ШИМ-контроллер. Устройство и принцип работы.
В далекие, теперь уже времена прошлого века, в блоках питания для понижения или повышения напряжения применялись линейные трансформаторы. Диодный мост и электролитический конденсатор сглаживал пульсацию. Далее напряжение стабилизировалось линейными или интегральными стабилизаторами. Вес таких источников питания был достаточно большой, ничуть не меньше были и габариты. Чем большая мощность требовалась от БП, тем в несколько раз был объемнее и тяжелее сам блок питания.
Если
заглянуть в современную бытовую технику, то сейчас вы увидите импульсный
источник питания, или блок питания – сокращенно ИБП. В таких модулях питания
используется в качестве управления специальная микросхема-контроллер
Широтно-импульсной модуляции, или сокращенно ШИМ. Здесь мы и поговорим об
устройстве и назначении этого элемента.
Преимущества и определения ШИМ-контроллера
ШИМ-контроллер это совокупность нескольких функциональных
схем для того чтобы управлять выходными силовыми каскадами, собранными обычно
на транзисторах. Управляются они исходя из той информации, которую микросхема
ШИМ получает от выходных цепей. В зависимости от тока или выходного напряжения
на выходе блока питания ШИМ-контроллер регулирует время открытия ключевого
транзистора. Таким образом, получается замкнутый круг. Эта часть блока питания
называется обратная связь или ОС.
В литературе и интернет источниках можно встретить случаи,
когда ШИМ-контроллерами называют различные генераторы сигналов с регулировкой
широты импульса, НО без обратной связи! К таким генераторам (на NE555 и др.) не
совсем корректно применять понятие контроллер, скорее регулятор или генератор.
Широтно-импульсная
модуляция – это тот метод, когда сигнал модулируется не с помощью изменения
амплитуды или частоты, а с помощью длительности импульса. Далее, после
интеграции импульсов при помощи LC-фильтров происходит сглаживание
модулированного сигнала.
Характеристики ШИМ.
Для Широтно-модулированного сигнала характеристик всего две:
- Частота следования импульсов
- Скважность импульсов, или коэффициент заполнения. По сути это одно и то же. Разница лишь в обозначении: для скважности -это D, для заполнения используем литеру S. Коэффициент заполнения = единица / период сигнала T
S=1/T
T – Период сигнала
T=1/f
D=T/1=1/S
F – Частота сигнала
Таким
образом, коэффициент заполнения ничто иное как интервал от периода сигнала.
Отсюда следует что он (коэффициент заполнения) всегда будет меньше единицы, что
не скажешь о скважности – она всегда будет больше 1.
Возьмем пример:
Частота сигнала = 50 кГц.
Период сигнала = 20 мкс.
Теперь предположим, что ключ выхода ШИМ открывается на 4 мкс. Коэффициент заполнение составит минус 20%, а скважность будет равна 5.
Конечно же, в расчет необходимо брать конструкцию ШИМ,
исходя из количества силовых ключей.
Отличительные особенности импульсных и линейных БП.
Существенным преимуществом импульсных источников питания
перед линейными является хороший КПД (около 90%)
Структура ШИМ
Давайте рассмотрим структуру любого ШИМ-контроллера. Хоть в
своем огромном семействе разные ШИМ-ы и обладают дополнительными
функциональными особенностями, но все же они все похожи.
Заглянув в микросхему, мы увидим полупроводниковый кристалл,
в котором находятся следующие функциональные составляющие:
- Генератор последовательных импульсов.
- Источник опорного напряжения.
- Схема обратной связи (ОС), усилитель ошибки.
- Генератор прямоугольных импульсов, управляющий транзисторами, которые в свою очередь коммутируют силовые ключевые каскады.
Количество этих ключей, зависит от предназначения самого
ШИМ-контроллера. Например, простые обратноходовые схемы построены на 1-м
силовом ключе, полу мостовые на 2-х, а мостовые преобразователи на 4-х ключах.
Выбирая ШИМ-контроллер необходимо исходит из того какой ключ
используется. Например, если в блоке питания в качестве выходного каскада стоит
биполярный транзистор, то подойдет большая часть контроллеров. Связано это с
тем, что управлять таким силовым ключом достаточно просто – подавая импульсы на
базу транзистора, мы открываем и закрываем его.
А вот если мы будем использовать полевые транзисторы с
изолированным затвором (MOSFET) или IGBT транзисторы, то здесь уже немного сложнее.
Выходной транзистор-ключ мало того что нужно открыть – путем заряда затвора,
так нам его еще надо и закрыть, естественно разряжая затвор ключа. Для таких
схем используются соответствующие ШИМ-контроллеры. У них на выходе стоит 2
транзистора – один заряжает затвор ключа, а другой разряжает, замыкая его на
землю.
На заметку:
Многие ШИМ-контроллеры совмещаются с силовыми ключами в один
корпус. Если этот контроллер для маломощного блока питания, то выходные
транзисторы устанавливаются прямо в микросхему контроллера.
В случае же если блок питания достаточно мощный, то
интеграция происходит в обратную сторону – микросхема ШИМ-контроллер
устанавливается в корпус силового ключа. Такую микросхему легко установить на
радиатор. Соответственно количество выводов у такой микросхемы не как у
транзистора.
Грубо говоря, ШИМ-контроллер представляет собой компаратор, на один из входов которого
приходит сигнал обратной связи, на другой пилообразный сигнал генератора. Когда
первый по амплитуде превышает второй, на выходе формируется импульс.
Тем самым ширина импульса на выходе зависит от соотношения
входных сигналов. Предположим, что мы подключили более мощную нагрузку к выходу
БП, и напряжение дало просадку. На обратной связи будет тоже падение. Что же
произойдет?
В периоде сигнала начнет преобладать пилообразный сигнал,
длительность импульсов на выходе увеличится и напряжение компенсируется.
Происходит это все в доли секунды.
Частота работы генератора ШИМ-а задается RC-цепью
Пример использования ШИМ-контроллера на базе TL494 –
довольно распространённой микросхемы. Далее рассмотрим назначение отдельных
выводов этой микросхемы.
Давайте разберем назначение и название этих выводов:
- Vcc (Ucc, Vss)– вывод питания микросхемы.
- GND (Ground – земля) – земля или общий провод
- OUT – выход контроллера. С этого вывода и выходит управляющий сигнал для переключения ключей. Иногда выходные выводы обозначают HO и LO (для полумоста)
- Vc (Uc) – Вывод контролирующий питание. При пониженном питании возможен перегрев и выход из строя ключей. Контрольный вывод заблокирует работу контроллера в таком случае.
- Vref – опорное напряжение, чаще всего на этот вывод вешается конденсатор, соединенный с землей.
- ILIM – сигнал с измерителя тока. Соединен с обратной связью для ограничения тока.
- ILIMREF – регулировочный вывод для сработки по току
- SS – мягкий старт контроллера. Используется для плавного запуска блока питания и выхода в штатный режим работы.
- RtCt – выводы RC-цепи, которая и задает частоту работы ШИМ.
- CLOCK – выходной сигнал тактовых синхроимпульсов. Предназначен для синхронизации работы нескольких ШИМ-контроллеров в одной схеме.
- RAMP – сравнивающий вывод. На нем присутствует пилообразный сигнал генератора и сигнал обратной связи для формирования ШИМ -сигнала.
- INV и NOINV – входы компаратора, формирующие сигнал усилителя ошибки. От величины напряжения на INV зависит длительность импульса ШИМ.
- EAOUT – дополнительный выход усилителя ошибки.
Для того чтобы закрепить сказанное выше рассмотрим пару
примеров использования ШИМ-контроллеров, а так же их схем включения. Сделаем
это на примере микросхем:
Эти микросхемы часто используются в различных блоках питания, в том числе и компьютерных. Когда дело доходит до переделки компьютерного блока питания в лабораторный бп или зарядное устройство для аккумулятора, то, как раз стараются подобрать бп на TL494.
Обзор ШИМ TL494
Технические характеристики ШИМ-контроллера TL494
Ниже на рисунке дана распиновка TL494:
- Неинвертирующий вход первого компаратора ошибки
- Инвертирующий вход первого компаратора ошибки
- Вход обратной связи
- Вход регулировки мертвого времени
- Вывод для подключения внешнего времязадающего конденсатора
- Вывод для подключения времязадающего резистора
- Общий вывод микросхемы, минус питания
- Вывод коллектора первого выходного транзистора
- Вывод эмиттера первого выходного транзистора
- Вывод эмиттера второго выходного транзистора
- Вывод коллектора второго выходного транзистора
- Вход подачи питающего напряжения
- Вход выбора однотактного или же двухтактного режима работы микросхемы
- Вывод встроенного источника опорного напряжения 5 вольт
- Инвертирующий вход второго компаратора ошибки
- Неинвертирующий вход второго компаратора ошибки
Обзор микросхемы UC3843
Еще одна популярная микросхема используемая в качестве ШИМ-контроллеров компьютерных и не только блоков питания – это микросхема 3843. распиновка её находится ниже. Как видно, у нее 8 выводов, но функции такие же как у TL949. Можно встретить эту микросхему в 14-выводном корпусе и часть выводов у неё (NC) – то есть не используется.
Рассмотрим назначение выводов:
- Вход компаратора (усилителя ошибки).
- Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.
- Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.
- Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.
- Общий.
- Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.
- Напряжение питания микросхемы.
- Выход источника опорного напряжения (5В, 50 мА)
Структура микросхемы UC3843
Можно заметить, что и эта микросхема тоже похожа на все остальные ШИМ-контроллеры.
Простой блок питания на UC3842
Микросхема ШИМ с силовым ключом в одном корпусе
Подобные ШИМ-контроллеры используются как в импульсных блоках питания на базе импульсного трансформатора, так и в DC-DC понижающих или повышающих преобразователях.
Можно привести в пример одну из самых распространенных микросхем в этом сегменте – LM2596. На её базе можно найти большое количество схем преобразователей, в том числе и изображенная ниже.
LM2596 включает в себя все технические решения, описанные выше, плюс в неё еще интегрирован силовой ключ на ток до 3 Ампер.
Структура микросхемы LM2596
Как можно увидеть больших отличий от микросхем, которые мы рассматривали ранее в ней нет.
Еще один пример блока питания для светодиодных лент на ШИМ-контроллере 5L0380R – У неё всего 4 вывода. Как можно заметить в схеме отсутствует силовой ключ. Естественно он в микросхеме, а сама микросхема выполнена в корпусе транзистора и крепится на радиатор.
Микросхема ШИМ 5L0380R
Изучая ШИМ-контроллеры можно сделать несколько выводов: Если мы имеем дело с мощным источником питания и нам необходима достаточная гибкость использования этого контроллера, то такая микросхема как TL494 (и подобные) подходит для таких задач лучше. А если блок питания средней и невысокой мощности, то вполне свою роль выполнят ШИМ-контроллеры с интегрированными в них силовыми ключами. В таких бп нет больших требований к пульсациям и помехам, а выходные цепи можно сгладить фильтрами. Обычно это блоки питания для бытовой техники, светодиодных лент, ноутбуков, зарядных адаптеров.
И напоследок.
Ранее мы уже говорили о том, что ШИМ-контроллер это механизм, который на
базе сформированных импульсов за счет изменения ширины импульсов формирует
среднее значение напряжения управляемое с цепей обратной связи. Хочу заметить,
что классификация и название у каждого автора могут быть абсолютно разными.
ШИМ-контроллером могут называть простой регулятор напряжения. В то же время сам
ШИМ-контроллер в блоке питания может быть назван – “блокинг-генератор”,
“интегральный субмодуль”, “задающий генератор” От того как
его назвал тот или иной автор суть не меняется, но могут возникнуть непонимания
и разночтения.
UC3842 описание, принцип работы, схема включения
ШИМ UC3842AN
UC3842 представляет собой схему ШИМ–контроллера с обратной связью по току и напряжению для управления ключевым каскадом на n-канальном МОП транзисторе, обеспечивая разряд его входной емкости форсированным током величиной до 0.7А. Микросхема SMPS контроллер состоит в серии микросхем UC384X (UC3843, UC3844, UC3845) ШИМ-контроллеров. Ядро UC3842 специально разработано для долговременной работы с минимальным количеством внешних дискретных компонентов. ШИМ-контроллер UC3842 отличается точным управлением рабочего цикла, температурной компенсацией и имеет невысокую стоимость. Особенностью UC3842 является способность работать в пределах 100% рабочего цикла (для примера UC3844 работает с коэффициентом заполнения до 50%.). Отечественным аналогом UC3842 является 1114ЕУ7. Блоки питания выполненные на микросхеме UC3842 отличаются повышенной надежностью и простотой исполнения.
Рис. Таблица типономиналов
Данная таблица дает полное представление в различиях микросхем UC3842, UC3843, UC3844, UC3845 между собой.
- Общее описание.
- Немного теории.
- Схема подключения.
- Ремонт блока питания на основе ШИМ UC384X.
Общее описание
Для желающих более глубоко ознакомится с ШИМ-контроллерами серии UC384X, рекомендуется следующий материал.
- Datasheet UC3842B (скачать)
- Datasheet 1114ЕУ7 отечественный аналог микросхемы UC3842А (скачать).
- Статья «Обратноходовой преобразователь», Дмитрия Макашева (скачать).
- Описание работы ШИМ-контроллеров серии UCX84X (скачать).
- Статья «Эволюция обратноходовых импульсных источников питания», С. Косенко (скачать). Статья опубликована в журнале «Радио» №7-9 за 2002г.
-
Документ от НТЦ СИТ, самое удачное описание на русском языке для ШИМ UC3845 (К1033ЕУ16), настоятельно рекомендуется для ознакомления. (Скачать).
Различие микросхем UC3842A и UC3842B, A потребляет меньший ток до момента запуска.
UC3842 имеет два варианта исполнения корпуса 8pin и 14pin. Расположение выводов этих исполнений существенно отличаются . Далее будет рассматриваться только вариант исполнения корпуса 8pin.
Упрощенная структурная схема, необходима для понимания принципа работы ШИМ-контроллера.
Рис. Структурная схема UC3842
Структурная схема в более подробном варианте, необходима для диагностики и проверки работоспособности микросхемы. Так как рассматриваем вариант исполнения 8pin, то Vc-это 7pin, PGND-это 5pin.
Рис. Структурная схема UC3842 (подробный вариант)
Рис. Расположение выводов (pinout) UC3842
Здесь должен быть материал по назначению выводов, однако гораздо удобнее читать и смотреть на практическую схему включения ШИМ-контроллера UC3842. Схема нарисована настолько удачно, что намного упрощает понимание назначение выводов микросхемы.
Рис. Схема включения UC3842 на примере блока питания для TV
1. Comp:(рус. Коррекция) выход усилителя ошибки. Для нормальной работы ШИМ–контроллера необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС. Если на этом выводе напряжение занизить ниже 1 вольта, то на выходе 6 микросхемы будет уменьшаться длительность импульсов, тем самым уменьшая мощность данного ШИМ–контроллера.
2. Vfb: (рус. Напряжение обратной связи) вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ШИМ–контроллера UC3842. Результат сравнения модулирует скважность выходных импульсов, в результате выходное напряжение блока питания стабилизируется. Формально второй вывод служит для сокращения длительности импульсов на выходе, если на него подать выше +2,5 вольта, то импульсы сократятся и микросхема снизит выдаваемую мощность.
3. C/S: (второе обозначение I sense) (рус. Токовая обратная связь) сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора . В момент перегрузки МОП транзистора напряжение на сопротивлении увеличивается и при достижении определённого порога UC3842A прекращает свою работу, закрывая выходной транзистор. Проще говоря, вывод служит для отключения импульса на выходе, при подаче на него напряжения выше 1 вольта.
4. Rt/Ct: (рус. Задание частоты) подключение времязадающей RC-цепочки, необходимой для установки частота внутреннего генератора. R подключается к Vref — опорное напряжение, а С к общему проводу (обычно выбирается несколько десятков nF). Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием ключевого транзистора, а снизу — мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц, но иногда источник питания вполне нормально работает и при значительно большей или значительно меньшей частоте.
Для времязадающей RC-цепочки лучше отказаться от керамических конденсаторов.
5. Gnd: (рус. Общий) общий вывод. Общий вывод не должен быть соединён с корпусом схемы. Это земля «горячая» соединяется с корпусом устройства через пару конденсаторов.
6. Out: (рус. Выход) выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).
7. Vcc: (рус. Питание) вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34, обратите внимание, что данная микросхема имеет встроенный триггер Шмидта(UVLO), который включает микросхему, если напряжение питания превышает 16 вольт, если-же напряжение по каким-либо причинам станет ниже 10 вольт (для других микросхем серии UC384X значения ON/OFF могут отличатся см. Таблицу Типономиналов ), произойдёт её отключение от питающего напряжения. Микросхема также обладает защитой от перенапряжения: если напряжение питания на ней превысит 34 вольта, микросхема отключится.
8. Vref: выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В. Подключается к одному из плеч делителя служит для оперативной регулировки Uвыхода всего блока питания.
Немного теории
Схема отключения при понижении входного напряжения
Рис. Схема отключения при понижении входного напряжения
Схема отключения при понижении входного напряжения или UVLO-схема(по-английски отключение при понижении напряжения – Under-Voltage LockOut) гарантирует, что напряжение Vcc равно напряжению, делающему микросхему UC384x полностью работоспособной для включения выходного каскада. На Рис. показано, что UVLO-схема имеет пороговые напряжения включения и выключения, значения которых равны 16 и 10, соответственно. Гистерезис , равный 6В, предотвращает беспорядочные включения и выключения напряжения во время подачи питания.
Генератор
Рис. Генератор UC3842
Частотозадающий конденсатор Ct заряжается от Vref(5В) через частотозадающий резистор Rt, а разряжается внутренним источником тока.
Микросхемы UC3844 и UС3845 имеют встроенный счетный триггер, который служит для получения максимального рабочего цикла генератора, равного 50%. Поэтому генераторы этих микросхем нужно установить на частоту переключения вдвое выше желаемой. Генераторы микросхем UC3842 и UC3843 устанавливается на желаемую частоту переключения. Максимальная рабочая частота генераторов семейства UC3842/3/4/5 может достигать 500 кГц.
Считывание и ограничение тока
Рис. Организация обратной связи по току
Преобразование ток-напряжение выполнено на внешнем резисторе Rs, связанном с землей. RC фильтр для подавления выбросов выходного ключа. Инвертирующий вход токочувствительного компаратора UC3842 внутренне смещен на 1 Вольт. Ограничение тока происходит, если напряжение на выводе 3 достигает этого порогового значения.
Усилитель сигнала ошибки
Рис. Структурная схема усилителя сигнала ошибки
Неинвертирующий вход сигнала ошибки не имеет отдельного вывода и внутренне смещен на 2,5 вольт. Выход усилителя сигнала ошибки соединен с выводом 1 для подсоединении внешней компенсирующей цепи, позволяя пользователю управлять частотной характеристикой замкнутой петли обратной связи конвертора.
Рис. Схема компенсирующей цепи
Схема компенсирующей цепи, подходящая для стабилизации любой схемы преобразователя с дополнительной обратной связью по току, кроме обратноходовых и повышающих конвертеров, работающих с током катушки индуктивности.
Способы блокировки
Возможны два способа блокировки микросхемы UC3842:
повышение напряжения на выводе 3 выше уровня 1 вольт,
либо подтягивание напряжения на выводе 1 до уровня не превышающего падения напряжения на двух диодах, относительно потенциала земли.
Каждый из этих способов приводит к установке ВЫСОКОГО логического уровня напряжения на выходе ШИМ-копаратора (структурная схема). Поскольку основным (по умолчанию) состоянием ШИМ-фиксатора является состояние сброса, на выходе ШИМ-компаратора будет удерживаться НИЗКИЙ логический уровень до тех пор, пока не изменится состояние на выводах 1 и/или 3 в следующем тактовом периоде (периоде, который следует за рассматриваемым тактовым периодом, когда возникла ситуация, требующая блокировки микросхемы).
Схема подключения
Простейшая схема подключения ШИМ-контроллера UC3842, имеет чисто академический характер. Схема является простейшим генератором. Несмотря на простоту данная схема рабочая.
Рис. Простейшая схема включения 384x
Как видно из схемы, для работы ШИМ-контроллера UC3842 необходима только RC цепочка и питание.
Схема включения ШИМ контроллера ШИМ-контроллера UC3842A, на примере блока питания телевизора.
Рис. Схема блока питания на UC3842A
Схема дает наглядное и простое представление использования UC3842A в простейшем блоке питания. Схема для упрощения чтения, несколько изменена. Полный вариант схемы можно найти в PDF документе «Блоки питания 106 схем» Товарницкий Н.И.
Схема включения ШИМ контроллера ШИМ-контроллера UC3843, на примере блока питания маршрутизатора D-Link, JTA0302E-E.
Рис. Схема блока питания на UC3843
Схема хоть и выполнена по стандартному включению для UC384X, однако R4(300к) и R5 (150) выводят из стандартов. Однако удачно, а главное, логично выделенные цепи, помогают понять принцип работы блока питания.
Блок питания на ШИМ-контроллере UC3842. Схема не предназначена для повторения, а преследует только ознакомительные цели.
Рис. Стандартная схема включения из datasheet-a (схема несколько изменена, для более простого понимания)
Ремонт блока питания на основе ШИМ UC384X
Проверка при помощи внешнего блока питания
Рис. Моделирование работы ШИМ контроллера
Проверка работы проводится без выпаивания микросхемы из блока питания. Блок питания перед проведением диагностики необходимо выключить из сети 220В!
От внешнего стабилизированного блока питания подать напряжение на контакт 7(Vcc) микросхемы напряжение более напряжения включение UVLO, в общем случае более 17В. При этом ШИМ-контроллер UC384X должен заработать. Если питающее напряжение будет менее напряжения включения UVLO (16В/8.4В), то микросхема не запустится. Подробнее про UVLO можно почитать здесь.
Проверка внутреннего источника опорного напряжения
У рабочего ШИМ-контроллера UC384X напряжение на контакте 8(Vref) должно быть +5В.
Проверка UVLO
Если внешний источник питания позволяет регулировать напряжение, то желательно проверить работу UVLO. Изменяя напряжение на контакт 7(Vcc) контакте в рамках диапазона напряжений UVLO опорное напряжение на контакте 8(Vref) = +5В не должно меняться.
UC3842 и UC3844 напряжение включения 16В, напряжение выключения 10В
UC3843 и UC3845 напряжение включения 8,4В, напряжение выключения 7,6В
Подавать напряжение 34В и выше на контакт 7(Vcc) не рекомендуется. Возможно наличие в цепи питания ШИМ-контроллера UC384X защитного стабилитрона, тогда выше рабочего напряжения этого стабилитрона подавать не рекомендуется.
Проверка работы генератора и внешних цепей генератора.
Для проверки потребуется осциллограф. На контакте 4(Rt/Ct) должна быть стабильная «пила».
Проверка выходного управляющего сигнала.
Для проверки потребуется осциллограф. В идеале на контакте 6(Out) должны быть импульсы прямоугольной формы. Однако исследуемая схема может отличаться от приведенной и тогда потребуется отключить внешние цепи обратной связи. Общий принцип показан на рис. – при таком включении ШИМ-контроллер UC384X гарантированно запустится.
Рис. Работа UC384x с отключенными цепями обратной связи
Рис. Пример реальных сигналов при моделировании работы ШИМ контроллера
Если БП с управляющим ШИМ-контроллером типа UC384x не включается или включается с большой задержкой, то проверьте заменой электролитический конденсатор, который фильтрует питание (7 вывод) этой м/с. Также необходимо проверить элементы цепи начального запуска (обычно два последовательно включенных резистора 33-100kOhm).
При замене силового (полевого) транзистора в БП с управляющей м/с 384x следует обязательно проверять резистор, выполняющий функцию датчика тока (стоит в истоке полевика). Изменение его сопротивления при номинале в доли Ома очень сложно обнаружить обычным тестером! Увеличение сопротивления этого резистора ведет к ложному срабатыванию токовой защиты БП. При этом можно очень долго искать причины перегрузки БП во вторичных цепях, хотя их там вовсе и нет.
ШИМ контроллеры — справочник по микросхемам для импульсных блоков питания
Наибольшее распространение в источниках питания для бытовой аппаратуры получили импульсные блоки питания с импульсным трансформатором, в которых силовой ключ работает на постоянной частоте повторения импульсов, а длительность самих импульсов изменяется под действием формирователя широтно-импульсной модуляции ШИМ (ШИМ, англ. pulse-width modulation (PWM)).
Определение: широтно-импульсная модуляция — процесс управления мощностью, подводимой к нагрузке, путем изменения скважности импульсов, при постоянной частоте.
Принцип работы импульсных блоков питания на основе широто-импульсной модуляции
Рис. 1. Принцип формирования ШИМ.
Формирование ШИМ осуществляется с помощью порогового элемента ПЭ, на один вход которого подается пилообразное напряжение Uпил а на второй — медленно изменяющееся напряжение Uизм, пропорциональное значению выходного напряжения лока питания Uвых. Изменение наклона пилы или уровня напряжения Uизм приводит к изменению момента срабатывания ПЭ, а значит, и длительности импульсов tо на выходе ключа К (рис. 1). Отметим, что пилообразное напряжение может сниматься как с выхода специального генератора, так и с низкоомного резистора, включенного последовательно с силовым ключом К (во время замкнутого состояния ключа ток, проходящий по нему и по соответствующей обмотке импульсного трансформатора, близок по форме к пилообразному).
В схему управления обычно входят задающий генератор (чаще всего, RC-типа или блокинг-гене-ратор), широтно-импульсный модулятор (ШИМ), цепи запуска, стабилизации (цепи обратных связей) и защиты. Весьма часто, для уменьшения помех на изображении, работу задающего генератора синхронизируют со строчной разверткой, для чего на схему управления поступают строчные импульсы обратного хода (СИОХ).
Рис. 2. Структурная схема импульсного стабилизатора телевизора с ШИМ.
Напряжение с выпрямителя Uвх подается на ключ К, соединенный последовательно с первичной обмоткой импульсного автотрансформатора L1 и эталонным резистором R24. Ключ К открывается в моменты прихода на него импульсов с усилителя У, длительность которых определяет значения напряжений на выходах вторичных выпрямителей В1 и В2. С выхода выпрямителя В2 через измерительную схему ИС напряжение поступает на один — из входов СС; на другой ее вход подается напряжение с источника опорного напряжения (ИОН).
Выходное напряжение ошибки с СС управляет проводимостью генератора тока ГТ, которая определяет длительность импульсов на выходе схемы ШИМ. Период следования импульсов с генератора Г, поступающих на формирователь ШИМ, соответствует периоду следования импульсов строчной развертки телевизора, так как синхронизируется ими по входу «Синхр».
Формирователь Ф улучшает форму прямоугольных импульсов. При возрастании падения напряжения на R24 срабатывает схема защиты СЗ и запрещает проход импульсов на ключ К. При включении телевизора стабилизатор запускается броском тока через резистор R14; в стационарном режиме стабилизатор питается от схемы самоподпитки С.
Схема импульсного блока питания предъявляет высокие требования к значениям предельно допустимых электрических параметров транзистора, используемого в ключевом каскаде. В течение времени tо (рис. 1), когда транзистор открыт, по обмотке импульсного трансформатора протекает пилообразно возрастающий ток. При чрезмерно «широком» отпирающем импульсе («пила» слишком долго нарастает) или при коротком замыкании на выходе блока питания («пила» имеет слишком большую крутизну) транзистор может выйти из строя. С другой стороны, при протекании тока происходит накопление энергии в магнитном поле трансформатора, а при закрывании транзистора возникает ЭДС самоиндукции е, значение которой зависит от питающего каскад напряжения Еп, времени открытого tо и закрытого tз состояния транзистора: е = Eпtо/tз.
Максимальное напряжение, прикладываемое к коллектору транзистора, Uк = Еп (1 + tо/tз.) может оказаться значительным (например, при tо = tз Uк=2Eп). Таким образом, эффективным средством защиты транзистора ключевого каскада от пробоя и от перегрузки по току является соответствующая регулировка соотношения tо/tз с помощью схемы широтно-импульсной модуляции ШИМ. Кроме того, для защиты выходного транзистора от пробоя к его коллектору подключают демпфирующие цепочки, составленные из резисторов, конденсаторов, диодов; между базой и эмиттером включают низкоомный резистор. Для демпфирования паразитных колебаний применяется специальная рекуперационная обмотка импульсного трансформатора с подключенным к ней выпрямителем.
Для уменьшения наводок от импульсного блока питания диоды выпрямителей шунтируются конденсаторами небольшой емкости; в цепи сглаживающих фильтров включают дроссели, роль которых нередко выполняет кусочек проволоки, продетой в ферритовую трубку; большое внимание уделяется экранированию и заземлению.
С целью получения дополнительных номиналов стабильного выходного напряжения в состав импульсных блоков питания нередко входит маломощный линейный стабилизатор, подключаемый к выходу одного из вторичных выпрямителей. В бестрансформаторных импульсных блоках питания сетевое напряжение подается на выпрямитель через специальный резистор, ограничивающий бросок тока в момент включения телевизора. Специфической особенностью блоков питания, применяемых в цветных телевизорах, является наличие в некоторых из них схемы размагничивания маски и бандажа кинескопа.
Смотрите также материалы, где рассматриваются основные принципы работы импульсных блоков питания на основе широто-импульсной модуляции:
Импульсные блоки питания структурная схема, принципы работы
Трансформаторные преобразователи с задающими генераторами
Онлайн справочник по микросхемам для импульсных блоков питания
Самый простой способ найти нужную документацию на микросхему для блоков питания, их цоколевку, типовую схему включения — воспользоваться быстропоиском в конце страницы или пролистать справочник и ознакомиться с его содержанием.
Быстропоиск:
Микросхемы: HM9207
| IX1779ce
| KA3842
| KA3882
| M67209
| MA2830
| MA2831
| STK730-080
| STK7348
| STR451
| STR6307
| STR10006
| STR11006
| STR40115
| STR50103
| STR50115
| STR54041
| STR80145
| STRD1816
| STRD6004
| STRD6601
| STR-M6549
| STR-S5941
| TDA4600
| TDA4601
| TDA4601b
| TDA4605
| TDA8380
| TEA1039
| TEA2018
| TEA2019
| TEA2162
| TEA2164
| TEA2260
| TEA2262
| TEA5170
| UAA4600
| UC2842 | UC3842
| UC2844 | UC2845 | UC3844 | UC3845
Подробнее о ШИМ контроллерах: varyag_nord — LiveJournal
Микросхем ШИМ очень большое разнообразие. Но принцип действия у всех одинаков. На схемах он часто называется PWM.
Наиболее популярные корпуса это DIP-8 и TO-220
Основные отличия ШИМ контроллеров:
1. Тип корпуса
2. Распиновка
3. Мощность
4. Частота работы
Схемы включения:
1. На примере Viper22
DRAIN, DRN, D — это 5,6,7,8 выводы сток полевого транзистора он идет на конец первичной обмотки трансформатора. К другой стороне этой обмотки подключен «+» 300В входного конденсатора.
SOURCE, SRC, S — это 1 и 2 выводы исток, к нему подводится «-» с диодного моста.
FEED BACK FB — это 3 вывод. Обратная связь идет на оптопару (может бытьPH817 или KIA817)
VDD — Это плюс питания ШИМ. Браться оно может как со второй первичной обмотки (см. схему выше), так и со вторичной (на рисунке не представлено).
2. На примере DM311:
Второй вывод первичной идет на DRAIN 6,7,8
Минусовой общий провод на первый вывод
Второй вывод на VDD
Третий вывод это FB
Четвертый вывод это через обвязочный резистор на корпус.
Пятый вывод стартового питания бывает идет с плюса после входного кондера через резисторы. А бывает он запитывается с переменочки перед диодным мостом, через дополнительный диод и резисторы.
Часто бывает, что резистор или диод на стартовом питании вылетают и ШИМ не запускается.
3.Пример ШИМ на микросхеме STR A6252
D — DRAIN — 7 и 8 выводы идут на первичную катушку.
GND — 3 вывод На корпус на общий провод.
S\DCP — первый вывод. Резистор обвязки.
FM/SS второй вывод — конденсатор обвязки
FB — четвертый вывод, обратная связь
VCC — Питание
4. Микросхема FSDM0565R
DRAIN — на первичную обмотку
GND — на корпус
VCC — Питание
FeedBack — обратная связь. Идет на оптопару.
N.C. — вывод не используется
Vstr — стартовое напряжение в момент запуска.
При подборе аналога, надо ставить микросхему не слабее по мощности и с такой же частотой.
Если у Вас есть, что-то дополнить или исправить, пишите комментарий 🙂
Часто встречающиеся микросхемы:
1. Viper22
2. FSDM311
3. FSDh421
4. STR A6252
Подбор микросхемы ШИМ:
Если при ремонте, микросхему до Вас кто-то выпаял или она расколота и затруднительно её опознать, то можно воспользоваться специальным сервисом по опознанию микросхем. В этом сервисе необходимо ввести данные о том какие дорожки к каким выводам микросхемы на плате подходят.
Например:
Если первая дорожка идет на конденсатор и на корпус — это может быть какая-то обвязка.
Второй вывод идет через керамический конденсатор на общий провод, затем стабилитрон и через резистор на оптопару — значит второй вывод это FB
третий через резистор и конденсатор на корпус.
4 и 5 соединены вместе и через дроссель идут на первичную обмотку — значит это DRAIN
6 — пустой — N\C
7 — электролит на корпус и через резисторы подпитка и с диода питание, значит — VDD/VCC
8 — на корпус.
Таблица есть на сайте. http://remont-aud.net/ic_power/ Там же есть каталог аналогов и схемы включения.
Если мы подобрали по частоте, мощности и распиновке аналогичную микросхему, но у новой есть стартовое питание, а у старой нет, то надо посмотреть схему включения и возможно подать плюс через резистор на стартовое питание новой микросхемы.
Таблицы характеристик шим контроллеров блоков питания. Что такое шим контроллер, как он устроен и работает, виды и схемы
Что вообще такое — инвертор.
Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.
Инвертор состоит из двух основных узлов.
ШИМ контроллера.
А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.
Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.
Микросхема, жменька деталей, вот и весь ШИМ контроллер.
В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.
Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.
Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.
Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память:)
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.
Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.
При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.
Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.
Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.
По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.
Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.
Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.
Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.
Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.
В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.
Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.
Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.
Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.
Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.
Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.
Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.
Затем ШИМ контроллер проверяет, в
Аналоги ШИМ SOT23-6 и SOT26 в блоках питания
В схемотехнике современных импульсных источников питания (ИИП) приобрели широкую популярность ШИМ-регуляторы, выполненные в малогабаритных планарных корпусах с шестью выводами. Обозначение типа корпуса может быть SOT-23-6, SOT-23-6L, SOT-26, TSOP-6, SSOT-6. Внешний вид и расположение выводов показаны на рисунке ниже. В данном случае на левом фрагменте картинки представлена кодовая маркировка LD7530A
Назначение выводов:
1 — GND. (Общий провод).
2 — FB. (FeedBack — Обратная Связь). Вход для управления длительностью импульсов сигналом с выходного напряжения. Иногда может иметь обозначение COMP (входной компаратор).
3 — RI/RT/CT/COMP/NC — В зависимости от типа микросхемы, может быть задействован для частотозадающей RC цепи (RI/RT/CT), либо для организации защиты, как вход компаратора отключения ШИМ при пороговом значение на его входе, указанном в документе. В некоторых типах микросхем этот вход может быть никак не задействован (NC — No Connect).
4 — SENSE, по другому CS (Current Sense) — Вход с датчика тока в истоке ключа.
5 — VCC — Вход напряжения питания и запуска микросхемы.
6 — OUT (GATE) — Выход для управления затвором (Gate) ключа.
Функционально подобные регуляторы работают по принципу популярных ранее микросхем ШИМ серии xx384x, которые хорошо зарекомендовали себя в плане надёжности и устойчивости.
Некоторые затруднения часто возникают при замене или выборе аналога для подобных ШИМ-регуляторов по причине применения кодовой маркировки в обозначении типа микросхем. Ситуация осложняется большим количеством производителей компонентов, которые не всегда предоставляют документацию в массовый доступ, так же не все производители готовых устройств снабжают схемами ремонтные сервисные центры, поэтому реальные схемные решения ремонтникам часто приходится изучать по установленным компонентам и монтажным соединениям непосредственно на плате.
В практике часто встречаются микросхемы ШИМ и кодом маркировки EAxxx и Eaxxx. Официальной документации на них не найдено в свободном доступе, но сохранились обсуждения на форумах и кусочки картинок из PDF от System General, которая публикует их как SG6848T и SG6848T2. Рисунок прилагается.
Вниманию мастеров предлагаем таблицы, составленные из доступной в интернете информации и документов PDF для подбора аналогов при замене наиболее распространённых шестиногих планарных ШИМ c цоколёвкой выводов: pin1 — GND, pin2 — FB (COMP), pin4 — Sense, pin5 — Vcc, pin6 — OUT.
Основным их различием является применение и назначение вывода 3.
ШИМ-регуляторы (PWM), без использования вывода 3.
Name | Part Namber | Diler | Marking |
---|---|---|---|
SG6849 | SG684965TZ | Fairchild / ON Semi | BBxx |
SG6849 | SG6849-65T, SG6849-65TZ | System General | MBxx EBxx |
SGP400 | SGP400TZ | System General | AAKxx |
ШИМ-регуляторы (PWM) с установкой резистора 95-100 kOhm на вывод 3.
Применяя перечисленные ниже ШИМ, частоту следует установить резистором RT (RI) от вывода 3 на землю. Обычно его номинал выбирается 95-100 kOhm для частоты 65-100 KHz. Более точно смотрите в прилагаемой документации. Файлы PDF упакованы в RAR.
Name | Part Namber | Diler | Marking |
---|---|---|---|
AP3103A | AP3103AKTR-G1 | Diodes Incorporated | GHL |
AP8263 | AP8263E6R, A8263E6VR | AiT Semiconductor | S1xx |
AT3263 | AT3263S6 | ATC Technology | 3263 |
CR6848 | CR6848S | Chip-Rail | 848h26 |
CR6850 | CR6850S | Chip-Rail | 850xx |
CR6851 | CR6851S | Chip-Rail | 851xx |
FAN6602R | FAN6602RM6X | Fairchild / ON Semi | ACCxx |
FS6830 | FS6830 | FirstSemi | |
GR8830 | GR8830CG | Grenergy | 30xx |
GR8836 | GR8836C, GR8836CG | Grenergy | 36xx |
H6849 | H6849NF | HI-SINCERITY | |
H6850 | H6850NF | HI-SINCERITY | |
HT2263 | HT2263MP | HOT-CHIP | 63xxx |
KP201 | Kiwi Instruments | ||
LD5530 | LD5530GL LD5530R | Leadtrand | xxt30 xxt30R |
LD7531 | LD7531GL, LD7531PL | Leadtrend | xxP31 |
LD7531A | LD7531AGL | Leadtrend | xxP31A |
LD7535/A | LD7535BL, LD7535GL, LD7535ABL, LD7535AGL | Leadtrend | xxP35-xxx35A |
LD7550 | LD7550BL, LD7550IL | Leadtrend | xxP50 |
LD7550B | LD7550BBL, LD7550BIL | Leadtrend | xxP50B |
LD7551 | LD7551BL/IL | Leadtrend | xxP51 |
LD7551C | LD7551CGL | Leadtrend | xxP51C |
NX1049 | XN1049TP | Xian-Innuovo | 49xxx |
OB2262 | OB2262MP | On-Bright-Electronics | 62xx |
OB2263 | OB2263MP | On-Bright-Electronics | 63xx |
PT4201 | PT4201E23F | Powtech | 4201 |
R7731 | R7731GE/PE | Richtek | 0Q= |
R7731A | R7731AGE | Richtek | IDP=xx |
SD4870 | SD4870TR | Silan Microelectronics | 4870 |
SF1530 | SF1530LGT | SiFirst | 30xxx |
SG5701 | SG5701TZ | System General | AAExx |
SG6848 | SG6848T, SG6848T1, SG6848TZ1, SG6848T2 | Fairchild / ON Semi | AAHxx EAxxx |
SG6858 | SG6858TZ | Fairchild / ON Semi | AAIxx |
SG6859A | SG6859ATZ, SG6859ATY | Fairchild / ON Semi | AAJFxx |
SG6859 | SG6859TZ | Fairchild / ON Semi | AAJMxx |
SG6860 | SG6860TY | Fairchild | AAQxx |
SP6850 | SP6850S26RG | Sporton Lab | 850xx |
SP6853 | SP6853S26RGB, SP6853S26RG | Sporton Lab | 853xx |
SW2263 | SW2263MP | SamWin | |
UC3863/G | UC3863G-AG6-R | Unisonic Technologies Co | U863 U863G |
XN1049 | XN1049, XN1049TP | Innuovo Microelectronics | 49 xxx |
ШИМ-регуляторы, в которых вывод 3 используется иначе.
При использовании перечисленных ниже ШИМ (PWM-контроллеров) следует обратить внимание на вывод 3, который может использоваться для организации защиты — тепловой или от превышения входного напряжения.
Частота может быть фиксированной 65kHz, либо устанавливаться номиналом конденсатора на выводе 3.
При замене любых микросхем на аналоги внимательно изучайте документацию. Файлы PDF упакованы в архив RAR.
Name | Part Namber | Diler | Marking |
---|---|---|---|
AP3105/V/L/R | AP3105KTR-G1, AP3105VKTR-G1, AP3105LKTR-G1, AP3105RKTR-G1 | Diodes Incorporated | GHN GHO GHP GHQ |
AP3105NA/NV/NL/NR | AP3105NAKTR-G1, AP3105NVKTR-G1, AP3105NLKTR-G1, AP3105NRKTR-G1 | Diodes Incorporated | GKN GKO GKP GKQ |
AP3125A/V/L/R | AP3125AKTR-G1, AP3125VKTR-G1, AP3125LKTR-G1, AP3125RKTR-G1 | Diodes Incorporated | GLS GLU GNB GNC |
AP3125B | AP3125BKTR-G1 | Diodes Incorporated | GLV |
AP3125HA/HB | AP3125HAKTR-G1, AP3125HBKTR-G1 | Diodes Incorporated | GNP GNQ |
AP31261 | AP31261KTR-G1 | Diodes Incorporated | GPE |
AP3127/H | AP3127KTR-G1, AP3127HKTR-G1 | Diodes Incorporated | GPH GSH |
AP3301 | AP3301K6TR-G1 | Diodes Incorporated | GTC |
FAN6862 | FAN6862TY | Fairchild / ON Semi | ABDxx |
FAN6863 | FAN6863TY, FAN6863LTY, FAN6863RTY | Fairchild / ON Semi | ABRxx |
HT2273 | HT2273TP | HOT-CHIP | 73xxx |
LD7510/J | LD7510GL, LD7510JGL | Leadtrend | xxP10 xxP10J |
LD7530/A | LD7530PL, LD7530GL, LD7530APL, LD7530AGL | Leadtrend | xxP30 xxxP30A |
LD7532 | LD7532GL | Leadtrend | xxP32 |
LD7532A | LD7532AGL | Leadtrend | xxP32A |
LD7532H | LD7532HGL | Leadtrend | xxP32H |
LD7533 | LD7533GL | Leadtrend | xxP33 |
LD7536 | LD7536GL | Leadtrend | xxP36 |
LD7536R | LD7536RGL | Leadtrend | xxP36R |
LD7537R | LD7537RGL | Leadtrend | xxP37R |
LD7539C GL | LD7539C GL | Leadtrend | xxP39C |
ME8204 | ME8204M6G | MicrOne | ME8204xx |
NCP1250 | NCP1250ASN65T1G, NCP1250BSN65T1G, NCP1250ASN100T1G, NCP1250BSN100T1G | ON Semiconductor | 25xxxx |
NCP1251 | NCP1251ASN65T1G, NCP1251BSN65T1G, NCP1251ASN100T1G, NCP1251BSN100T1G | ON Semiconductor | 5xxxxx |
OB2273 | OB2273MP | On-Bright-Electronics | 73xx |
R7735 | R7735AGE, R7735HGE, R7735GGE, R7735RGE, R7735LGE | Richtek | |
UC3873/G | UC3873-AG6-R, UC3873G-AG6-R | Unisonic Technologies | U873 U873G |
Таблица пополняется по мере поступления информации.
Замечания и предложения принимаются и приветствуются!
Контроллер шим импульсного блока питания
Контроллер шим импульсного блока питания типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США), выпускается так же фирмой SHARP (Япония) под названием IR3M02, фирмой SAMSUNG (Корея) – КА7500, фирмой FUJITSU (Япония) – МВ3759, так же есть и отечественный аналог – КР1114ЕУ4.
Микросхема широко применяется в импульсных блоках питания, в частности, в блоках питания персональных компьютеров, а также в DC/DC преобразователях.
На рисунке показана цоколевка микросхемы.
Микросхема специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.):
генератор пилообразного напряжения Oscillator; частота которого определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и рассчитывается по формуле: F=1,1/RtCt
– источник опорного стабилизированного напряжения Reference Regulator (Uref=+5B) с внешним выходом на выводе 14;
– компаратор “мертвой зоны” Deadtime Comparator;
– компаратор ШИМ PWM Comparator;
– усилитель ошибки по напряжению 1;
– усилитель ошибки по сигналу ограничения тока 2;
– два выходных транзистора Q1 и Q2 с открытыми коллекторами и эмиттерами;
– динамический двухтактный D-триггер в режиме деления частоты на 2 – Flip-Flop;
– вспомогательные логические элементы;
– источник постоянного напряжения с номиналом 0.12V;
– источник постоянного тока с номиналом 0,7mA.
ИMC запускается в том случае если на 12-вывод поступает питающее напряжение в пределах от +7 до 40V. Выводы 1 и 2 – соответственно прямой и инвертирующий входы усилителя ошибки по сигналу обратной связи. Вывод 4 – вход регулировки “мертвой зоны” (это время, когда оба выходных транзистора микросхемы закрыты даже при максимальной потребляемой мощности). Выводы 5 и 6 служат для подключения внешних элементов внутреннего генератора пилообразного напряжения. Вывод 7 – общий, выводы 8 и 9 – коллектор и эмиттер первого транзистора, выводы 11 и 10 -коллектор и эмиттер второго транзистора. Вывод 13 – выбор режима работы (однотактный или двухтактный). Если на этом выводе положительное напряжение 2,4…5V двухтактный режим работы, транзисторы Q1 и Q2 открываются поочередно, выходные импульсы следуют друг относительно друга со сдвигом по фазе.
Если на этом выводе напряжение составляет 0…0,4 V – однотактный режим, при этом транзисторы можно включать параллельно для увеличения выходного тока. Вывод 14 – выход опорного напряжения (+5 V) от встроенного стабилизированного источника опорного напряжения, выводы 16 и 15 – соответственно, прямой и инвертирующий входы усилителя ошибки по сигналу ограничения тока. По функциональным узлам, входящим в состав микросхемы, ее можно разделить на аналоговую и цифровую составляющие. К аналоговой составляющей относятся усилители ошибок, компараторы, генератор пилообразного напряжения и вспомогательные источники. Все остальные элементы, в том числе и выходные транзисторы следует отнести к цифровой части.
Из временных диаграмм контроллер шим импульсного блока питания, приведенных на рис. видно, что моменты появления выходных управляющих импульсов, а также их длительность определяется состоянием выхода логического элемента D1.
Остальная логика выполняет лишь вспомогательную функцию, разделения выходных импульсов на два канала. Оба транзистора имеют открытые коллекторы и эмиттеры, поэтому их можно подключать двояко, как с общим эмиттером, так и с общим коллектором. Триггер Flip-Flop является двухтактным динамическим D-триггером. Принцип его работы в следующем. Каждый из выходных импульсов элемента D1 своим отрицательным фронтом переключает триггер и этим меняет канал прохождения следующего импульса, т. е. исключает появление двух отпирающих импульсов за один период работы.
Типовая схема импульсного DC/DC преобразователя на основе контроллер шим импульсного блока питания TL494 показана на рисунке.
Основные технические характеристики:
- Диапазон напряжения питания ..42V
- Максимальное напряжение коллекторов выходных транзисторов 42V.
- Максимальный ток коллектора выходных транзисторов 0,2А.
- Опорное напряжение 4,5…5,5V.
- Мощность рассевания в непрерывном режиме в корпусе DIP-16 при температуре окружающей среды ниже 45°С 1W.
- Ток потребления не более 10mA.
- Частота генератора может быть задана в пределах ..200 kHz.
- Длительность фронта импульса выходного тока не более 200nS.
- Длительность спада импульса выходного тока не более 100nS
- Сопротивление резистора RT может быть в пределах 1,8… 500 кОm.
- Емкость конденсатора СТ может быть в пределах 0,0047…10 мкФ.
- Рабочий диапазон температуры:
TL494B -40…+125°С
TL494C 0…+70°С
TL494I -40…+85°С.
Что такое ШИМ: широтно-импульсная модуляция
Инверторы, преобразователи, схемы SMPS и контроллеры скорости …. Одна вещь, которая является общей для всех этих схем, состоит в том, что они состоят из множества электронных переключателей внутри. Эти переключатели представляют собой не что иное, как силовые электронные устройства, такие как MOSFET, IGBT, TRIAC и т. Д. Для управления такими силовыми электронными переключателями мы обычно используем так называемые сигналы PWM (широтно-импульсная модуляция). Помимо этого, сигналы PWM также используются для управления серводвигателями, а также для других простых задач, таких как управление яркостью светодиода.
В нашей предыдущей статье мы узнали об АЦП, в то время как АЦП используется для чтения аналоговых сигналов цифровым устройством, таким как микроконтроллер. ШИМ можно рассматривать как полную противоположность ему, ШИМ используется для создания аналоговых сигналов от цифрового устройства, такого как микроконтроллер . В этой статье мы узнаем о , что такое PWM , сигналы PWM и некоторые параметры, связанные с ними, так что мы будем уверены в их использовании в наших проектах.
Что такое ШИМ (широтно-импульсная модуляция)?
PWM означает широтно-импульсную модуляцию; мы рассмотрим причину такого названия позже.Но пока понимайте ШИМ как тип сигнала, который может быть произведен цифровой ИС, такой как микроконтроллер или таймер 555. Созданный таким образом сигнал будет иметь последовательность импульсов, и эти импульсы будут иметь форму прямоугольной волны. То есть в любой данный момент времени волна будет либо высокой, либо низкой. Для простоты понимания давайте рассмотрим сигнал ШИМ 5 В, в этом случае сигнал ШИМ будет либо 5 В (высокий), либо на уровне земли 0 В (низкий). Продолжительность, в течение которой сигналы остаются на высоком уровне, называется « , время включения », а продолжительность, в течение которой сигнал остается на низком уровне, называется « , время отключения ».
Для сигнала ШИМ нам нужно посмотреть на два важных параметра, связанных с ним: один — это рабочий цикл ШИМ, а другой — частота ШИМ.
Рабочий цикл ШИМ
Как было сказано ранее, сигнал ШИМ остается включенным в течение определенного времени, а затем остается выключенным в течение остального периода. Что делает этот сигнал ШИМ особенным и более полезным, так это то, что мы можем установить, как долго он должен оставаться включенным, контролируя рабочий цикл сигнала ШИМ.
Процент времени, в течение которого сигнал ШИМ остается ВЫСОКИМ (по времени), называется рабочим циклом.Если сигнал всегда включен, это 100% рабочий цикл, а если он всегда выключен, это 0% рабочего цикла. Формулы для расчета рабочего цикла показаны ниже.
Рабочий цикл = время включения / (время включения + время выключения)
Следующее изображение представляет сигнал ШИМ с рабочим циклом 50%. Как вы можете видеть, учитывая весь период времени (время включения + время выключения), сигнал ШИМ остается включенным только в течение 50% периода времени.
Регулируя рабочий цикл от 0% до 100%, мы можем управлять « on time » ШИМ-сигнала и, следовательно, шириной сигнала.Поскольку мы можем модулировать ширину импульса, он получил свое культовое название « Широтно-импульсная модуляция ».
Частота ШИМ
Частота сигнала ШИМ определяет, насколько быстро ШИМ завершает один период. Один период — это полное время включения и выключения сигнала ШИМ, как показано на рисунке выше. Формулы для расчета частоты приведены ниже
.
Частота = 1 / Период времени Период времени = Время включения + Время выключения
Обычно сигналы ШИМ, генерируемые микроконтроллером, составляют около 500 Гц, такие высокие частоты будут использоваться в высокоскоростных коммутационных устройствах, таких как инверторы или преобразователи.Но не все приложения требуют высокой частоты. Например, для управления серводвигателем нам необходимо генерировать сигналы ШИМ с частотой 50 Гц, поэтому частота сигнала ШИМ также может управляться программой для всех микроконтроллеров.
Некоторые часто возникающие вопросы по ШИМ
В чем разница между рабочим циклом и частотой сигнала ШИМ?
Часто путают рабочий цикл и частоту сигналов ШИМ.Как мы знаем, сигнал ШИМ представляет собой прямоугольную волну с определенным временем включения и выключения. Сумма этих времени включения и времени выключения называется одним периодом времени. Значение, обратное одному периоду времени, называется частотой. В то время как количество времени, в течение которого сигнал ШИМ должен оставаться включенным в один период времени, определяется рабочим циклом ШИМ.
Проще говоря, скорость включения и выключения сигнала ШИМ определяется параметром , частота сигнала ШИМ, и при этой скорости, как долго сигнал ШИМ должен оставаться включенным, определяется рабочим циклом модуля ШИМ-сигнал .
Как преобразовать сигналы ШИМ в аналоговое напряжение?
Для простых приложений, таких как управление скоростью двигателя постоянного тока или регулировка яркости светодиода, нам необходимо преобразовать сигналы ШИМ в аналоговое напряжение. Это легко сделать с помощью RC-фильтра и обычно используется там, где требуется функция ЦАП. Схема для этого же показана ниже
На приведенном выше графике желтый цвет — это сигнал ШИМ, а синий — выходное аналоговое напряжение.Значение резистора R1 и конденсатора C1 можно рассчитать на основе частоты сигнала ШИМ, но обычно используются резистор 5,7 кОм или 10 кОм и конденсатор 0,1 или 1 мк.
Как рассчитать выходное напряжение сигнала ШИМ?
Выходное напряжение сигнала ШИМ после его преобразования в аналоговый будет в процентах от рабочего цикла. Например, если рабочее напряжение составляет 5 В, то сигнал ШИМ также будет иметь 5 В при высоком уровне. В таком случае для 100% рабочего цикла выходное напряжение будет 5 В, для 50% рабочего цикла будет 2.5В.
Выходное напряжение = Рабочий цикл (%) * 5
Примеры:
Ранее мы использовали ШИМ с различными микроконтроллерами во многих наших проектах:
Далее проверьте все проекты, связанные с ШИМ здесь.
.Модуль регулятора напряжения
(VRM) — WikiChip
Полупроводники и вычислительная техника
- WikiChip
WikiChip
WikiChip
- Дом
- Случайная статья
- Последние изменения
- Подача стружки
Покрытие предохранителя
- Последние новости
- ISSCC
- IEDM
- СБИС
- Горячие чипсы
- Суперкомпьютер
Социальные сети
- Твиттер
- Флипборд
Популярный
Компании
- Intel
- драм
- ARM
- Qualcomm
Микроархитектуры
- Skylake (Клиент)
- Skylake (Сервер)
- Дзен
- Кофейное озеро
- Дзен 2
Технологические узлы
- 14 нм
- 10 нм
- 7 нм
Архитектуры
Популярные x86
Intel
- Клиент
- Skylake
- Озеро Каби
- Кофейное озеро
- Ледяное озеро
- Сервер
- Skylake
- Каскадное озеро
- Озеро Купер
- Ледяное озеро
- Большие ядра
- Санни Коув
- Уиллоу Коув
- Малые ядра
- Голдмонт
- Голдмонт Плюс
- Tremont
- Грейсмонт
- Клиент
драм
- Дзен
- Дзен +
- Дзен 2
- Дзен 3
Популярные ARM
ARM
- Сервер
- Neoverse N1
- Зевс
- Большой
- Cortex-A75
- Cortex-A76
- Cortex-A77
- маленький
- Cortex-A53
- Cortex-A55
- Сервер
Кавиум
- Вулкан
Samsung
- Exynos M1
- Exynos M2
- Exynos M3
- Exynos M4
- Чипсы
Популярные семьи
Intel
- Core i3
- Core i5
- Core i7
- Core i9
- Xeon D
- Xeon E
- Xeon W
- Ксеон бронза
- Xeon Серебро
- Xeon Золотой
- Xeon Platinum
;
драм
- Ryzen 3
- Ryzen 5
- Ryzen 7
- Ryzen Threadripper
- EPYC
- EPYC встроенный
Ампер
- eMAG
.
Pwm Audio Output Управление последовательным портом 8 Pin Otp Voice Ic Single Chip
Описание продукта
Голосовые чипы серии WTN4 включают WTN4045, WTN4065, WTN4105 (если это частота дискретизации 6 кГц, их длина голоса составляет 45 с, 65 с, 105 с ).
WTN4 — это многофункциональный однокристальный 4-битный микроконтроллер CMOS для синтеза речи. Обеспечивает одноканальный аудиовыход, высококачественный ШИМ для управления динамиком. Синтез речи использует ADPCM, максимальная частота дискретизации до 44,1 кГц.
Точность внутренних колебаний +/- 1%, отсутствие необходимости во внешних колебаниях, низкое энергопотребление в режиме ожидания.
Характеристики продукта
- Рабочее напряжение: 2,4 В ~ 5,5 В.
- Режим ожидания, энергосбережение, ток покоя менее 1 мкА.
- Аудиовыход PWM, может напрямую управлять динамиком и зуммером.
- Высококачественный синтез речи ADPCM, можно настраивать биты выборки для улучшения качества звука.
- Точная внутренняя генерация +/- 1%, встроенный сброс низкого напряжения (LVR = 1,8 В) и сторожевой таймер.
- Поддержка вывода BUSY.
- Имеют режим управления последовательным портом с одной линией, управление с двумя линиями последовательного порта, режим импульсного управления.
Примечание:
Питание v Напряжение и режим управления были установлены при программировании, не могут быть изменены. Пожалуйста, при заказе сообщите нам о требованиях к вашему приложению.
Настройка напряжения микросхемы определяет открытие и закрытие внутреннего LDO. Обратите внимание на настройку напряжения, которая должна соответствовать напряжению питания и схеме подключения. В противном случае это вызовет повреждение микросхемы или перестанет работать.Напряжение питания, как показано ниже:
Настройка напряжения микросхемы | Диапазон напряжения питания |
3,3 В | 2,4 В ~ 3,5 В |
5 В | 3,6 В ~ 5,0 В |
Описание контакта
WTN4045 / WTN4065 / WTN4105-8S Микросхема:
ATTR. | Описание | ||
PA2 | 1 | I / O | BUSY выход |
PA1 | I / O | Двухстрочный последовательный синхросигнал / однолинейный последовательный сигнал данных / входной сигнал импульсного сигнала | |
PA0 | 3 | I / O | Двухпроводной сигнал данных последовательного порта / входной сигнал импульсного сигнала сброса |
VDD | 4 | I / O | Положительный полюс питания; рядом с микросхемой, предложите подключить заземление емкости 104 или 224 |
PWM2 | 5 | out | PWM output pin |
PWM1 03 | 6 | выход | Выходной штифт ШИМ |
GND | 7 | мощность | Мощность отрицательная |
VPP62 | 8 | Программа | Вывод мощности программирования |
WTN4165-8S чип:
02
8
Pad No.
ATTR.
Описание
PA0
3
I / O
Двухстрочный сигнал последовательных данных / клемма входа импульсного сигнала сброса
PA1
2
I / O
Двухстрочный последовательный синхронизирующий сигнал / однострочный последовательный сигнал данных / входной сигнал импульсного сигнала
PA2
1
I / O
Выход BUSY
VPP
8
Программа
Штырь питания программирования
4
I / O
Положительное напряжение; рядом с микросхемой, предложите подключить заземление емкости 104 или 224
PWM2
5
out
Выходной контакт PWM
PWM1
03
выход
Выходной вывод ШИМ
GND
7
мощность
Мощность отрицательная
FAQ
Q1.Как долго я смогу получить отзыв после того, как мы отправим запрос?
A: Мы ответим Вам в течение 12 часов рабочего дня.
2 кв. Каковы ваши условия оплаты?
A: T / T, Paypal, Western Union.
3 кв. Каковы ваши условия доставки?
A: EXW, FOB, CFR, CIF.
4 кв. Как насчет вашего времени доставки?
A: Обычно это занимает от 2 до 25 рабочих дней после получения авансового платежа.Конкретный срок доставки зависит от позиции и количества вашего заказа.
Q5. Можете ли вы производить по образцам?
A: Да, мы можем изготовить по вашим образцам или техническим чертежам. Мы можем изготовить формы и приспособления.
Q6. Какова ваша политика в отношении образцов?
A: Мы можем предоставить образец, если у нас есть готовые детали на складе, но заказчик должен оплатить стоимость образца и стоимость курьера.
Q7.Вы проверяете все свои товары перед доставкой?
A: Да, у нас есть 100% тест перед доставкой.
Q8. Каковы ваши условия упаковки?
A: Обычно мы упаковываем наши товары в белые и коричневые картонные коробки. Если у вас есть юридически зарегистрированный патент, мы можем упаковать товар в ваши фирменные коробки после получения ваших разрешительных писем. Покажем фото товаров и упаковок.
Q9: Как сделать наш бизнес долгосрочными и хорошими отношениями?
А: 1.Мы сохраняем хорошее качество и конкурентоспособные цены, чтобы гарантировать нашим клиентам выгоду;
2. Мы уважаем каждого клиента и искренне ведем бизнес независимо от того, откуда он.
О компании
Шэньчжэнь Waytronic Electronics Co., Ltd , основанная в 1999 году, является высокотехнологичной компанией, специализирующейся на голосовых электронных продуктах, специализирующихся на исследованиях голосовых технологий, интеллектуальных терминальных приложениях, исследованиях интеллектуальных речевых технологий, человеко-компьютерном взаимодействии. применение и дизайн.
Наша компания имеет профессиональную команду по исследованиям и разработкам, а также производственную команду, которая занимается исследованиями и саморазвитием. Мы придерживаемся концепции «Позитивные инновации, новаторское мужество, удовлетворенность клиентов, командное сотрудничество» и стремимся создать хорошо известный бренд в голосовой индустрии.
Приветствуем ваши запросы для получения более подробной информации.
Щелкните для получения дополнительной информации !!!
.
Ka3525a Pwm / Chip Switching Power Controller Dip-16 Inline Ic
Описание продукта
KA3525A Контроллер мощности с переключением ШИМ / микросхемы DIP-16 inline IC
Горячие продажи
Доставка и доставка
A.Экспресс-такими как DHL, FedEx, UPS, TNT. Доставка осуществляется от двери до двери, обычно в течение 3-7 дней.
Б. Почтой Китая. Доставка занимает 20-60 дней.
Если это срочно, мы предлагаем вам выбрать Экспресс-доставку (The fast).
Если не так срочно, можете выбрать почту Китая. Это медленнее, но намного дешевле.
FAQ
Q.Кто ты?
A: Мы являемся производителем электронных компонентов и дистрибьютором более 60 ведущих поставщиков по всему миру. Наша продукция — это микросхемы, транзисторы, диоды, конденсаторы, резисторы, индукторы, соединители, модули IGBT, кабели FFC, потенциометры, переключатели, кварцевые генераторы, предохранители, зуммеры, трубки и реле Nixie и т. Д. Все, что вы можете придумать об электронных компонентах!
В. Являются ли ваши продукты оригинальными?
A: Да, все продукты оригинальные и произведены оригинальными производителями.
В. Каково ваше время выполнения заказа?
A: Нет времени на поставку товаров на складе. Большинство товаров могут быть отправлены в течение 3 дней после подтверждения оплаты.
В. Какая у вас гарантия?
A: 90 дней после получения товара. Перед отправкой наши продукты будут протестированы на 100%.
В. Что такое MOQ для вашей продукции?
A: Мы принимаем небольшие заказы от наших клиентов.Свяжитесь с нами.
В. Как мне оплатить заказ?
A: Вы можете оплатить через TT, Paypal, Western Union и Alibaba онлайн. Или вы также можете проконсультироваться с нами.
В. Как доставляются мои посылки?
A: Обычно мы используем DHL, FedEx, TNT, EMS и HONGKONG POST. В противном случае свяжитесь с нами.
В. Предоставляете ли вы услугу комплектования спецификаций? Могу ли я отправить вам свою спецификацию?
A: Да, конечно.Пожалуйста, просто свяжитесь с нами и отправьте нам свою спецификацию, и мы предложим вам предложение.
.