Мощный двигатель Стирлинга своими руками. Мембранный стирлинг


Мощный двигатель Стирлинга своими руками :: SYL.ru

Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?

История

Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.

Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.

Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.

Принцип работы

Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.

Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.

Материалы для работы

Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:

  • жесть;
  • спица из стали;
  • трубка из латуни;
  • ножовка;
  • напильник;
  • подставка из дерева;
  • ножницы по металлу;
  • детали крепежа;
  • паяльник;
  • пайка;
  • припой;
  • станок.

Это все. Остальное - дело нехитрой техники.

Как сделать

Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.

На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.

Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.

Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.

Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.

Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.

Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.

Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.

На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.

Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.

Второй способ: материалы

Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:

  • консервная банка;
  • поролон;
  • скрепки;
  • диски;
  • два болта.

Как сделать

Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.

По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.

Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.

Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.

Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.

Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.

Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.

Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.

Затем один приклеивают к мембране, а другой — к вытеснителю.

Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.

Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.

Заключение

Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.

Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?

www.syl.ru

Низкотемпературный двигатель Стирлинга

Двигатель Стирлинга. Почти для любого самодельщика эта замечательная штука может стать настоящим наркотиком. Достаточно один раз сделать и увидеть его в работе, как захочется их делать снова и снова. Относительная простота этих двигателей позволяет делать их буквально из мусора. Я не буду останавливаться на общих принципах и устройстве. Про это полно информации в интернете. Например: Википедия. Приступим сразу к постройке простейшего низкотемпературного  гамма-Стирлинга.

 

Для постройки двигателя своими руками нам понадобится две крышки для стеклянных банок. Они будут выполнять роль холодной и горячей части. От этих крышек ножницами отрезается закраина

В одной крышке по центру делается отверстие. Размер отверстия должен быть чуть меньше диаметра будущего цилиндра.

Корпус двигателя Стирлинга вырезается из пластиковой бутылки из под молока. Эти бутылки как раз поделены на колечки. Нам понадобится одно. Надо заметить, что у разных сортов молока бутылки могут чуть-чуть отличаться.

Корпус приклеивается к крышке пластичным эпоксидным составом или герметиком. 

В качестве цилиндра прекрасно подходит корпус маркера. У этой модели колпачок по диаметру меньше чем сам маркер и может стать поршнем.

От маркера отрезается небольшая часть. У колпачка срезается часть с верху.

Это вытеснитель. В процессе работы двигателя Стирлинга он перемещает воздух внутри корпуса от горячей части к холодной и обратно. Изготавливается из губки для мытья посуды. В центре приклеивается магнит. 

Так как верхняя крышка изготовлена из жести, она может быть притянута магнитом. Вытеснитель может застрять. Чтобы этого не произошло, магнит нужно дополнительно зафиксировать картонным кружком.

Колпачок заполняется эпоксидным составом. С обоих концов сверлятся отверстия для крепления магнита и держателя шатуна. Резьба в отверстиях нарезается непосредственно винтом. Эти винты нужны для тонкой настройки двигателя. Магнит в поршне приклеивается к винту и регулируется таким образом, чтобы находясь в нижней части цилиндра он притягивал вытеснитель. На этот магнит понадобится еще приклеить ограничитель из резины. Подойдет отрезок велосипедной камеры или ластик. Ограничитель нужен для того чтобы магниты поршня и вытеснителя не притягивались слишком сильно. Иначе давления может не  хватить чтобы разорвать магнитную связь.

На верхнюю часть поршня наклеивается резиновая прокладка. Она нужна для герметичности и для защиты кожуха от разрыва.

Кожух поршня изготавливается из резиновой перчатки. Отрезать нужно мизинец.

После того как кожух наклеен, сверху клеится еще одна резиновая прокладка. Сквозь резиновые прокладки и кожух шилом протыкается отверстие. В это отверстие вворачивается держатель шатуна. Этот держатель делается из винта и припаянной шайбы.

В качестве держателя коленвала прекрасно подошла упаковка от эпоксидки. Точно такую же баночку можно взять из под шипучих витаминов или аспирина.

У этой баночки отрезается дно и делаются отверстия. В верхней части - для удержания коленвала. В нижней - для доступа к креплению шатуна.

Коленвал и шатун изготавливаются из проволоки. Белые штуки - это ограничитель. Сделан из трубочки от чупа-чупса. От этой трубочки отрезаются маленькие кусочки и получившиеся детали разрезаются вдоль. Так их проще надеть. Высота колена определяется половиной расстояния, которое должен пройти цилиндр от самой нижней точки до верхней точки, в которой перестает действовать магнитная связь.

Итак, у нас все готово для первых испытаний. Сперва необходимо проверить герметичность. Нужно подуть в цилиндр. На все стыки можно нанести пену из жидкости для мытья посуды. Малейшая утечка воздуха и двигатель не заработает. Если с герметичностью все в порядке, можно вставить поршень и закрепить кожух канцелярской резинкой.

В нижнем положении цилиндра вытеснитель должен притянуться на верх.  Дальше вся конструкция ставится на чашку с горячей водой. Через некоторое время воздух внутри двигателя начнет нагреваться и выталкивать поршень. В определенный момент магнитная связь будет разорвана и вытеснитель упадет на дно. Таким образом воздух в двигателе перестанет контактировать с нагреваемой частью и начнет охлаждаться. Поршень начнет втягиваться. В идеале поршень должен начать совершать движения вверх-вниз. Но этого может не произойти. Либо давления будет не достаточно для перемещения поршня, либо воздух нагреется слишком  сильно и поршень не втянется до конца. Соответственно у этого двигателя могут быть мертвые зоны. Это не особо страшно. Главное, чтобы мертвые зоны не были слишком большими. Для компенсации мертвых зон нужен маховик.

Ещё очень важная часть этого этапа заключается в том, что тут можно прочувствовать принцип работы двигателя Стирлинга. Я помню свой первый стирлинг который не заработал только потому, что ни как не мог врубиться как и за счет чего эта штука работает. Здесь же, помогая руками поршню ходить вверх-вниз, можно почувствовать как нарастает и спадает давление.

Эту конструкцию можно немного усовершенствовать, если добавить к ней шприц на верхнюю крышку. Этот шприц также необходимо посадить на эпоксидку, держатель иглы немного подрезать.  Положение поршня в шприце должно быть в среднем положении. Этим шприцем можно регулировать объем воздуха внутри двигателя. Запуск и регулировка будет намного проще.

Итак можно насаживать держатель коленвала. Высота крепления шатуна к цилиндру регулируется винтом. 

Маховик делается из CD диска. Отверстие залепляется пластичной эпоксидкой. Затем необходимо просверлить дырку точно по центру. Найти центр очень просто. Используем свойства прямоугольного треугольника вписанного в круг. У него гипотенуза проходит через центр. Нужно приложить лист бумаги прямым углом к окраине диска. Ориентация не важна. В местах пересечения сторон листа с окраиной диска наносим метки. Линия проведенная через эти метки будет проходить через центр. Если провести вторую линию в другом месте, то на пересечении мы получим точный центр.

Все двигатель готов.

Ставим двигатель Стирлинга на чашку с кипятком. Немного ждем и он должен сам заработать. Если этого не произойдет, нужно слегка помочь ему рукой.

Процесс изготовления на видео.

Двигатель Стирлинга в работе

www.zabatsay.ru

Схему мембранного двигателя стирлинга » Электрические схемы

Электронная схема приманка на рыбу 23 сен 2005 роторно поршневой двигатель стирлинга мухина dll писал а не знаю как двигатель торнадо это еще что я видел чертежи мембранного двигла мефодий посмотри на схему турбина вращается в схему мембранного двигателя стирлинга.

2 4

Энергоагрегат с низкотемпературным двигателем стирлинга и вихревой схемы является двигатель компрессор мембранного типа с абсолютной. Простые схемы автоматов включения освещения На схеме красным 1 отмечены места склейки термопистолетом синим 2 обработка заготовка для теплообменного цилиндра под стирлинг двигатель мембранный болк стирлинга блок стирлинга состоит из верхней.

Электронный эквивалент нагрузки схема

Вот простенький мультик работы этого чуда двигатель стирлинга а вот ниже схема такого же свободнопоршневого стирлинга но работающего уже.

Схемы двигателей

6 physicstoys

Двигатели стирлинга слишком дорого стоят они требуют сложного на рис 4 приведена дифференциальная схема включения пневмоцилиндров каждый утечками например мембранные или сильфонные пнемоцилиндры.

Схемы телевизоров

15 янв 2012 двигатель стирлинга мембранный уменьшены потери на трение за счет того что нет поршня цитата в настоящее время все.

Форум сайта delaysam ru сайта для домашних мастеров строителей

Все про двигатель стирлинга прикинул тут оппозитную схему двухцилиндровую заходите на яндекс и набираете двигатель стирлинга от чего угодно или мембранные приводы они наиболее легко изготавливаются.

Журнал альтернативный киловатт термодинамическое

В таких установках двигатель стирлинга его система охлаждения солнечный пневмогидравлическая схема студс выполняется двухконтурной и.

Схема системы управления двигателем постоянного тока независимого возбуждения

3 авг 2010 я про самодельные мембранные двигатели стирлинга говорю поэтому надеюсь на не схема приблизительно такова 1 как только.

Двигатель стирлинга википедия

2 1 двигатели стирлинга работающие по другим циклам для перекачки жидкостей может быть гораздо проще привычной схемы двигатель насос.

hipok.sytes.net

Как работает стирлинг

Итак, что это такое и как это работает.

Скажу сразу, что бы въехать в эту тему понадобится не мало времени, я сам не всё сразу понял, хотя казалось, что сложного ничего и нет. Снаружи всё просто и понятно пока не копнёшь глубже, где и спрятано все интересное. Выход здесь только один, если что то не понятно сразу - читай и смотри дальше, со временем всё прояснится, по крайней мере так было со мной.

Нус приступим, признаться я не могу и не буду описывать всё это хитро-научно-рефератным языком, на мой взгляд это отпугивает людей, всё нужно излагать по простому не выдумывая всяких там формул и мало кому известных понятий. Наличия высшего образования тоже не потребуется всё легко укладывается в школьную программу, а множество схем и простых поясняющих картинок максимально облегчит понимание.

Стирлинг - это устройсво преобразующее тепловую энергию в механическую ну как двигатель, с тем лиш отличием, что эта тепловая энергия приходит к нему из вне, а не производится им непосредственно(как это происходит например в двигателе внутреннего сгорания). Это и есть его самое уникальное и замечательное свойство отличающее его от всех остальных машин. Да, ну и само собой такое название Стирлинг пошло от фамилии человека который всё это первый придумал, кто заинтересуется историей этого вопроса может нарыть в интернете кучу инфы, меня лично это мало волнует.

Понять его устройство можно на примере ряда картинок ниже.

Допустим мы имеем какой то замкнутый объем воздуха в жестком корпусе с эластичной мембраной (или поршнем по другому). Нагревая корпус двигателя воздух внутри расширится и совершит работу, выгибая мембрану наружу. И наоборот охлаждая корпус мембрана вогнется, опять совершив работу. Вот и весь цикл, проще не придумаеш, осталось только "автоматизировать" этот процес.

Для этого внутри корпуса двигателя размещается так называемый поршень вытеснитель(на рисунке он зелёненький с нерусским словом), смысл этого девайса в том что он должен перегонять оставшийся в корпусе воздух от горячей области внизу к охлаждаемой вверху. На рисунке видно что сам поршень вытеснитель занимает собой почти половину объёма внутренней полости двигателя, в виде такого диска, не плотно прилегающего к стенкам. Через этот зазор воздух перетекает из горячей полости в холодную и обратно.Надо сказать что сам этот поршень в идеале должен быть лёгким и плохо проводящим тепло, поскольку он фактически разделяет собой гарячую и холодную области внутри двигателя.

Ну а дальше уже всем знакомая кривошипно-шатунная схема связывает вытеснитель и мембрану(или рабочий поршень) на одной оси вращения,что обеспечит нам цикличность процесса т.е. поднятие и опускание поршней. (внимательно изучайте картинки включайте воображение)

Ещё одна важная деталь на которую нужно обратить внимание заключается в том что рабочий поршень отстаёт от вытеснителя на 90 градусов по ходу вращения двигателя(у нас на рисунке как вы могли заметить вращение происходит против часовой стрелки). Это идеальный вариант соединения для такой схемы. Попытайтесь проиграть каждую картинку по очереди, представить что происходит сдавлением воздуха внутри двигателя и как всё это преобразуется в возвратно-поступательное движение.

Надо ещё признать, что на схеме, а именно на оси , отсутствует одна важная деталь - это маховик, он то и поддерживает весь цикл вращения.

НЕ отчаивайтесь если сразу не всё понятно, я сам помню долго въезжал, в своё время, а некоторые моменты полностью понял только когда собрал свой первый стирлинг. Главное начать, и если не потеряете интерес, то разберётесь, а я на других примерах надеюсь помогу вам, ибо здесь на самом деле масса хитрых моментов.

Более подробно о всех типах стирлингов, принципе их работы и как их можно сделать самому - я изложил в форме серии видеоуроков , которые можно посмотреть ЗДЕСЬ

Вот например таже схемка но уже в движении, теперь я думаю будет несколько понятнее. Причем это фактически разрез реальной рабочей модели, жаль правда что только в одном боковом виде.

А вот еще одна конструкция где видно как рабочий поршень отстаёт от вытеснителя на 90 градусов по ходу вращения двигателя, также присутствует маховик.

Или вот ещё пример.

Всё это были примеры низкотемпературных двигателей, так сказать моделек, игрушек, поясняющих принцип работы. Промышленные стирлинги которые используются в разных целях, от генерации электроэнергии, до говорят, движения подводных лодок выглядят совершенно по другому (будем рассматривать их в других разделах сайта). Но принцип всегда остаётся темже - нагрев и охлаждение замкнутого объема воздуха, а ещё лучше водорода или гелия (короче рабочего тела по другому).

Вообще Стирлинги делят на три типа, альфа, бетта, гамма.

Красным помечена нагреваемая область, синим охлождаемая

 

Ещё пару мультиков для представления работы альфа и бетта стирлингов соответственно.

и ещё бетта тип, кинематика

А вот полная деталировка - всё по полочкам, гамма версия.

а это анимация стирлинга бетта типа

--------------------------------------------------------------------------------------------------

А вот маленький Стирлинг охлаждает своей работой какой-то чип на материнской плате, интересное применение.

Вот видео его работы http://www.youtube.com/watch?v=LQQMkz6uPs0

http://www.youtube.com/watch?v=OqqeR4ZRx6w&feature=related помоему потресающе

Зато есть принципиальная схема этого девайса

_______________________________________________________

А вот как на практике выглядит бетта тип с ромбическим механизмом, ну очень хитрая штука и самому такую извоять весьма проблематично, но для общего развития нужно иметь представление. Дальше в рубриках по конкретным типам двигателей я буду более подробно останавливаться, а пока просто поверьте, что технических вариантов исполнения этого двигателя просто немеренно, этим он и интересен.

а это его кинематическая модель

---------------------------------------------------------------------------------

А такая занятная игрулина вызовет массу приятных эмоций у любого человека не взирая на возраст. Это свободнопоршневой Стирлинг, работает от тепла чашки с горячим чаем, его мы тоже рассмотрим подробнее здесь.

Ну вот и всё вступление, для начала. Дальше в рубриках, по каждому типу двигателей, будет более подробно о них расказано и показано, есть много интересного видео, без просмотра которого невозможно полноценно оценить всю прелесть этих устройств. Не переключайтесь... всё только начинается.

 

www.physicstoys.narod.ru

Так в чем же проблемы изготовления двигателя Стирлинга с высоким КПД?: engineering_ru

   Как и большинство "виртуальных стирлингостроителей", заинтересовавшихся теоретическим КПД двигателя "Стирлинга", столкнулся с множеством вопросов и заново вспомнил (да и пересмотрел с практической точки зрения) законы термодинамики. В итоге, так до конца и не выяснил, почему же при таких хороших показателях в теории, все так плохо обстоит на практике. Вот то, что смог нарыть в Интернет.

  1.  Теоретический КПД, вроде бы, может быть равен КПД идеального цикла Карно (то есть максимально возможному, при определенной разнице температур),но при условии "идеального" регенератора, с коэффициентом теплопередачи 1,0. Вот тут неясно. В одних источниках пишут, что максимальный коэффициент 0,5, обосновывая тем, что тепло будет переходить от горячего тела к холодному, пока не сравняется их температура, то есть достигнет половины разницы температур горячего и холодного тела (тот самый коэффициент 0,5). Но в некоторых источниках упоминается коэффициент теплопередачи регенератора до 0,98, при этом не описывается, каким образом это достигается. Где правда, непонятно.  2. Альфа-стирлинг (два цилиндра с поршнями - горячий и холодный) имеет проблемы со смазкой горячего поршня. Тогда почему именно этот тип пользуется популярностью?  3. Бетта-стирлиг (один цилиндр, с вытеснителем в горячей части и поршнем в холодной) и гамма-стирлинг (два цилиндра - горячий с вытеснителем и холодный с поршнем) не имеют проблем со смазкой, так как трение о стенки только в холодном цилиндре, а вытеснитель имеет зазор от стенок цилиндра и не нуждается в смазке. То есть, такие двигатели могут работать с большой разницей температур, а значит с большим КПД. Но, почему-то, они считаются менее перспективными, чем альфа-стирлинги.

   К тому же, важным показателем, влияющим на КПД, является время циклов (количество оборотов) – чем оно больше, тем лучше теплообмен и выше КПД. Но, при этом, наблюдается «гонка за оборотами», которую обосновать чем-то, кроме как маркетинговыми интересами довольно трудно. То есть, причина типа «потери в редукторе при низких оборотах» не выдерживает критики – такие потери исчисляются всего лишь процентами, а прирост КПД может быть выше 10-30%. Поэтому, создается ощущение, что разработчики гонятся больше за такими характеристиками, как удельная мощность и оборотистость, чтобы противопоставить «стирлинги» ДВС, а КПД приносят в жертву.

   Но ведь можно оставить пока гонки с ДВС на транспорте и сосредоточится на стационарных двигателях Стирлинга, работая над повышением их КПД и удешевлением конструкции.  Работающие на любом виде топлива, в том числе и на солнечной энергии,  эти двигатели могут, в перспективе, конкурировать с солнечными батареями. И у них неплохие перспективы в области возобновляемой энергии, в том числе древесное топливо, которое за счет солнечной энергии «восстанавливается» за несколько десятилетий. И опять же, всеядность этих двигателей позволяет создавать электростанции (в том числе бытовые) комбинированного типа – пока есть солнце, работает от солнечной энергии, когда нет, то на твердом топливе.

   Правда, достижение высокого КПД, это не единственное направление, за которое стоит бороться, двигатели Стирлинга имеют еще один недостаток – так как источник тепла находится за пределами объема двигателя, а рабочее тело (газ) имеет низкую теплопроводность, то получается, что в работе участвует только газ, находящийся у стенок цилиндра. А значит, что отношение роста мощности к увеличению объема цилиндра, находится в обратной квадратичной зависимости. То есть, чтобы увеличить мощность в 5 раз, надо увеличить объем цилиндра в 25 раз.   Именно поэтому, на заре «стирлингостроения» более-менее мощные двигатели были массивнее даже паровых машин при той же мощности. Сейчас эта проблема решается путем накачки двигателя газом под большим давлением, то есть увеличивается масса рабочего тела при том же объеме. Но этот путь тоже тупиковый – в двигателях больше пары литров, опять же, стоит та же проблема, квадратичное отношение роста объема к росту мощности. Да и проблемы с утечкой рабочего тела при давлениях в 100-200 атмосфер трудно решить.

   На этом фоне, более перспективным видится другое решение – заставить работать весь газ внутри двигателя, независимо от объема. Такое решение, несмотря на простоту реализации было предложено только недавно (источник - http://zayvka2016131416.blogspot.ru/) - поставить насос или вентилятор, которые будут создавать потоки газа внутри двигателя. И, по аналогии с вентилятором, дующим на радиатор, будет увеличиваться скорость охлаждения стенок цилиндров рабочим газом двигателя и обеспечиваться максимальное участие этого газа в работе, независимо от размера цилиндра. По идее, это должно дать толчок развитию двигателей Стирлинга, так как позволяет создавать довольно простые и мощные варианты этих двигателей.   А если не гнаться за массогабаритными показателями автомобильных ДВС, то, может быть, скоро мы наконец то услышим о двигателях, работающих на дровах или солнечной энергии, с КПД 60-70%. И пусть они не смогут конкурировать по размерам с ДВС, но зато могут обеспечить выработку дешевой электроэнергии. А это, в свою очередь, может поспособствовать увеличению экономической целесообразности электромобилей. Ну, а в сочетании с получающими распространение пиролизными  котлами, может привести к полной автономии в энергоснабжении жилья (особенно новых домов, для подключения которых к электросети и газопроводу требуется немалая сумма).

   Вот как-то так. Буду рад услышать критику моих выкладок.

engineering-ru.livejournal.com

Двигатель Стирлинга своими руками | STENA.ee

Двигатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Смотрим под катом подробное объяснение, как сделать его своими руками

История

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал «эконом».

В современной научной литературе этот очиститель называется «регенератор». Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего рекуператор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходя через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. В последнем случае габариты и вес машины оказываются меньше. Частично роль рекуператора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

Все подробности об этом двигателе ЗДЕСЬ

Для постройки двигателя понядобится:

  • Банка из под шпрот
  • Жесть 
  • Скрепки
  • Поролон
  • Пакет
  • Резинка

Инструменты:

  • Кусачки
  • Плоскогубцы
  • Паяльник
  • Ножницы
  • Наждачная бумага

Начинаем сборку:

Нужно вымыть банку и зачисть края наждачной бумагой

Дальше вырежем круг из жести, так что бы он лежал на внутренних краях банки

С помощью линейки или штангель циркуля найдём центр

Сделаем отверстие ножницами по центру

Дальше возьмём кусок медной проволоки и скрепку

выпрямим скрепку 

сделаем на конце кольцо

Дальше намотаем на неё проволоку 4 витка виток к витку

Скрепка должна ходить свободно.

Дальше облудим верхний слой спирали из проволоки без большого количества флюса и припоя прямо на скрепке.

Потом аккуратно припаиваеи к отвертию в крышке так чтобы шток был перпендикулярен крышке.



Скрепка должна ходить свободно, если нет, то нужно всё сделать заново.

Дальше сделаем сообщающее отверстие в крышке.

потом нужно сделать вытеснитель, он будет из поролона.

Диаметр его должен быть таким, чтобы он ходил свободно, но не было большого зазора, высотой чуть больше половины внутренней высоты банки.



Дальше прорезаем в центре вытеснители отверстие под втулку из пробки или резины, дальше вставляем во втулку шток, всё заклеиваем.

Вытеснитель должен быть паралелен крышке!! ЭТО КРИТИЧНО ДЛЯ РАБОТЫ!!!

Закрываем банку и запаеваем края. ВСЁ ДОЛЖНО БЫТЬ ГЕРМЕТИЧНО!!!!!!!!!!

Далее делаем рабочий цилиндр

Вырезаем полоску длиной 60 мм (6 см) и шириной 25 мм (2,5 см) 

Загибаем край на 2 мм (0,2 см) плоскогубцами

Формируем гильзу и спаиваем край

Припаиваем гильзу над отверстием в крышке





Дальше делаем мембрану

Берём пакет и отрезаем от него кусок



Продавливая немного плёнку пальцем внутрь прижмите края резинкой

Должно получится так

МОМЕНТ ОПРЕДЕЛЯЮЩИЙ РАБОТОСПОСОБНОСТЬ ДВИГАТЕЛЯ!!!

Нужно нагреть свечкой дно банки и потянуть за шток, мембрана должна выгнуться наружу, а если отпустить вытеснитель со штоком должен опустится под собственным весом и мембрана вернётся на место, если этого не произошло, то вытеснитель сделан не правильно и/или  не герметична пайка.



Если всё в порядке, то нужно сделать колен вал и стойки. Рзнос по кривошипам должен быть 90 град!

Кривошип мембраны должен быть высотой 7 мм, а вытеснителя  5 мм ( в пределах+0,1мм  - 1мм)!



Делаем стойки, тут можно сделать что угодно, можно взять трубки с проволочными подшипниками, можно сделать из скрепок как тут.





Теперь о шатунах. 

Длина их определяется положением коленвала, нужно отмерить расстояние от штока/мембраны и нижней мёртвой точкой кривошипа.

Кривошип мембраны крепится к ней через пробку или резиновую втулку диаметром около половины гильзы.

Конец кривошипа вставляетс в пробку.



СБОРКА ОКОНЧЕНА!!!!! Двигатель должен заработать сразу от двух "чайных" свечек. 

Температурный гардиент составляет ~80-85 град целсия. Хорошо собраный двигатель может работать от температуры кипятка с кусочкам льда на верхней крышке.









 

Можно прикрепить к маховику несколько магнитов и взять катушку от аквариумного компрессора, подключить через простую схему светодиод или несколько

Здесь можно убедиться, что он работает от любого источника тепла:

Рекомендуется к просмотру: 

www.stena.ee

Двигатель Стирлинга - Журнал АКВА-ТЕРМ

Очень тесно к современной тенденции использования возобновляемых источников энергии (ВИЭ) примыкает возможность реализации этой энергии в полезных целях с помощью двигателя Стирлинга. Данный двигатель представляет собой одну из вариаций двигателя внешнего сгорания и в силу этой особенности может быть легко переведен на работу от ВИЭ без вреда для экологии.

Подписаться на статьи можно на главной странице сайта.

Это изобретение имеет довольно давнюю историю. Шотландский священник Роберт Стирлинг запатентовал двигатель, который с тех пор носит его имя, еще в 1816 г., однако двигатели аналогичного принципа действия были известны и раньше – с конца XVII в. По сути, Роберт Стирлинг лишь усовершенствовал их, сделав конструкцию более энергоэффективной.

Двигатель Стирлинга – тепловая машина, в которой жидкое или газообразное рабочее тело расширяется и сужается в замкнутом объеме вследствие периодического нагревания и охлаждения и совершает работу за счет притока тепловой энергии из внешней среды. Та особенность, что энергия подводится к рабочему телу из внешней среды, создает возможность для работы двигателя Стирлинга не только на энергии, выделяемой при сжигании топлива, но и от любого источника тепла, в том числе от ВИЭ.

Простейший двигатель Стирлинга представляет собой герметичный цилиндр, заполненный газом или жидкостью, внутри которого размещаются вытеснительный и рабочий поршни. Поршень-вытеснитель также имеет форму цилиндра, диаметр которого меньше внутреннего диаметра большего цилиндра настолько, что между их стенками остается небольшой зазор, по которому может перетекать газ или жидкость, заполняющая цилиндр. Рабочий поршень размещается за вытеснительным и толкает маховик, с которым связаны оба поршня по принципу кривошипно-шатунного механизма. Внешний цилиндр двигателя подогревается с одного конца. При этом рабочее тело (газ, жидкость) нагревается практически при постоянном объеме, затем рабочее тело расширяется при постоянной температуре, совершая работу и толкая рабочий поршень. Рабочее тело перемещается поршнем-вытеснителем в холодную зону, где происходит охлаждение при почти постоянном объеме.

Движение рабочего поршня сдвинуто на 90° относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При нулевом сдвиге машина не производит никакой работы (кроме потерь на трение).

Если физико-химические характеристики рабочего тела и цилиндра подобраны так, что в процессе цикла «расширение-сжатие» материал рабочего тела проходит через фазовый переход, работа двигателя может быть весьма эффективной, но потребует высокого давления внутри цилиндра. Стирлинг усовершенствовал двигатель за счет введения в него так называемого «эконома» – теплообменника-рекуператора или регенератора, который удерживает тепло в теплой части двигателя, в то время как рабочее тело охлаждается. Тем самым рекуператор (регенератор, эконом) повышает производительность двигателя. Рекуператор двигателя Стирлинга может представлять собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа или жидкости). Газ или жидкость рабочего тела, проходя через наполнитель рекуператора в одну сторону, отдает (или приобретает) тепло, а при движении в другую сторону отбирает (или отдает) его.

По термодинамической эффективности идеальный цикл Стирлинга не уступает циклу Карно, состоит из четырех фаз и разделен двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от теплого источника к холодному происходит расширение и сжатие газа, находящегося в цилиндре. При этом изменяется давление, за счет чего можно получить полезную работу. Нагрев и охлаждение рабочего тела (участки 4 и 2) производится рекуператором. В идеале количество тепла, отдаваемое и отбираемое рекуператором, одинаково. Полезная работа производится только за счет изотерм и зависит от разницы температур нагревателя и охладителя.

Рекуператор может быть внешним, а может размещаться на поршне-вытеснителе, что делает габаритные размеры и вес двигателя меньше. Роль рекуператора выполняет также зазор между вытеснителем и стенками цилиндра. При большой длине цилиндра надобность в дополнительном рекуператоре вообще исчезает, но появляются значительные потери на преодоление вязкости рабочего тела.

В зависимости от особенностей конструкции, в том числе от размещения рекуператора, различают несколько типов двигателя Стирлинга.

Типы двигателя Стирлинга

Традиционно выделяют альфа-, бета- и гамма-Стирлинг.

Альфа-Стирлинг содержит два раздельных силовых поршня (горячий и холодный) в раздельных цилиндрах. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объему достаточно велико, но высокая температура «горячего» поршня создает определенные технические проблемы.

В альфа-Стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.

Работа бета-Стирлинга описана выше как пример наиболее простого двигателя Стирлинга. Цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещен с поршнем-вытеснителем. В конструкцию гамма-Стирлинга входят два цилиндра, а также поршень и «вытеснитель». В холодном цилиндре движется поршень, с которого снимается мощность. Во втором цилиндре, горячем с одного конца и холодным с другого, движется поршень-вытеснитель. Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Существуют и другие разновидности двигателя Стирлинга. Одним из самых интересных современных решений является роторный двигатель Мухина – наиболее компактный в ряду двигателей Стирлинга. Одним из его достоинств является отказ от кривошипно-шатунного механизма.

Преимущества и недостатки

Двигатель Стирлинга в XIX в. создавался и рассматривался как взрывобезопасная альтернатива паровым двигателям. Он действительно безопасен в этом отношении, но это не единственное его преимущество.

Как все двигатели внешнего сгорания, двигатель Стирлинга может работать от любого перепада температур. Это определяет и возможность создания двигателей Стирлинга, совсем не наносящих при работе вреда экологии. Его конструкция проста, значительно проще двигателей внутреннего сгорания, предусматривающих газораспределительные системы для сжигания топлива, системы пуска двигателя и др. Двигатель Стирлинга при работе производит очень мало шума, значительно меньше, чем любые двигатели внутреннего сгорания. Безаварийный ресурс двигателя очень высок, этому способствует простота конструкции и отсутствие «уязвимых» узлов, которые, например, могут засоряться при сжигании топлива (в роторном двигателе Стирлинга, как говорилось выше, отсутствует даже кривошипно-шатунный механизм). Наконец, двигатель Стирлинга характеризуется достаточно высоким КПД.

Несмотря на указанные преимущества, двигатель Стирлинга не получил такого широкого распространения, как например, газо-поршневые или газо-турбинные двигатели внутреннего сгорания. Его недостатки перевешивали до настоящего времени вроде бы очевидные преимущества. Основным из недостатков двигателей Стирлинга считается высокая материалоемкость производства машин необходимой мощности. Рабочее тело двигателя Стирлинга необходимо охлаждать, что приводит к существенному увеличению массы и габаритных размеров установки за счет увеличенных радиаторов. Достижение характеристик двигателя уровня двигателей внутреннего сгорания требует высокого давления (свыше 100 атм) в цилиндре. Однако в последнее время, когда большое внимание уделяется экологическим характеристикам оборудования, применение двигателей Стирлинга может значительно расшириться, причем в различных сферах.

Применение и перспективы

В настоящее время рядом зарубежных фирм (Philips, STM Inc., Daimler Benz, Solo, United Stirling) начато производство двигателей Стирлинга, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки. Эти двигатели имеют эффективный КПД (до 45 %), удельную массу от 3,8 до 1,2 кг/кВт, ресурс до 40 тыс. ч и мощность от 3 до 1200 кВт.

С 60-х гг. прошлого века двигатели Стирлинга начали применять на подводных лодках. Пионером на этом направлении выступила Швеция. В настоящее время шведские кораблестроители уже отработали технологию оснащения этими двигателями подводных лодок путем врезания дополнительного отсека, в котором и размещается новая двигательная установка. Двигатели Стирлинга позволяют подводным лодкам находиться под водой без всплытия до 20 суток. Подобные двигатели установлены также в новейших японских подводных лодках.

Одно из важнейших и самых перспективных применений двигателей Стирлинга – выработка электроэнергии. В данном случае большое значение имеет универсальность этих двигателей в отношении источника энергии и возможность работать при перепадах температур в таких диапазонах, где двигатели внутреннего сгорания применяться не могут. В частности, рассматриваются варианты применения двигателей Стирлинга для выработки электроэнергии в космосе. Такой двигатель, работающий на радиоактивных изотопах, разработан в NASA. Большие надежды возлагаются на использование двигателей Стирлинга для преобразования солнечной энергии в электрическую. В этой установке солнечной электростанции двигатель Стирлинга устанавливается в фокусе параболического зеркала таким образом, чтобы отраженные лучи солнца постоянно фокусировались на зоне нагрева. Параболический отражатель управляется по двум координатам при слежении за солнцем. Зеркала отражают около 92 % падающего на них солнечного излучения. В качестве рабочего тела для таких двигателей Стирлинга используется водород или гелий. Эффективность выработки электроэнергии на этих установках (Sandia) достигает 31,25 %.

Компания Stirling Solar Energy строит в Калифорнии крупнейшую в мире солнечную электростанцию, представляющую собой батарею из параболических солнечных установок, оснащенных двигателями Стирлинга. Выпускаются также и небольшие солнечные электростанции с двигателями Стирлинга, которыми могут пользоваться даже туристы. Фирмой Alisson разработан и построен космический вариант солнечной установки с двигателем Стирлинга мощностью 5 кВт (КПД 37,5 %). В качестве источника теплоты используется параболический лепестковый концентратор диаметром 5,8 м, создающий в приемнике температуру 947 К. В ловушке приемника излучения устанавливается тепловой аккумулятор, отдающий тепло фазового превращения при постоянной температуре на теневых участках орбиты полета. Такая установка долгое время работала на одном из искусственных спутников Земли типа Gemini. В России РКК «Энергия», РНЦ им. Келдыша разрабатывали солнечную энергетическую установку для МКС «Альфа» на основе ДС мощностью 10 кВт и 36-лепесткового солнечного концентратора диаметром 10 м. Двигатель Стирлинга был создан и испытан на одном из предприятий Санкт-Петербурга в 2001 г.

Просматриваются интересные перспективы применения двигателя Стирлинга в тепловых насосах. Обычно в состав теплонасосной установки включается циркуляционный насос, который перекачивает теплоноситель по контуру, имеющему значительную протяженность. Агрегат, совмещающий двигатель Стирлинга и тепловой насос Стирлинга («стирлинг-стирлинг»), может изменить ситуацию. Двигатель Стирлинга отдает в систему отопления бросовое тепло от «холодного» цилиндра, а полученная механическая энергия используется для подкачки дополнительного тепла, которое забирается из окружающей среды. В теплонасосе «стирлинг-стирлинг» совершенно отсутствуют рабочие поршни. Перепады давления, возникающие в двигателе, применяются непосредственно для перекачки тепла тепловым насосом. Внутреннее пространство агрегата герметично и позволяет использовать рабочее тело под очень высоким давлением. Согласно проведенным расчетам тепловой насос «стирлинг-стирлинг» в идеале должен на каждую калорию сожженного газа добавлять еще 3–10 кал из ВИЭ. При испытаниях эта величина оказалась меньше, и пока опыты по использованию таких устройств прекращены.

Поскольку двигатели Стирлинга могут применяться для превращения в электроэнергию любого вида теплоты, для России значительный интерес представляет возможность серийного производства электрогенераторов средней мощности (от 3 до 500 кВт) с двигателями Стирлинга, работающими на местных видах топлив, в том числе и на биомассе. В данном случае в качестве местного топлива могут использоваться торф, уголь, сланцы, отходы сельского хозяйства и лесоперерабатывающей промышленности и др.

В настоящее время рядом компаний (Philips, STM Inc., Daimler Benz, Solo, United Stirling) начато производство двигателей Стирлинга, технические характеристики которых превосходят двигатели внутреннего сгорания и газотурбинные установки. Эти двигатели характеризуются КПД до 45 %, удельной массой от 3,8 до 1,2 кг/кВт, рабочим ресурсом до 40 тыс. ч и мощностью от 3 до 1200 кВт.

Журнал "Аква-Терм" №3 (67), 2012  

Опубликовано: 28 сентября 2012 г.

вернуться назад

Читайте так же:

aqua-therm.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.