
Рис. 9. Принцип самовозбуждения СГ
На рис. 9,б представлена структурная схема
автоматической системы самовозбуждения СГ с
выпрямительным трансформатором (ВТ) и тиристорным
преобразователем (ТП), через которые электроэнергия
переменного тока из цепи статора СГ после преобразования
в постоянный ток подаётся в обмотку возбуждения.
Управление тиристорным преобразователем
осуществляют посредством автоматического регулятора
возбуждения АРВ, на вход которого поступают сигналы
напряжения на выходе СГ (через трансформатор
напряжения ТН) и тока нагрузки СГ (от трансформатора
тока ТТ).
Схема содержит блок защиты БЗ, обеспечивающий
защиту обмотки возбуждения и тиристорного
преобразователя ТП от перенапряжений и токовой
перегрузки.
Принцип дейстия СМ
Принцип действия СГ

28. Работа машины генератором

На обмотку ротора
подают постоянный
ток от возбудителя.
Образуется постоянное
магнитное поле ротора
с полюсами
N0 и S0.
Рис.10. Эл схема работы СМ генератором
Ротор вместе обмоткой возбуждения приводят во
вращение с постоянной частотой n0 приводным
двигателе ПД, создающим вращающий момент Мп.дв.
При этом вращающееся магнитное поле ротора
поочередно пересекает проводники фазных обмоток
статора А — X, В — Y, C – Z и по закону
электромагнитной индукции наводит в них
переменные ЭДС.
Рассмотрим, как образуются эти ЭДС:
Наведенная ЭДС в одном проводнике фазы
e = B l v,
где В — магнитная индукция в воздушном зазоре;
l — активная длина проводника в пазу статора;
v — линейная скорость пересечения проводника
магнитным полем.

31. Закон изменения ЭДС

Индукция В в воздушном зазоре распределяется по
синусоидальному закону
В = Вт sin α,
где α = ωt — угол, отсчитываемый от нейтральной
линии при вращении ротора с угловой частотой ω.
ЭДС, наводимая в одном проводнике, также будет
изменяться по синусоидальному закону:
е = Blv = Bml v sin α = Вт lv sin ωt = Ет sin ωt.

32. Действующее значение ЭДС

Если в каждой фазе обмотки статора имеется w
витков, то действующее значение ЭДС фазы
определяется выражением:
E = 4,44 k f w Фоm ,
где k — обмоточный коэффициент;
f = pn0 / 60 — частота наведенных
синусоидальных ЭДС;
р — число пар полюсов ротора;
Фот амплитудное значение магнитного
потока полюса ротора.

33. ЭДС фаз

Поскольку катушки отдельных фаз обмотки статора
А—X, В— Y, С—Z имеют одинаковое число витков и
сдвинуты в пространстве по окружности статора
симметрично, т. е. на угол 120°(эл.град.), то и ЭДС каждой
фазы будут иметь одинаковые амплитуды и оказываются
сдвинутыми во времени друг относительно друга на
электрический угол в 120°.

34. Переход генератора в режим работы с нагрузкой

При переходе генератора в режим работы с нагрузкой
сопротивлением ZH по фазам обмотки статора потекут
токи, которые создадут вращающееся магнитное поле
статора (рис.11).
Ось полюсов статора N — S будет отставать от оси
полюсов No — S0 первичного магнитного поля ротора
на угол рассогласования θ (рис.12) .
В результате взаимодействия разноименных
отстающих полюсов статора и опережающих полюсов
ротора на ротор будет действовать момент,
направленный против его вращения,
т. е. тормозной момент МТ.
В установившемся режиме тормозной момент
уравновешивает вращающий момент приводного
двигателя: МТ = МП.ДВ.
1
Рис. 11.
Принципиальная
схема включения СГ
состоит из статора
(якоря) 1, ротора
(индуктора) 2,
обмотки
возбуждения 3,
контактных колец 4,
щёток 5

36. Взаимодействие магнитных полей в СГ

Рис.12

37. Принцип действия двигателя

Принцип действия СД основан на явлении
притяжения разноименных магнитных полюсов
двух магнитных полей — статора и ротора.
Вращающееся магнитное поле статора с полюсами
N и S образуется при питании фаз обмотки статора
тремя токами от трехфазной сети аналогично
вращающемуся полю асинхронного двигателя.
Если на ротор не действует никакая нагрузка,
т. е. момент сопротивлений на роторе Мс = 0, то оси
магнитных полей статора и ротора совпадают
(рис.13,а.)
а)
б)
Рис.13. Расположение магнитных полей статора и ротора:
а) без нагрузки; б)при работе под нагрузкой

39. Взаимодействие магнитных полей в двигателе


Если же двигатель
работает под
нагрузкой и на
роторе имеется
момент
сопротивления
Мс ≠ 0 от какоголибо механизма, то
ось полюсов ротора
d-d сместится от оси
полюсов статора
d′-d’в сторону
отставания на какойто угол θ (рис. 13,б и
рис.14. ).
Рис.14. Работа двигателя под нагрузкой
Таким образом, магнитное поле статора как бы «ведет»
за собой поле ротора и сам ротор. Тангенциальные
составляющие FT магнитных сил F удерживают поля
ротора и статора и создают вращающий момент М,
зависящий от угла рассогласования θ:
М = 2FТR = 2FR sin θ ,
где R — радиус ротора.
Рис.15. Работа СД под нагрузкой
Разновидности СМ большой мощности
Разновидности СМ большой мощности.
СМ как никакие другие подвергаются большим
механическим и электромагнитным нагрузкам.
Поэтому назначение машины определяют на стадии
проектирования.
По характеру приводного двигателя СМ разделяют:
1) Турбогенераторы (ТГ)
Эти машины как правило неявнополюсные
n1 = 3000 об/мин.
Da и La — диаметр и длина
сердечника ротора соответственно
Da = 1 ÷ 1,5 м
La = 7,5 ÷ 8 м
La/Da = 5 ÷ 6 соотношение гл.размеров СМ
P = до 800 ÷ 1200 МВА
Фото турбогенератора
2) Гидрогенераторы (ГГ)
Da = 16 м
La = 1,75 м
P = 590 ÷ 640 МВА
La/Da = 0,2
n1 = 50 ÷ 500 об/мин.
Фото гидрогенератора
Остов ротора гидрогенератора-двигателя в цехе завода
Электротяжмаш
3)Синхронный компенсатор (СК).
Обычно – явнополюсный, работает в режиме не
нагруженного двигателя (т.е. на х.х.), поэтому имеет
облегчённую конструкцию и не имеет выступающего
конца вала.
ОВ рассчитывают на большую МДС, чем у
генераторов и двигателей.
Работает с перевозбуждением.
n1 = 750 ÷ 1000 об/мин
P = 10 ÷ 100 МВА
СК – устройство для генерирования реактивной мощности.
Может работать как в режиме улучшения cosφ в сети, так и
для стабилизации напряжения в сети..
Нагрузка
Генератор
Повыш.тр-р
Пониж.тр-р
а) без СК
φz = φC
φz
б)включен СК
φс
Рис.16.Векторные диаграммы:
а)без СК ; б)при включении СК
Пример.
а) без СК
Ia = 1000A Iр = 1000A
I C I a2 I р2 10002 10002 1414 A
I a 1000
cos C
0,707
I C 1414
б) с включением СК
ICK = 600A
Iр’ = Iр – ICK = 1000 – 600 =400A I C 10002 400 2 1077 A
1000
cos C
0,93
1077
Вывод: При включении СК cosφc увеличился на 31 %
4)Синхронные двигатели (СД).
У них, как правило,
горизонтальный вал, самовентиляция, иногда и
независимая.
при n1 = 100 ÷ 1000 об/мин – явнополюсное исполнение
при n1 = 1500 ÷ 3000 об/мин – неявнополюсное исполнение
Мощность
P — до десятков МВт
Применяют там, где требуется постоянная скорость.
5) Дизель – генератор.
Предназначен для привода во вращение от ДВС.
Выполняют явнополюсным с горизонтальным валом,
имеет один подшипник, второй является опорой дизеля.
Возбудитель устанавливают непосредственно на валу
ротора, или он приводится во вращение от ротора с
помощью клиноремённой передачи.
Частота вращения n1 = 100 ÷ 1500 об/мин
Мощность от нескольких кВА до нескольких МВА
Уравнение ЭДС синхронного генератора.
Для явнополюсного генератора.
U 1 E 0 E ad E aq E p1 I 1r1
В машине результирующее поле – одно, но чтобы учесть
факторы, влияющее на напряжение СГ, условно исходят из
предположения независимого действия всех
намагничивающих сил СГ, т.е. предполагается, что каждая
намагничивающая сила создаёт свой собственный поток.
1) Обмотка возбуждения F0→Ф0→E0
2) Fad→Фad→Ead – составляющая намагничивающей силы
якоря по продольной оси.
jI x
E
ad
d ad
3) Faq→Фaq→Eaq
составляющая намагничивающей силы
якоря по поперечной оси.
E jI x
aq
d aq
4) Магнитный поток рассеяния обмотки статора Фp1→Ep1
E p1 jI 1×1
5) Ток в фазной обмотке статора I1 создаёт активное падение
напряжения в обмотке статора
U r1 I 1r1 1%U н
В неявнополюсных синхронных генераторах реакция
якоря характеризуется полной МДС статора F1 без разделения
ее по осям, так как в этих машинах магнитные сопротивления
по продольной и поперечной осям одинаковы. Поэтому ЭДС
статора в неявнополюсных машинах Е1, равная
индуктивному падению напряжения в обмотке статора,
пропорциональна индуктивному сопротивлению реакции
якоря ха , т. е.
E
1
j I 1 xa .
Поток реакции якоря Ф1 и поток рассеяния статора Фσ1
создаются одним током I1, поэтому индуктивные
сопротивления ха и х1 можно рассматривать как суммарное
индуктивное сопротивление
хс = ха + х1, представляющее
собой синхронное сопротивление неявнополюсной машины.
С учетом этого ЭДС реакции якоря Е1 и ЭДС рассеяния Еσ1
следует рассматривать также как сумму
с
1
1
E E E
j I 1 xa ( j I 1 x1) j I 1 xc
представляющую собой синхронную ЭДС неявнополюсной
машины. С учетом изложенного уравнение напряжений
неявнополюсного синхронного генератора имеет вид
U 1 E I 1 r1 E 0 E c I 1 r1
U E E E
1
0
c
или

Синхронные машины. Конструкция, назначение, области применения.

Если в асинхронных машинах ротор имел частоту вращения, отличную от частоты вращения магнитного поля статора, то в синхронных эти частоты равны между собой.

Конструкция и назначение синхронных машин

Синхронной машиной называется электрическая машина переменного тока, у которой частота вращения ротора n находится в строгом соответствии с частотой сети f1: n = n1 = 60 f1 / p.

На статоре синхронной машины располагается трехфазная обмотка переменного тока, называемая обмоткой якоря, а на роторе располагается обмотка постоянного тока, называемая обмоткой возбуждения. Существует две основных разновидности исполнения обмоток возбуждения: распределенные и сосредоточенные. Распределенные обмотки применяются при неявнополюсной конструкции ротора (рис. 1). В каждом пазу располагается только одна сторона катушки. Поэтому такая обмотка является однослойной.

Неявнополюсная конструкция ротора

Рис. 1

Число катушек на полюсном делении равно qf. Они соединяются последовательно, образуя полное число витков обмотки возбуждения wf = pqfwk, где wk — число витков в катушке.

Неявнополюсную конструкцию ротора имеют быстроходные синхронные машины с 2p=2 и 2p=4. Частота вращения ротора таких машин при f1=50Гц соответственно равна 3000 и 1500 об/мин. Для получения необходимой механической прочности неявнополюсные роторы выполняются из массивной стальной поковки.

Явнополюсная конструкция ротора

Рис. 2

В машинах с 2p≥4 ротор имеет явнополюсную конструкцию (рис. 2). Обмотка возбуждения таких машин выполняется сосредоточенной в виде катушек (1) и размещается на сердечниках полюсов (2). Для закрепления катушек на полюсах используются полюсные наконечники (3). Все катушки соединяются последовательно, образуя полное число витков обмотки возбуждения wf = 2pwk.

Для улучшения динамических свойств синхронной машины в полюсные наконечники помещают дополнительную короткозамкнутую обмотку (4), выполняемую аналогично короткозамкнутой обмотке асинхронной машины. Ее называют успокоительной или демпферной. Иногда роль демпферной обмотки выполняют массивные полюсные наконечники.

Область применения синхронных машин

Синхронные машины могут работать как генераторами, так и электродвигателями. Основная область применения синхронных машин — энергетика, где они используются в качестве генераторов электрической энергии. В зависимости от типа привода синхронные генераторы делятся на турбогенераторы, гидрогенераторы и дизельные генераторы.

Турбогенератор, например, — это генератор, приводимый в движение паровой турбиной, гидрогенератор вращает водяное колесо, а дизельгенератор механически связан с двигателем внутреннего сгорания.

Синхронные электродвигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов. Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и так далее.

Что такое синхронная машина? — Основные принципы

Синхронная машина состоит как из синхронных двигателей, так и из синхронных генераторов. Система переменного тока имеет некоторые преимущества перед системой постоянного тока. Таким образом, система переменного тока используется исключительно для производства, передачи и распределения электроэнергии. Машина, которая преобразует механическую энергию в электрическую энергию переменного тока, называется синхронным генератором или генератором переменного тока. Однако, если одна и та же машина может работать как двигатель, это называется синхронным двигателем .

Синхронная машина — это машина переменного тока, удовлетворительная работа которой зависит от соблюдения следующих соотношений.

Где,

  • N с — синхронная скорость в оборотах в минуту (об / мин)
  • f — частота питания
  • P — количество полюсов станка.

При подключении к системе электроснабжения синхронная машина всегда поддерживает указанное выше соотношение, показанное в уравнении (1).

Если синхронная машина, работающая как двигатель, не может поддерживать среднюю скорость (N s ), машина не будет развивать достаточный крутящий момент для поддержания своего вращения и остановится. Тогда говорят, что двигатель не работает.

В случае, когда синхронная машина работает как генератор, она должна работать с фиксированной скоростью, называемой синхронной скоростью, для выработки энергии с определенной частотой. Поскольку все устройства или машины предназначены для работы на этой частоте.В некоторых странах значение частоты составляет 50 герц .

Основные принципы синхронной машины

Синхронная машина — это просто электромеханический преобразователь, который преобразует механическую энергию в электрическую или наоборот. Фундаментальное явление или закон, который делает эти преобразования возможными, известен как Закон электромагнитной индукции и Закон взаимодействия .

Подробное описание поясняется ниже.

Закон электромагнитной индукции

Этот закон также называют первым законом электромагнитной индукции Фарадея. Этот закон относится к производству ЭДС, т.е. ЭДС индуцируется в проводнике всякий раз, когда он пересекает магнитное поле, как показано ниже:

Закон взаимодействия

Этот закон относится к созданию силы или крутящего момента, т. Е. Всякий раз, когда проводник с током помещается в магнитное поле, за счет взаимодействия магнитного поля, создаваемого проводником с током, и основным полем, сила действует на проводник, создающий крутящий момент.Цифра показана ниже:

Трехфазная синхронная машина

  • Машина, которая используется в бытовых приборах, например, небольшая машина, используемая в воздухоохладителях, холодильных установках, вентиляторах, кондиционерах и т. Д.
  • Однако большие машины переменного тока являются синхронными машинами трехфазного типа по следующим причинам.
  • При одинаковом размере рамы трехфазные машины имеют мощность почти в 1,5 раза больше, чем однофазные машины.
  • Трехфазная мощность передается и распределяется более экономично, чем однофазная.
  • Трехфазные двигатели самозапускающиеся (кроме синхронных двигателей).
  • Трехфазные двигатели имеют абсолютно равномерный постоянный крутящий момент, тогда как однофазные двигатели имеют пульсирующий момент.

В малой синхронной машине обмотка возбуждения размещена на статоре, а обмотка якоря — на роторе, тогда как в большой синхронной машине обмотка возбуждения размещена на роторе, а обмотка якоря — на статоре. .

Асинхронный двигатель

и синхронный: в чем разница?

Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей. Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

В простом двигателе постоянного тока есть вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора.Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь. В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из листов электротехнической стали.

Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо.Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока. Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора.Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила генерируется, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора.Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора. Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора.Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и напряжение статора. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает их через f r = sf. Здесь s выражается в виде десятичной дроби.

Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.

Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе. Магнитное поле статора вращается синхронно с частотой сети.

Обмотка ротора синхронного двигателя может получать ток различными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента).Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока. Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

N = 120 футов / P = 60 футов / точек

Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.

Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

  • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
  • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
  • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
  • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
  • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
  • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.

Промышленный синхронный двигатель. Синхронные двигатели переменного тока

малой мощности полезны там, где требуется точное время. Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

Существует несколько различных типов синхронных двигателей переменного тока. Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машиной. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.

Синхронные двигатели без возбуждения имеют стальные роторы. В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубцы. Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраивают специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

Гистерезисный двигатель использует широкую петлю гистерезиса в высококоэрцитивном роторе из кобальтовой стали.Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора. Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора.Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора. Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты.Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

Компьютер управляет последовательным включением питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается.Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба. В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
Его ротор состоит из многослойных стальных пластин с рядом зубцов.Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.

Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

Синхронный двигатель

— обзор

Коэффициент мощности для переменного тока

Коэффициент мощности — это коэффициент, на который умножается кажущаяся мощность в кВА для получения фактической мощности, кВт, в системе переменного тока. Это отношение синфазной составляющей линейного тока к общему току [39].

В асинхронных двигателях намагничивающая составляющая тока всегда отстает на 90 °. Следовательно, линейный ток отстает при всех нагрузках; величина зависит от нагрузки тока намагничивания.

В синхронных двигателях возбуждение обеспечивается отдельным источником постоянного тока, либо в виде отдельной мотор-генераторной установки (M-G), либо в виде возбудителя, установленного непосредственно на валу двигателя. Ток можно заставить опережать в разной степени, изменяя величину напряженности поля. Коэффициент мощности двигателей может быть отстающим, единичным или опережающим.При использовании переменного тока потребляемая мощность, называемая активной мощностью или фактической мощностью , считается энергией, используемой резистивной нагрузкой [40]. Синхронный двигатель обеспечивает единицу или опережающий фактор, а асинхронный двигатель обеспечивает единицу или запаздывающий фактор.

Применяя надлежащую величину возбуждения постоянного тока к полюсам возбуждения синхронного двигателя, он работает с единичным коэффициентом мощности. Синхронные двигатели с коэффициентом мощности Unity предназначены для работы именно таким образом.Полная нагрузка, с возбуждением, они не требуют от линии отставания реактивной кВА, а также не подают в линию опережающую реактивную кВА; они работают с единичным коэффициентом мощности с минимальным током статора и, следовательно, с самым высоким КПД [15].

Проконсультируйтесь с квалифицированным инженером-электриком о типах двигателей, предлагаемых для технологического предприятия; такая оценка сочетания синхронных и асинхронных двигателей поможет определить новый коэффициент мощности для установки, потому что чистый коэффициент запаздывания для станций означает, что вся мощность для этой установки будет стоить больше, чем если бы коэффициент был единицей или опережающим.Из Brown and Cadick [40]:

Полная мощность = EI, или ВА, или кВА

Активная мощность = EICosθ, или Вт, или кВт

Примечание: θ = угол вектора тока между полной и активной мощностью

на векторной диаграмме Реактивная мощность = EISinθ, или VAR, или kVAR

Расчетный коэффициент мощности:

F p = активная мощность / полная мощность

F p = EICosθ / (EI) = cosθ

F p = Вт / (ВАр) = (кВт) / (кВАр)

Обратите внимание, что реактивная мощность предъявляет требования к энергосистеме, но не дает никакой полезной работы.

(20-13) Номинальная мощность двигателяVA = (л.с.) (0,746) (Eff) (powerfactor)

Плата за электроэнергию основана на потребляемой мощности в кВАр; таким образом, чем ниже коэффициент мощности, тем выше плата за потребление. См. Полезные обсуждения этого вопроса в Планкенхорне [41], Валода [42] и Лазаре [43]. Плата за электроэнергию зависит от требований VAR; таким образом, чем ниже коэффициент мощности, тем выше плата за потребление.

На большинстве технологических предприятий необходимо соблюдать осторожность, чтобы поддерживать подходящий коэффициент мощности для своей системы, в противном случае это может привести к снижению затрат на электроэнергию.Если коэффициент мощности падает ниже некоторого установленного значения, например 0,8, затраты на электроэнергию увеличиваются, потому что фактическая мощность (в виде тока), необходимая для работы (в лошадиных силах), значительно меньше, чем общая мощность, подаваемая в систему установки. Разница в том, что он попадает в поле намагничивания (реактивный ток), что не соответствует реальной работе. Добавляя синхронные двигатели или конденсаторы к системе с полностью индуктивной нагрузкой, вы можете поднять коэффициент мощности с запаздывающего состояния до единицы (или почти до единицы). Синхронные двигатели могут быть спроектированы так, чтобы обеспечивать переменные величины опережающего коэффициента мощности.Это исследование или баланс, который необходимо учитывать при проектировании станции, а рекомендации должны быть подготовлены компетентными инженерами-электриками.

Обычно коэффициент мощности синхронного двигателя равен единице (1,0) или 0,8. Значения опережения 0,7 или 0,6 дадут большую коррекцию опережения для другой запаздывающей системы.

Рисунок 20-13 иллюстрирует работу с коэффициентом мощности для различных типов оборудования.

Рисунок 20-13. Коэффициент мощности различных устройств и то, как синхронные двигатели улучшают коэффициент мощности.

(Используется с разрешения: EM Synchronizer, 200-SYN-42, © 1955. Dresser-Rand Company.)

Асинхронный двигатель обычно требует реактивного намагничивания от 0,3 до 0,6 кВА на л.с. или рабочую нагрузку, но опережающую мощность 0,8. Синхронный двигатель с коэффициентом усиления будет обеспечивать мощностью корректирующего намагничивания 0,4–0,6 кВА на л.с. в зависимости от переносимой механической нагрузки. Таким образом, равные подключенные л.с. в асинхронных двигателях и синхронных двигателях с опережающим коэффициентом мощности 0,8 дадут коэффициент мощности системы примерно равный единице [39].

(20-14) реактивная кВА = (totalalkVA) 2- (кВт) 2

Это всегда отстает для асинхронного двигателя. Для синхронного двигателя с коэффициентом мощности (PF) = 1,0 кВА и кВт равны, а для любого коэффициента мощности меньше 1,0, то есть 0,9, 0,8, 0,7 и т. Д., Коэффициент мощности является опережающим. Также см. Ссылки [44–46].

Синхронный генератор — обзор

9.3.1 Синхронные генераторы

Синхронные генераторы особенно используются в прямых приводах (т. Е. Без механического умножителя).Синхронные генераторы очень выгодны, когда они имеют большое количество полюсов, однако в этом случае частота становится несовместимой с частотой сети, поэтому требуется инвертор. Следовательно, все машины с прямым приводом имеют регулируемую скорость. На рис. 9.20 показана базовая структура WECS на основе синхронного генератора с постоянными магнитами (PMSG).

Рисунок 9.20. Синхронный генератор (с фазным ротором) и преобразователь частоты.

Синхронные генераторы с прямым приводом имеют индуктор (ротор) и требуют щеточных колец для подачи постоянного тока.PMSG становятся все более популярными для приложений с регулируемой скоростью и, как ожидается, будут приобретать все большее значение в будущем.

Аэродинамическая ось ротора ветряной турбины и генератора могут быть соединены напрямую (т. Е. Без редуктора). В этом случае генератор представляет собой многополюсный синхронный генератор, рассчитанный на малую скорость. В качестве альтернативы они могут быть соединены через коробку передач, что позволяет использовать генератор с большим числом полюсов. Для работы с регулируемой скоростью синхронный генератор подключается к сети через два преобразователя мощности для регулировки частоты, которая полностью разделяет скорость генератора и частоту сети.Следовательно, частота генератора будет изменяться в зависимости от скорости ветра, тогда как частота сети останется постоянной.

Система силового преобразователя состоит из двух преобразователей, со стороны сети и со стороны генератора, соединенных между собой промежуточным звеном постоянного тока.

Основным недостатком этого метода является размер двунаправленного преобразователя, который должен соответствовать мощности генератора переменного тока. Кроме того, необходимо устранить искажения, вызванные гармониками из-за двунаправленного преобразователя, с помощью системы фильтров.Другой недостаток состоит в том, что многополюсная машина требует большого количества полюсов, что увеличивает размер машины по сравнению с генераторами с трансмиссионной муфтой.

Управление активной и реактивной мощностью для PMSG было изучено в работах. [22–28]. В исх. В [22] автор предложил метод управления ветроэнергетической системой, которая подключена к ГЭС в условиях неисправности сети. Авторы предложили использовать конденсатор на стороне постоянного тока для кратковременного накопления энергии для компенсации колебаний крутящего момента и скорости, а также для обеспечения стабильной работы ветряной турбины при сбоях в сети.Автор в работе Ref. [23] предложили стратегию управления током, чтобы ограничить сетевой ток, подаваемый на инвертор, и снизить выходную мощность машины во время сбоев в сети.

Стратегия инверторного управления ветроэнергетической системой на основе PMSG при несимметричном трехфазном напряжении была исследована в работе. [24]. Ток короткого замыкания обратной последовательности раскладывается и добавляется к току, рассчитанному контуром фазовой автоподстройки частоты (ФАПЧ). Этот метод управления обеспечивает трехфазный синусоидальный сбалансированный ток для стороны сети, однако управление напряжением промежуточного контура не рассматривается.Модель, предложенная в [5]. [25–27] не учитывает обмен энергией с индукторами. Таким образом, для случая сильно разбалансированной системы или для системы с высоким значением индуктивности этот метод неэффективен. В исх. В [28] автор предложил стратегию управления с двумя режимами настройки для раздельного управления током короткого замыкания прямой и обратной последовательности. В первом режиме достигаются сбалансированные токи на стороне сети, а во втором режиме уменьшаются пульсации напряжения промежуточного контура при несимметричных условиях сети.

Используя преобразование Парка, фактическое напряжение и ток статора преобразуются в их эквиваленты d – q , как показано на рис.9.21.

Рисунок 9.21. Парковая модель синхронной машины.

Величины статора выражаются в системе отсчета Парка, связанной с ротором:

(9.12) {vsd = Rsisd + dφsddt − ωgφsqvsq = Rsisq + dφsqdt − ωgφsd

Аналогично, потоки статора:

(

)

φsd = Ldisd + φfφsq = Lqisq

L d и L q являются составляющими индуктивности на прямой и квадратурной оси. Предполагается, что у машины гладкие полюса, поэтому L d = L q , а φ f представляет собой взаимный поток.

Подставляя уравнение. (9.12) в уравнение. (9.13) дает:

(9.14) {vsd = Rsisd + Lddisddt − ωgLqisqvsq = Rsisq + Lqdisqdt + ωg (Ldisd + φsd)

Произведенный электромагнитный момент равен:

(9.15) Tem = 3 Lq ( ) isdisq + φfisq)

Окончательные формы уравнений PMSG в системе отсчета d q следующие:

(9.16) {disddt = −RsLdisd + LqLdωgisq + 1Ldvsddisqdω = + LdqL = 32P ((Ld − Lq) isdisq + φfisq) Tem − Tm − fΩg = JdΩgdt

Синхронный генератор как ветрогенератор

Синхронный генератор как ветрогенератор
Статья
Учебники по альтернативной энергии
19.06.2010
05.12.2021

Учебники по альтернативной энергии

Синхронный генератор как ветрогенератор

Как и генератор постоянного тока в предыдущем учебном пособии, работа синхронного генератора также основана на законе электромагнитной индукции Фарадея, который работает аналогично генератору переменного тока автомобильного типа.Разница на этот раз состоит в том, что синхронный генератор вырабатывает трехфазное переменное напряжение на выходе из своих обмоток статора, в отличие от генератора постоянного тока, который выдает одиночный выход постоянного или постоянного тока. Однофазные синхронные генераторы также доступны для маломощных бытовых систем синхронных генераторов ветряных турбин.

По сути, синхронный генератор представляет собой синхронную электромеханическую машину, используемую в качестве генератора и состоящую из магнитного поля на вращающемся роторе и неподвижного статора, содержащего несколько обмоток, которые поставляют генерируемую мощность.Система магнитного поля ротора (возбуждение) создается либо с помощью постоянных магнитов, установленных непосредственно на роторе, либо с помощью электромагнитного возбуждения от внешнего постоянного тока, протекающего в обмотках возбуждения ротора.

Этот постоянный ток возбуждения передается на ротор синхронной машины через контактные кольца и угольные или графитовые щетки. В отличие от предыдущей конструкции генератора постоянного тока, синхронные генераторы не требуют сложной коммутации, что позволяет использовать более простую конструкцию. Тогда синхронный генератор работает аналогично автомобильному генератору переменного тока и состоит из двух следующих общих частей:

Основные компоненты синхронного генератора

  • Статор: — На статоре расположены три отдельные (3-фазные) обмотки якоря, физически и электрически смещенные друг относительно друга на 120 градусов, производящие выходное напряжение переменного тока.
  • Ротор: — Ротор несет магнитное поле либо в виде постоянных магнитов, либо в виде катушек с намоткой поля, подключенных к внешнему источнику постоянного тока через контактные кольца и угольные щетки.

Говоря о «синхронном генераторе», терминология, используемая для описания частей машины, является обратной по сравнению с описанием генератора постоянного тока. Обмотки возбуждения — это обмотки, создающие основное магнитное поле, которые являются обмотками ротора для синхронной машины, а обмотки якоря — это обмотки, в которых индуцируется основное напряжение, обычно называемые обмотками статора.Другими словами, для синхронной машины обмотки ротора являются обмотками возбуждения, а обмотки статора — обмотками якоря, как показано.

Конструкция синхронного генератора

В приведенном выше примере показана базовая конструкция синхронного генератора, который имеет выпуклый двухполюсный ротор. Эта обмотка ротора подключена к источнику постоянного напряжения, создающему ток возбуждения I f . Внешнее напряжение возбуждения постоянного тока, которое может достигать 250 вольт постоянного тока, создает электромагнитное поле вокруг катушки со статическими северным и южным полюсами.

Когда вал ротора генератора вращается лопатками турбины (первичным двигателем), полюса ротора также будут перемещаться, создавая вращающееся магнитное поле, поскольку северный и южный полюса вращаются с той же угловой скоростью, что и лопатки турбины (при условии прямого привода ). Когда ротор вращается, его магнитный поток разрезает отдельные катушки статора одну за другой, и по закону Фарадея в каждой катушке статора индуцируется ЭДС и, следовательно, ток.

Величина напряжения, индуцированного в обмотке статора, как показано выше, является функцией напряженности магнитного поля, которая определяется током возбуждения, скоростью вращения ротора и количеством витков в обмотке статора.Поскольку синхронная машина имеет три обмотки статора, в обмотках статора генерируется трехфазное напряжение, соответствующее обмоткам A, B и C, которые электрически разнесены на 120 o , и это показано выше.

Эта трехфазная обмотка статора подключена непосредственно к нагрузке, и, поскольку эти катушки неподвижны, им не нужно проходить через большие ненадежные контактные кольца, коммутатор или угольные щетки. Кроме того, поскольку основные катушки, генерирующие ток, неподвижны, это облегчает наматывание и изоляцию обмоток, поскольку они не подвергаются вращательным и центробежным силам, что позволяет генерировать более высокие напряжения.

Синхронный генератор с постоянными магнитами

Как мы видели, синхронные машины с возбужденным полем требуют возбуждения постоянного тока в обмотке ротора. Это возбуждение осуществляется с помощью щеток и контактных колец на валу генератора. Однако есть несколько недостатков, таких как необходимость регулярного обслуживания, очистки от угольной пыли и т. Д. Альтернативный подход заключается в использовании бесщеточного возбуждения, при котором вместо электромагнитов используются постоянные магниты.

Как следует из названия, в синхронном генераторе с постоянными магнитами (PMSG) поле возбуждения создается с помощью постоянных магнитов в роторе.Постоянные магниты могут быть установлены на поверхности ротора, встроены в поверхность или установлены внутри ротора. Воздушный зазор между статором и ротором уменьшен для максимальной эффективности и минимизации необходимого количества материала редкоземельного магнита. Постоянные магниты обычно используются в маломощных недорогих синхронных генераторах.

Для низкоскоростных ветряных генераторов с прямым приводом генератор на постоянных магнитах является более конкурентоспособным, поскольку он может иметь большее число полюсов (60 или более полюсов) по сравнению с обычным синхронным генератором с фазным ротором.Кроме того, реализация возбуждения с помощью постоянных магнитов проще, долговечнее, но не позволяет управлять возбуждением или реактивной мощностью. Одним из основных недостатков синхронных генераторов ветряных турбин с постоянными магнитами является то, что без управления потоком ротора они достигают своего максимального КПД только при одной заданной скорости ветра.

Генераторы синхронной скорости

Частота выходного напряжения зависит от скорости вращения ротора, другими словами от его «угловой скорости», а также от количества отдельных магнитных полюсов на роторе.В нашем простом примере выше синхронная машина имеет два полюса: один северный полюс и один южный полюс. Другими словами, машина имеет два отдельных полюса или одну пару полюсов , (север-юг), также известную как пары полюсов.

Когда ротор совершает один полный оборот, 360 o , генерируется один цикл наведенной ЭДС, поэтому частота будет один цикл за каждый полный оборот или 360 o . Если мы удвоим количество магнитных полюсов до четырех (две пары полюсов), то на каждый оборот ротора будут генерироваться два цикла наведенной ЭДС и так далее.

Поскольку один цикл наведенной ЭДС создается одной парой полюсов, количество циклов ЭДС, возникающих за один оборот ротора, будет, следовательно, равно количеству пар полюсов P. Итак, если количество циклов на оборот задается как: P / 2 относительно числа полюсов, а число оборотов ротора N в секунду задается как: N / 60, тогда частота (ƒ) наведенной ЭДС будет определяться как:

В синхронном двигателе его угловая скорость фиксируется частотой питающего напряжения, поэтому N обычно называют синхронной скоростью.Тогда для синхронного генератора с P-полюсом скорость вращения первичного двигателя (лопаток турбины) для получения требуемой выходной частоты наведенной ЭДС 50 Гц или 60 Гц будет:

при 50 Гц

Количество
индивидуальных полюсов
2 4 8 12 24 36 48
Скорость вращения
(об / мин)
3 000 1,500 750 500 250 167 125

при 60 Гц

Количество
индивидуальных полюсов
2 4 8 12 24 36 48
Скорость вращения
(об / мин)
3,600 1,800 900 600 300 200 150

Итак, для данного синхронного генератора, сконструированного с фиксированным числом полюсов, генератор должен приводиться в действие с фиксированной синхронной скоростью, чтобы поддерживать частоту наведенной ЭДС постоянной на требуемом уровне, 50 Гц или 60 Гц для питания сетевых устройств.Другими словами, частота создаваемой ЭДС синхронизирована с механическим вращением ротора.

Затем сверху мы можем видеть, что для генерации 60 Гц с помощью 2-полюсной машины ротор должен вращаться со скоростью 3600 об / мин, или для генерации 50 Гц с помощью 4-полюсной машины ротор должен вращаться со скоростью 1500 об / мин. . Для синхронного генератора, который приводится в действие электродвигателем или парогенератором, эта синхронная скорость может быть легко достигнута, однако при использовании в качестве синхронного генератора ветровой турбины это может быть невозможно, поскольку скорость и мощность ветра постоянно меняется.

Из нашего предыдущего руководства по проектированию ветряных турбин мы знаем, что все ветряные турбины выигрывают от ротора, работающего с оптимальным передаточным числом . Но чтобы получить TSR от 6 до 8, угловая скорость лопастей обычно очень мала — от 100 до 500 об / мин, поэтому, глядя на наши таблицы выше, нам потребуется синхронный генератор с большим количеством магнитных полюсов, например, 12 или выше, а также некоторые формы механического ограничителя скорости, такие как бесступенчатая трансмиссия или вариатор, чтобы лопасти ротора вращались с постоянной максимальной скоростью для системы ветряных турбин с прямым приводом.Однако для синхронной машины, чем больше у нее полюсов, тем больше, тяжелее и дороже становится машина, что может быть приемлемым или неприемлемым.

Одним из решений является использование синхронной машины с небольшим числом полюсов, которая может вращаться с более высокой скоростью от 1500 до 3600 об / мин, приводимой в действие через коробку передач. Низкая скорость вращения лопастей ротора ветряных турбин увеличивается за счет редуктора, который позволяет скорости генератора оставаться более постоянной при изменении скорости лопастей турбины, поскольку изменение на 10% при 1500 об / мин представляет меньшую проблему, чем изменение на 10% при 100 об / мин.Этот редуктор может согласовывать частоту вращения генератора с регулируемой частотой вращения лопастей, обеспечивая работу с регулируемой скоростью в более широком диапазоне.

Однако использование коробки передач или системы шкивов требует регулярного технического обслуживания, увеличивает вес ветряной турбины, создает шум, увеличивает потери мощности и снижает эффективность системы, поскольку для привода зубчатых колес редуктора и внутренних компонентов требуется дополнительная энергия.

Использование системы прямого привода без механической коробки передач дает много преимуществ, но отсутствие коробки передач означает более крупную синхронную машину с увеличением как размера, так и стоимости генератора, который затем должен работать на низких скоростях.Итак, как мы можем использовать синхронный генератор в низкоскоростной ветряной турбине, скорость лопастей ротора которой определяется только силой ветра. Путем выпрямления генерируемого трехфазного источника питания в источник постоянного или постоянного тока.

Синхронные генераторные выпрямители

Выпрямители — это электронные устройства, используемые для преобразования переменного (переменного тока) в постоянный (постоянный). Путем выпрямления выходной мощности синхронного генератора в источник постоянного тока, генератор ветряной турбины может работать на разных скоростях и частотах, отличных от его фиксированной синхронной скорости, преобразуя это выходное напряжение переменного тока переменной частоты / переменной амплитуды генератора в напряжение постоянного тока переменный уровень.Выпрямляя выход из переменного тока в постоянный, генератор теперь можно использовать как часть ветряных систем с подзарядкой аккумуляторов или как часть ветроэнергетической системы с регулируемой скоростью. Затем синхронный генератор переменного тока преобразуется в генератор постоянного тока.

Самый простой тип выпрямительной схемы использует схему диодного моста для преобразования переменного тока, генерируемого генератором, в переменный источник постоянного тока, амплитуда которого определяется скоростью вращения генератора. В этой схеме выпрямителя синхронного генератора, показанной ниже, трехфазный выход генератора выпрямляется до постоянного тока с помощью трехфазного выпрямителя.

Схема выпрямителя генератора

Принципиальная схема полномостового трехфазного выпрямителя переменного тока в постоянный показана выше. В этой конфигурации ветряная турбина может работать с генератором на частоте, не зависящей от синхронной частоты, поскольку изменение скорости генератора изменяет частоту генератора. Следовательно, можно изменять скорость генератора в более широком диапазоне и работать с оптимальной скоростью для получения максимальной мощности в зависимости от фактической скорости ветра.

Обратите внимание, что выходное напряжение трехфазного мостового выпрямителя не является чистым постоянным током. Выходное напряжение имеет уровень постоянного тока вместе с большим изменением переменного тока. Эта форма волны обычно известна как «пульсирующий постоянный ток», который можно использовать для зарядки аккумуляторов, но нельзя использовать в качестве удовлетворительного источника постоянного тока. Чтобы удалить эту пульсацию переменного тока, используется фильтр или схема сглаживания. В этих схемах сглаживания или схемах фильтров пульсаций используются комбинации индукторов и конденсаторов для создания плавного постоянного напряжения и тока.

При использовании в составе системы, подключенной к сети, синхронные машины могут быть подключены к сети только в том случае, если их частота, фазовый угол и выходное напряжение такие же, как у сетей, другими словами, они вращаются с синхронной скоростью. как мы видели выше. Но, выпрямляя их переменное выходное напряжение и частоту в постоянный источник постоянного тока, мы теперь можем преобразовать это постоянное напряжение в источник переменного тока правильной частоты и амплитуды, согласованный с сетью электросети, используя либо однофазный, либо трехфазный. фазоинвертор.

Инвертор — это устройство, которое преобразует электричество постоянного тока (DC) в электричество переменного тока (AC), которое может подаваться непосредственно в электрическую сеть, поскольку подключенные к сети инверторы работают синхронно с электросетью и производят электричество, идентичное энергосистема общего пользования. Подключенные к сети синусоидальные инверторы для ветряных систем выбираются с входным диапазоном, который соответствует выпрямленному выходному напряжению турбины.

Тогда преимущество непрямого подключения к сети состоит в том, что ветряная турбина может работать с переменной скоростью.Еще одно преимущество выпрямления выходного сигнала генератора состоит в том, что ветряные турбины с синхронными генераторами, которые используют электромагниты в конструкции ротора, могут использовать этот постоянный ток для питания обмоток катушки вокруг электромагнитов в роторе. Однако недостатком непрямого подключения к сети является стоимость, поскольку системе требуется инвертор и два выпрямителя, один для управления током статора, а другой для генерации выходного тока, как показано ниже.

Цепь синхронного генератора

Краткое содержание руководства

Синхронный генератор с фазным ротором уже используется в качестве ветрогенератора, но одним из основных недостатков синхронного генератора может быть его сложность и стоимость.Безредукторные генераторы с прямым приводом — это очень медленно вращающиеся синхронные генераторы с большим количеством полюсов для достижения их синхронной скорости. Генераторы с меньшим числом полюсов имеют более высокие скорости вращения, поэтому требуется коробка передач или трансмиссия, увеличивающая стоимость.

Синхронные генераторы вырабатывают электричество, основная выходная частота которого синхронизирована со скоростью вращения ротора. Генераторам, подключенным к сети, требуется постоянная фиксированная скорость для синхронизации с частотой электросети, и необходимо возбуждать обмотку ротора с помощью внешнего источника постоянного тока с помощью контактных колец и щеток.Основным недостатком одной операции с фиксированной скоростью является то, что она почти никогда не улавливает энергию ветра с максимальной эффективностью. Энергия ветра тратится впустую, когда скорость ветра выше или ниже определенного значения, выбранного в качестве синхронной скорости.

В ветряных турбинах с регулируемой скоростью используются выпрямители и инверторы для преобразования переменного напряжения, переменной частоты на выходе синхронного генератора в фиксированное напряжение, фиксированную выходную частоту 50 Гц или 60 Гц, требуемую энергосистемой. Это позволяет использовать синхронные генераторы с постоянными магнитами, снижая их стоимость.Для низкоскоростных ветряных генераторов с прямым приводом генератор на постоянных магнитах является более конкурентоспособным, поскольку он может иметь большее число полюсов (60 или более полюсов) по сравнению с обычным синхронным генератором с фазным ротором.

В следующем руководстве по ветровой энергии и генераторам ветряных турбин мы рассмотрим работу и конструкцию другого типа электрической машины, называемой индукционным генератором, также известной как «асинхронный генератор», который также может использоваться для генерации трех -Фазная сеть подключена к электросети переменного тока.

Чтобы узнать больше о «Синхронных генераторах» или получить дополнительную информацию об энергии ветра о различных доступных ветроэнергетических системах, или изучить преимущества и недостатки использования синхронных генераторов как части системы ветряных турбин, подключенных к сети, щелкните здесь, чтобы получить Ваш экземпляр одной из лучших на сегодняшний день книг по синхронным генераторам и двигателям прямо от Amazon.

Основное руководство по синхронному генератору переменного тока и его принципам

Синхронный генератор переменного тока является одним из основных элементов в электроэнергетике.Используя генераторы переменного тока, источник питания переменного тока может генерировать с заданной частотой. Другое название генераторов переменного тока — синхронный генератор. Здесь мы планируем обсудить основные особенности этих синхронных машин переменного тока.

Принцип работы синхронного генератора переменного тока

Теория, лежащая в основе выработки электроэнергии с использованием генераторов переменного тока, — это электромагнитная индукция.

Для выработки энергии катушка должна вращаться относительно магнитного поля или магнитное поле должно вращаться относительно катушки.

Генераторы, мощность которых вырабатывается магнитным полем, вращающимся относительно принципа катушки.

Обмотки синхронного генератора

Две основные части генератора — это катушка якоря и катушка ротора. Здесь ротор создает вращающийся магнитный поток (rmf). Катушки якоря неподвижны внутри генератора.

Вращающийся магнитный поток, который соединяется с ротором, используется для индукции электричества в катушке якоря. В этом синхронном генераторе доступно несколько типов роторов.

Катушки ротора генераторов возбуждаются источником постоянного тока и после подачи постоянного тока вокруг них создается магнитное поле. По электрическому действию ротор приводится во вращение первичным двигателем.

Это заставляет поток ротора вращаться вместе с ним с одинаковой скоростью. Таким образом, вращающийся магнитный поток пересекается с катушками якоря, которые соединяются с ротором.

Как генерируется ЭДС

Этот процесс будет генерировать переменную ЭДС в обмотке. Можно легко установить, что частота наведенного электромагнитного поля связана числом полярности и скоростью ротора.

f = PN / 120

Таким образом, производимая частота электричества также синхронизируется с механической скоростью вращения.

Обычно роторы с явнополюсными роторами имеют от 10 до 20 полюсов, что требует более низких оборотов. Ротор с явным полюсом работает, когда первичный двигатель вращается на относительно низких оборотах. Сердечник полюса в генераторах переменного тока используется для эффективной передачи магнитного потока. Этот сердечник также сделан из довольно толстой стальной пластины. Эта изолирующая пластина снижает эффект вихревых токов и снижает потери двигателя.

В обмотках якоря сердечник статора используется для усиления передачи магнитного потока. Подача постоянного тока в ротор генератора переменного тока через пару контактных колец. Постоянный ток подается от внешнего источника или с помощью небольшого генератора постоянного тока, который установлен на том же первичном двигателе. Такие генераторы называются самовозбуждающимися генераторами.

При изменении нагрузки выходное напряжение на клеммах генератора будет очень большим. Так что также лучше поддерживать напряжение на клеммах в заданном пределе.

Таким образом, автоматический регулятор напряжения может использоваться для поддержания напряжения на клеммах ниже определенного предела.

Регулировка напряжения может быть легко достигнута путем управления током возбуждения. Когда напряжение на клеммах генератора ниже указанного предела, АРН увеличивает ток возбуждения, поэтому поле усиливается.

Вышеупомянутые явления приводят к увеличению напряжения на клеммах. Когда напряжение на клеммах высокое, выполняется обратное. Надеюсь, что вы хорошо разбираетесь в синхронном генераторе переменного тока.

Принцип работы, типы и применение

В электрических системах, которые мы используем в промышленности, на электростанциях или в быту, двигатели и генераторы стали обычным явлением. В связи со спросом на высокоэффективные и менее энергопотребляющие системы наблюдается изобретение новых моделей этих электрических устройств. Основным расчетным фактором надежной работы двигателей и генераторов является коэффициент мощности . Это отношение приложенной мощности к требуемой мощности.Обычно общее количество электроэнергии, потребляемой предприятиями и предприятиями, рассчитывается на основе коэффициента мощности. Таким образом, коэффициент мощности всегда следует поддерживать равным единице. Но из-за роста реактивной мощности в этих устройствах коэффициент мощности уменьшается. Чтобы поддерживать коэффициент мощности равным единице, вводятся многие методы. Концепция синхронного двигателя — одна из них.

Что такое синхронный двигатель?

Определение синхронного двигателя гласит: «Двигатель переменного тока, в котором в установившемся режиме вращение вала синхронизируется с частотой приложенного тока».Синхронный двигатель работает как двигатель переменного тока, но здесь общее количество оборотов, совершаемых валом, равно целому кратному частоте приложенного тока.

Синхронный двигатель

Синхронный двигатель не использует индукционный ток для работы. В этих двигателях, в отличие от асинхронных двигателей, на stato r присутствуют многофазные электромагниты переменного тока, которые создают вращающееся магнитное поле. Здесь ротор представляет собой постоянный магнит, который синхронизируется с вращающимся магнитным полем и вращается синхронно с частотой приложенного к нему тока.

Конструкция синхронного двигателя

Статор и ротор являются основными компонентами синхронного двигателя. Здесь на корпусе статора имеется оберточная пластина, к которой прикреплены шпонки и периферийные ребра. Опоры, рамы используются для поддержки машины. Для возбуждения обмоток возбуждения постоянным током используются контактные кольца и щетки.

Цилиндрические и круглые роторы используются для 6-полюсного применения. Роторы с явнополюсными роторами используются, когда требуется большее количество полюсов. Конструкция синхронного двигателя и синхронного генератора аналогична.

Принцип работы синхронного двигателя

Работа синхронных двигателей зависит от взаимодействия магнитного поля статора с магнитным полем ротора. Статор содержит 3-х фазные обмотки и питается 3-х фазным питанием. Таким образом, обмотка статора создает трехфазное вращающееся магнитное поле. На ротор подается постоянный ток.

Ротор входит во вращающееся магнитное поле, создаваемое обмоткой статора, и вращается синхронно. Теперь скорость двигателя зависит от частоты подаваемого тока.

Скорость синхронного двигателя регулируется частотой приложенного тока. Скорость синхронного двигателя можно рассчитать как

Ns = 60f / P = 120f / p

где f = частота переменного тока (Гц)
p = общее количество полюсов на фазу
P = общее количество пар полюсов на фазу.

Если применяется нагрузка, превышающая пробивную, двигатель десинхронизируется. Трехфазная обмотка статора дает преимущество определения направления вращения.В случае однофазной обмотки невозможно определить направление вращения, и двигатель может запускаться в любом из направлений. Для управления направлением вращения в этих синхронных двигателях необходимы пусковые устройства.

Способы пуска синхронного двигателя

Момент инерции ротора останавливает крупногабаритные синхронные двигатели от самозапуска. Из-за этой инерции ротора ротор не может синхронизироваться с магнитным полем статора в момент подачи питания.Поэтому требуется некоторый дополнительный механизм, чтобы помочь ротору синхронизироваться.

В большие двигатели входят индукционные обмотки, которые создают достаточный крутящий момент, необходимый для ускорения. Для очень больших моторов для разгона ненагруженной машины используется пони-мотор. Изменяя частоту тока статора, двигатели с электронным управлением могут ускоряться даже с нулевой скорости.

Для очень маленьких двигателей, когда момент инерции ротора и механическая нагрузка желательно малы, они могут запускаться без каких-либо методов запуска.

Типы синхронных двигателей

В зависимости от метода намагничивания ротора существует два типа синхронных двигателей —

  • без возбуждения.
  • Постоянный ток Возбужден.

Двигатель без возбуждения

В этих двигателях ротор намагничивается внешним полем статора. Ротор содержит постоянное магнитное поле. Для изготовления ротора используется сталь с высокой удерживающей способностью, такая как кобальтовая сталь. Они классифицируются как двигатели с постоянным магнитом, реактивные и гистерезисные.

  • В синхронных двигателях с постоянными магнитами постоянный магнит используется вместе со сталью для конструкции ротора. У них постоянное магнитное поле в роторе, поэтому индукционную обмотку нельзя использовать для запуска. Применяются в качестве безредукторных двигателей лифтов.

Синхронный двигатель с постоянным магнитом

  • Ротор реактивного двигателя выполнен из стального литья с выступающими полюсами. Чтобы минимизировать пульсации крутящего момента, полюса ротора меньше полюсов статора. Содержит обмотку с короткозамкнутым ротором для обеспечения пускового момента ротора.Используется в измерительных приборах.
  • Двигатели с гистерезисом — это самозапускающиеся двигатели. Здесь ротор представляет собой гладкий цилиндр, изготовленный из магнитотвердой кобальтовой стали с высокой коэрцитивной силой. Эти двигатели дороги и используются там, где требуется точная постоянная скорость. Обычно используется в качестве серводвигателей.

Двигатель, возбуждаемый постоянным током

Здесь ротор возбуждается постоянным током, подаваемым непосредственно через контактные кольца. Также используются индукция переменного тока и выпрямители. Обычно они бывают больших размеров, например, больше 1 лошадиных сил и т. Д.

Двигатель с возбуждением постоянным током

Применения синхронных двигателей

Обычно синхронные двигатели используются там, где требуется точная и постоянная скорость. Эти двигатели с низким энергопотреблением включают в себя позиционирующие машины. Они также применяются в приводах роботов. В шаровых мельницах, часах, проигрывателях пластинок также используются синхронные двигатели.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *