06.10.2024

N p n схема: NPN транзистор. Устройство и принцип работы, схема подключения

Содержание

NPN транзистор. Устройство и принцип работы, схема подключения

Итак, транзистор, в котором один полупроводник p-типа размещен между двумя полупроводниками n-типа, известен как NPN-транзистор.

Транзистор NPN усиливает сигнал, поступающий на базу, и генерирует усиленный сигнал на коллекторе. В NPN-транзисторе направление движения электрона происходит от эмиттера к коллектора, из-за чего ток и протекает через транзистор. Устройства такого типа очень часто используют в электрических схемах, потому что их основными носителями заряда являются электроны, которые имеют высокую подвижность по сравнению с дырками (положительно заряженные носители).

Конструкция NPN транзистора

Транзистор NPN, по сути, это два диода, соединенных друг с другом. Диод на левой стороне называется диод на основе перехода «эмиттер-база», а диоды на правой стороне называют диод на основе коллекторного перехода. Имена были подобраны согласно названию переходов.

Транзистор NPN имеет три клеммы, а именно эмиттер, коллектор и базу. Средняя часть NPN-транзистора слегка легирована, и это является наиболее важным фактором его работы. Эмиттер умеренно легирован, а коллектор сильно легирован.

Схема включения NPN транзистора

Принципиальная схема NPN-транзистора показана на рисунке ниже. Коллектор и база подключены в обратном смещении, а эмиттер и база подключены в прямом смещении. Коллектор и база, через которую ведется управление состоянием транзистора ВКЛ./ВЫКЛ., всегда подключены к положительному полюсу источника питания, а эмиттер подключен к отрицательному полюсу источника питания.

Как работает NPN транзистор

Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется через соединение эмиттер-база, а обратное смещение применяется через соединение коллектор-база. Напряжение прямого смещения VEB мало по сравнению с напряжением обратного смещения VCB.

Эмиттер NPN-транзистора сильно легирован. Когда прямое смещение прикладывается к эмиттеру, большинство носителей заряда движутся к базе. Это вызывает протекание тока эмиттера IE. Электроны входят в материал P-типа и соединяются с дырками.

База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют ток базы IB. Ток базы проникает в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллектора. Таким образом, привлекают или собирают электроны на коллекторе.

Весь ток эмиттера входит в базу. Таким образом, можно сказать, что ток эмиттера является суммой токов коллектора и базы.

Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия



    Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.




    Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:




— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.




— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.




     Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:




— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;




— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.




    Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.




    Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:




— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)




— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)




   Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.









Принципиальное отличие логики PNP от NPN







   Чаще применяется вариант с выходом на основе транзистора PNP, поскольку большее распространение получила схемотехника с общим минусовым проводом источника питания. Выходное напряжение зависит от напряжения питания датчика и обычно находится в узком диапазоне, например, 20…28 В.




    Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.




Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:




— PNP NO (НО)




— PNP NC (НЗ)




— NPN NO (НО)




— NPN NC (НЗ)




    Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым). Отсюда обозначения NO (НО) – normally open (нормально открытый) и normally closed (нормально закрытый).




    Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:




— внесение изменений в конструкцию, инициирующую датчик




— внесение изменений в программу (смена алгоритма)




— переключение выходной функции датчика (при наличии такой возможности)




   Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.


Замена датчика PNP на NPN










  Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.




   Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.




    Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.




   Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.




    Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути. 




Схемы подключения датчиков  PNP к устройству со входом NPN и наоборот







    Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.

✅ Как подключить npn транзистор

Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Соединение транзисторов

Кремниевые транзисторы в свое время полностью вытеснили лампы. Когда же появились интегральные схемы, где транзисторов иногда насчитывалось до миллиарда штук, эти радиоэлементы стали незаменимы. В этом материале будет рассказано, как подключить биполярный транзистор и какие схемы включения транзисторов для чайников существуют.

Что это такое

Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.

Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.

Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.

На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.

Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.

Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.

Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.

Область применения и основной принципы функционирования

В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».

Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.

Обозначение на электросхемах

У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.

По принципу действия и строению различают следующие полупроводниковые триоды:

  • Полевого типа;
  • Биполярного;
  • Комбинированного.

Все они обладают схожим функционалом и отличаются по технологии работы.

Полевые

Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:

  • Транзисторы с PN переходом управления;
  • Элементы с затвором изолированного типа;
  • Такие же транзисторы другой структуры (металл-диэлектрик-проводник).

Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.

Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.

Биполярные

Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.

Комбинированные

Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:

  • Биполярными с внедрёнными в их схему резисторами;
  • Двумя триодами одной или нескольких структур строения в единой детали;
  • Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
  • Элементы, в которых полевые составляющие управляют биполярными.

Схема подключения транзистора для чайников

Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.

Для усилителей с базой общего типа характерно следующее:

  • Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
  • Неплохая температура и частота триода;
  • Допустимое напряжение весьма большое;
  • Требуют два различных источника питания.

Схемы второго типа обладают:

  • Высокими показателями усиления электротока и напряжения;
  • Низкими показателями усиления мощностных характеристик;
  • Инверсионной разницей между входным и выходным напряжением.

Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.

Подключение по типу общего коллектора может обеспечить:

  • Низкие показатели электронапряжения по усилению;
  • Большая и меньшая сопротивляемость входа и выхода соответственно.

Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.

Биполярные транзисторы

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.

Примечание: Когда мы говорим

, мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Электронные печеньки

Arduino, DIY и немного этих ваших линуксов.

Транзистор

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Типы транзисторов

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Подключение транзистора

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

PNP-транзистор: схема подключения. Какая разница между PNP и NPN-транзисторами?

PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Рассмотрим отличия PNP-типа на схеме включения с общей базой

Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.

По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.

Отличия PNP-типа на примере схемы включения с общим эмиттером

В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.

Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.

В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.

В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.

PNP-транзистор: подключение источников напряжения

Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.

Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.

Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.

Работа PNP-транзисторного каскада

Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.

Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.

Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.

Характеристики транзистора

Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.

Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Транзистор. Обозначение на схемах и внешний вид транзисторов.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 900) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.

Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Устройство, принцип работы и различие N-P-N и P-N-P транзисторов | Энергофиксик

Существуют два основных вида транзисторов: полевые и биполярные. Биполярные транзисторы, в свою очередь, также разделяются на тип с P-N-P и N-P-N переходом. В этом материале я вам расскажу об устройстве биполярных транзисторов и мы поговорим о принципе работы и в чем их основное различие. Итак, поехали.

Немного истории

Согласно записям официальной истории дату 16.12.1947 года можно считать официальным днем рожденья одного из главных элементов всей электроники современности. Именно в этот день был представлен общественности первый транзистор, который был собран тремя учеными, а именно: Д. Бардин, У. Шокли и У. Браттейн.

yandex.ru

yandex.ru

Появление биполярного транзистора позволило отказаться от использования электронных ламп. Вся современная электроника была бы невозможна без этого изделия. Вот такое важное открытие было совершено в середине 20-го столетия. Теперь от истории перейдем к нашим биполярным транзисторам.

Как устроен биполярный транзистор

Итак, биполярный транзистор схематически можно представить следующим образом:

Посмотрите внимательно на изображение, вам оно ничего не напоминает? Да, вы правы, если присмотреться и мысленно разделить зону N – перехода, то перед нами два соединенных между собой диода (запомните этот момент, в дальнейшем он нам понадобится).

Для определения какой проводимости перед нами диод, достаточно прочитать направление P-N перехода. На рисунке выше у нас проводимость типа P-N-P. Это означает, что перед нами транзистор прямой проводимости (так как принято считать, что ток проходит от плюса к минусу).

А вот у транзистора N-P-N типа проводимость обратная

Вы заметили, что в обоих вариантах исполнения присутствуют три вывода под названием:

Эмиттер (источник, генератор), База (основа) и Коллектор (сборщик, накопитель).

Схематическое обозначение транзисторов

Из всего выше написанного вы уже наверняка поняли, что есть транзисторы обратной и прямой последовательности, а это значит, что и на схемах такие элементы должны иметь различия. Давайте их рассмотрим.

Итак, обозначение транзистора прямой проводимости на схемах будет следующее:

А вот транзистор обратной проводимости обозначается уже так:

В старых советских мануалах транзисторы маркировались буквой «Т», а теперь обозначение сменили на «VT».

Как по схеме определить N-P-N или P-N-P транзистор перед вами

На самом деле определить по схеме тип биполярного транзистора довольно просто, достаточно помнить следующее правило:

Как известно в N – полупроводнике имеется большое количество свободных электронов, а в полупроводнике P–типа расположены «дырки» — положительно заряженные частицы. А по общепринятой теории ток протекает от «плюса» к «минусу».

Если вы посмотрите на схему, то увидите, что эмиттер изображен со стрелкой, которая либо направлена к базе либо от нее. Так вот если транзистор N-P-N типа, то есть база выполнена из P– полупроводника, то ток течет от базы (стрелка эмиттера от базы). Если же база выполнена из N — полупроводника, то ток (стрелка) втекает в базу.

Как работает P-N-P транзистор

С обозначением и устройством вроде все понятно, а вот как он работает давайте разбираться:

Давайте представим биполярный транзистор в виде водяной трубы с задвижкой с пружинным механизмом.

Как видно из рисунка сверху беспрепятственному протеканию воды по трубе мешает задвижка с пружинным механизмом, если мы приложим небольшое усилие (откроем задвижку сжав пружину), то вода беспрепятственно потечет по трубе. Если же мы отпустим пружину, то она распрямится и вернет задвижку на место, тем самым перекрыв трубу и поток воды будет остановлен.

Теперь вообразите, что данная труба — это транзистор P-N-P типа, значит его выводы можно представить следующим образом:

Получается, чтобы ток протекал от эмиттера к коллектору (напоминаю, что направление тока совпадает с направлением стрелки на эмиттере) нужно сделать так, чтобы ток выходил из базы, или говоря по простому: подать на базу минус.

Давайте наглядно проверим работу такого транзистора. Для этого возьмем КТ814Б и соберем простенькую схему с двумя источниками питания.

Для того, чтобы правильно подключить транзистор необходимо знать какой вывод является эмиттером, базой и коллектором. Для этого находим техническую документацию и определяем:

Лампочку я буду использовать самую обычную автомобильную, рассчитанную на 12 Вольт. Собранная схема будет выглядеть так:

Итак, чтобы наша схема заработала выставляем на источнике питания №2 12 Вольт. А на первом источнике питания начинаем очень плавно (с нуля) поднимать напряжение ровно до того момента, пока не загорится наша лампа.

Схема заработала при напряжении 0,66 Вольт на первом источнике.

То есть произошло «открытие» транзистора и через цепь эмиттер-коллектор начал проходить ток.

Иначе говоря, напряжение, которое открыло наш транзистор — это ни что иное как падение напряжения на P-N переходе база-эмиттер, которое как раз и находится в пределах от 0,5 до 0,7 В для кремниевых транзисторов.

А как дела обстоят с транзисторами, где используется N-P-N переход.

Принцип работы N-P-N транзистора

Если внимательно посмотреть на техническую документацию к транзистору КТ814Б, то можно найти запись о том, что комплиментарной парой к этому транзистору является КТ815Б, а он различается лишь тем что здесь используется N-P-N переход.

yandex.ru

yandex.ru

И схема подключения будет выглядеть так:

Посмотрите внимательно на эту схему и схему включения КТ814Б, вы ничего не заметили? Все верно, единственное различие между этими двумя транзисторами заключено в том, что транзистор с P-N-P переходом открывается «минусом» (так как на базу подается отрицательный потенциал), а вот транзистор N-P-N открывается «плюсом».

Заключение

В этом материале мы с вами познакомились с устройством биполярных транзисторов, их устройстве и принципе работы, а также с тем как они обозначаются на схемах. Если статья оказалась вам интересна или полезна, то оцените ее лайком. Спасибо за ваше внимание!

устройство, принцип действия, схемы включения

Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах. Прилагательное “биполярный” (bipolar junction transistor) служит для отличия от полевых транзисторов (FET – field effect transistor). Принцип действия биполярного транзистора состоит в использовании двух p-n переходов, образующих запорный слой, который позволяет малому току управлять большим током. Биполярный транзистор используется и как управляемое сопротивление, и как ключ. Транзисторы бывают двух типов: pnp и npn.

P-N переход

Германий (Ge) и кремний (Si) – это полупроводники. Сейчас главным образом используют кремний. Валентность Si и Ge равна четырем. Поэтому если добавить в кристаллическую решетку кремния пятивалентный мышьяк (As), мы получим “лишний” электрон, а если добавить трехвалентный бор (B) – мы получим вакантное место для электрона. В первом случае говорят о “донорном” материале, дающем электроны, во втором случае – об “акцепторном”, принимающем электроны. Также первый тип материала называют N (negative), а второй – P (positive).

Если привести в контакт материалы P и N типов, то между ними возникнет ток и установится динамическое равновесие с обедненной областью, где концентрация носителей заряда – электронов и вакантных мест (“дырок”) – мала. Этот слой обладает односторонней проводимостью и служит основой прибора, называемого диод. Непосредственный контакт материалов не создаст качественный переход, необходимо сплавление (диффузия) или “забивание” в кристалл ионов легирующих примесей в вакууме.

PNP-транзистор

Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году. Его корпус обрезан для наглядности.

Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.

Если в транзисторе типа pnp приложить между коллектором (-) и эмиттером (+) напряжение в несколько вольт, в цепи пойдет очень слабый ток, несколько мкА. Если затем приложить небольшое (открывающее) напряжение между базой (-) и эмиттером (+) – для германия оно составляет около 0,3 В (а для кремния 0,6 В) – то ток некоторой величины потечет из эмиттера в базу. Но так как база сделана очень тонкой, то она быстро насытится дырками (“растеряет” свой избыток электронов, которые уйдут в эмиттер). Поскольку эмиттер сильно легирован дырочной проводимостью, а в слабо легированной базе рекомбинация электронов немного запаздывает, то существенно большая часть тока пойдет из эмиттера в коллектор. Коллектор сделан больше эмиттера и слабо легирован, что позволяет иметь на нем большее пробивное напряжение (Uпроб.КЭ > Uпроб.ЭБ). Также, поскольку основная часть дырок рекомбинирует в коллекторе, то он и греется сильнее остальных электродов прибора.

Между током коллектора и эмиттера имеется соотношение:

Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы. Эта величина называется коэффициент передачи тока эмиттера. На практике чаще используют обратную величину (также обозначается как h21e):

Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике.

Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.

NPN-транзистор

Биполярный транзистор может иметь коллектор с эмиттером из материала N-типа. Тогда база делается из материала P-типа. И в этом случае, транзистор npn работает точно, как pnp, за исключением полярности – это транзистор обратной проводимости.

Транзисторы на основе кремния подавляют своим числом все остальные типы биполярных транзисторов. Донорным материалом для коллектора и эмиттера может служить As, имеющий “лишний” электрон. Также изменилась технология изготовления транзисторов. Сейчас они планарные, что дает возможность использовать литографию и делать интегральные схемы. На картинке ниже изображен планарный биполярный транзистор (в составе интегральной схемы при сильном увеличении). По планарной технологии изготавливаются как pnp, так и npn-транзисторы, в том числе и мощные. Сплавные уже сняты с производства.

Планарный биполярный транзистор в разрезе на следующей картинке (упрощенная схема).

Из картинки видно, насколько удачно устроена конструкция планарного транзистора – коллектор эффективно охлаждается подложкой кристалла. Также изготовлен и планарный pnp транзистор.

Условные графические обозначения биполярного транзистора показаны на следующей картинке.

Эти УГО являются международными, и также действительны по ГОСТ 2.730-73.

Схемы включения транзисторов

Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже. Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.

Общий эмиттер

Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.

Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.

Общий коллектор

По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление. (Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления.)

Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.

Общая база

Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом.

Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.

Два основных режима работы

Различают режимы работы с использованием “малого” и “большого” сигнала. В первом случае биполярный транзистор работает на маленьком участке своих характеристик и это используется в аналоговой технике. В таких случаях важна линейность усиления сигналов и малые шумы. Это линейный режим.

Во втором случае (ключевой режим), биполярный транзистор работает в полном диапазоне – от насыщения до отсечки, как ключ. Это значит, что если посмотреть на ВАХ p-n перехода – следует для полного запирания транзистора приложить между базой и эмиттером небольшое обратное напряжение, а для полного открывания, когда транзистор переходит в режим насыщения, немного увеличить базовый ток, по сравнению с малосигнальным режимом. Тогда транзистор работает как импульсный ключ. Этот режим используется в импульсных и силовых устройствах, применяется для импульсных источников питания. В таких случаях стараются добиться малого времени переключения транзисторов.

Для цифровой логики характерно промежуточное положение между “большим” и “малым” сигналами. Низкий логический уровень ограничивают 10% от напряжения питания, а высокий 90%. Время задержек и переключения стремятся уменьшить до предела. Такой режим работы является ключевым, но мощность здесь стремятся свести к минимальной. Любой логический элемент – это ключ.

Другие виды транзисторов

Основные, уже описанные виды транзисторов, не ограничивают их устройство. Выпускают составные транзисторы (схема Дарлингтона). Их β очень большой и равен произведению коэффициентов обеих транзисторов, поэтому их называют еще “супербета” транзисторами.

Электротехника уже хорошо освоила IGBT-транзисторы (insulated gate bipolar transistor), с изолированным затвором. Затвор полевого транзистора, действительно, изолирован от его канала. Правда, есть вопрос перезарядки его входной емкости при переключениях, так что, без тока и здесь не обходится.

Такие транзисторы используют в мощных силовых ключах: импульсные преобразователи, инверторы и т.д. По входу IGBT очень чувствительны, за счет высокого сопротивления затворов полевых транзисторов. По выходу – дают возможность получать огромные токи и могут быть изготовлены на высокое напряжение. Например, в США есть новая солнечная электростанция, где такие транзисторы в мостовой схеме нагружены на мощные трансформаторы, отдающие энергию в промышленную сеть.

В заключение отметим, что транзисторы, говоря простыми словами, являются “рабочей лошадкой” всей современной электроники. Их используют везде: от электровозов до мобильников. Любой современный компьютер состоит практически из одних транзисторов. Физические основы работы транзисторов хорошо изучены и обещают еще немало новых достижений.

Материалы по теме:

Схемы замещения биполярного транзистора

Стр 1 из 2Следующая ⇒

Введение.

В учебных планах по курсу «Электроника» предусматривается выполнение работы по расчету параметров биполярного транзистора. В настоящих указаниях изложена методика этих расчетов.

Биполярный транзистор представляет собой полупроводниковый прибор с двумя p-n переходами и тремя электродами (эмиттер, база и коллектор). Переходы образуются тремя слоями с чередующимися типами проводимости, как показано на рис.1. В зависимости от порядка чередования этих слоев различают два типа транзистора: p-n-p и n-p-n. На рис.1 приведены их схемные обозначения.

 

 

Рис .1. Схемы структуры биполярных транзисторов

типа n-p-n и p-n-p и их схемные обозначения

В настоящих указаниях методика расчета изложена для случая включения биполярного транзистора по схеме «с общим эмиттером», которая нашла широкое применение. В этой схеме, приведенной на рис.2, эмиттер входит в состав, как входной, так и выходной цепей. Входным током является базовый ток, входным напряжением является напряжение база-эмиттер. Выходным током является коллекторный ток, выходным напряжением является напряжение коллектор-эмиттер. На рис.2 показана схема включения транзистора типа n-p-n с указанием полярности напряжений, подаваемых к электрода. В случае транзистора типа p-n-p полярность напряжений должна быть изменена.

 

Рис. 2. Схема включения биполярного транзистора типа

n-p-n с общим эмиттером



Схемы замещения биполярного транзистора

При расчетах электрических цепей с транзисторами реальный прибор заменяется схемой замещения, в которой транзистор представляется в виде активного четырехполюсника. Возможны две схемы замещения транзистора: бесструктурная и структурная, в которой отражены физические связи между ее элементами. В обоих случаях полагается линейная связь между токами и напряжениями в приборе. Такой подход возможен, когда транзистор работает при открытом эмиттерном переходе и закрытом коллекторном переходе, а значения его токов и напряжений не выходят за пределы рабочей области на выходной характеристике.

Рис. 3. Бесструктурная схема замещения биполярного транзистора


На рис.3 приведена бесструктурная схема замещения биполярного транзистора. Поскольку электрический режим прибора в схеме ОЭ определяется входным током IБ и выходным напряжением U , четырехполюсник схемы замещения описывается системой уравнений типа Н. При этом вместо значений токов и напряжений в уравнениях используются приращения значений этих параметров относительной соответствующих величин, находящихся внутри рабочей области. Таким образом, в случае бесструктурной схемы значения приращений токов и напряжений биполярного транзистора связываются через h-параметры уравнениями

Δ U = h Δ IБ + h Δ U , (1)

 

Δ I = h Δ IБ + h Δ U . (2)

 

Из соотношения (1) при Δ U = 0 следует

h = , (3)

а при Δ IБ = 0

h = . (4)

 

Аналогичным образом из соотношения (2) можно получить

h = , (5)

h = . (6)

Согласно соотношениям (3) – (6)

h является входным сопротивлением транзистора при постоянном значении напряжения U ;

h — коэффициент обратной связи по напряжению;

h — коэффициент передачи тока в схеме ОЭ, характеризующий усилительные свойства транзистора при постоянном значении напряжения U ;

h — выходная проводимость транзистора при постоянном токе базы.

Структурная схема замещения транзистора можно представить в виде Т-образной схемы. Такая схема для случая включения транзистора с ОЭ приведена на рис.4, где приращения токов и напряжений обозначены как iБ, iК, uБЭ, uКЭ.

 

Рис. 4. Бесструктурная схема замещения биполярного транзистора

 

Левая часть этой эквивалентной схемы транзистора отражает эмиттерный переход, находящийся в открытом состоянии. Резистор rЭ представляет собой сопротивление открытого перехода, величина которого невелика и лежит в пределах от единиц до нескольких десятков Ом. Резистор rБ представляет сопротивление базового слоя, величина которого как правило составляет 100-500 Ом. Им по существу определяется входное сопротив-ление прибора, поскольку величина сопротивления rЭ весьма мала. Правая часть схемы рис.4 отражает коллекторный переход. Он представляется параллельным соединением сопротивления rК(Э) и барьерной емкости коллекторного перехода СК. Кроме того, параллельно им включен источник тока βiБ, отражающий факт переноса рабочих носителей заряда из эмиттерного слоя в коллекторный слой. На низких частотах емкостное сопротивление велико и шунтирующим действием емкости СК на источник тока βiБ можно пренебречь. Поэтому подключение емкости СК на рис.4 обозначено пунктиром.

Согласно эквивалентной схеме рис.4 на низких частотах с учетом малой величины сопротивления rЭ приращение коллекторного тока определяется соотношением

 

 

из которого следует, что с учетом (5)

 

h = b,

а с учетом (6)

 

r = .

 

Поскольку коллекторный переход транзистора закрыт, его сопротивле-ние очень велико. Поэтому величина параметра h22 имеет порядок 10-4 См. Величина параметра h21 обычно составляет несколько десятков.

Таким образом значения параметров rб, rк(э) и b структурной схемы замещения транзистора определяются, если известны значения параметров h11, h21 и h22 бесструктурной схемы замещения.

 

Поиск по сайту:

Учебное пособие по

NPN-транзисторам — Биполярный NPN-транзистор

В предыдущем уроке мы видели, что стандартный биполярный транзистор или BJT бывает двух основных форм. Тип NPN ( N egative — P ositive — N egative) и тип PNP ( P ositive — N egative — P ositive).

Наиболее часто используемая конфигурация транзисторов — это NPN Transistor . Мы также узнали, что переходы биполярного транзистора могут быть смещены одним из трех различных способов — Common Base , Common Emitter и Common Collector .

В этом руководстве по биполярным транзисторам мы более внимательно рассмотрим конфигурацию «Общий эмиттер» с использованием биполярного NPN-транзистора с примером конструкции NPN-транзистора вместе с характеристиками потока транзистора, приведенными ниже.

Конфигурация биполярного NPN-транзистора

(Примечание: стрелка определяет эмиттер и условный ток, «выход» для биполярного NPN-транзистора.)

Конструкция и напряжения на клеммах биполярного NPN-транзистора показаны выше.Напряжение между базой и эмиттером (V BE ) положительное на базе и отрицательное на эмиттере, потому что для NPN-транзистора клемма базы всегда положительна по отношению к эмиттеру. Также напряжение питания коллектора является положительным по отношению к эмиттеру (V CE ). Таким образом, для биполярного NPN-транзистора проводимость коллектора всегда более положительна как по отношению к базе, так и по отношению к эмиттеру.

Подключение транзистора NPN

Затем источники напряжения подключаются к NPN-транзистору, как показано.Коллектор подключается к источнику питания V CC через нагрузочный резистор RL, который также ограничивает максимальный ток, протекающий через устройство. Напряжение питания базы V B подключено к резистору базы R B , который снова используется для ограничения максимального тока базы.

Итак, в транзисторе NPN именно движение отрицательных носителей тока (электронов) через базовую область составляет действие транзистора, поскольку эти подвижные электроны обеспечивают связь между цепями коллектора и эмиттера.Эта связь между входными и выходными цепями является главной особенностью работы транзистора, поскольку усилительные свойства транзисторов происходят от последовательного управления, которое база оказывает на ток коллектора-эмиттер.

Тогда мы можем видеть, что транзистор является устройством, управляемым током (бета-модель), и что большой ток (Ic) свободно течет через устройство между коллектором и выводами эмиттера, когда транзистор включен «полностью». Однако это происходит только тогда, когда небольшой ток смещения (Ib) протекает в выводе базы транзистора одновременно, что позволяет базе действовать как своего рода вход управления током.

Ток в биполярном NPN-транзисторе — это отношение этих двух токов (Ic / Ib), которое называется коэффициентом усиления постоянного тока устройства и обозначается символом hfe или в настоящее время Beta (β).

Значение β может быть большим до 200 для стандартных транзисторов, и именно это большое соотношение между Ic и Ib делает биполярный NPN-транзистор полезным усилительным устройством при использовании в его активной области, поскольку Ib обеспечивает вход, а Ic обеспечивает выход. Обратите внимание, что в бета-версии нет единиц измерения, так как это соотношение.

Кроме того, коэффициент усиления по току транзистора от вывода коллектора до вывода эмиттера, Ic / Ie, называется альфа, (α) и является функцией самого транзистора (электроны диффундируют через переход). Поскольку ток эмиттера Ie является суммой очень малого тока базы и очень большого тока коллектора, значение альфа (α) очень близко к единице, а для типичного маломощного сигнального транзистора это значение находится в диапазоне примерно 0,950. к 0,999

Взаимосвязь α и β в NPN-транзисторе

Комбинируя два параметра α и β, мы можем получить два математических выражения, которые дают соотношение между различными токами, протекающими в транзисторе.

Значения бета варьируются от примерно 20 для сильноточных мощных транзисторов до более 1000 для высокочастотных биполярных транзисторов маломощного типа. Значение бета для большинства стандартных NPN-транзисторов можно найти в технических паспортах производителя, но обычно оно находится в диапазоне от 50 до 200.

Вышеприведенное уравнение для бета-версии также можно перестроить, чтобы сделать Ic объектом, и при нулевом базовом токе (Ib = 0) результирующий ток коллектора Ic также будет равен нулю (β * 0).Также, когда ток базы высокий, соответствующий ток коллектора также будет высоким, что приведет к тому, что ток базы будет управлять током коллектора. Одним из наиболее важных свойств биполярного переходного транзистора является то, что небольшой базовый ток может управлять гораздо большим током коллектора. Рассмотрим следующий пример.

Пример №1 транзистора NPN

Биполярный транзистор NPN имеет коэффициент усиления по постоянному току (бета), равный 200. Рассчитайте базовый ток Ib, необходимый для переключения резистивной нагрузки 4 мА.

Следовательно, β = 200, Ic = 4 мА и Ib = 20 мкА.

Еще один момент, о котором следует помнить о биполярных NPN-транзисторах . Напряжение коллектора (Vc) должно быть больше и положительно по отношению к напряжению эмиттера (Ve), чтобы позволить току течь через транзистор между переходами коллектор-эмиттер. Кроме того, существует падение напряжения между базой и выводом эмиттера около 0,7 В (падение напряжения на один диод) для кремниевых устройств, поскольку входные характеристики NPN-транзистора относятся к прямому смещенному диоду.

Тогда базовое напряжение (Vbe) NPN-транзистора должно быть больше, чем это 0,7 В, иначе транзистор не будет проводить с током базы, заданным как.

Где: Ib — ток базы, Vb — напряжение смещения базы, Vbe — падение напряжения база-эмиттер (0,7 В), а Rb — входной резистор базы. Увеличивая Ib, Vbe медленно увеличивается до 0,7 В, но Ic растет экспоненциально.

Пример транзистора NPN No2

NPN-транзистор имеет напряжение смещения базы постоянного тока, Vb, равное 10 В, и входной базовый резистор, Rb, равное 100 кОм.Каким будет значение тока базы в транзисторе.

Следовательно, Ib = 93 мкА.

Конфигурация общего эмиттера.

Помимо использования в качестве полупроводникового переключателя для включения или выключения токов нагрузки путем управления базовым сигналом транзистора либо в области его насыщения, либо в области отсечки, биполярные транзисторы NPN также могут использоваться в его активная область для создания схемы, которая будет усиливать любой слабый сигнал переменного тока, подаваемый на его базовый вывод с заземленным эмиттером.

Если подходящее «смещающее» напряжение постоянного тока сначала подается на базовый вывод транзистора, что позволяет ему всегда работать в своей линейной активной области, создается схема инвертирующего усилителя, называемая одноступенчатым усилителем с общим эмиттером.

Одна такая конфигурация усилителя с общим эмиттером и NPN-транзистора называется усилителем класса А. Операция «Усилитель класса А» — это операция, при которой клемма базы транзистора смещена таким образом, чтобы смещать в прямом направлении переход база-эмиттер.

В результате транзистор всегда работает на полпути между областями отсечки и насыщения, что позволяет транзисторному усилителю точно воспроизводить положительную и отрицательную половины любого входного сигнала переменного тока, наложенного на это напряжение смещения постоянного тока.

Без этого «напряжения смещения» усилилась бы только половина входного сигнала. Эта конфигурация усилителя с общим эмиттером, использующая NPN-транзистор, имеет множество применений, но обычно используется в аудиосхемах, таких как каскады предварительного усилителя и усилителя мощности.

Что касается конфигурации общего эмиттера, показанной ниже, семейство кривых, известных как кривые выходных характеристик , связывает выходной ток коллектора (Ic) с напряжением коллектора (Vce) при различных значениях тока базы (Ib ). Кривые выходных характеристик нанесены на транзистор для транзисторов с одинаковым значением β.

«Линия нагрузки» постоянного тока также может быть нанесена на кривые выходных характеристик, чтобы показать все возможные рабочие точки, когда применяются различные значения базового тока.Необходимо правильно установить начальное значение Vce, чтобы выходное напряжение изменялось как вверх, так и вниз при усилении входных сигналов переменного тока, и это называется установкой рабочей точки или точки покоя, для краткости Q-точка , и это показано ниже.

Схема одноступенчатого усилителя с общим эмиттером

Кривые выходных характеристик типичного биполярного транзистора

Наиболее важный фактор, на который следует обратить внимание, — это влияние Vce на ток коллектора Ic, когда Vce больше 1.0 вольт. Мы можем видеть, что Ic в значительной степени не зависит от изменений Vce выше этого значения, и вместо этого он почти полностью контролируется базовым током Ib. Когда это происходит, мы можем сказать, что выходная цепь представляет собой «источник постоянного тока».

Из приведенной выше схемы общего эмиттера также видно, что ток эмиттера Ie является суммой тока коллектора Ic и тока базы Ib, сложенных вместе, поэтому мы также можем сказать, что Ie = Ic + Ib для общего эмиттера (CE) конфигурация.

Используя кривые выходных характеристик в нашем примере выше, а также закон Ома, ток, протекающий через нагрузочный резистор (R L ), равен току коллектора, Ic, входящему в транзистор, который, в свою очередь, соответствует току коллектора. напряжение питания (Vcc) минус падение напряжения между коллектором и выводами эмиттера (Vce) и определяется как:

Кроме того, прямая линия, представляющая линию динамической нагрузки транзистора, может быть проведена непосредственно на графике кривых выше от точки «Насыщение» (A), когда Vce = 0, до точки «отсечки» ( B) когда Ic = 0, что дает нам «Рабочую» или Q-точку транзистора.Эти две точки соединены прямой линией, и любое положение на этой прямой представляет «активную область» транзистора. Фактическое положение линии нагрузки на кривых характеристик можно рассчитать следующим образом:

Затем кривые коллекторных или выходных характеристик для NPN-транзисторов с общим эмиттером можно использовать для прогнозирования тока коллектора, Ic, при заданном Vce и ​​токе базы, Ib. Линия нагрузки также может быть построена на кривых для определения подходящей рабочей или точки Q , которая может быть установлена ​​путем регулировки базового тока.Наклон этой линии нагрузки равен обратному сопротивлению нагрузки, которое определяется как: -1 / R L

Затем мы можем определить транзистор NPN как обычно «ВЫКЛ.», Но небольшой входной ток и небольшое положительное напряжение на его базе (B) относительно его эмиттера (E) включат его, позволяя использовать гораздо больший коллектор. -Эмиттер тока течет. NPN-транзисторы проводят, когда Vc намного больше Ve.

В следующем руководстве о биполярных транзисторах мы рассмотрим противоположную или дополнительную форму транзистора NPN , называемую транзистором PNP, и покажем, что транзистор PNP имеет очень похожие характеристики с биполярным транзистором NPN, за исключением того, что полярности или смещение) направления тока и напряжения меняются местами.

Что такое транзистор NPN? — Определение, строительство и работа

Определение: Транзистор, в котором один материал p-типа помещен между двумя материалами n-типа, известен как NPN-транзистор . NPN-транзистор усиливает слабый сигнал , поступающий на базу, и производит сильные сигналы усиления на конце коллектора.В NPN-транзисторе направление движения электрона — от эмиттера к области коллектора , благодаря чему в транзисторе образуется ток. Такой тип транзисторов чаще всего используется в схеме, потому что их основными носителями заряда являются электроны, которые имеют большую подвижность по сравнению с дырками.

Конструкция NPN-транзистора

NPN-транзистор имеет два диода, соединенных спина к спине. Диод на левой стороне называется диодом эмиттер-база, а диоды на левой стороне — диодом коллектор-база.Эти имена даны согласно названиям терминалов.

NPN-транзистор имеет три вывода: эмиттер, коллектор и базу. Средняя часть NPN-транзистора слегка легирована, и это наиболее важный фактор работы транзистора. Эмиттер умеренно легирован, а коллектор сильно легирован.

Схема

NPN транзистора

Принципиальная схема NPN-транзистора показана на рисунке ниже. Коллектор и база соединены с обратным смещением, в то время как эмиттер и база соединены с прямым смещением.Коллектор всегда подключен к положительному источнику питания, а база — к отрицательному источнику питания для управления состояниями ВКЛ / ВЫКЛ транзистора.

Работа транзистора NPN

Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется к переходу эмиттер-база, а обратное смещение применяется к переходу коллектор-база. Напряжение прямого смещения V EB мало по сравнению с напряжением обратного смещения V CB .

Эмиттер NPN-транзистора сильно легирован. Когда к эмиттеру прикладывается прямое смещение, основные носители заряда движутся к базе. Это вызывает ток эмиттера I E . Электроны входят в материал P-типа и соединяются с отверстиями.

База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют базовый ток I B . Этот базовый ток входит в область коллектора.Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллекторного перехода. Таким образом притягивают или собирают электроны на коллекторе.

В базу вводится весь ток эмиттера. Таким образом, можно сказать, что ток эмиттера складывается из тока коллектора и базы.

транзисторов — learn.sparkfun.com

Добавлено в избранное

Любимый

79

Приложения I: переключатели

Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе больше 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключателем , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем в прямом направлении диод база-эмиттер, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток , но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтягивается к VCC

.

(На самом деле это основная конфигурация транзистора, называемая с общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, логический элемент ИЛИ с двумя входами :

Затвор ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост — это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как на , так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется H-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение)
1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0

Осцилляторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы конденсаторов и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около В CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.

Может быть трудно с головой окунуться. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонн схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!



← Предыдущая страница
Режимы работы

Транзистор

NPN: что это такое? (Символ и принцип работы)

Что такое транзистор NPN

Транзистор NPN является наиболее часто используемым транзистором с биполярным переходом и создается путем размещения полупроводника P-типа между двумя полупроводниками N-типа.Транзистор NPN имеет три вывода — коллектор, эмиттер и базу. Транзистор NPN ведет себя как два диода с PN-переходом, соединенных спина к спине.

Эти встречные диоды с PN переходом известны как переход коллектор-база и переход база-эмиттер.

Что касается трех выводов транзистора NPN, эмиттер — это область, используемая для подачи носителей заряда в коллектор через базовую область. Область коллектора собирает больше всего носителей заряда, испускаемых эмиттером.Область Base запускает и контролирует количество тока, протекающего через эмиттер к коллектору.

Эквивалентная схема NPN-транзистора показана на рисунке ниже. Схема, эквивалентная

NPN-транзистору

Напомним, полупроводник N-типа — это полупроводник, в котором доступно большое количество свободных электронов, и он действует как основной носитель заряда. Под действием разности потенциалов электроны получают достаточную энергию и переходят из валентной зоны в зону проводимости.Из-за движения электронов ток будет течь через полупроводник N-типа.

И наоборот, в полупроводниках P-типа электроны недоступны, и дырка действует как основной носитель заряда. Из-за движения дырок ток будет течь через полупроводник P-типа.

Конструкция NPN-транзистора

Как обсуждалось выше, NPN-транзистор имеет два перехода и три вывода. Конструкция транзистора NPN показана на рисунке ниже.

Конструкция NPN-транзистора

Слои эмиттера и коллектора шире по сравнению с базой. Излучатель сильно легирован. Следовательно, он может инжектировать в базу большое количество носителей заряда.

Основание слегка легировано и очень тонкое по сравнению с двумя другими областями. Больше всего переносчиков заряда он передает на коллектор, который излучается эмиттером.

Коллектор умеренно легирован и собирает носители заряда из базового слоя.

Обозначение транзистора NPN

Обозначение транзистора NPN показано на рисунке ниже.Стрелка показывает условное направление тока коллектора (I C ), тока базы (I B ) и тока эмиттера (I E ).

Обозначение транзистора NPN

Как работает транзистор NPN

Переход база-эмиттер подключен в состоянии прямого смещения напряжением питания V EE . А переход коллектор-база подключен в режиме обратного смещения напряжением питания V CC .

В состоянии прямого смещения отрицательная клемма источника питания (V EE ) подключена к полупроводнику N-типа (эмиттер).Точно так же в состоянии обратного смещения положительный вывод источника питания (V CC ) подключен к полупроводнику N-типа (коллектор).

Работа транзистора NPN

Область истощения области эмиттер-база тонкая по сравнению с областью истощения перехода коллектор-база (обратите внимание, что область истощения — это область, где нет подвижных носителей заряда, и она ведет себя как барьер. который противодействует течению тока).

В эмиттере N-типа основной носитель заряда — электроны.Следовательно, электроны начинают течь от эмиттера N-типа к базе P-типа. И из-за электронов ток начнет течь по переходу эмиттер-база. Этот ток известен как ток эмиттера I E .

Эти электроны движутся дальше к базе. База — полупроводник P-типа. Следовательно, в нем есть дыры. Но основная область очень тонкая и слегка легированная. Итак, у него есть несколько дырок для рекомбинации с электронами. Следовательно, большая часть электронов пройдет базовую область, и лишь немногие из них рекомбинируют с дырками.

Из-за рекомбинации ток будет течь по цепи, и этот ток известен как базовый ток I B . Базовый ток очень мал по сравнению с током эмиттера. Обычно это 2-5% от общего тока эмиттера.

Большая часть электронов проходит через обедненную область перехода коллектор-база и проходит через коллекторную область. Ток, протекающий через оставшиеся электроны, известен как ток коллектора I C . Ток коллектора велик по сравнению с током базы.

Схема транзистора NPN

Схема транзистора NPN показана на рисунке ниже.

Цепь транзистора NPN

Источники напряжения подключены к транзистору NPN, как показано на рисунке выше. Коллектор соединен с плюсовой клеммой напряжения питания V CC с сопротивлением нагрузки R L . Сопротивление нагрузки также используется для уменьшения максимального тока, протекающего через устройство.

Клемма базы подключается к положительной клемме напряжения питания базы V B с сопротивлением базы R B .Базовое сопротивление используется для ограничения максимального базового тока.

Когда транзистор включен, через устройство между коллектором и выводами эмиттера протекает большой ток коллектора. Но для этого небольшое количество базового тока должно течь через базовый вывод транзистора.

Согласно KCL, ток эмиттера складывается из тока базы и тока коллектора.

Режим работы транзистора

Транзистор работает в разных режимах или областях в зависимости от смещения переходов.Имеет три режима работы.

  • Режим отключения
  • Режим насыщения
  • Активный режим

Режим отключения

В режиме тока отключения оба перехода имеют обратное смещение. В этом режиме транзистор ведет себя как разомкнутая цепь. И не позволит току течь через устройство.

Режим насыщения

В режиме насыщения транзистора оба перехода соединены прямым смещением. Транзистор ведет себя как замкнутая цепь, и ток течет от коллектора к эмиттеру, когда напряжение база-эмиттер высокое.

Активный режим

В этом режиме транзистора соединение база-эмиттер имеет прямое смещение, а соединение коллектор-база — обратное. В этом режиме транзистор работает как усилитель тока.

Ток протекает между эмиттером и коллектором, и величина тока пропорциональна базовому току.

Режим работы транзистора

Переключатель транзистора NPN

Транзистор работает как включенный в режиме насыщения и выключенный в режиме отсечки.

Когда оба перехода соединены в состоянии прямого смещения и на вход подается достаточное напряжение. В этом состоянии напряжение коллектор-эмиттер близко к нулю, и транзистор работает в режиме короткого замыкания.

В этом состоянии ток начнет течь между коллектором и эмиттером. Значение тока, протекающего в этой цепи, составляет

Режим насыщения транзистора

Когда оба перехода соединены с обратным смещением, транзистор ведет себя как разомкнутая цепь или выключатель.В этом состоянии входное напряжение или базовое напряжение равно нулю.

Следовательно, все напряжение Vcc появляется на коллекторе. Но из-за обратного смещения области коллектор-эмиттер ток не может протекать через устройство. Следовательно, он ведет себя как выключатель.

Принципиальная схема транзистора в области отсечки показана на рисунке ниже.

Режим отсечки транзистора

Распиновка транзистора NPN

Транзистор имеет три вывода; коллектор (C), эмиттер (E) и база (B).В большинстве конфигураций средний вывод предназначен для базы.

Для идентификации выводов эмиттера и коллектора есть точка на поверхности транзистора SMD. Вывод, который находится точно под этой точкой, является коллектором, а оставшийся вывод — выводом эмиттера.

Если точка отсутствует, все булавки будут размещены с неравномерным пространством. Здесь средний штифт — основание. Ближайший штифт среднего штифта — эмиттер, а оставшийся штифт — коллектор.

NPN и PNP-транзистор

Основные различия при сравнении NPN-транзисторов и PNP-транзисторов приведены в таблице ниже:

Структура It имеет два полупроводника N-типа и один полупроводник P-типа.
NPN-транзистор PNP-транзистор
Имеет один полупроводник N-типа и два полупроводника P-типа.
Направление тока Ток будет течь через коллектор к эмиттеру. Ток будет течь через эмиттер к коллектору.
Мажоритарный носитель заряда Электрон Отверстия
Меньший носитель заряда Отверстия Электроны
Время переключения Основание Соединение

Медленное соединение находится в прямом смещении, а переход коллектор-база — в обратном. Переход эмиттер-база в обратном смещении, а переход коллектор-база в прямом смещении.
Символ
Напряжение коллектор-эмиттер Положительный Отрицательный
Стрелка эмиттера Заостренный Преобразователь

Electronics Club

Транзисторные схемы | Клуб электроники

Типы | Токи | Функциональная модель |
Использовать как переключатель | Выход IC | Датчики |
Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, включены в
страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP ,
с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор.
Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния.
Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E).
Эти термины относятся к внутренней работе транзистора, но их не так много.
Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

Обозначения схемы транзистора

Пара Дарлингтона — это два транзистора, соединенных вместе.
чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярных) транзисторов, есть
полевых транзисторов , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут , небольшой ток течет в основание (B)
транзистор. Этого достаточно, чтобы светодиод B тускло светился.Транзистор усиливает
этот небольшой ток, чтобы позволить большему току течь через его коллектор (C)
к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

Когда переключатель разомкнут базовый ток не течет, поэтому транзистор отключается
коллекторный ток. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения.
Транзистор NPN (например, BC108, BC182 или BC548).Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал.
но это еще не рассматривается на этом веб-сайте.

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток)
а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель транзистора NPN

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры.
Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • А базовый ток I B течет только при напряжении V BE
    через переход база-эмиттер равен 0.7В или больше.
  • Малый базовый ток I B управляет большим током коллектора Ic.
    варьируя сопротивление R CE .
  • Ic = h FE × I B
    (если транзистор не открыт и не насыщен).
    h FE — коэффициент усиления по току (строго по постоянному току),
    Типичное значение для h FE равно 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE регулируется током базы I B :

    I B = 0 , R CE = бесконечность, транзистор выключен

    I B малый , R CE уменьшенный, транзистор частично включен

    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора.
    и резистор может быть подключен последовательно с базой.
  • Транзисторы имеют максимальный номинальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться ,
    даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется
    « насыщенный ».
  • При насыщении транзистора напряжение коллектор-эмиттер В CE
    снижается почти до 0В.
  • При насыщении транзистора определяется ток коллектора Ic.
    напряжением питания и внешним сопротивлением в цепи коллектора, а не
    коэффициент усиления транзистора по току.В результате соотношение Ic / I B
    для насыщенного транзистора коэффициент усиления по току меньше FE .
  • Ток эмиттера I E = Ic + I B , но Ic
    намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ .
Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в
В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в
считается насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора.
Ic (макс.) и его минимальное усиление по току ч FE (мин.) .
Номинальное напряжение транзистора может быть проигнорировано для напряжения питания менее 15 В.

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например
Быстрая электроника.

Мощность, развиваемая в переключающем транзисторе, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как тепла , и транзистор будет разрушен, если станет слишком горячим.
Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что
мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Мощность = Ic × V CE

  • Когда ВЫКЛ : Ic равен нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Может ли реле быть лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они
обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что
для переключения тока катушки реле может все же потребоваться маломощный транзистор.
Для получения дополнительной информации, включая преимущества и недостатки,
см. страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле,
диод должен быть подключен к нагрузке, чтобы защитить транзистор от
кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается.
при отключении тока. Внезапный коллапс магнитного поля вызывает
кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку.
(и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает
индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство микросхем не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора.
для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА,
Достаточно для многих реле и других нагрузок без транзистора.

Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение.
но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен.
при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя.
особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В)
для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN
используется на выходе IC. Однако, если на выходе IC используется транзистор PNP, положительные (+) соединения
вместо этого должны быть связаны поставки.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения.
цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле.
Данные о транзисторах можно получить у большинства поставщиков, например см.
Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе IC высокий , используйте NPN транзистор .
  • Для включения, когда на выходе IC низкий уровень , используйте транзистор PNP .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но
Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

Транзисторный переключатель NPN
нагрузка включена, когда выход IC имеет высокий уровень

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Vs = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы — см. Техническое описание микросхемы.
    Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора транзистора Ic (max) должен быть больше тока нагрузки:
    Ic (макс.)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5
    умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.

    ч FE (мин)> 5 × ток нагрузки Ic
    макс. Ток IC
4. Определите значение для базового резистора R

B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения нормальной работы транзистора.
полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз
значение, которое просто насыщает транзистор.Используйте приведенную ниже формулу, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС
но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc — напряжение питания микросхемы
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой):
диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания.
высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «в обратном направлении», как показано на рисунке.
на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 необходим для работы реле с
100, включая ее, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60
    (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА
    и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE
    = 0,2 × 100 × 100 = 2000,
    поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы
светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить
защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее
1к (10к
в примере ниже) для защиты транзистора, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база
ток разрушит транзистор.

Светодиод загорается, когда LDR не светится

Светодиод загорается при яркости LDR

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что
будет промежуточная яркость, когда транзистор будет частично на (не насыщенный).
В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток.
Нет проблем с малым током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор,
могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор.
Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя
мультиметр для определения минимального и максимального значений
сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100,
Rmax = 1M,
поэтому Rv = квадратный корень из (100 × 1M)
= 10к.

Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему
IC (чип). Действие переключения будет намного более резким без частичного включения.



Транзисторный инвертор (НЕ затвор)


Дарлингтон пара

Пара Дарлингтона — это два транзистора, соединенных вместе, так что ток, усиливаемый первым, усиливается.
далее вторым транзистором.

Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что
для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления
(h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления по току пары Дарлингтона:
ч FE = ч FE1
× h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются
соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами.
(B, C и E)
эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов.
TR1 может быть маломощным, но TR2 может потребоваться высокая мощность.
Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через
ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения.
транзисторы малой мощности назначения.

100к
резистор защищает транзисторы, если контакты соединены куском провода.

Схема сенсорного переключателя


Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад
рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.
Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.
Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста,
посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

Схема работы транзистора

NPN, характеристики, применения

Введение

Транзистор NPN является одним из типов биполярных переходных транзисторов (BJT). Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем полупроводника p-типа. Здесь основными носителями заряда являются электроны. Течение этих электронов от эмиттера к коллектору формирует ток в транзисторе.Как правило, NPN-транзистор является наиболее часто используемым типом биполярных транзисторов, поскольку подвижность электронов выше подвижности дырок. Транзистор NPN имеет три вывода — эмиттер, базу и коллектор. Транзистор NPN в основном используется для усиления и переключения сигналов.

На рисунке выше показаны символ и структура NPN-транзистора. В этой структуре мы можем наблюдать три вывода транзистора, токи цепи и значения напряжения.Теперь давайте посмотрим на работу транзистора NPN с объяснением.

НАЗАД

Цепь транзистора NPN

На приведенном выше рисунке показана схема транзистора NPN с напряжениями питания и резистивными нагрузками. Здесь клемма коллектора всегда подключена к положительному напряжению, клемма эмиттера подключена к отрицательному источнику питания, а клемма базы управляет состояниями ВКЛ / ВЫКЛ транзистора в зависимости от приложенного к нему напряжения.

НАЗАД В начало

Работа транзистора NPN

Работа транзистора NPN довольно сложна.В приведенных выше схемах подключения мы заметили, что напряжение питания VB подается на клемму базы через нагрузку RB. Вывод коллектора подключен к напряжению VCC через нагрузку RL. Здесь обе нагрузки RB и RL могут ограничивать ток, протекающий через соответствующие клеммы. Здесь клеммы базы и коллектора всегда содержат положительное напряжение по отношению к клемме эмиттера.

Если напряжение базы равно напряжению эмиттера, то транзистор находится в выключенном состоянии.Если базовое напряжение увеличивается по сравнению с напряжением эмиттера, тогда транзистор становится более переключаемым, пока не перейдет в полностью открытое состояние. Если на клемму базы подается достаточное положительное напряжение, то есть в полностью включенном состоянии, то генерируются потоки электронов, и ток (IC) течет от эмиттера к коллектору. Здесь базовый вывод действует как вход, а область коллектор-эмиттер действует как выход.

Для правильного протекания тока между эмиттером и коллектором необходимо, чтобы напряжение на коллекторе было положительным, а также превышало напряжение эмиттера транзистора.Некоторое падение напряжения между базой и эмиттером, например 0,7 В. Таким образом, базовое напряжение должно быть больше падения напряжения 0,7 В, иначе транзистор не будет работать. Уравнение для тока базы биполярного NPN-транзистора определяется следующим образом:

I B = (V B -V BE ) / R B

Где

I B = ток базы
В B = Напряжение смещения базы
В BE = Входное напряжение база-эмиттер = 0.7V
R B = Сопротивление базы

Выходной ток коллектора в NPN-транзисторе с общим эмиттером можно рассчитать, применив закон Кирхгофа для напряжения (KVL).

Уравнение для напряжения питания коллектора определяется как

В CC = I C R L + V CE ………… (1)

Из приведенного выше уравнения ток коллектора для NPN-транзистор с общим эмиттером обозначен как

I C = (V CC -V CE ) / R L

В NPN-транзисторе с общим эмиттером соотношение между током коллектора и током эмиттера задается как

I C = β I B

В активной области NPN-транзистор действует как хороший усилитель.В NPN-транзисторе с общим эмиттером полный ток, протекающий через транзистор, определяется как отношение тока коллектора к току базы IC / IB. Это соотношение также называется «усилением постоянного тока» и не имеет единиц измерения. Это отношение обычно обозначается буквой β, а максимальное значение β составляет около 200. В NPN-транзисторе с общей базой общий коэффициент усиления по току выражается отношением тока коллектора к току эмиттера IC / IE. Это соотношение обозначается как α, и это значение обычно равно единице.

НАЗАД

Взаимосвязь α, β и γ в NPN-транзисторе

Теперь давайте посмотрим на взаимосвязь между двумя параметрами отношения α и β.

α = усиление постоянного тока для цепи с общей базой = Выходной ток / Входной ток

В общей базе NPN-транзисторный выходной ток равен току коллектора (IC), а входной ток — току эмиттера (IE).

α = I C / I E ……… .. (2)

Это значение усиления по току (α) очень близко к единице, но меньше единицы.
Мы знаем, что ток эмиттера складывается из малого тока базы и большого тока коллектора.

I E = I C + I B

I B = I E — I C

из уравнения 2, коллектор

I C = αI E

I B = I E — αI E

I B = I E (1-α)

β = усиление постоянного тока для цепи с общим эмиттером = выходной ток / входной ток

Здесь выходной ток — это ток коллектора, а входной ток — ток базы.

β = I C / I B

β = I C / I E (1-α)

β = α / (1-α)

Из приведенных выше уравнений соотношение между α и β можно выразить как

α = β (1-α) = β / (β + 1)

β = α (1 + β) = α / (1-α)

Значение β может варьируются от 20 до 1000 для транзисторов малой мощности, работающих на высоких частотах. Но в целом это значение β может иметь значения в диапазоне от 50 до 200.

Теперь мы увидим взаимосвязь между факторами α, β и γ.

В NPN-транзисторе с общим коллектором коэффициент усиления по току определяется как отношение тока эмиттера IE к базовому току IB. Этот коэффициент усиления по току представлен как γ.

γ = I E / I B

Мы знаем, что ток эмиттера

I E = I C + I B

γ = (I C + I B ) / I B

γ = (I C / I B ) + 1

γ = β +1

Следовательно, отношения между α, β и γ приведены ниже

α = β / (β + 1), β = α / (1-α), γ = β +1

НАЗАД В начало

Примеры транзисторов NPN

1.Рассчитайте базовый ток IB для переключения резистивной нагрузки 4 мА биполярного NPN-транзистора, имеющего коэффициент усиления по току (β) 100.

I B = I C / β = (4 * 10 -3 ) / 100 = 40 мкА

2. Рассчитайте ток базы биполярного NPN-транзистора с напряжением смещения 10 В и входным сопротивлением базы 200 кОм.

Мы знаем, что уравнение для базового тока IB:

I B = (V B -V BE ) / R B

Мы знаем значения,

V BE = 0 .7 В,

В B = 10 В,

R B = 200 Ом.

Теперь мы подставляем эти значения в приведенное выше уравнение,

Получаем,

I B = (V B -V BE ) / R B = (10-0,7) / 200 кОм = 46,5 uA.

Базовый ток NPN-транзистора 46,5 мкА.

НАЗАД

Конфигурация общего эмиттера

Схема конфигурации общего эмиттера является одной из трех конфигураций BJT.Эти схемы с общей конфигурацией эмиттеров используются в качестве усилителей напряжения. Обычно биполярные транзисторы имеют три вывода, но при подключении к схеме нам нужно использовать любую одну клемму как общую. Таким образом, мы используем одну из трех клемм в качестве общей клеммы как для входных, так и для выходных действий. В этой конфигурации мы используем терминал эмиттера в качестве общего терминала, поэтому он называется конфигурацией с общим эмиттером.

Эта конфигурация используется как одноступенчатая схема усилителя с общим эмиттером.В этой конфигурации основание действует как входной терминал, коллектор действует как выходной терминал, а эмиттер — как общий терминал. Работа этой схемы начинается с смещения клеммы базы, так что прямое смещение перехода база-эмиттер. Небольшой ток в базе управляет током, протекающим в транзисторе. Эта конфигурация всегда работает в линейной области для усиления сигналов на выходной стороне.

Этот усилитель с общим эмиттером дает инвертированный выходной сигнал и может иметь очень высокое усиление.На это значение усиления влияют температура и ток смещения. Схема усилителя с общим эмиттером чаще всего используется в конфигурации, чем другие конфигурации BJT, из-за ее высокого входного сопротивления и низкого выходного сопротивления, а также эта конфигурация усилителя обеспечивает высокий коэффициент усиления по напряжению и по мощности.

Коэффициент усиления по току для этой конфигурации всегда больше единицы, обычно типичное значение составляет около 50. Эти усилители конфигурации в основном используются в приложениях, где требуются низкочастотные усилители и радиочастотные цепи.Принципиальная схема усилителя с общим эмиттером показана ниже.

НАЗАД В начало

Выходные характеристики NPN-транзистора

Семейство кривых выходных характеристик биполярного транзистора приведено ниже. Кривые показывают взаимосвязь между током коллектора (IC) и напряжением коллектор-эмиттер (VCE) при изменении тока базы (IB). Мы знаем, что транзистор находится в состоянии «ВКЛ», только когда к его базовому выводу относительно эмиттера приложен хотя бы небольшой ток и небольшое количество напряжения, в противном случае транзистор находится в состоянии «ВЫКЛ».

На ток коллектора (IC) больше всего влияет напряжение коллектора (VCE) на уровне 1,0 В, но это значение IC не сильно изменяется выше этого значения. Мы уже знаем, что ток эмиттера — это сумма токов базы и коллектора. т.е. IE = IC + IB. Ток, протекающий через резистивную нагрузку (RL), равен току коллектора транзистора. Уравнение для тока коллектора определяется следующим образом:

I C = (V CC -V CE ) / R L

Прямая линия указывает на «линию динамической нагрузки», которая соединяет точки A (где V CE = 0) и B (где I C = 0).Область вдоль этой линии нагрузки представляет собой «активную область» транзистора.

Кривые характеристик конфигурации общего эмиттера используются для расчета тока коллектора, когда заданы напряжение коллектора и ток базы. Линия нагрузки (красная линия) используется для определения точки Q на графике. Наклон линии нагрузки равен сопротивлению нагрузки, обратному сопротивлению. то есть -1 / RL.

ВЕРНУТЬСЯ В НАЧАЛО

Применение транзисторов NPN

  • Транзисторы NPN в основном используются в коммутационных приложениях.
  • Используется в схемах усиления.
  • Используется в парных схемах Дарлингтона для усиления слабых сигналов.
  • NPN-транзисторы используются в приложениях, где требуется отводить ток.
  • Используется в некоторых классических схемах усилителя, например, в двухтактных схемах усилителя.
  • В датчиках температуры.
  • Приложения с очень высокой частотой.
  • Используется в логарифмических преобразователях.

НАЗАД

ПРЕДЫДУЩИЙ — ТИПЫ ТРАНЗИСТОРОВ

СЛЕДУЮЩИЙ — ТРАНЗИСТОР PNP

Работа транзистора как переключателя

В этом руководстве по транзистору мы узнаем о работе транзистора как транзистора. Выключатель.Переключение и усиление — это две области применения транзисторов и транзисторов, поскольку коммутатор является основой для многих цифровых схем. Мы изучим различные режимы работы (активный, насыщение и отключение) транзистора, то, как транзистор работает как переключатель (как NPN, так и PNP), а также некоторые практические прикладные схемы, использующие транзистор в качестве переключателя.

Введение

Транзисторы — это трехслойное полупроводниковое устройство с тремя выводами, которое часто используется в операциях усиления и переключения сигналов.Как одно из важных электронных устройств, транзистор нашел применение в огромном количестве приложений, таких как встроенные системы, цифровые схемы и системы управления.

Вы можете найти транзисторы как в цифровой, так и в аналоговой областях, поскольку они широко используются для различных применений, таких как схемы переключения, схемы усилителя, схемы источника питания, схемы цифровой логики, регуляторы напряжения, схемы генератора и т. Д.

В этой статье основное внимание уделяется переключающему действию транзистора и дается краткое объяснение транзистора как переключателя.

Краткое примечание о BJT

Существует два основных семейства транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). Биполярный транзистор или просто БЮТ представляет собой трехслойное полупроводниковое устройство с тремя выводами и двумя переходами. Он состоит из двух PN-переходов, соединенных спина к спине с общим средним уровнем.

Когда мы говорим термин «транзистор», он часто относится к BJT. Это устройство с контролем тока, в котором выходной ток регулируется входным током.Название биполярное указывает на то, что два типа носителей заряда, то есть электроны и дырки, проводят ток в BJT, где дырки являются носителями положительного заряда, а электроны — носителями отрицательного заряда.

Транзистор имеет три области: базу, эмиттер и коллектор. Эмиттер является сильно легированным выводом и испускает электроны в базу. Вывод базы слегка легирован и передает электроны, инжектированные эмиттером, на коллектор. Вывод коллектора умеренно легирован и собирает электроны с базы.Этот коллектор больше по сравнению с двумя другими областями, поэтому он может рассеивать больше тепла.

BJT бывают двух типов: NPN и PNP. Оба они работают одинаково, но различаются по смещению и полярности источника питания. В транзисторе PNP материал N-типа зажат между двумя материалами P-типа, тогда как в случае транзистора NPN материал P-типа зажат между двумя материалами N-типа.

Эти два транзистора могут иметь разные типы, такие как общий эмиттер, общий коллектор и общая базовая конфигурация.

Если вы хотите работать с MOSFET в качестве коммутатора, сначала изучите основы MOSFET.

Режимы работы транзисторов

В зависимости от условий смещения, таких как прямое или обратное, транзисторы имеют три основных режима работы, а именно области отсечки, активности и насыщения.

Активный режим

В этом режиме транзистор обычно используется как усилитель тока. В активном режиме два перехода смещены по-разному, что означает, что переход эмиттер-база смещен в прямом направлении, тогда как переход коллектор-база смещен в обратном направлении.В этом режиме ток течет между эмиттером и коллектором, и величина протекающего тока пропорциональна базовому току.

Режим отсечки

В этом режиме коллекторный базовый переход и эмиттерный базовый переход смещены в обратном направлении. Поскольку оба PN-перехода имеют обратное смещение, ток почти не протекает, за исключением небольших токов утечки (обычно порядка нескольких наноампер или пикоампер). BJT в этом режиме выключен и, по сути, представляет собой разомкнутую цепь.

Область отсечки в основном используется в коммутационных и цифровых логических схемах.

Режим насыщения

В этом режиме работы переходы эмиттер-база и коллектор-база смещены в прямом направлении. Ток свободно течет от коллектора к эмиттеру с почти нулевым сопротивлением. В этом режиме транзистор полностью включен и представляет собой замкнутую цепь.

Область насыщения также в основном используется в коммутационных и цифровых логических схемах.

На рисунке ниже показаны выходные характеристики BJT. На приведенном ниже рисунке область отсечки имеет рабочие условия, когда выходной ток коллектора равен нулю, нулевой базовый входной ток и максимальное напряжение коллектора.Эти параметры приводят к образованию большого обедненного слоя, который также не позволяет току течь через транзистор. Следовательно, транзистор полностью выключен.

Аналогично, в области насыщения транзистор смещен таким образом, что прикладывается максимальный ток базы, что приводит к максимальному току коллектора и минимальному напряжению коллектор-эмиттер. Это приводит к уменьшению размера обедненного слоя и пропусканию максимального тока через транзистор. Следовательно, транзистор полностью открыт.

Следовательно, из приведенного выше обсуждения мы можем сказать, что транзисторы можно заставить работать как твердотельный переключатель ВКЛ / ВЫКЛ, работая транзистором в областях отсечки и насыщения. Этот тип коммутационного приложения используется для управления светодиодами, двигателями, лампами, соленоидами и т. Д.

Транзистор как переключатель

Транзистор может использоваться для переключения для размыкания или замыкания цепи. Твердотельное переключение этого типа обеспечивает значительную надежность и меньшую стоимость по сравнению с обычными реле.

В качестве переключателей можно использовать транзисторы NPN и PNP. В некоторых приложениях в качестве переключающего устройства используется силовой транзистор, при этом может потребоваться другой транзистор уровня сигнала для управления мощным транзистором.

Транзистор NPN как переключатель

На основе напряжения, приложенного к клемме базы, выполняется операция переключения транзистора. Когда между базой и эмиттером приложено достаточное напряжение (V IN > 0,7 В), напряжение между коллектором и эмиттером примерно равно 0.Следовательно, транзистор действует как короткое замыкание. Коллекторный ток V CC / R C протекает через транзистор.

Аналогично, когда на вход не подается напряжение или нулевое напряжение, транзистор работает в области отсечки и действует как разомкнутая цепь. В этом типе коммутационного соединения нагрузка (здесь светодиод используется в качестве нагрузки) подключается к коммутационному выходу с контрольной точкой. Таким образом, когда транзистор включен, ток будет течь от источника к земле через нагрузку.

Пример транзистора NPN в качестве переключателя

Рассмотрим приведенный ниже пример, где сопротивление базы R B = 50 кОм, сопротивление коллектора R C = 0,7 кОм, В CC составляет 5 В, а значение бета равно 125. В основании подается входной сигнал от 0 В до 5 В. Мы собираемся увидеть выход на коллекторе, изменяя напряжение V I в двух состояниях: 0 и 5 В, как показано на рисунке.

I C = V CC / R C , когда V CE = 0

I C = 5 В / 0.7 кОм

I C = 7,1 мА

Базовый ток I B = I C / β

I B = 7,1 мА / 125

I B = 56,8 мкА

Из выше расчетов, максимальное или пиковое значение тока коллектора в цепи составляет 7,1 мА, когда V CE равно нулю. И соответствующий ток базы для этого тока коллектора составляет 56,8 мкА.

Итак, понятно, что при увеличении тока базы выше 56.8 мкА, тогда транзистор переходит в режим насыщения.

Рассмотрим случай, когда на входе подается нулевое напряжение. Это приводит к тому, что базовый ток равен нулю, и, поскольку эмиттер заземлен, базовый переход эмиттера не смещен в прямом направлении. Следовательно, транзистор находится в выключенном состоянии, а выходное напряжение коллектора равно 5 В.

Когда V I = 0 В, I B = 0 и I C = 0,

В C = V CC — (I C * R C )

= 5V — 0

= 5V

Предположим, что приложенное входное напряжение составляет 5 вольт, тогда базовый ток можно определить, применив закон Кирхгофа для напряжения.

Когда V I = 5 В,

I B = (V I — V BE ) / R B

Для кремниевого транзистора, V BE = 0,7 В

Таким образом, I B = (5 В — 0,7 В) / 50 кОм

= 86 мкА, что больше 56,8 мкА

Следовательно, поскольку ток базы превышает ток 56,8 мкА, транзистор будет доведен до насыщения, т. Е. , он полностью включен, когда на входе подается 5В.Таким образом, выход на коллекторе становится примерно нулевым.

Транзистор PNP как переключатель

Транзистор PNP работает так же, как NPN для операции переключения, но ток течет от базы. Этот тип переключения используется для конфигураций с отрицательным заземлением. Для транзистора PNP клемма базы всегда смещена отрицательно по отношению к эмиттеру.

При этом переключении базовый ток течет, когда базовое напряжение более отрицательное. Проще говоря, низкое напряжение или более отрицательное напряжение вызывает короткое замыкание транзистора, в противном случае это будет разомкнутая цепь.

В этой связи нагрузка подключается к транзисторному коммутационному выходу с опорной точкой. Когда транзистор включен, ток течет от источника через транзистор к нагрузке и, наконец, к земле.

Пример транзистора PNP в качестве переключателя

Подобно схеме транзисторного переключателя NPN, вход схемы PNP также является базой, но эмиттер подключен к постоянному напряжению, а коллектор подключен к земле через нагрузку, как показано на рисунке .

В этой конфигурации база всегда смещена отрицательно по отношению к эмиттеру за счет соединения базы на отрицательной стороне и эмиттера на положительной стороне входного источника питания. Итак, напряжение V BE отрицательное, а напряжение питания эмиттера относительно коллектора положительное (V CE положительное).

Следовательно, для проводимости транзистора эмиттер должен быть более положительным как по отношению к коллектору, так и по отношению к базе. Другими словами, база должна быть более отрицательной по отношению к эмиттеру.

Для расчета токов базы и коллектора используются следующие выражения.

I C = I E — I B

I C = β * I B

I B = I C / β

Рассмотрим приведенный выше пример, что нагрузка требует тока 100 мА, а бета-значение транзистора равно 100. Тогда ток, необходимый для насыщения транзистора, равен

Минимальный базовый ток = ток коллектора / β

= 100 мА / 100

= 1 мА

Следовательно, когда базовый ток равен 1 мА, транзистор будет полностью открыт.Но для гарантированного насыщения транзистора требуется практически на 30% больше тока. Итак, в этом примере требуемый базовый ток составляет 1,3 мА.

Практические примеры транзистора в качестве переключателя

Транзистор для переключения светодиода

Как обсуждалось ранее, транзистор можно использовать в качестве переключателя. На схеме ниже показано, как транзистор используется для переключения светоизлучающего диода (LED).

  • Когда переключатель на клемме базы разомкнут, ток через базу не течет, поэтому транзистор находится в состоянии отсечки.Таким образом, транзистор работает как разомкнутый контур, и светодиод гаснет.
  • Когда переключатель замкнут, базовый ток начинает течь через транзистор, а затем достигает насыщения, в результате чего светодиод загорается.
  • Резисторы установлены для ограничения токов, протекающих через базу и светодиоды. Также можно изменять интенсивность светодиода, изменяя сопротивление на пути тока базы.
Транзистор для работы реле

Также можно управлять работой реле с помощью транзистора.С помощью небольшой схемы транзистора, способного возбуждать катушку реле, так что внешняя нагрузка, подключенная к ней, управляется.

  • Рассмотрим схему ниже, чтобы узнать, как работает транзистор для подачи питания на катушку реле. Входной сигнал, приложенный к базе, переводит транзистор в область насыщения, что в дальнейшем приводит к короткому замыканию в цепи. Таким образом, на катушку реле подается напряжение и срабатывают контакты реле.
  • При индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, внезапное отключение питания может поддерживать высокий потенциал на катушке.Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод параллельно с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.
Транзистор для управления двигателем
  • Транзистор также может использоваться для однонаправленного управления и регулирования скорости двигателя постоянного тока путем переключения транзистора через равные промежутки времени, как показано на рисунке ниже.
  • Как упоминалось выше, двигатель постоянного тока также является индуктивной нагрузкой, поэтому мы должны разместить на нем диод свободного хода для защиты цепи.
  • Переключая транзистор в областях отсечки и насыщения, мы можем многократно включать и выключать двигатель.
  • Также можно регулировать скорость двигателя от состояния покоя до полной скорости, переключая транзистор на различных частотах. Мы можем получить частоту переключения от управляющего устройства или микросхемы, например микроконтроллера.

У вас есть четкое представление о том, как транзистор можно использовать в качестве переключателя? Мы надеемся, что предоставленная информация с соответствующими изображениями и примерами проясняет всю концепцию переключения транзисторов.Далее, если у вас есть сомнения, предложения и комментарии, вы можете написать ниже.

Заключение

Полное руководство по использованию транзистора в качестве переключателя. Изучите основы биполярного переходного транзистора, области работы транзистора, работу транзисторов NPN и PNP в качестве переключателя, практическое применение переключающего транзистора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *