04.07.2024

Модель солнечного коллектора: Воздушный солнечный коллектор в частном доме

Содержание

Воздушный солнечный коллектор в частном доме

Комфорт проживания в загородном доме во многом зависит от качества работы инженерных коммуникаций, поддерживающих здоровый микроклимат круглый год. Эффективно решить задачи вентилирования и отопления позволяет воздушный солнечный коллектор в частном доме.
При проектировании вентиляции и отопления для коттеджа, важно не только обеспечить соблюдение гигиенических норм воздуха и поддержание определенной температуры в зимнее время года. Владелец стремится сделать работу инженерных коммуникаций безопасной, энергоэффективной, снизить потребление электричества и других ресурсов. Солнечный коллектор в частном доме позволяет достичь этих целей с минимальными финансовыми расходами.
Он представляет собой полностью автономное оборудование, работающее на восполняемой солнечной энергии. В зависимости от модели, коллекторы отличаются назначением – создание вентиляции или отопления, мощностью, производительностью, стоимостью. Широкое разнообразие устройств позволяет подобрать солнечный коллектор для любого частного дома, вне зависимости от его площади и геометрии.

Воздушный солнечный коллектор для вентиляции в частном доме

Солнечное оборудование решает главные задачи вентиляции в загородном доме:

  • устраняет затхлость и не дает воздушным массам застаиваться в комнатах;
  • обеспечивает приток свежего воздуха из расчета не менее 30м3/ч на каждого взрослого человека;
  • регулирует влажность, не давая образовываться конденсату.

В помещениях устанавливается здоровый и комфортный для человека и домашних животных микроклимат. Вентиляция в частном доме, построенная на использовании воздушных солнечных коллекторов, препятствует росту плесени, чем способствует увеличению срока службы коттеджа.
Принцип работы коллектора следующий: в устройство попадает свежий уличный воздух и нагревается под воздействием солнечных лучей. Затем с помощью вентилятора он нагнетается в помещение, где начинает циркулировать за счет разницы в температуре и давлении. Отработанные воздушные массы удаляются через вентиляционные шахты и естественные зазоры. Оборудование включается каждый раз, когда на него светит солнце, поэтому обычно монтируется на южной и восточной стороне дома, либо на крыше.
Воздушный солнечный коллектор в частном доме используется для создания централизованной и местной вентиляции в санузлах, на кухне, в бассейне.

Воздушный солнечный коллектор для отопления в частном доме

Проектируя отопление для загородного коттеджа, владелец стремится сделать дом теплым и при этом сократить издержки на покупку и монтаж оборудования. Воздушный солнечный коллектор для отопления в частном доме:

  • не требует подключения к ЦТП;
  • полностью автономен;
  • не потребляет ни электричества, ни другого топлива, благодаря чему во время отопительного сезона не растут счета от энергосбытовых компаний.

С помощью коллектора в осенне-зимний период в доме поддерживается стабильная положительная температура. Комнаты прогреваются быстро за счет циркуляции в них теплого воздуха, разогревающего пол и стены.

Преимущества солнечных коллекторов

Воздушные солнечные коллекторы с успехом применяются для нужд ЖКХ в США, Канаде, России, странах Европы и СНГ. Благодаря своей невысокой стоимости, простому монтажу, отсутствию пусконаладочных работ, они позволяют существенно уменьшить издержки на создание вентиляции и отопления в частных домах. Подходят для использования в удаленных, не электрифицированных населенных пунктах, в поселках с затрудненной поставкой топлива.
Воздушный солнечный коллектор в частном доме экологичен, автономен, прост в эксплуатации. Это современное решение, направленное на создание инженерных коммуникаций с минимальными издержками.

Виды, устройство и назначение солнечных коллекторов

Энергия для тепловых насосов поступает из грунта, воды или воздуха, которые согревает солнцем. Тепло для котлов образуется вследствие сгорания, которое также представляет собой продукт преобразования солнечной энергии в ходе длительной эволюции Земли. А вот гелиоколлекторы можно назвать уникальными: они получают энергию прямо от солнца.
Чтобы получить возможность полностью бесплатно греть воду для ГВС или получать тепло для отапливания дома, можно приобрести солнечный коллектор. Учитывая немалую стоимость такого оборудования, очень важно правильно выбрать это устройство.

Особенности солнечных коллекторов

Основная особенность таких коллекторов, которая отличает их от теплогенераторов других видов, заключается в цикличности их работы. Отсутствует солнце – отсутствует и тепловая энергия. Следовательно, ночью подобные установки не активны.
Среднесуточное количество тепла непосредственно зависит от длительности светового дня, которая зависит от географической широты местности, а также от времени года. К примеру, летом на территории северного полушария приходится пик инсоляции, и коллектор будет работать с максимальной отдачей. Тогда как зимой уровень его продуктивности снижается. А самый минимум наблюдается в декабре-январе.
Стоит отметить, что зимой эффективность гелиоколлекторов падает еще и вследствие изменения угла падения солнечных лучей. Изменения производительности солнечного коллектора на протяжении года необходимо принимать во внимание в процессе расчетов его вклада в систему теплоснабжения.

Работа солнечных коллекторов

Главный элемент такого устройства — адсорбер, который представляет собой пластину из меди, с приваренной к ней трубой. Во время поглощения тепла попадающих на нее солнечных лучей, пластина вместе трубой быстро нагреваются. Далее тепло поступает в циркулирующий по трубе жидкий теплоноситель, который передает тепло далее по системе.
То, насколько сильно физическое тело может поглощать или отражать солнечные лучи зависит, главным образом, от структуры его поверхности. К примеру, зеркальная поверхность прекрасно отражает свет и тепло, тогда как черная, наоборот, поглощает. По этой причине медная пластина адсорбера должна быть покрыта черной краской.
Принцип работы:

  1. солнечный коллектор
  2. буферный бак
  3. горячая вода
  4. холодная вода
  5. котроллер
  6. теплообменник
  7. помпа
  8. горячий поток
  9. холодный поток.

Повысить объем получаемого солнечного тепла можно при помощи грамотного выбора стекла, которое будет прикрывать адсорбер. Простое стекло не имеет нужного уровня прозрачности. Помимо того, ему свойственно отражать определенную часть попадающего на него солнечного света. При создании гелиоколлекторов, чаще всего, применяется особый вид стекла, имеющий низкое процентное количество железа, вследствие чего увеличивается уровень его прозрачности. Чтобы снизить количество отраженного поверхностью света стекло покрывают антибликовым покрытием. А для предотвращения попадания внутрь коллектора пыли и влаги, снижающих пропускную возможность стекла, корпус должен быть полностью герметичным. В некоторых видах коллекторов корпус заполнен инертным газом.
Несмотря на все вышеперечисленное, солнечные тепловые коллекторы, все же не могут похвастаться КПД на уровне 100%. Некоторую часть полученного тепла нагретая пластина адсорбера отдает окружающей среде, вследствие чего нагревается воздух. Для минимизирования уровня теплопотерь, адсорбер должен быть изолирован. В поиске наиболее эффективного метода теплоизоляции адсорбера инженеры разработали несколько разных видов солнечных коллекторов.

Плоские солнечные коллекторы

Плоский коллектор солнечной энергии имеет довольно простую конструкцию. Он состоит из металлического короба, покрытого сверху стеклом. В роли теплоизолирующего материала для дна и стенок корпуса, применяют минеральную вату. Этот вариант далек от идеального, потому что тепло переносится от адсорбера к стеклу через воздух, находящийся внутри короба. Если температура внутри коллектора и снаружи сильно отличаются, то наблюдаются серьезные потери тепла. Таким образом, плоский гелиоколлектор лучше использовать в летнее время. Плоский коллектор состоит из следующих компонентов:

  1. впускной патрубок
  2. защитное стекло
  3. абсорбционный слой
  4. алюминиевая рама
  5. медные трубки
  6. теплоизолятор
  7. выпускной патрубок.  

Вакуумный солнечный коллектор

Устройство солнечного коллектора такого типа представлено панелью, которая состоит из большого количества довольно тонких трубок из стекла. Каждая трубка заполнена адсорбером. Для предотвращения переноса тепла газом (воздухом), трубки вакуумируют. Таким образом, вследствие отсутствия газа около адсорберов, вакуумные коллекторы характеризуются незначительными теплопотерями даже при условии морозной погоды. Такая система солнечных коллекторов состоит из:

  1. теплоизоляции
  2. корпуса теплообменника
  3. теплообменника (коллектора)
  4. герметичной пробки
  5. вакуумной трубки
  6. конденсатора
  7. поглощающей пластины
  8. тепловой трубки с рабочей жидкостью. 

Использование солнечных коллекторов

Основным назначением солнечных коллекторов, как и любых других теплогенераторов, является отопление домой и подготовка воды для системы горячего водоснабжения. Нужно сделать правильный расчет солнечного коллектора.
Плоские модели демонстрируют высокую производительность только в весенне-летний период. Следовательно, подключение солнечных коллектором такого типа для отопления дома зимой, попросту нецелесообразно. Но, и ему найдется применение. Главное их достоинство – это доступная стоимость, ведь они намного дешевле вакуумных моделей. Таким образом, если вы планируете использовать солнечную энергию только летом, то стоит купить именно плоский коллектор. Они прекрасно подходят для подогрева до комфортной температуры воды в открытом бассейне.
Трубчатые вакуумные коллекторы можно назвать более универсальными. Их можно активно использовать круглый год. Поэтому они подходят как для горячего водоснабжения, так и для системы отопления.
Стоит отметить, что коллектор необходимо располагать на открытом пространстве, куда не падает тень от соседних построек, деревьев, и прочих объектов. Наиболее солнечной стороной в нашем северном полушарии является южная, следовательно, «зеркала» коллектора нужно размещать строго на юг. Если же по техническим причинам это невозможно, нужно выбрать направление, которое максимально приближено к южному, – юго-западное или юго-восточное.
Также не забывайте про угол наклона гелиоколлектора. Величина угла находится в зависимости от отклонения положения Солнца от зенита, определяемого географической широтой той местности, где будет установлено оборудование. При неправильном выборе угла наклона, значительно возрастают оптические потери энергии, потому что большая часть солнечных лучей будет отражаться от стекла коллектора и, не попадет на абсорбер.

Как выбрать солнечный коллектор?

Чего мы ждем от солнечного коллектора? Чтобы отопительная система коттеджа справлялась с задачей поддержания в комнатах комфортной температуры, а из кранов текла горячая, а не чуть теплая вода. Для полноценного использования солнечного коллектора, необходимо до покупки рассчитать требуемую мощность оборудования. Стоит обязательно принять во внимание:

  • назначение коллектора (ГВС, отопление или их комбинация)
  • потребность здания в тепле (общий размер обогреваемых помещений или среднесуточные затраты горячей воды)
  • климатические особенности региона
  • особенности монтажа коллектора.

Производство солнечных коллекторов не обходится без маркировки на них конкретного уровня производительности. Компании, которые занимаются изготовлением солнечных коллекторов, предоставят вам более полную информацию об изменении мощности оборудования в зависимости от географической широты населенного пункта, угла наклона «зеркал», отклонения их ориентации от южного направления и другие.
В процессе выбора уровня мощности коллектора очень важно достичь баланса между недостатком и избытком накапливаемого тепла. Эксперты советуют отталкиваться от максимально возможной мощности коллектора, т. е. пользоваться во время расчетов самым продуктивным летним сезоном. Однако, этот вариант противоположен мнению среднестатистического пользователя о том, что нужно покупать оборудование с запасом (т. е. вести расчеты по мощности самого холодного месяца), чтобы тепла от коллектора хватило и в менее солнечные осенние и зимние дни.
Но, если идти таким путем, то на пике его производительности, т. е. в летом, у вас возникнет серьезная проблема: тепла будет генерироваться больше, чем использоваться. Все это может стать причиной перегрева контура и других неприятностей. Есть два варианта решения этакой проблемы:

  • установка маломощного солнечного коллектора с подключением в зимние месяцы резервных источников тепла
  • покупка модели с большим запасом по мощности и предусмотрением варианта сброса избыточного тепла в теплое время года.

Другие компоненты системы

Мало просто собрать отдаваемое солнцем тепло. Необходимо его передать, накопить, доставить потребителям, необходим контроль за всеми этими процессами. Следовательно, кроме находящихся на крыше коллекторов в системе присутствует большое количество других компонентов, которые менее заметны, но не менее важны. Рассмотрим наиболее значимые из них: 

  • теплоноситель. Роль теплоносителя в контуре коллектора выполняет или вода, или незамерзающая жидкость. При этом, предпочтительнее покупать модели именно с незамерзающей жидкостью. При отрицательных температурах она не застывает. Тогда как вода, застывшая в трубах, приведет к разрыву контура. Кроме этого, недостаточно высокая температура кипения воды поводом частых стагнаций в летнее время. «Незамерзайку» нужно только предохранять от чрезмерного перегрева
  • насос, адаптированный для гелиосистем. Чтобы гарантировать принудительную циркуляцию теплоносителя по контуру коллектора понадобится насос, адаптированный для гелиосистем
  • теплообменник для ГВС. Передача тепла от контура гелиоколлектора к воде, находящейся в ГВС, или к теплоносителю системы отопления происходит при помощи теплообменника. Чаще всего, чтобы накопить горячую воду устанавливают резервуар большого объема, в комплекте с которым идет теплообменник. Более рациональным является использование баков с двумя и более теплообменниками. Таким образом, вы сможете забирать тепло не только у солнечного коллектора, но и у других источников, к примеру, у газового или электрического котла, теплового насоса
  • автоматика. Такая сложная система не может существовать без автоматики, которая контролирует все стадии процесса. Контроллер дает возможность автоматически осуществлять анализ температуры в контуре и накопительном резервуаре, управлять насосом и клапанами, которые отвечают за движение теплоносителя по контуру. В случае перегрева теплоносителя в контуре и воды в баке контроллер подаст сигнал к сбросу тепла в дополнительный теплоприемник – еще один бак с водой или уличный воздушный теплообменник. Когда вечером температура воды в накопительной емкости превышает температуру теплоносителя в контуре коллектора, то автоматика останавливает циркуляцию теплоносителя по контуру, чтобы предотвратить выброс накопленного тепла в атмосферу через сам коллектор. Новейшие технологии позволяют удаленно контролировать работу системы и при необходимости вносить корректировки.

Конечно, можно самостоятельно подобрать все компоненты системы. Вполне реально создать полноценную систему из купленных по отдельности элементов. Но, существуют и готовые решения — комплекты, в составе которых есть коллектор, насосы, накопительные резервуары, управляющая автоматика и т. д. Покупка готового комплекта – это не только экономия вашего времени, но и гарантия правильной работы системы.

Что такое солнечный коллектор и для чего он нужен? Разбираемся с экспертами

Во многих странах солнечные коллекторы уже давно широко распространены, но у нас они вплоть до последних лет оставались экзотикой. Теперь всё стремительно меняется: технологии шагают вперёд, так что эффективность таких систем растёт, а стоимость падает, в результате и в России всё больше домовладельцев начинает их использовать.

Хотя затраты на приобретение солнечных коллекторов всё ещё довольно высоки, в южных регионах, где солнечных дней больше, они могут полностью обеспечить потребность в горячей воде, и наполовину – в отоплении. Это существенно снижает расходы, так что в долгосрочной перспективе коллекторы себя окупают. И даже в регионах средней полосы, где их эффективность не так высока, в некоторых случаях она достаточна, чтобы всерьёз задуматься об установке. Рассказываем подробнее о принципе работы, разновидностях и эффективности коллекторов, разбираем с экспертами основные причины для покупки и проблемы, с которыми придётся столкнуться.

Принцип работы и разновидности

Коллекторы улавливают инфракрасную энергию и превращают в тепловую – попросту говоря, солнце нагревает их поверхность. Затем эта энергия передаётся теплоносителю. Это основа, так функционирует любой солнечный коллектор, а тонкости уже будут зависеть от его вида. Разделяют их в первую очередь по типу конструкции, на плоские и вакуумные.

Сразу бросающаяся в глаза часть плоского коллектора – панель, поглощающая свет. Она находится под защитным покрытием и может быть выкрашена чёрной краской, часто на её поверхность наносят составы, повышающие эффективность работы. Ещё одна важная часть, спрятанная от глаз – система трубок для теплоносителя.

Конструкция плоского коллектора довольно проста, так что он надёжен и неприхотлив, при этом относительно недорог – стоимость в разы снизилась в последние 5-7 лет. Из-за этого чаще всего предпочтение отдают именно ему. Такие коллекторы могут работать весь год, но, если летом превосходят вакуумные по производительности, то в холодное время начинают уступать.

Вакуумный коллектор сложнее по конструкции. Это ряд вакуумных трубок, внутри которых расположены тепловые трубки. Свет проходит сквозь прозрачную поверхность верхних трубок, а вакуум, которым они заполнены, сокращает теплопотери на 95-97%. Внутренние трубки покрыты специальным составом для более эффективного улавливания энергии. Теплоноситель при нагревании превращается в газ, поднимается в верхнюю часть трубки и отдаёт тепло, после чего конденсируется и возвращается вниз, вновь нагревается, становится газом – и так далее.

В сравнении с плоским коллектором вакуумный уступает по КПД, при этом превосходя его по габаритам и весу, зато гораздо лучше показывает себя в холодное время года. Для него не станут помехой ни плохая освещённость, ни низкие температуры. Это делает вакуумные коллекторы очень полезными для сложных климатических условий, но они существенно дороже плоских.

Сферы применения и расчёт мощности

Коллекторы применяются для нагрева воды и отопления. Последнее требуется зимой, когда плоские коллекторы неэффективны, так что для отопления целесообразно применять только вакуумные, но они куда дороже. Плоские же хороши в тех случаях, когда потребность в энергии возникает летом, потому их активно применяют в летних загородных домах. Так, с их помощью можно подогревать воду в открытом бассейне до комфортной температуры.

Перед установкой солнечного коллектора следует всё тщательно рассчитать, чтобы вложения в него были оправданными. При расчёте есть немало значимых факторов: расход горячей воды, форма крыши дома и его расположение, материал стен – и тому подобные. Если не углубляться в сложные расчёты, для обеспечения одного человека горячей водой в южных районах России понадобится 0,8 квадратных метров площади вакуумного коллектора и вдвое больше в случае с плоским. Для районов севернее необходимо сделать поправку, поскольку энергии коллекторы будут получать меньше.

Если солнечный коллектор приобретается и для отопления, полученную цифру нужно умножить в 2,5 раза – это позволит обеспечить половину необходимой энергии. Но нужно учесть, что температура теплоносителя будет невысокой – 40-45 °C, то есть потребуются низкотемпературные системы отопления, кроме того, летом лишнее тепло потребуется утилизировать. Из-за всех этих проблем для отопления коллекторы применяют довольно редко.

Для более точных расчётов может потребоваться информация от производителя приобретаемой модели относительно того, как меняется её производительность в зависимости от угла наклона зеркал, отклонения направления и прочих подобных факторов. Но идеальная точность расчётов обычно и не нужна: достаточно примерных значений, тем более, что выработка энергии всё равно будет зависеть от погодных условий.

Конечно, лучше всего, если её всегда ровно столько, сколько нужно, но в действительности добиться этого нельзя. Потому есть два подхода: устанавливать коллектор меньшей мощности, чем потребность в энергии, либо, наоборот, с существенным запасом по мощности.

В первом случае расчёт необходимой мощности ведут по самому тёплому месяцу года. Энергии при таком подходе никогда не будет слишком много, так что не придётся решать проблему с её избытком (а она существенна), но понадобятся и другие источники тепла. При втором подходе необходимую мощность рассчитывают по самому холодному месяцу. В таком случае недостатка в тепле не возникнет, но потребуется избавляться от его излишков.

Распространение и эффективность

Солнечные коллекторы активно используют в Европе и Америке, Китай очень активно увеличивает производство и наращивает общую площадь. За ним подтягивается и Россия, ведь именно из Китая завозят всё больше недорогих моделей солнечных коллекторов. Но до лидеров ещё очень далеко – по оценкам экспертов, в расчёте на 1000 человек у нас 0,2-0,3 квадратных метра площади коллектора. Например, в странах Северной Европы 150-300 квадратных метров, а на Кипре 800.

Впрочем, даже по этим цифрам заметно, что климат – важный фактор, от которого зависит распространённость солнечных коллекторов. В солнечных странах, вроде Кипра или Израиля, ими пользуются очень многие, иногда существенно больше половины всего населения. В Северной Европе же этот показатель в разы ниже. Потому возникают вопросы насчёт того, насколько вообще эффективны коллекторы в российских условиях.

Расчёты отечественных учёных из Института высоких температур РАН показывают, что их эффективность достаточно высока, но важна и рентабельность – пока они стоили дорого, срок окупаемости был слишком долгим для массовой установки. Теперь, когда они стремительно дешевеют, всё большее количество домовладельцев начинает ими обзаводиться. В особенности это относится к южным районам страны.

Максимальной эффективности может достичь коллектор, ориентированный на юг. Отклонение не должно превышать 40°, при этом выработка энергии может упасть на 20%. Оптимальный угол наклона – 35-45°, иначе оптические потери энергии значительно возрастут, так как её будет отражать защитное стекло. При этом коллектор должен находиться на открытом пространстве, как можно реже находящемся в тени, так что рядом не должны располагаться возвышенности, здания такой же или большей высоты, деревья.

Из-за таких требований лучше всего, если ещё при проектировании жилища предусматривается, что на нём будет установлен коллектор, так можно будет добиться от него максимальной производительности в тех пределах, которые позволяет климат местности. Срок окупаемости – примерно 8 лет, но может сильно отличаться в зависимости от особенностей конструкции, стоимости, природных условий.

Плюсы и минусы

Коллекторы имеют немало как достоинств, так и недостатков – многие из них уже были разобраны, но стоит кратко подытожить сказанное. Начнём с достоинств:

  • Сокращение потребления энергии из других источников, а значит одновременно сокращение расходов и увеличение автономности дома.
  • Смонтировать коллектор на крыше несложно, сделать это можно даже своими силами.
  • Длительный срок службы: работать устройство может десятилетиями, так что окупит своё приобретение несколько раз.
  • Простота эксплуатации – не нужно постоянно контролировать работу коллектора, достаточно обращать на него внимание изредка.
  • В случае поломки почти всегда повреждённый элемент можно заменить быстро и недорого.
  • Экологичность и безопасность – солнечные коллекторы не загрязняют окружающую среду.

Недостатки коллекторов:

  • Довольно высокая стоимость и длительный срок окупаемости. В последнее время цены на коллекторы падают, так что эта проблема становится всё менее актуальной.
  • Зависимость от погоды и времени года, необходимость ориентироваться или на летнюю, или на зимнюю производительность. Как следствие, значительную часть года энергии будет либо слишком много, либо слишком мало, и обе проблемы придётся решать.
  • Требовательность к расположению, ориентации и углу наклона – не на каждом доме коллектор можно разместить так, чтобы он выдавал близкую к заявленной производительность.

Солнечный коллектор для отопления дома: виды, схемы, монтаж

Солнечный свет является одним из самых мощных и легкодоступных источников энергии на нашей планете. С древних времен человечество, обожествляя дневное светило, пыталось использовать его энергию в своих практичных целях. В условиях современного развития энергосберегающих технологий солнечную энергию намного чаще, чем ранее, стали использовать в качестве источника теплоснабжения зданий и сооружений.

Применение солнечных коллекторов

Устройство, преобразующее энергию солнечного света в тепловую энергию, называют солнечным коллекторам. Солнечный коллектор может применяться как в отопительной системе здания, так и в системе горячего водоснабжения. Согласно расчетным данным, применение данных устройств в системах теплофикации зданий и сооружений дает в среднем от 30% до 60% экономии энергоносителей (газ, электричество) ежегодно, а значит, удешевляет эксплуатацию здания. Расчетная самоокупаемость систем, использующих солнечную энергию, составляет в среднем от двух до пяти лет, в зависимости от цен на энергоносители.

Солнечный коллектор для отопления дома включается в систему теплоснабжения, являясь, по сути, подогревающим теплоноситель элементом, в то время как основные источники теплофикации (газовые или электрические котлы) круглосуточно поддерживают температуру подогретого солнечным коллектором теплоносителя на уровне, необходимом по технологическим или санитарным условиям.
КПД систем альтернативного теплоснабжения выше в регионах с высокой солнечной активностью и в светлое время суток. Карта суммарной годовой солнечной радиации приведена на рисунке ниже.

Виды и различия солнечных коллекторов

На сегодняшний день распространение среди промышленно изготавливаемых солнечных коллекторов получили два вида систем:

  • плоские солнечные панели;
  • вакуумные (вакуумированные) трубчатые коллекторы.

Плоская солнечная панель

Является распространенным типом солнечного коллектора, используемого в современных системах гелиоэнергетики. Широкое распространение данный тип получил вследствие относительной дешевизны и простоты, как устройства, так и эксплуатации. Недостатком плоских солнечных коллекторов является значительное (до двух раз) понижение КПД в условиях отрицательных температур наружного воздуха.

Конструкция плоского солнечного коллектора.

Конструктивно представляет собой панель с площадью поглощающей поверхности 2-2,5 м2, выполненную из алюминиевых или стальных сплавов. Лицевая часть выполнена в виде листа специального гелиостекла, что обеспечивает максимальное поглощение энергии солнечного света и минимальные потери энергии с отраженными и рассеянными лучами. Непосредственно под гелиостеклом расположен поглотитель, выполняемый в виде плоской трубки из медных или алюминиевых сплавов, имеющих высокий коэффициент теплопередачи.

Трубка, как правило, имеет радиальное оребрение, что значительно повышает коэффициент теплопередачи поглотителя. На поглотитель наносится покрытие с высоким коэффициентом поглощения в спектрах теплового излучения, что повышает общий КПД коллектора. Под поглотителем располагается слой тепловой изоляции, уменьшающий тепловые потери системы в окружающую среду. Необходимая тепловая мощность солнечного коллектора достигается включением нескольких панелей в единую солнечную батарею или коллектор.

Вакуумный (вакууммированный) трубчатый коллектор

Дорогостоящий вид солнечного коллектора вследствие сложного изготовления и ряда преимуществ перед плоскими солнечными панелями. Конструктивно представляет собой ряд парных стеклянных труб, спаянных между собой, из пространства между которыми откачан воздух. Вакуум в пространстве между трубками является прекрасным тепловым изолятором и предотвращает тепловые потери в окружающую среду от теплоносителя. В меньшую трубу вводится медная, алюминиевая или стеклянная трубка поглотителя. Трубы верхней частью вводятся в распределитель, в котором циркулирует теплоноситель. Вакуумные (вакуумированные) трубчатые коллекторы по типу распределителя подразделяются на два типа: с плоской тепловой трубой и прямоточные.

Коллекторы с плоской трубой

Вакуумный трубчатый солнечный коллектор с плоской тепловой трубой — конструкция.

Представляют собой рекуперативный теплообменник, расположенный в распределителе. В этом случае теплопередача от нагретого теплоносителя вакуумной трубы к теплоносителю циркуляционного контура теплоснабжения здания происходит через стенку и теплоносители этих контуров не смешиваются. Преимущества перед прямоточными коллекторами состоят в сохранении высоких показателей работы при температуре окружающей среды до -45оС, возможности замены отдельной вакуумной трубки, вышедшей из строя, без разбора коллектора и прекращения его работы, а также в возможности регулирования угла установки каждой вакуумной трубки в пределах одного коллектора.

Прямоточные коллекторы

Прямоточный вакуумный трубчатый солнечный коллектор — конструкция.

Объединяют циркуляционный и обогревающийся контур. В распределителе проходят подающий и циркуляционный трубопроводы, к которым непосредственно присоединяются вакуумные трубки. Теплоноситель подается в распределитель по подающему трубопроводу, из которого попадает в вакуумную трубку, где проходит обогрев. Нагретый теплоноситель возвращается в обратный трубопровод и уходит непосредственно на нужды теплоснабжения. Преимущества прямоточных коллекторов перед вакуумными состоят в отсутствии промежуточной стенки между теплоносителями, что снижает тепловые потери и в возможности устанавливать коллектор на любых поверхностях под любыми углами, поскольку циркуляция теплоносителя в пределах всего коллектора будет осуществляться насосом.

Принципиальные схемы и монтаж гелиосистем

Гелиосистемы могут использоваться в качестве самостоятельного источника теплоснабжения дома в регионах с высокой солнечной активностью. В регионах с более умеренным климатом необходимо предусматривать дублирующие теплогенерирующие устройства. Кроме того, солнечная энергия может использоваться на нужды горячего водоснабжения, отопления и в качестве совмещенной схемы промежуточного догрева теплоносителей. Исходя из этого, в статье представлены несколько видов принципиальных монтажных схем.

Схема с промежуточным догревом для горячего водоснабжения

В этой схеме, как и во всех последующих, имеется контур первичного нагрева холодной воды в баке-аккумуляторе (бак-накопитель 6) от солнечного коллектора 1. Рекуперативный теплообменник 8 закрытой системы первичного нагрева расположен в нижней части бака-аккумулятора, где температура нагреваемой воды наименьшая. По отношению к нагреваемой воде система работает по типу «противоток», как наиболее экономичному. В верхней части бака вода догревается до температуры, необходимой по санитарным нормам, с помощью электрического ТЭНа 7. Управление системой в целом производится через контроллер 5, на который сведены данные от датчиков температуры Т1 и Т2, позволяющие через рабочую станцию 3 в автоматическом режиме регулировать проток теплоносителя через солнечный коллектор и напряжение, а, соответственно, и температуру на электронагревателе.

Следует отметить, что вместо электронагревателя можно использовать любой другой теплогенератор (газовый, жидкотопливный или твердотопливный). Но при этом необходимо обратить внимание на максимальную синхронизацию работы гелиосистемы и теплогенератора. Бак сброса избыточного давления 4 позволяет без участия человека и разгерметизации системы компенсировать тепловое расширение теплоносителя, а автоматический воздухоодводчик 2 автоматически удаляет из первичного контура пузырьки газа.

Такие устройства, как автоматический воздухоотводчик, рабочая станция, бак сброса излишнего давления, котроллер с датчиками температуры и теплообменник являются наиболее традиционным комплектом рабочего оборудования гелиосистем.

Закрытая схема отопления с солнечным коллектором

В такой схеме гелиосистема через бак накопитель обогревает теплоноситель в обратном коллекторе отопительной системы перед подачей теплоносителя в отопительный котел. Нужно отметить, что такие схемы в средних широтах применяются достаточно редко ввиду того, что температура в обратном трубопроводе во время отопительного сезона зачастую бывает выше той, которую способен выдавать солнечный коллектор в зимнее время. Как следствие, такая схема имеет крайне низкий КПД.

Совмещенная схема теплоснабжения

В данной схеме нагрев теплоносителя как для отопления, так и для горячего водоснабжения, осуществляется в пределах одного бака-накопителя. Фактически данная схема состоит из трех контуров:

  1. Контур гелиосистемы. Представляет собой рекуперативный теплообменник, на который подается нагретый теплоноситель от солнечного коллектора. Располагается в нижней части бака-накопителя.
  2. Контур отопительной системы. Это закрытая, без потерь теплоносителя, система, в которую в качестве дополнительного источника теплоснабжения, введен теплообменник гелиосистемы. Отопительный котел подключается к системе отопления через бак накопитель и догревает теплоноситель до необходимой по санитарным нормам температуры.
  3. Контур горячего водоснабжения. Представляет собой открытую систему с накопительным бойлером, расположенным в верхней части бака-накопителя. Обогрев воды производится от нагретого отопительным котлом и гелиосистемой теплоносителя через стенку бойлера.

Монтаж гелиосистем может производиться на крышах,

 

стенах зданий

 

или на уровне земли.

 

При монтаже на существующих строительных конструкциях необходимо уделять особое внимание нагрузкам на стены и перекрытия, которые увеличатся после монтажа и заполнения гелиосистемы. При необходимости чердачные перекрытия усиливаются дополнительными конструкциями, под расположенные на стене солнечные коллекторы подводят дополнительные опоры. Сопутствующее оборудование гелиосистем располагают, как правило, в помещении, где установлен отопительный котел.

Монтаж непосредственно коллектора необходимо производить так, чтобы он максимально облучался солнечным светом в течение дня в любое время года. Коллектор монтируется в местах, на которые не падает тень от окружающих предметов, ориентируясь по линии «запад-восток». Угол наклона коллектора к горизонтали составляет, как правило, 50-60 градусов.

Рекомендуемый угол наклона солнечного коллектора для монтажа.

Более точное значение угла наклона рассчитывают исходя из данных о наибольшей и наименьшей высоте Солнца над горизонтом в течение года в конкретной местности. Установка производится с расчетом, что угол падения солнечных лучей на коллектор будет максимально приближен к 90 градусам.

Теплоносители для гелиосистем

Основным теплоносителем для систем теплоснабжения является вода. Однако ее применение в гелиосистемах ограничено температурой кристаллизации, составляющей 0оС, а значит применение воды в роли теплоносителя ограничивается климатическими зонами, где не бывает отрицательных температур. Кроме того, содержащиеся в воде соли засоряют поверхности нагрева накипью, а коррозионный агент – кислород – повреждает металлические части систем теплоснабжения и способствует разложению теплоносителя на составляющие элементы. Поэтому для гелиосистем был разработан вид теплоносителя, лишенный вышеперечисленных недостатков.

Основой такого теплоносителя является пропиленгликоль, смешанный с водой, прошедшей водоподготовку в виде деминерализации.

Кроме того, для уменьшения коррозирующего и разлагающего воздействия кислорода, в теплоноситель добавляют антиокислительные присадки, образование пузырьков газа в жидкости уменьшается добавлением пеногасителей, а стабилизаторы, добавленные в теплоноситель, помогают сохранять раствор химически однородным. Как правило, теплоносители для гелиосистем продаются уже в готовом виде. Концентрация пропиленгликогеля в них составляет от 40% и выше, что соответствует температуре кристаллизации от -30оС и ниже. Показатель кислотно-щелочного баланса (рН) для готового теплоносителя поддерживается в щелочной зоне (≥ 7,0) для уменьшения коррозирующего действия.

При эксплуатации теплоносителей гелиосистем не следует смешивать теплоносители от разных производителей, так как разные как по количественным, так и по качественным свойствам составы могут вступить в химическую реакцию, приведя гелиосистему в негодность.

Солнечная энергетика в условиях современного энергетического и экономического кризиса является одним из перспективнейших направлений технологий, направленных на сохранение невосполнимых ресурсов нашей планеты.

расчет воздушной конструкции, вакуумный вариант для использования зимой своими руками, отзывы

На сегодняшний день появилась возможность сократить расходы на отопление. Все это реально благодаря солнечным коллекторам, которые представляют собой уникальные системы, позволяющие бесплатно получать экологический источник чистой энергии. Их можно активно использовать как для отопления небольших дачных домиков, так и коттеджей.

Особенности и устройство

Солнечный коллектор – это современная конструкция, которая способна накапливать солнечную энергию и превращать ее в источник тепла. Устройство изготавливают из металлических пластин, покрашенных в черный цвет и заключенных в корпус из стекла. Такое оборудование можно устанавливать для отопления дома, а также для обеспечения систем горячей водой.

Благодаря установке коллектора можно экономить от 30 до 60% энергоносителей, а это означает, что расходы на электричество и газ значительно снижаются и эксплуатация дома удешевляется. Подключенное в систему теплоснабжения устройство играет роль теплового носителя, который круглосуточно поддерживает температуру согласно санитарным и технологическим нормам.

Конструкция солнечного коллектора представлена в виде системы трубок, последовательно соединенных между собой и имеющих входную и выходную магистраль. По трубкам может проходить как воздушный поток, так и техническая вода. Во время циркуляции вещества наблюдается его переход из одного агрегатного состояния в другое, в результате чего происходит выделение тепла. То есть, принцип действия батареи заключается в накоплении энергии фотоэлементами, ее концентрации и передачи.

Помимо трубок, конструкция также имеет специальный бак, где хранится вода в нагретом состоянии. Чтобы жидкость не охлаждалась, бак дополнительно обшивают качественной теплоизоляцией. Кроме это, в емкость монтируют и дублирующий электронагреватель, который автоматически включается в зимний период или при пасмурной погоде. Корпус коллектора, как правило, изготавливают из стекла, так как использование полимерных материалов не рекомендуется. Они обладают высоким показателем теплового расширения, неустойчивы к лучам ультрафиолета, что может привести к разгерметизации корпуса.

В качестве теплоносителя обычно выбирают воду, но если планируется круглогодичная эксплуатация системы, то нужно до наступления холодов техническую жидкость заменять антифризом. Часто теплоносителем в коллекторах выступает и воздух, каналы для его перемещения делают из профлистов.

Для отопления небольших строений применяют обычные конструкции, для автономных и централизованных систем в схему добавляют не только нагревательное оборудование, но и циркуляционные насосы.

К главным преимуществам солнечных агрегатов можно отнести:

  • возможность бесперебойного обогрева зданий круглый год;
  • долгий срок эксплуатации, достигающий 30 лет;
  • экономия энергоресурсов;
  • возможность одновременного обогрева помещений, теплиц, пристроек и бассейнов;
  • отсутствие отходов;
  • быстрый монтаж;
  • оптимизация под индивидуальные проекты.

Что же касается недостатков, то их немного:

  • высокая стоимость установки;
  • низкая эффективность работы устройства, обусловленная климатическими условиями и особенностями ландшафта;
  • принудительная циркуляция воды.

Виды

Существует множество видов солнечных коллекторов, все они отличаются между собой особенностью конструкций, но одинаково выполняют роль теплоносителя и используются для обогрева домов. На сегодняшний день различают следующие типы устройств:

Плоский

Считается самым распространенным вариантом для установки в современных системах гелиоэнергетики. Он состоит из абсорбера, термоизолирующего покрытия, прозрачного слоя и теплоносительной трубки. Популярность данного вида обусловлена простотой монтажа и доступной ценой, но в отличие от других коллекторов для него характерно небольшое КПД. Внешне устройство имеет вид стальной или алюминиевой панели площадью от 2 до 2,5 м2.

Снаружи панель покрывают листами из гелиостекла, это позволяет максимально поглощать энергию солнца и поставлять ее с минимальными потерями. Под стеклом располагается специальный поглотитель в виде плоской трубки, его изготавливают из сплавов алюминия или меди. Трубка оснащена радиальным оребрением, поэтому во время рабочего процесса наблюдается высокий КПД.

Плоский коллектор годится только для обогрева частного дома, так как с его помощью зимой можно отопить небольшую площадь.

Вакуумный

Это дорогостоящее устройство, которое имеет отличные эксплуатационные характеристики. Батарея представляет собой ряд, состоящий из парных стеклянных трубок. Из пространства между ними откачивают воздух и выполняют спайку, образованный таким образом вакуум служит хорошим теплоизолятором и снижает потери энергии. Верхние трубки вставляются в распределитель, где циркулирует сам теплоноситель. В зависимости от распределения тепла такие коллекторы бывают прямоточные и с плоской трубкой.

Воздушный

Данное устройство предназначено для топки зданий за счет нагрева воздушных масс. Потоки воздуха поступают в систему через поглотитель и естественным путем или принудительно поставляются в теплообменник. Недостатком коллектора считается то, что в отличие от жидких видов, в нем тепло проводится не так хорошо. Но подобная система характеризуется несложной конструкцией и легко управляется. Если соблюдать все правила эксплуатации, то коллектор исправно прослужит более 20 лет.

Водяной

Внешне имеет сходство с вакуумным устройством, но в его конструкции в трубках под определенным углом располагается жидкость. Трубки присоединяются к баку, из которого горячая вода передается в систему и возвращается. Главным достоинством агрегата является, то что для его монтажа не нужно применять дополнительные элементы. Некоторые модели таких коллекторов могут также работать и без бака. Во время эксплуатации водяного коллектора при температурном режиме ниже -10 С необходимо заливать незамерзающую жидкость.

Как выбрать?

Перед тем как заняться установкой солнечного коллектора, необходимо правильно подобрать соответствующий вид устройства, так как от этого будет зависеть эффективность его работы и коэффициент теплообмена.

Поэтому, отправляясь за покупкой, стоит учесть следующие нюансы:

  • Лучше всего отдавать предпочтение плоским моделям, так как они считаются самыми прочными и имеют положительные отзывы потребителей. Их агрегат способен нагревать воду свыше 40 С, но если батарея выходит из строя, то придется заменять всю систему адсорбции. Вакуумные виды устройств характеризуются быстрым повреждениям трубок и очень чувствительны к внешним воздействиям. Но стоит заметить, что ремонт изделия выполняется просто, так как заменяется только конкретная колба. Зато в зимнее время года такие батареи хорошо поддерживают температуру, в этом их плюс.
  • Что же касается воздушных коллекторов, то они редко выходят из строя и не требуют ремонта. Кроме этого, они надежно выдерживают низкую температуру и долговечны в использовании. Единственное, что подобные устройства не подойдут для отопления больших зданий, так как слабо прогревают помещения.
  • Немаловажным показателем для выбора является и размер трубок, от которого зависит эффективность преобразования солнечной энергии. Трубка мелкого диаметра снижает процесс выработки энергии. Поэтому желательно приобретать коллекторы, имеющие в конструкции несколько больших колб шириной до 6 см и длиной до 2 м.
  • Особое внимание следует уделять мощности батарей. Системы с низким сохранением тепла нельзя использовать при низкой температуре. В частности, это касается моделей с водяной тепло подачей.
  • Монтаж установки должен выполняться после предварительного проектирования. Для этого нужно знать размеры батарей, которые бы подходили для крепления к крыше.
  • Можно покупать коллекторы как с вертикальным, так и горизонтальным расположением. При этом вертикальные конструкции издавать от проблем с очисткой от снега, но их КПД будет низким. Чтобы этого избежать, нужно до установки предусмотреть место для исхода осадков.

Расчет

Солнечная энергия является идеальным источником для отопления зданий. Чтобы ее максимально преобразить в тепло, необходимо точно рассчитать затраты ресурсов и мощность установок, учитывая тип агрегата и его месторасположение. В первую очередь нужно знать какое количество энергии попадает на поверхность панели. Как известно, на 1 м2 поверхности попадает около 1367 Вт солнечной энергии, но проходя сквозь слои атмосферы, мощность теряется до 500 Вт. В связи с этим для средних расчетов берется условное значение 800 Вт.

Солнечный коллектор является рабочей станцией, основание которой защищено антибликовым покрытием и стеклом. Благодаря тому, что основание покрыто черной краской, наблюдается 100% поглощение энергии. Так как в состав батарей входит теплоизоляция, то можно определить коэффициент потери тепла. Для каждого материала он разный, но изоляцию коллекторов часто выполняют на основе минваты, поэтому для простых расчетов берется показатель 0,045. Предполагая то, что температурная разница между внешним и внутренним слоем теплоизоляции не превышает 50 С, потери энергии составят: 0,045: 0,1 × 50 = 22,5 Вт.

Аналогичны будут потери и для труб, поэтому суммарный показатель получится 45 Вт. Поэтому чтобы нагреть 1 л воды на 1 С, потребуется мощность энергии в 1,16 Вт. Определив эти величины, можно легко узнать объем жидкости, который можно нагреть батареей с рабочей площадью 1 м2 за один час: 800: 1,16 = 689,65. Чтобы улучшить теплопередачу, агрегаты лучше всего размещать с ориентацией на юг.

Важным расчетом считается, и рабочая площадь батареи. Для этого количество нужной энергии нужно разделить на 800 Вт и получится искомое значение. Но стоит обратить внимание, что данный показатель соответствует площади агрегата, рассчитанного на обслуживание одного человека. Поэтому если в доме проживает семья, состоящая из двух, трех и более человек, то значение следует увеличить.

Изготовление

Солнечный агрегат можно не только самостоятельно установить, но и изготовить своими руками. Самодельный коллектор может быть как вакуумный, так и воздушный или плоский.

Что выполнить монтаж устройства понадобятся следующих элементы:

  • датчики температурного режима;
  • переходники ведущие к системе подключения холодного и горячего водоснабжения;
  • водосток для выхода горячей воды;
  • регулятор солнечной энергии;
  • емкость или бак;
  • циркуляционный насос;
  • датчики контроля подогрева воды.

Подключение и сборку всех составляющих конструкции следует выполнять согласно проекту, придерживаясь инструкции:

  • На первом этапе определяются с размерами будущего коллектора. Для этого точно рассчитывают площадь его размещения и интенсивность солнечной энергии. Важно обратить внимание на расположение здания, где планируется установка системы, в зависимости от полученных показателей выбирается материал для нагревательного контура.
  • Следующим шагом будет сборка устройства, во время которой изготавливается короб, радиатор, накопитель и теплообменник. Коробку можно сделать из обрезной доски толщиной не менее 5 мм, ее днище укрывают оцинкованный листом и дополнительно укладывают пенопласт, который послужит хорошей теплоизоляцией. Для теплообменника используют трубки длиной 1,6 м, их должно быть 15 шт., их собирают в цельную конструкцию, соблюдая шаг 4,5 см. Чтобы улучшить поглощение лучей, дно коробки красят в темный цвет, затем устанавливают в качестве перегородок стекло и стыки герметизируют.

В качестве основного накопителя можно применять как сосуд объемом от 140 до 380 л, так и другие сваренные конструкции или бочки. Емкость должна быть хорошо изолирована от потерь тепла, поэтому аванкамеру оборудуют дополнительно шарнирным краном. Вначале монтируется аванкамера и тепло накопитель, затем полученную конструкцию размещают под углом 35–40.

Между накопителем и теплообменником делается расстояние в 70 см, иначе потери тепловой энергии будут значительны.

  • Завершающим этапом считается ввод оборудования в эксплуатацию. Полученную конструкцию присоединяют к водопроводу. Для этого требуется запорная арматура. Устройство заполняют водой и присоединяют аванкамеру. Затем важно проверить уровень жидкости и отсутствие утечек воды. После контроля, самодельный коллектор готов к эксплуатации.

Советы

Установка солнечных систем позволяет экономить электроэнергию, обеспечивая дом «бесплатным» теплом и горячей водой. Но выбирая данный вид устройств, нужно помнить, что эффективность системы будет значительно снижаться вечером и утром, так как основной объем энергии вырабатывается при ярком солнце. Чтобы солнечные коллекторы надежно прослужили много лет и бесперебойно обеспечивали здание теплом, при их выборе и монтаже необходимо учесть следующие рекомендации специалистов:

  • Покупая батарею, следует уточнить можно ли ее эксплуатировать зимой и какая мощность системы.
  • Если коллектор собирается самостоятельно, то нижнюю часть его теплообменника нужно обеспечивать денежными вентилями и теплоизоляцией, которая позволить сохранить качество разогретой жидкости. При этом трубы можно также обмотать плотной тканью или полиэтиленом.
  • В конструкции должен обязательно присутствовать вентиль, предотвращающий циркуляцию от теплоносителя. Если наблюдается резкое снижение температуры, то вентиль нужно закрыть.
  • Перед тем как соорудить солнечные установки, следует сделать детальный расчет площади батарей, а также максимальную выработку энергии.

О том, как сделать солнечный коллектор своими руками из алюминиевых банок, смотрите в следующем видео.

Селективное покрытие своими руками для солнечного коллектора

Самодельный солнечный коллектор это едва-ли не самая интересная тема в контексте энергоэффективного дома. Для изготовления солнечного коллектора не требуется высокотехнологичного производства и если разобраться в теории и не бояться практики — можно обеспечить семью горячей водой, подогретой солнцем.

Изготовление коллектора проходит в несколько этапов, один из которых — выбор и нанесение селективного покрытия на поглощающие панели (абсорберы). Отмечу, что затраты на селективное покрытие незначительно увеличивают общую стоимость проекта, но играют важную роль.

Абсорберу (поглощающей панели) нужно покрытие, которое будет эффективным теплоприемником, прозрачно для инфракрасного излучения.

На какие характеристики селективных покрытий нужно ориентироваться?

Мерилом эффективности селективного покрытия является:

  • Коэффициент поглощения солнечной энергии(α)
  • Относительная излучающая способность (ε)
  • Отношение способности поглощения к излучению

Начнем с самого простого и доступного селективного покрытия: краски.

Селективная краска

Обычные черные краски не годятся, так как являются теплоизоляторами и не обладают термостойкостью. Матовая автокраска не обладает необходимой термостойкостью, хотя светопоглощение у них хорошее (в испытаниях дают 65-70°С при 70-80°С у коллектора с покрытием тонером по лаку).

Лаки, посыпанные тонером для лазерных принтеров, дают правильное покрытие с точки зрения матовой поверхности, но так же плохо проводят тепло. Смешивать лак и тех. углерод — идея еще хуже, так как получается очень толстый слой покрытия с глянцем. Нам нужно добиться толщины селективного покрытия в несколько микрон.

Подходят аэрозольные и баночные термостойкие матовые краски для мангалов, печей, каминов черного цвета. Под некоторые краски требуется нанесение специального антикоррозийного грунта, кислотного грунта.

Есть подходящие краски не в форме аэрозоля, но которые можно наносить краскопультом. Напоминаю, толщина слоя очень важна для эффективности селективного покрытия.

Нашел в продаже специализированные краски для солнечных коллекторов с заявленными 99% поглощения.

Готовая селективная пленка или металлическая лента

Селективными пленками пользуются мелкие производители коллекторов. Это термопленки для наклеивания на абсорбер или рулонная медь/алюминий с готовым селективным покрытием, нанесенным в условиях вакуума. Достать такой материал в розницу сложно.

Селективное покрытие на алюминий

Идеального тонкого покрытия графитового цвета на алюминии добиваются тем же методом, что и с оцинковкой — чернение купоросом/хлоридом натрия. Это спорный вариант самодельного селективного слоя, так как истончает металл.

Промышленные доступные абсорберы в основном алюминиевые, толщиной 0,2 мм, крашеные матовой термокраской. Учитывая это, мудрить с чернением алюминия всяким хлорным железом и анодированием не имеет смысла в масштабах самодельного солнечного коллектора. Наиболее быстро окупаемым в самоделках является именно крашеный алюминий, который уступает в теплоотдаче и только черненой меди. Но у алюминиевого абсорбера есть свои недостатки.

Селективное покрытие на медный абсорбер

Перед оксидированием медную поверхность нужно тщательно очистить кислотой (горячий уксус, лимонная кислота, сульфаминовая кислота). Шкурить перед чернением щетками по металлу или какими-либо абразивами не дает никаких преимуществ в абсорбции энергии в дальнейшем.

Очистить медь можно солью/содой по чайной ложке на 100 г. воды.

Прочную оксидную пленку можно получить температурой красного каления — 1200°С с последующим охлаждением. Делать такое оксидирование нужно до момента спайки. В домашних «каминных» условиях такое не провернуть, нужно нести медь к кузнецу.

Оксидирование меди серной мазью дает рыхлое неустойчивое селективное покрытие.
Естественная окись меди имеет поглощающую способность в четыре раза большую, чем у термостойкой краски: 75% поглощения, 33% эмиссии, что дает 42% эффективности.

Чернение меди делают также  электролитическим способом, рецепты и технологический процесс есть в сети.

Жидкости для воронения (чернения) хорошо работают, но дорогие. Протравки можно делать самостоятельно, рецепты есть по этой ссылке. Хочу отдельно остановиться на паре способов. В способе с серной печенью — оксид меди в составе полученного покрытия может быть в меньшей концентрации, чем сульфид меди, а это может влиять на селективную способность покрытия, но я не химик и не уверен.

Промышленный метод оксидирования меди с помощью едкого натра опасен для здоровья, не применяйте его в гаражных условиях. Вместо NaOH+NaClO2 пользуются содой, которая в промышленных масштабах неудобна и дорога для чернения меди.

Хотя образцы, черненные NaOH показывают лучший результат (подробнее о тестах самодельных селективных покрытий на меди и алюминии здесь) чернение содой — процесс медленный, на глубокий черный цвет уходит около 2-х суток в растворе без подогрева. Концентрация раствора: 2 чайные ложки на 100 грамм воды.

Формирование оксида проходит медленно, поэтому нужный оттенок и равномерность получить гораздо проще таким методом. Раствор нужно периодически помешивать а детали переворачивать.

Солнечный свет ускоряет процесс оксидирования меди. Толщина покрытия в несколько микрон, что нам и нужно. Очень стабильное, не смывается и не сцарапывается.

Встречал советы с парами аммиака (нашатырного спирта), якобы приводят к быстрому потемнению меди в закрытой емкости. Однако это скорее патинирование, придающее меди синеву, нестойкое покрытие.

Прожиг меди газовой горелкой дает на 10-12°С меньше селективности, чем оксидирование химическими способами.

Для коллектора лучше выбрать медь. Простая пайка, долговечность работы даже при утрате селективного покрытия (с алюминием все в разы сложнее), хотя медь и получится раза в 4 дороже алюминия.

Термокраска на медь тоже наносится, но раз уж вы теперь знаете, как ее оксидировать, то браться за покраску точно не стоит.

Селективное покрытие на оцинковку

Химическое меднение (и последующее оксидирование) оцинковки можно провести в гаражных условиях с помощью пентагидрата сульфата меди (медного купороса).

Химическое чернение раствором медного купороса и натриевой соли соляной кислоты (хлорид натрия) получается не стойким. Чернить оцинковку лучше готовым промышленным чернителем, с которым можно работать без гальваники холодным способом, он создает на поверхности прочную оксидную хроматную пленку. Оксидный слой поглощает максимум излучения в пасмурный день.

Вариант нанесения на оцинковку порошковой краски для лазерных принтеров (технического углерода) не менее популярен. Пластины оцинковки прогреваются строительным феном и посыпаются тонером. Слой краски получается тонким, матовым, прочным — порошок приплавляется к металлу сам. Если пластина слишком горячая и порошок оплавился — обрабатывают мелкозернистой наждачной бумагой. В солнечную погоду такое селективное покрытие более чем эффективно.

Другие технологии селективных покрытий:

  • Гофрированная селективная поверхность
  • Углеродный войлок
  • Селективное бархатное (флок) покрытие, нанесенное плазмой

Несколько обобщающих моментов о селективных поглощающих покрытиях:

  1. Коллекторы для сезонного пользования прекрасно греют воду с любым самодельным селективным покрытием.
  2. Абсорбер с матовым черным покрытием и двумя стеклами поверх имеет примерно те же температуры, что и теплоприемник с селективной краской и одним стеклом.
  3. Чернение меди гораздо долговечнее красок, а стоимость оксидирования не дороже покрытия термостойкой краской. Красить медь не стоит.
  4. Быстрее всех окупается крашеный алюминиевый абсорбер.

Книги по солнечным коллекторам:

Дмитрий Тенешев «Сделай сам солнечный коллектор из полимеров»
Н. В. Харченко «Индивидуальные солнечные установки»

Целый архив документации по технологии производства селективных покрытий скачивайте тут (ссылка на яндекс.диск)

Поделиться с друзьями

Похожее

Похожие записи

Структурный и термический анализ асфальтового солнечного коллектора с использованием метода конечных элементов

Сбор солнечной энергии с использованием асфальтовых покрытий имеет большое значение в нынешнем энергетическом сценарии. Асфальтовые покрытия, подвергающиеся воздействию солнечного излучения, могут достигать температуры до 70 ° C из-за их превосходных свойств поглощения тепла. Многие рабочие параметры, такие как диаметр трубы, расстояние между трубами, глубина трубы, расположение труб и скорость потока, влияют на производительность асфальтового солнечного коллектора.Существующая литература по извлечению тепловой энергии из асфальтового покрытия основана на небольших лабораторных образцах и численном моделировании. Чтобы спроектировать эффективный асфальтовый солнечный коллектор, необходимо обеспечить баланс между тепловой и структурной стабильностью дорожного покрытия, чтобы можно было поглощать максимальное количество тепла без повреждения конструкции из-за условий внешней нагрузки. Эта бумага
представляет комбинированный термический и структурный анализ асфальта
солнечный коллектор методом конечных элементов.Анализ проводится
в различных моделях, чтобы получить оптимальную трубу
расстояние, диаметр трубы, глубина и расположение трубы под
указанное состояние.

1. Введение

Устойчивое энергоснабжение — ключевой фактор, определяющий развитие экономики. Текущие темпы роста энергопотребления в ближайшем будущем приведут к полному дефициту основного энергоресурса — ископаемого топлива. Ситуация вызывает наибольшее беспокойство из-за воздействия основных загрязнителей, таких как CO 2 , на земную атмосферу.Эта ситуация заставила исследователей задуматься о зеленых технологиях, с помощью которых можно увеличить мировое производство энергии. Это указывает на важность распределенного производства электроэнергии. Распределенное мелкомасштабное производство может увеличить мировое производство энергии и в то же время имеет преимущество низкой стоимости передачи. Асфальтовый солнечный коллектор — не новая технология. Эта система используется во многих странах для обогрева и охлаждения дорожных покрытий зимой и летом соответственно.При правильном проектировании технология может быть использована для питания некоторых приложений на месте, где она используется (распределенное производство электроэнергии).

Солнечная энергия — это основной источник энергии для всех других форм энергии, который представляет собой зеленый источник тепла, распространенный по всему миру. Дорожные тротуары можно рассматривать как самый большой солнечный тепловой коллектор-накопитель на суше. Он получает солнечное излучение в течение всего дня и запасает часть энергии от него. В ночное время эта энергия полностью или частично рассеивается в атмосферу.Исследования показывают, что в средний летний день температура асфальтового покрытия может достигать 60–70 ° C из-за его прекрасных свойств поглощения тепла. Солнечная тепловая энергия, собираемая асфальтовым покрытием, может быть получена путем циркуляции жидкости через него. Система, которая предназначена для этой цели, называется асфальтовым солнечным коллектором (ASC). Получение тепловой энергии из асфальтового покрытия — сложная технология для производства энергии в будущем.

ASC состоит из труб, встроенных в дорожное покрытие, по которым циркулирует жидкость, обычно вода с антифризом.Собранная энергия может храниться как таковая или преобразовываться в любую другую форму, которая подходит для коммунального предприятия. Система имеет три основных преимущества: (а) если тепло может быть собрано с разумной эффективностью и стоимостью, его можно рассматривать как источник энергии, (б) часть накопленного тепла может использоваться для обогрева дороги. в зимний сезон, чтобы избежать образования льда, и (c) отвод тепла летом помогает уменьшить развитие теплового стресса и, следовательно, колейность. При укладке труб в дорожное покрытие возникает множество ограничений.Основным ограничением является то, что это повлияет на долговечность и устойчивость дорожного покрытия. ACS можно использовать только при строительстве новой дороги или во время крупномасштабного ремонта существующей дороги. Необходимо изучить не только количество выделяемой энергии, но и изменение температуры на поверхности покрытия, чтобы избежать развития термического напряжения.

Чтобы спроектировать эффективную ASC, необходимо найти компромисс между тепловыми и структурными характеристиками системы.Оптимальная глубина трубы, расстояние между трубами и скорость потока для конкретного диаметра трубы должны быть спроектированы так, чтобы обеспечить максимальный отвод тепла, не вызывая разрушения конструкции в неблагоприятных условиях. Было проведено множество исследований для численного и экспериментального прогнозирования производительности ASC. Некоторые из основных работ описаны ниже. Зварич [1] разработал систему таяния снега, работающую при температуре от –16 ° C до 3 ° C, и изучил ее характеристики. Он заметил неравномерную теплопередачу на поверхности дорожного покрытия.Loomans et al. [2] провели численный и экспериментальный анализ для оценки теплового потенциала асфальтовых покрытий. Он обнаружил, что эффективность этой системы ниже, чем у обычных солнечных водонагревателей. Wu et al. [3] провели исследование в лаборатории, чтобы найти эффективный теплообменник, который может максимально отводить тепло от асфальтового покрытия. Результаты показывают, что при использовании содержания графита в среднем слое температура снижается до гораздо более низкого значения по сравнению с областью, в которой графит отсутствует.Маллик и др. [4] представил теоретические соображения, полученные в результате его исследования, о том, что при выборе подходящих слоистых агрегатов возможно получение солнечной энергии. Wu et al. [5, 6] численно и экспериментально проанализировали характеристики асфальтовой плиты на всю глубину в качестве солнечного коллектора. Bobes-Jesus et al. [7] представили обзор литературы по различным параметрам, влияющим на производительность асфальтового солнечного коллектора.

Паскуаль-Муньос и др. представила новую технологию, в которой вместо солнечного коллектора со встроенной трубопроводной сетью используется многослойное покрытие с высокопористым средним слоем.В лабораторных испытаниях были получены отличные тепловые КПД. Были получены значения КПД от 75% до 95% в зависимости от освещенности солнечной лампы, пористости промежуточного слоя и наклона коллектора. Авторы также предполагают, что добавление таких материалов, как графит, может быть использовано для улучшения термических свойств асфальта [8]. Многие исследователи изучают влияние использования различных материалов в асфальтовом солнечном коллекторе. Было проведено несколько экспериментов для анализа эффекта повышения теплопроводности дорожного покрытия за счет добавления агрегатов с более высокой теплопроводностью, таких как графит или кварц [4, 9].Эта статья посвящена комбинированному структурному и термическому анализу асфальтового солнечного коллектора с фиксированным диаметром трубы 20 мм. В COMSOL Multiphysics 4.2b исследуются различные модели для прогнозирования тепловых характеристик; структурный анализ проводится в ANSYS APDL. Модели повторно проектируются итеративно для получения оптимального дизайна.

Компьютерное моделирование стало неотъемлемой частью науки и техники. Цифровой анализ компонентов важен при разработке новых продуктов или оптимизации конструкции, поскольку эксперименты с ними в реальном времени иногда трудны и дороги.Сегодня доступен широкий спектр возможностей моделирования; Исследователи используют все, от базовых языков программирования до различных пакетов высокого уровня, реализующих расширенные методы. Среда компьютерного моделирования — это просто перевод реальных физических законов в их виртуальную форму. COMSOL собирается создать среду моделирования, включающую возможность добавления любого физического эффекта к вашей модели. Это гибкая платформа, которая позволяет даже предварительным пользователям моделировать все соответствующие физические аспекты своих проектов.COMSOL снабжен множеством пакетов для различных исследований. Пакет, полезный для нашего исследования, — это модуль теплопередачи с настраиваемыми физическими интерфейсами для анализа теплопередачи. В Модуле теплопередачи возможны произвольные связи с другими режимами приложений в COMSOL Multiphysics; это особенно актуально для систем, основанных на потоке жидкости, а также на массообмене. С другой стороны, ANSYS APDL — это хорошо зарекомендовавший себя модуль для решения структурных систем со сложными параметрами.Он может дать четкое представление о структурных характеристиках системы с высокой устойчивостью к данным в реальном времени. В этой работе мы выбрали COMSOL для термического анализа и ANSYS APDL для структурного анализа.

2. Энергетический баланс асфальтового покрытия

Распределение температуры асфальтового покрытия напрямую зависит от тепловых условий окружающей среды, которым оно подвергается. Основные режимы теплопередачи включают падающее солнечное излучение, тепловое и длинноволновое излучение между поверхностью асфальтового покрытия и небом, конвекцию за счет теплопередачи между поверхностью дорожного покрытия и жидкостью (воздухом или водой), которая контактирует с поверхностью, теплопроводность внутри покрытия и радиационные потери тепла с поверхности.На рис. 1 показаны различные режимы теплопередачи в теплопроводном асфальтовом покрытии, подверженном воздействию солнечного излучения.

3. Термический анализ

Из литературы ясно видно, что свойства асфальтовых поверхностей сильно зависят от температуры. Одним из важных факторов при определении срока службы дорожного покрытия является его тепловая реакция на солнечное излучение. Равномерная температура по всей поверхности — лучший способ избежать теплового разрушения. Наш интерес состоит в том, чтобы определить оптимальное расстояние между трубами и глубину труб в асфальтовом покрытии, чтобы обеспечить почти равномерное распределение температуры на поверхности асфальтового покрытия.Чтобы узнать изменение температуры в асфальтовом покрытии и количество энергии, извлекаемой циркулирующей водой, мы проводим моделирование на различных моделях с разным расстоянием между трубами, их расположением и глубиной, а также при разных расходах. На рисунках 2 и 3 показана структура асфальтового покрытия, которое мы выбрали для целей нашего исследования. Конструкция дорожного покрытия имеет размеры 1000 мм × 1000 мм при общей глубине 415 мм. Структура состоит из трех слоев, как показано на рисунке 4.Тепловые свойства каждого слоя приведены в таблице 1. Возможны два типа расположения труб: прямая труба и змеевик. Прямая труба обычно используется из-за ее преимущества в обеспечении более однородной температуры на поверхности. Змеевидное расположение может привести к неравномерной температуре в слоях асфальта; это подтверждается нашим анализом. Засорение трубы может привести к перегреву поверхности в случае змеевидного расположения, но в случае прямого расположения трубы блокировка одной трубы не повлияет на систему.


Слой Плотность, (кг / м 3 ) Теплопроводность, (Вт / мК) Удельная теплоемкость,
(Дж / кг · К)
Модуль Юнга ,
(МПа)
Коэффициент Пуассона,

HMA (слой 1) 2600 1,83 920 3500 0,4
База (слой 2) 2600 1.83 920 3500 0,45
Земляное полотно (слой 3) 2200 1,7 1800 2800 0,45
Медная трубка 8700 400 385 1,1 × 10 5 0,34



В структуре асфальта исследования проводятся путем изменения расстояния между трубами и глубины трубы с соблюдением диаметр трубы фиксированный: диаметр 20 мм и толщина 2 мм.Термический анализ проводится в COMSOL Multiphysics 4.3b, Модуль теплопередачи. COMSOL Multiphysics — это программа для анализа методом конечных элементов, решателя и моделирования для различных физических и инженерных приложений, особенно связанных явлений или мультифизики.

В данном исследовании мы выбрали интерфейс сопряженного теплопереноса и ламинарного потока для моделирования. Интерфейс сопряженной теплопередачи и ламинарного потока используется в основном для моделирования медленно движущегося потока в средах, где температура и перенос энергии также являются важной частью системы и должны быть каким-либо образом связаны или связаны с потоком жидкости.Различные режимы теплопередачи между слоями асфальта, трубной жидкостью и внешней средой следующие: (i) теплопроводность через слои асфальта; (ii) теплопроводность через встроенные трубы; (iii) конвективная теплопередача от поверхности дорожного покрытия к окружающей среде; (iv) конвективная теплопередача от стенки трубы к проточной воде; (v) радиационная теплопередача от поверхности асфальта. Первоначально с помощью Autodesk Inventor 2013 создается трехмерная модель, состоящая из слоя асфальта и жидкостной области. Затем модель импортируется в COMSOL интерфейс для термического анализа.Модель солнечного коллектора из асфальта для изучения в COMSOL показана на рис. 5 вместе с деталями областей в таблице 2. Области жидкости выбираются отдельно, а в качестве материала используется вода. В качестве материала трубы для асфальтового солнечного коллектора выбрана медь из-за ее высокой теплопроводности. Стенка трубы встроена в модель с помощью функции высокопроводящего слоя в модуле теплопередачи. В интерфейсе пользователя предусмотрена толщина слоя 2 мм с таким материалом, как медь. Подробная информация о различных входных условиях для анализа представлена ​​в таблице 3.Анализ проводится на разных моделях с разным шагом и глубиной трубы. Детали анализируемых моделей приведены в таблице 4.


Домен 1 Верхний уровень (HMA)
Домен 2 Средний уровень (базовый)
Домен 3 Нижний слой (подслой)
Домен 4 Водный домен


Теплоизоляция Изолированная нижняя поверхность
Состояние стенки трубы Граничное условие отсутствия проскальзывания
Начальная температура начальная = 300 K
Подвод теплового потока 800 Вт / м 2 , общие условия внутреннего теплового потока на верхней поверхности модели
Слой с высокой проводимостью Границы области текучей среды выбранный слой толщина указана как 2 мм, материал медь
Конвективный тепловой поток Пользовательский коэффициент теплопередачи равен 20 Вт / м 2 K на верхней поверхности, = 300 K
Излучение от поверхности к окружающей среде Коэффициент излучения, определяемый пользователем = 0.7, = 300 K
Температура воды на входе на входе = 298 K
Скорость воды на входе 8 мм / сек – 50 мм / сек


Размер модели Расположение и сокращенные обозначения

1000 мм × 1000 мм, = 200 мм,

Коллектор наиболее выгодный солнечный тепловой — Отлично сделки на солнечные коллекторы от глобальных продавцов солнечных коллекторов

Отличные новости !!! Вы попали в нужное место для солнечного коллектора.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний коллектор для солнечной энергии вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели солнечный коллектор на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в коллекторных солнечных коллекторах и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести солнечный тепловой коллектор по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

CFD моделирование полимерного солнечного коллектора

Автор

Перечислено:

  • Martinopoulos, G.
  • Миссирлис, Д.
  • Цилингиридис, Г.
  • Якинф, К.
  • Кириакис, Н.

Abstract

Полимерный солнечный коллектор разработан, и его поведение исследовано как экспериментально, так и с помощью вычислительной гидродинамики (CFD). В модели учитывается солнечное излучение, а также конвекция и теплопередача в циркулирующей жидкости и между частями коллектора. Распределение температуры и скорости по его площади, а также эффективность коллектора при номинальном расходе использовались для проверки модели CFD. Было обнаружено, что распределение температуры во время работы и средняя эффективность коллектора хорошо согласуются между экспериментальными данными и результатами моделирования CFD.

Предлагаемое цитирование

  • Мартинопулос, Г., Миссирлис, Д., Цилингиридис, Г., Якинф, К., Кириакис, Н., 2010.
    « CFD моделирование полимерного солнечного коллектора
    Возобновляемая энергия, Elsevier, vol. 35 (7), страницы 1499-1508.
  • Обозначение: RePEc: eee: renene: v: 35: y: 2010: i: 7: p: 1499-1508

    DOI: 10.1016 / j.renene.2010.01.004

    Скачать полный текст от издателя

    Поскольку доступ к этому документу ограничен, вы можете поискать его другую версию.

    Ссылки на IDEAS

    1. Сельми, Мохамед и Аль-Хаваджа, Мохаммед Дж. И Марафия, Абдулхамид, 2008 г.
      « Проверка моделирования CFD для плоского коллектора солнечной энергии »,
      Возобновляемая энергия, Elsevier, vol. 33 (3), страницы 383-387.
    2. Хендерсон, Д. и Джунаиди, Х., Мунир, Т., Грасси, Т. и Карри, Дж., 2007.
      « Экспериментальное и CFD исследование ICSSWH под разными углами наклона «,
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol.11 (6), страницы 1087-1116, август.
    3. Нахар Н.М. и Гарг Г.П., 1980.
      « Свободная конвекция и затенение из-за зазора между пластиной-поглотителем и покровным стеклом в плоских коллекторах солнечной энергии »,
      Прикладная энергия, Elsevier, vol. 7 (1-3), страницы 129-145, ноябрь.

    Полные ссылки (включая те, которые не соответствуют элементам в IDEAS)

    Цитаты

    Цитаты извлекаются проектом CitEc, подпишитесь на его RSS-канал для этого элемента.

    Цитируется:

    1. Миссирлис Д. и Мартинопулос Г. и Цилингиридис Г. и Якинфос К. и Кириакис Н., 2014.
      « Исследование поведения теплопередачи полимерного солнечного коллектора для различных конфигураций коллектора
      Возобновляемая энергия, Elsevier, vol. 68 (C), страницы 715-723.
    2. Тиан Ю. и Чжао С.Ю., 2013.
      « Обзор солнечных коллекторов и аккумуляторов тепловой энергии в солнечных установках
      Прикладная энергия, Elsevier, vol.104 (C), страницы 538-553.
    3. Чжан, Синсин и Шэнь, Цзинчунь и Лу, Янь и Хэ, Вэй и Сюй, Пэн и Чжао, Сюйдун и Цю, Чжунчжу и Чжу, Цзышан и Чжоу, Цзиньчжи и Донг, Сяоцян, 2015.
      « Активные солнечные тепловые фасады (ASTF): от концепции, применения к исследовательским вопросам »,
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol. 50 (C), страницы 32-63.
    4. Букер, Махмут Сами и Риффат, Саффа Б., 2015.
      « Строительство интегрированных солнечных тепловых коллекторов — Обзор
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol.51 (C), страницы 327-346.
    5. Барбара Зардин и Джованни Чилло и Карло Альберто Ринальдини и Энрико Маттарелли и Массимо Борги, 2017.
      « Потери давления в гидравлических коллекторах
      Энергия, MDPI, Open Access Journal, vol. 10 (3), страницы 1-21, март.
    6. Фаршад, Сейед Али и Шейхолеслами, М., 2019.
      « Поток наножидкости внутри солнечного коллектора с использованием скрученной ленты с учетом эксергетического и энтропийного анализа
      Возобновляемая энергия, Elsevier, vol.141 (C), страницы 246-258.
    7. Филипович, Петар и Дович, Дамир и Ранилович, Борян и Хорват, Иван, 2019.
      « Численный и экспериментальный подход к оценке тепловых характеристик полимерного солнечного коллектора »,
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol. 112 (C), страницы 127-139.
    8. Фекете, Иштван и Фаркас, Иштван, 2019.
      « Численное и экспериментальное исследование строительства интегрированных солнечных панельных коллекторов
      Возобновляемая энергия, Elsevier, vol.137 (C), страницы 45-55.
    9. Пагсли, Адриан и Захаропулос, Аггелос и Смит, Мервин и Мондол, Джаянта, 2019.
      « Оценка производительности солнечных водонагревательных коллекторов senergy из поликарбоната и асфальт-углеродных нанотрубок для интеграции в здание
      Возобновляемая энергия, Elsevier, vol. 137 (C), страницы 2-9.
    10. Hossain, M.S. И Панди, А. И Сельварадж, Джейрадж и Рахим, Насреддин Абд и Ислам, М. & Тяги, В.В., 2019.
      « Система материалов с фотоэлектрическим термическим фазовым переходом (PVT-PCM) на основе двухстороннего змеевидного потока: Энергетический, эксергетический и экономический анализ
      Возобновляемая энергия, Elsevier, vol.136 (C), страницы 1320-1336.
    11. Серон, Дж. Ф. и Перес-Гарсия, Дж. И Солано, Дж. П. и Гарсия, А., Эрреро-Мартин, Р., 2015.
      « Совместная численная модель плоских солнечных жидкостных коллекторов типа труба на листе. Анализ и проверка механизмов теплопередачи
      Прикладная энергия, Elsevier, vol. 140 (C), страницы 275-287.
    12. Пандей, Кришна Мурари и Чаурасия, Раджеш, 2017.
      « Обзор анализа и разработки солнечного плоского коллектора «,
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol.67 (C), страницы 641-650.
    13. Хуанико, Луис Э. и Ди Лалла, Николас и Гонсалес, Алехандро Д., 2017.
      « Полное теплогидравлическое моделирование и моделирование солнечной энергии для изучения недорогих солнечных коллекторов на основе одного длинного шланга из ПВД »,
      Обзоры возобновляемой и устойчивой энергетики, Elsevier, vol. 73 (C), страницы 187-195.
    14. Диего-Айяла, У. и Каррильо, Дж. Г., 2016.
      « Оценка температуры и эффективности по отношению к массовому расходу на солнечном коллекторе с плоской пластиной в Мексике »,
      Возобновляемая энергия, Elsevier, vol.96 (PA), страницы 756-764.
    15. Гунджо, Давит Гудета и Маханта, Пинакесвар и Роби, П.С., 2017.
      « CFD и экспериментальное исследование плоской солнечной системы водяного отопления в установившемся режиме
      Возобновляемая энергия, Elsevier, vol. 106 (C), страницы 24-36.
    16. Эррандо, Мария и Рамос, Альба и Забальца, Игнасио и Маркидес, Христос Н., 2019.
      « Комплексная оценка альтернативных конструкций абсорбера-теплообменника для гибридных коллекторов PVT-вода
      Прикладная энергия, Elsevier, vol.235 (C), страницы 1583-1602.

    Исправления

    Все материалы на этом сайте предоставлены соответствующими издателями и авторами. Вы можете помочь исправить ошибки и упущения. При запросе исправления укажите идентификатор этого элемента: RePEc: eee: renene: v: 35: y: 2010: i: 7: p: 1499-1508 . См. Общую информацию о том, как исправить материал в RePEc.

    По техническим вопросам, касающимся этого элемента, или для исправления его авторов, названия, аннотации, библиографической информации или информации для загрузки, обращайтесь: (Haili He).Общая контактная информация поставщика: http://www.journals.elsevier.com/renewable-energy .

    Если вы создали этот элемент и еще не зарегистрированы в RePEc, мы рекомендуем вам сделать это здесь. Это позволяет связать ваш профиль с этим элементом. Это также позволяет вам принимать возможные ссылки на этот элемент, в отношении которого мы не уверены.

    Если CitEc распознал ссылку, но не связал с ней элемент в RePEc, вы можете помочь с этой формой .

    Если вам известно об отсутствующих элементах, цитирующих этот элемент, вы можете помочь нам создать эти ссылки, добавив соответствующие ссылки таким же образом, как указано выше, для каждого элемента ссылки. Если вы являетесь зарегистрированным автором этого элемента, вы также можете проверить вкладку «Цитаты» в своем профиле службы авторов RePEc, поскольку там могут быть некоторые цитаты, ожидающие подтверждения.

    Обратите внимание, что на фильтрацию исправлений может уйти несколько недель.
    различные сервисы RePEc.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *