Кодовая или цифровая маркировка конденсаторов
Кодировка конденсаторов тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.
Код | Пикофарады (пФ, pF) | Нанофарады (нФ, nF) | Микрофарады (мкФ, uF) |
---|---|---|---|
109 | 1.0 | 0.001 | 0.000001 |
159 | 1.5 | 0.0015 | 0.000001 |
229 | 2.2 | 0.0022 | 0.000001 |
339 | 3.3 | 0.0033 | 0.000001 |
479 | 4.7 | 0.0047 | 0.000001 |
689 | 6.8 | 0.0068 | 0.000001 |
100* | 10 | 0.01 | 0.00001 |
150 | 15 | 0.015 | 0.000015 |
220 | 22 | 0.022 | 0.000022 |
330 | 33 | 0.033 | 0.000033 |
470 | 47 | 0.047 | 0.000047 |
680 | 68 | 0.068 | 0.000068 |
101 | 100 | 0.1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 |
221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 |
471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 |
102 | 1000 | 1 | 0.001 |
152 | 1500 | 1.5 | 0.0015 |
222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0.0033 |
472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 |
103 | 10000 | 10 | 0.01 |
153 | 15000 | 15 | 0.015 |
223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 |
473 | 47000 | 47 | 0.047 |
683 | 68000 | 68 | 0.068 |
104 | 100000 | 100 | 0.1 |
154 | 150000 | 150 | 0.15 |
224 | 220000 | 220 | 0.22 |
334 | 330000 | 330 | 0.33 |
474 | 470000 | 470 | 0.47 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1 |
* Иногда последний ноль не указывают.
[ads1]
Кодировка конденсаторов с помощью четырёх цифр
Код | Пикофарады (пФ, pF) | Нанофарады (нФ, nF) | Микрофарады (мкФ, uF) |
---|---|---|---|
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Информация
Кроме буквенно-цифровой маркировки конденсаторов, применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC.
При таком способе маркировки конденсаторов первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).
При маркировке емкостей конденсаторов в микрофарадах, применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой используется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).
После обозначения емкости, может быть нанесен буквенный символ, обозначающий допустимое отклонение емкости конденсатора.
В статье частично использовался материал со следующих источников: Источник 1 | Источника 2
Маркировка конденсаторов расшифровка кодированных символов
Кодовая маркировка конденсаторов расшифровка обозначений
Маркировка конденсаторов расшифровка нанесенных на их корпус закодированных данных, указывают значения электрических параметров данных компонентов. Без конденсаторов невозможно собрать практически никаких электронных схем. Поэтому если вы занимаетесь ремонтом или созданием определенных устройств, то вам обязательно нужно знать как расшифровываются такие обозначения размещенные на корпусе элемента.
В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду. С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка конденсаторов расшифровка?
Цель маркировки конденсаторов и их расшифровка – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-9 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенyо-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Таблица:
[table id=1 /]
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Как определить емкость конденсатора по его маркировке
Заключение
Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.
Источник: odinelectric.ru
Расшифровка импортных конденсаторов таблица. Условные обозначения конденсаторов
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
1. Кодировка тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ.
Таблица 1
* Иногда последний ноль не указывают.
2. Кодировка четырьмя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
Таблица 2
3. Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Примеры:
Рисунок 1
Цветовая маркировка
На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Вывод «+» может иметь больший диаметр.
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:
Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Маркировка допусков
В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:
Маркировка ТКЕ
Конденсаторы с ненормируемым ТКЕ
* Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с линейной зависимостью от температуры
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85″С.
** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с нелинейной зависимостью от температуры
* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.
** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим.
Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС.
*** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой.
Особенности кодировки конденсаторов производства СССР
В СССР придерживались стандартов МЭК, поэтому можно пользоваться вышеприведенными данными, но были и незначительные отличия.
Кодированное обозначение номинальных емкостей состоит из двух или трех цифр и буквы. Буква кода является множителем, составляющим значение емкости (см. таблицу), и определяет положение десятичной дроби.
Допускаемое отклонение величины емкости в процентах
от номинального значения указывают теми же буквами, что и допуски на сопротивление резисторов, однако, с некоторыми дополнениями (см. таблицу). Для конденсаторов емкостью менее 10 пФ допускаемое отклонение устанавливается в пикофарадах
:
Конденсаторы маркируются кодом в следующем порядке:
- номинальная емкость;
- допускаемое отклонение емкости;
- ТКЕ и (или) номинальное напряжение.
Приведем примеры кодированной маркировки конденсаторов.
Сокращенная буквенно-цифровая маркировка на конденсаторе 33pKL обозначает номинальную емкость 33 пФ с допускаемым отклонением ±10% и температурной нестабильностью группы М75 (75х10 -6 °C -1). Надпись m10SF обозначает 100 мкФ (0,1 миллифарады) с допуском -20…+50% и номинальным напряжением 20 В.
Номинальная емкость 150 пФ может обозначаться 150р или n15; 4700пф — 4n7; 0,15 мкФ — µ15; 2.2мкф — 2µ2.
Примечание
. В скобках указано старое обозначение допуска.
Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн | Напр. В | Букв. обозн |
---|---|---|---|---|---|---|---|---|---|
1,0 | I | 6.3 | B | 40 | S | 100 | N | 350 | T |
2,5 | M | 10 | D | 50 | J | 125 | P | 400 | Y |
3.2 | A | 16 | E | 63 | K | 160 | Q | 450 | U |
4.0 | C | 20 | F | 80 | L | 315 | X | 500 |
Радио для всех — Цифробуквенная маркировка конденсаторов
Емкости до 100 пФ выражают в пикофарадах; для обозначения этой единицы измерения используют букву П. Емкости от 100 до 9100 пФ выражают в долях нанофарады, а от 0,01 до 0,091 мкФ в нанофарадах; для обозначения нанофарады применяют букву Н. Емкости от 0,1 мкФ, и выше выражают ,в микрофарадах; для обозначения этой единицы применяют букву М. Если номинальная емкость выражается целым числом, то обозначение единицы измерения ставят после этого числа (емкость 15 пФ обозначают 15П, а емкость 0,015 мкФ = 15 нФ обозначают 15Н). Если номинальная емкость выражается десятичной дробью, меньшей единицы, то нуль целых и запятая из маркировки исключается, а буквенное обозначение единицы измерения располагается перед числом. (емкость 150 пф = 0,15 нф обозначают Н15, а емкость 0,10 мкФ обозначают числом м10). Если номинальная емкость выражается целым числом с десятичной дробью, то целое число ставят впереди, а десятичную дробь после буквы, т. е. буква, обозначающая единицу измерения, заменяет запятую (емкость 1,5 пФ обозначают 1П5; а емкость 1500 пФ = 1,5 нФ обозначают 1Н5).
При повторении конструкций, необходимо уметь переводить одни величины в другие. |
В этом нам помогут три важные строчки. |
Пример
На отрывке принципиальной схемы указаны конденсаторы: С6-1500пф, С7-0,1мкф, С8-47нф. Определим номиналы деталей, которые можно поставить,в место указанных на схеме.
Решение
Смотрим внимательно на табличку. Определим номиналы: 1500 пф=1,5нф=0,0015мкф, 0,1мкф=100нф=100000пф, 47нф=0,047мкф=47000пф. Как видим, все просто. Теперь, когда нам предстоит собрать схему или заменить неисправную деталь, можем смело подобрать необходимый номинал. Фактическая емкость конденсатора может отличаться от обозначенной на нем на значение» не превышающее допускаемого отклонения, которое маркируется после обозначения номинальной емкости цифрами в процентах, пикофарадах или по коду.
Код отклонений от емкости, у конденсаторов широкого применения, такой же как и у резисторов.
Как видим, точный номинал воспроизвести в массовом производстве достаточно сложно. К основным «корректорам» емкости конденсатора относится еще и температура. Забежим немножко вперед. Возьмем обычный приемник. За окном солнечный день, жарко. Настроились на любимую радиостанцию и слушаем передачу. Пошел дождь, температура понизилась и стало прохладно. Передача не прервалась, так как для сохранения на нужную частоту используются конденсаторы у которых ТКЕ имеют разные знаки, и они компенсируют перепады емкости. Благодаря этой маленькой хитрости настройка остается неизменной.
Таблица допустимых отклонений номиналов конденсаторов советского производства.
Отклонение номинала конденсатора, при изменении температуры.
У некоторых типов конденсаторов, буквами кодируют номинальное напряжение и даже год выпуска.
В обозначении номинала емкости, встречаются различные цифро — буквенные комбинации. Они ставят начинающего радиолюбителя в тупик..
Часто встречающиеся номиналы
Попробуем ими воспользоваться, что бы определить номинал.
|
Запись К73-9 680n K 100в 0882 Тип детали К73-9 Емкость 680 нф Допуск 10% Напряжение 100в Год выпуска август 82г
|
Запись Н70 2n2 F ТКЕ (-70) Емкость 2,2 нф Допуск 1% | |
|
Запись 6V 12n J Тип детали КМ6 ТКЕ (-1500 или -1300) Емкость 12нф Допуск 5% |
|
Емкость 0,05 мкф = 50 нф = 50000 пф Напряжение 10в |
|
Запись М33 68П С ТКЕ (-33) Емкость 68 пф Допуск 0,25% |
|
Емкость 6,8 мкф Напряжение 16в Допуск 20% |
|
Емкость 2200 пф = 2,2 нф = 0,0022мкф Напряжение 10в Допуск 10% |
Отдельные производители наносят числовое значение и количество нулей.
| |
|
Емкость 4,7 мкф Напряжение 10в |
|
К числу 10 дописываем четыре нуля Емкость 100000 пф = 100 нф = 0,1 мкф
|
SMD (Surface Mount Tehnology) компоненты в основном маркируются по стандарту IEC.
Вместо десятичной запятой может стоять буковка R. Возможные комбинации смотрим в табличке.
Возможны варианты кодирования 4-х значным числом. Последняя цифра указывает количество нулей а первые три — емкость в пикофарадах.
| Емкость в пикофарадах 154 пф Количество нулей 00 Результат 15400 пф = 15,4 нф = 0, 015 мкф |
| Емкость 2,2 мкф Допуск 1% |
Следующий пример. Первые две цифры указывают на значение емкости в пикофарадах, последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1 пФ первая цифра «0». Буква R, как и в предыдущем примере, используется в качестве десятичной запятой Например, код 010 равен 1, 0 пФ, код 0R5 равен 0 ,5 пФ.
Емкость 5,6 пф Количество нулей нет Результат 5,6 пф
| Емкость в пикофарадах 22 пф Количество нулей 00 Результат 2200 пф | ||
Емкость в пикофарадах 47 пф Количество нулей 0000 Результат 470000 пф | Емкость в пикофарадах 33 пф Количество нулей 0 Результат 330 пф |
Некоторые фирмы устанавливают свои стандарты, путаются в них даже профессионалы. Следующий способ маркировки используют основные производители бытовой техники для электролитических конденсаторов. Полоска плюсовой электрод (+).
Для двух символов: первая буква — емкость, цифра — множитель. Напряжение не указывается.
Для трех символов: первая буква — напряжение, вторая — значение в фарадах , цифра — множитель.
Для четырех символов (Сном из таблицы не подойдет): первая буква — напряжение, вторая и третья цифра — целое значение в пикофарадах , последняя — множитель.
Перед буквами может ставиться цифра, указывающая на диапазон:
0- для напряжений до 10 В
1- для напряжений до 100 В
2- для напряжений до 1000 В
Пример 0Е — 2,5 В, 1Е — 25В. 2Е — 250 В
| Емкость в пикофарадах 1,5 пф Количество нулей 000000 Результат 1,5 мкф
|
| Емкость в пикофарадах 6,8 пф Количество нулей 0000000 Напряжение 4В Результат 68 мкф на 4в
|
Емкость 6,8 мкф Напряжение 10В Результат 6,8 мкф на 10В | Емкость в пикофарадах 47 пф Количество нулей 000000 Напряжение 6,3 или 7В Результат 47 мкф на 6,3 или 7В |
Таблицы цветовой маркировки конденсаторов
В данной статье речь пойдет об определении параметров конденсатора по таблицам цветовой маркировки конденсаторов.
Цветовая маркировка конденсаторов содержит сокращенное обозначение параметров конденсатора и может быть представлена в виде полос, колец или точек.
На конденсаторе маркируют такие параметры как:
- номинальная емкость;
- множитель;
- допускаемое отклонение напряжения;
- температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение.
Три метки информируют о допуске 20%. При этом возможно сочетание двух колец и точки, указывающий на множитель. При пяти метках цвет корпуса указывает на значение рабочего напряжения.
Цветовая маркировка шестью метками применяется для прецизионных конденсаторов с малыми ТКЕ.
В зарубежных конденсаторов используется маркировка по допуску и температурному коэффициенту.
Обозначение группы ТКЕ приведено в соответствии со стандартом EIA, в скобках – IEC. В зависимости от технологий, которыми обладает фирма, диапазон температуры может быть другим. Например, фирма PHILIPS для группы Y5P нормирует -55…+125 С. Буквенный код указан в таблице соответствии с EIA.
Рассмотрим на примере как использовать представленные таблицы цветовой маркировки для определения параметров конденсаторов.
Пример
Определим параметры конденсатора с шесть полосами: зеленый, коричневый, черный, красный, красный, желтый, используя таблицу «Цветовая маркировка конденсаторов (общая таблица)», номиналы элементов указаны в пФ – 10-12.
- первая цифра (1 — элемент) – 5;
- вторая цифра (2 — элемент) – 1;
- третья цифра(3 — элемент) – 0;
- множитель – 102;
- допуск,% – 2;
- группа ТКЕ – М220.
Соответственно получается: 510*10-12 * 102 = 51*10-9 Ф или 51 нФ±2%, М220.
Определим параметры для конденсатора с тремя полосами: коричневый, красный и желтый.
- первая цифра (1 — элемент) – 1;
- вторая цифра (2 — элемент) – 2;
- множитель – 104;
Соответственно получается: 12*10-12 * 104 = 0,12*10-6 Ф или 0,12 мкФ.
Как мы видим ничего сложного в определении параметров конденсаторов нету, не много практики и вскоре Вам данные таблицы будут уже не нужны, уже на автомате будете определять номинальную емкость конденсатора.
Поделиться в социальных сетях
Маркировка советских конденсаторов расшифровка — Морской флот
Для определения емкости используется физическая величина называемая – фарад (Ф). Значение одного фарада для практически любой схемы будет просто огромным, поэтому маркировка конденсаторов более малыми единицами измерения. Чаще всего применяется величина мкФ (mF).
Кроме того, часто в обозначении емкости могут фигурировать куда меньшие единицы нанофарады (1 нФ=10 -9 Ф и даже пикофарады 1 пФ=10 -12 Ф.
Для понимание перевода одной величины в другую, рассмотрим простой практический пример: На участке представленной ниже принципиальной схемы указаны конденсаторы: С6-1500пф, С7-0,1мкф, С8-47нф. Определим варианты емкостей, которые можно поставить, в место обозначенных по схеме.
Итак: 1500 пф это таже емкость, что и 1,5нф и она равна 0,0015мкф, 0,1мкф=100нф=100000пф, 47нф=0,047мкф=47000пф. Как видим, все очень просто, главное знать элементарную математику. Теперь, если нам необходимо заменить неисправный радиокомпонент, можно легко подобрать нужный номинал.
Маркировка конденсаторов больших размеров и габаритов
В случае больших габаритов этих радиокомпонентов значение емкости наносится прямо на корпус, но здесь имеется парочка интересных особенностей:
При позволяющих габаритах возможно нанесение допусков, от номинальной емкости. Например, на рисунке ниже мы видим маркировку: 50 мкФ ± 5%, это означает что реальная емкость этого электролитического конденсатора с учетом погрешности лежит в интервале от 47,5 мкФ до 52,5 мкФ.
При отсутствии процентов, их может заменять буква. Обычно она находится отдельно или после числового номинала емкости. Смотри расшифровку на рисунке ниже:
На габаритных емкостях может присутствовать и маркировка напряжения, которая обычно обозначается числами, за которыми идут буквы, например: V, VDC, WV или VDCW. WV или Working Voltage, в переводе с вражьего означает рабочее напряжение. Цифровые показатели считаются максимумом Working Voltage.
При отсутствии на корпусе конденсатора обозначения указывающего на напряжение, его можно использоваться только в низковольтных цепях. В цепях переменного тока следует применять радиокомпоненты, только для этих схем, они маркируются AC.
Правильное определение полярности имеет огромное значение, т.к при ошибке может возникнуть КЗ и даже взрыв емкостного устройства. Обозначение минуса часто наносится в виде кольцеобразного углубления или цветной полосы. При обозначении плюса или минуса цветовую маркировку можно не учитывать.
Для расшифровки обозначения, требуется знать значение первых двух цифр, которые говорят о емкости. Если устройство имеет очень маленькие габаритные размеры, не позволяющие это условие выполнить, то его маркировка осуществляется по международному стандарту EIA.
Цифро-буквенное обозначение емкости:
Если в обозначении имеются только две цифры и одна буква, то цифровые значения соответствуют емкости. Все остальные обазначения расшифровываются по-другому.
Если в обозначении имеются три цифры и одна буква, то расшифровка происходит в зависимости от последней цифры. Если она лежит в интервале от 0 до 6, то к первым двум добавляются нули в соответствии с последней цифрой. Например 453, расшифровываться как 45 х 10 3 = 45000 пФ. Подробней смотри таблицу ниже:
Если последняя цифра будет 8, то первые две необходимо умножить на коэффициент 0,01, т.е, при маркировке 458, получаем 45 х 0,01 = 0,45. Если же последней будет 9, то первые две умножаем на 0,1.
Если буква находится в двух первых символах, ее расшифровка осуществляется несколькими методами. При наличии буквы R, она заменяется запятой, для обозначения десятичной дроби. Например 4R1 будет соответствовать 4,1 пФ.
При наличии латинских букв р, n, u, соответствующих пико-, нано- и микрофараде тоже требуется замена на десятичную запятую. Например n61 читается как 0,61 нФ, 5u2 равно 5,2 мкФ.
Буква-цифра-буква: Первый буквенный символ указывает на минимальную температуру, например, Z = 10, Y = -30, X = -55 градусов по Цельсию. Цифра – это максимальная температура. 2 – 45, 4 – 65, 5 – 85, 6 – 105, 7 – 125 градусов Цельсия. Значение последней буквы говорит о изменяющейся емкости конденсатора, в пределах между температурным минимумом и максимумом. Так например, «А» + 1,0%, «V» от 22 до 82%. Чаще всего бывает «R», 15%.
С помощью нее можно узнать значение напряжения. На рисунке ниже представлены специальные символы, соответствующие максимально допустимому уровню напряжению для конкретной емкости при постоянном токе.
В отдельных случаях маркировка значительно упрощается. С этой целью применяется только первая цифра. Допустим, ноль будет говорит о том, что напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и т.д
Маркировка керамических конденсаторов
Они имеют плоскую круглую форму и два контакта. На корпусе дополнительно наносится допуск отклонений. С этой целью применяется определенная буква, следующая сразу после цифрового указания емкости. Так, буква «В» соответствует отклонению + 0,1 пФ, D – + 0,5 пФ и «С» – + 0,25 пФ. Это верно при емкости ниже 10 пФ. С большим номиналом емкости буквенные обозначения соответствуют определенному проценту отклонений.
Керамические smd конденсаторы полностью совпадают по типоразмеру с smd резисторами, а вот танталовые имеют свою систему типоразмеров и маркировку:
Теперь на практике попробуем воспользоваться полученными знаниями и по маркировке конденсатора определим его емкостной номинал.
Кодовая маркировка конденсаторов расшифровка обозначений
Маркировка конденсаторов расшифровка нанесенных на их корпус закодированных данных, указывают значения электрических параметров данных компонентов. Без конденсаторов невозможно собрать практически никаких электронных схем. Поэтому если вы занимаетесь ремонтом или созданием определенных устройств, то вам обязательно нужно знать как расшифровываются такие обозначения размещенные на корпусе элемента.
В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду. С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка конденсаторов расшифровка?
Цель маркировки конденсаторов и их расшифровка – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
Маркировка конденсаторов по напряжению расшифровка
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Самодельные электронные схемы собираются с применением конденсаторов, которые нужно правильно подобрать. К слову, могут быть использованы конденсаторы, уже бывшие в употреблении. Прежде чем применять их, следует тщательно проверить, в особенности это касается электролитических видов, сильно подверженных старению. В этой статье рассмотрим обозначение конденсаторов, и как они маркируются.
Особенности конденсаторов
Конденсаторами называют двухполюсники с переменным или определенным значением емкости и малой проводимостью. Отличительная черта изделия – оно обеспечивает накопление заряда и энергии электрического поля. Сам элемент применяется как пассивный электронный компонент. Конструкция не представляет ничего сложного – два электрода в виде пластин, которые разделены диэлектриком небольшой толщины. Все чаще применяются элементы, имеющие многослойные диэлектрики и электроды.
Существует большой выбор конденсаторов, которые находят применение в самых различных схемах. Чтобы грамотно подобрать параметры электросети, следует разобраться, как осуществляется маркировка керамических конденсаторов, – это ключевое их значение. Это не совсем просто, так как параметры могут существенно отличаться, в зависимости от компании-изготовителя, страны-экспортера, вида, размера и самих параметров элемента.
Керамические конденсаторы позволяют накапливать электрический заряд. Для измерения емкости используются особые единицы – фарады (F). Но стоит учесть, что одна единица фарада является большой величиной, которая не находит применения в радиотехнике. В случае с конденсаторами актуален микрофарад – это один фарад, поделенный на миллион. Почти что на всех элементах встречается обозначение мкФ. При ознакомлении с теоретическими расчетами иногда встречается миллифарад – фарад, деленный на тысячу. Для обозначения маленьких устройств используются нанофарады и пикофарады. Важно разбираться в обозначениях, чтобы подбирать правильные элементы.
Номиналы конденсаторов различаются, но для чего это на практике? Определенная емкость конденсатора требуется, если необходим выброс значительного количества энергии. То есть элемент позволяет высвободить за доли секунд немалый объем энергии, которая будет двигаться в том направлении, которое укажет человек.
Обозначение конденсаторов на схеме осуществляется при помощи двух параллельных отрезков, которые символизируют обкладки элемента с выводами от их середин.
Обратите внимание! На схеме рядом указывается буквенное обозначение устройства – буква С (от латинского Capacitor – конденсатор).
Каких видов бывают конденсаторы
- Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
- Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
- Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
- Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
- Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
- С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.
Типы маркировок
Производители, выпуская конденсаторы, пользуются несколькими типами маркировок, которые располагаются непосредственно на корпусе элемента. Представленные ниже значения сугубо теоретические, в качестве наглядного примера:
- Наиболее простым типом маркировки считается, когда ёмкость сразу указывается на теле конденсатора. То есть не применяются различные шифры и табличные замещения, вся необходимая информация содержится на корпусе. Данный способ был бы актуален для всех устройств, однако, не всегда его получается использовать в силу громоздкости. Для того чтобы предоставить полное обозначение емкости, подходят только довольно большие изделия, в ином случае рассмотреть цифры проблематично даже с применением лупы. На примере разберем запись 100 µF±6% – это ёмкость конденсатора 100 микрофарад, а амортизация 6% от общей емкости. В итоге значение – 94-106 микрофарад. В некоторых ситуациях применяется маркировка следующего вида: 100 µF +8%/-10% – это неравнозначная амортизация, 90-108 микрофарад. Подобная маркировка пленочных конденсаторов хоть и считается наиболее простой и понятной, но применима не во всех случаях из-за своей громоздкости. Как правило, она используется на больших приборах немалых ёмкостей;
- Цифровая маркировка (или с использованием цифр и букв) актуальна, если площадь изделия слишком мала, чтобы на ней разместить подробную запись. Здесь для замены определенных значений применяются обычные цифры и латинские буквы, которые необходимо уметь расшифровывать. Если на поверхности изделия встречаются лишь цифры (как правило, их три), то чтение простое. Первые две цифры – так обозначается емкость. Третья цифра – число нулей, которые следует дописать после первых двух. Для измерения емкости подобных конденсаторов применимы пикофарады. В качестве примера ознакомимся с изделием, на теле которого размещена цифра 104. Оставляем первые цифры, к которым приписываются нули: в нашем случае это 4. В итоге имеем значение в 100000 пикофарад. Чтобы уменьшить число нулей, используется другое значение – микрофарады, которых в нашем случае 100. В некоторых ситуациях величина обозначается буквой. Например, 2n2 – 2.2 нанофарад. Чтобы определить, к какому классу принадлежит изделие, в конце дописывают дополнительную кодовую маркировку конденсатора, к примеру, 100V;
- Маркировка импортных конденсаторов из керамики осуществляется с использованием букв и чисел – это стандарт для данных изделий. Алгоритмы шифрования аналогичны предыдущему методу. Надписи наносит сам производитель;
- Цветовая маркировка конденсаторов тоже встречается, хотя и реже, так как данный способ несколько устарел. Ее применяли в советское время, что позволяло упростить считывание маркировки, даже если изделие было слишком маленьким. Здесь есть единственный недостаток – сразу запомнить обозначения проблематично, поэтому первое время рекомендуется иметь при себе специальную таблицу. Чтение маркировки выглядит так: первые два цвета – емкость в пикофарадах, третий цвет – число дописываемых нулей, четвертый и пятый цвета – номинал напряжения, подаваемого на изделие, и возможный допуск. Так, желтый прибор имеет обозначение цифрой 4, а синий – 6;
- Импортные конденсаторы маркируются так же, а кириллица заменяется латиницей. К примеру, возьмем отечественный вариант с обозначением 5мк1 – 5.1 микрофарад. В случае с импортной кодовой маркировкой выглядеть будет как 5µ.
Важно! Если расшифровка непонятна, то следует обратиться к официальному производителю, на сайте которого, как правило, имеется соответствующая таблица.
Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные. Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять.
Видео
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
1. Кодировка 3-мя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.
* Иногда последний ноль не указывают.
2. Кодировка 4-мя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
3. Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Руководство по идентификации комплекта конденсаторов
— learn.sparkfun.com
Введение
Никогда не знаешь, когда тебе понадобится конденсатор. Иногда вам требуется немного больше развязки источника питания, выходной соединительный колпачок или тщательная настройка схемы фильтра — все это приложения, где конденсаторы имеют решающее значение. Комплект конденсаторов SparkFun содержит широкий диапазон номиналов конденсаторов, поэтому вы всегда будете иметь их под рукой, когда они вам понадобятся.
Комплект конденсаторов SparkFun
В наличии
КОМПЛЕКТ-13698
Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой.Нет мес…
9
Этот учебник поможет вам определить содержимое вашего набора и покажет вам несколько приемов, позволяющих еще больше расширить диапазон значений.
Рекомендуемая литература
Состав комплекта
Набор конденсаторов содержит колпачки с декадными интервалами от 10 пикофарад до 1000 мкФ.
Состав комплекта конденсатора | |||||
Значение | Тип | Маркировка | Количество | Номинальное напряжение | |
10pF | Керамика | 100 | 50V | ||
22pF | Керамика | 220 | 10 | 50V | |
100pF | Керамика | 101 | 10 | 50V | |
1nF | Керамика | 102 | 10 | 50 В | |
10 нФ | Керамика | 103 | 10 | 50 В | |
100 нФ | Керамика | 104 | 25 | 50 В | |
1 мкФ | 1µF | Электролитический | / 50 В | 10 | 50 В |
10 мкФ | Электролитический | 10 мкФ / 25 В | 10 | 25 В | |
100 мкФ | Электролитический | 100 мкФ / 25 В | 10 | 25 В | |
1000 мкФ | Электролитический | 1000 мкФ / 25 В | 10 | 25 В |
Есть десять частей большинства значений, но 25 частей по 100 нанофарад, которые обычно используются для развязки местного источника питания около ИС.Есть также десять частей по 22 пФ, которые часто используются в качестве нагрузочных конденсаторов при создании кварцевых генераторов.
Идентификация конденсатора
Обзор маркировки конденсаторов
Посмотрим правде в глаза, Фарад — это большая емкость. Значения конденсаторов обычно крошечные — часто в миллионных или миллиардных долях Фарада. Чтобы кратко выразить эти маленькие значения, мы используем метрическую систему. Следующие префиксы являются современным условным обозначением * .
Конденсатор Метрические префиксы | |||
Префикс | Обозначение СИ | Дробь | Символ |
Микрофарад | 10 -6 | Один миллионный | |
нанофарад | 10 -9 | миллиардный | нф |
пикофарад | 10 -12 | один триллионный | пф |
* Эти единицы являются современным условием и в основном соответствуют рекомендациям по применению метрической системы, но не всегда единообразны.
Mu (µ), символ микро, может быть проблемой при наборе. Его сложно печатать, и не на каждом шрифте есть символ. В SparkFun мы часто используем вместо нее букву «u». Иногда вместо этого используется буква «м», которая обозначается как «mF». Технически есть еще «миллифарад», но на практике миллифарады почти не встречаются, а тысячи микрофарадов встречаются гораздо чаще.
Время и география тоже имеют влияние. В старшем
В североамериканских конструкциях нано-фарады встречаются редко, в спецификациях и схемах используются только мкФ и пФ, дополненные ведущими или конечными нулями.
Керамические колпачки
Меньшие значения в комплекте — керамические конденсаторы на 50 В. Это маленькие неполяризованные колпачки с желтыми пятнами на теле.
Слева направо: 10 пФ, 22 пФ, 100 пФ, 1 нФ, 10 нФ, 100 нФ
Значение напечатано на каждом трехзначном коде. Этот код похож на цветовую кодировку резисторов, но использует цифры вместо цветов. Первые две цифры — это две старшие цифры значения, а третья цифра — это показатель степени 10.Стоимость выражается в пикофарадах.
Чтобы расшифровать значение, возьмите первые две цифры, а затем следуйте за ними с количеством нулей, обозначенным третьей цифрой. 104 становится «10», за которым следует «0000» или 100000 пФ, что более кратко записывается как 100 нФ.
Колпачки электролитические
Электролитические колпачки имеют более крупные цилиндрические корпуса, похожие на маленькие баночки из-под газировки. Обычно они обладают большей емкостью, чем керамические колпачки. В отличие от керамики они поляризованы.
Слева направо: 1 мкФ, 10 мкФ, 100 мкФ, 1000 мкФ
Маркировка литических крышек легко читается — значение и единицы измерения напечатаны прямо на корпусе.
За значением следует номинальное напряжение, указывающее максимальный потенциал постоянного тока, который крышка может выдержать без повреждений. В этом наборе 1 мкФ рассчитан на 50 В, остальные — на 25 В.
поляризованные
Более высокая емкость электролитов сопровождается утомительной деталью — они поляризованы.Положительный полюс должен иметь более высокий потенциал постоянного тока, чем отрицательный. Если они установлены в обратном порядке, они могут взорваться.
К счастью, выводы четко обозначены.
На электролитической крышке есть два индикатора полярности:
- Полоса на корпусе обычно обозначает отрицательный вывод.
- Положительный провод длиннее отрицательного.
Умные приложения
Кварцевые генераторы
В комплект специально входят керамические колпачки 22 пФ для создания кварцевых генераторов, обычно требуемых для ИС микроконтроллеров.
Схема кварцевого генератора от ProMicro
Комбинации значений
Этот комплект предлагает широкий спектр значений, но выбор по десятилетию оставляет некоторые промежутки между ними. Есть несколько приемов, которые можно использовать для устранения этих пробелов, комбинируя заглушки последовательно или параллельно.
Параллельный
Значения конденсаторов, подключенных параллельно, суммируются. Вы можете собрать меньшие крышки, чтобы эффективно сформировать большую крышку.
серии
Конденсаторы, соединенные последовательно, объединяются в обратную сумму — возьмите обратную величину каждого значения и сложите их вместе, а затем возьмите обратную величину этой суммы.
Переформулировано как упрощенное руководство, пока вы находитесь на рабочем месте:
- Если вы хотите, чтобы в комплекте была половина стоимости крышки, поместите две из них последовательно.
- Если вы хотите удвоить стоимость крышки в комплекте, поставьте две параллельно.
.
У любого есть хороший сайт по расшифровке номиналов конденсаторов.
Меню
Форумы
Новые сообщения
Искать на форумах
Что нового
Новые сообщения
Новые средства массовой информации
Комментарии в новых СМИ
Новые ресурсы
Последние действия
Статьи
Лучшие статьи
Поиск ресурсов
Члены
Текущие посетители
EE ресурсы
ДизайнБыстрый
Электронные книги / Технические советы
FAQs
Награды LEAP
Поиск продукции осциллографов
Подкасты EE
Вебинары EE
Информационные документы EE
Калькуляторы EE
Калькулятор сопротивления термистора
Калькулятор таймера 555 (нестабильный режим)
LM3914 Калькулятор
Калькулятор импеданса конденсатора
Калькулятор импеданса конденсатора
Калькулятор LM317
Все калькуляторы
EE Видео
Блоги
Авторизоваться
регистр
Что нового
Поиск
Искать
Везде Нити 900 21.
Коды модуляции и обозначения ITU »Электроника
Список обозначений и кодов модуляции ITU используется многими организациями, включая FCC, для описания формата радиопередачи или типа модуляции в кратком формате.
Типы и методы модуляции Включает:
Типы и методы модуляции
Обозначения излучения МСЭ
Форматы модуляции:
Амплитудная модуляция
Модуляция частоты
Фазовая модуляция
Квадратурная амплитудная модуляция
ITU, Международный союз электросвязи, использует согласованный набор кодов или обозначений для простого и лаконичного описания формата и модуляции радиопередачи.
Обозначения используются многими лицензирующими органами по всему миру, включая FCC в США. Соответственно, их часто называют обозначениями выбросов FCC.
Эти коды или обозначения излучения используются во множестве различных областей, включая определение того, какие типы передачи могут использоваться в различных частях радиочастотного спектра в списке МСЭ, согласованном на Всемирных радиоконференциях, а также определение форматов радиопередачи в лицензиях и другие документы.
Обозначения радиоизлучения МСЭ определяют многие аспекты сигнала: тип модуляции, ширину полосы и тип передаваемой информации. Таким образом, тип радиоизлучения или передачи определяется точно. Следует отметить, что обозначения описывают излучение, а не используемый передатчик или систему.
Система обозначений ITU была согласована на Всемирной административной радиоконференции 1979 года, WARC 79, и заменила предыдущую систему, которая теперь полностью вышла из употребления.Стоит отметить, что WARC было старым названием конференций, теперь они просто называются World Radio Conferences, WRC.
Обозначение типов радиоизлучения в формате
Обозначения ITU для различных типов радиоизлучений соответствуют стандартному формату. Это позволяет любому, кто пользуется системой, быстро определять параметры конкретной передачи. Хотя не все элементы системы можно использовать каждый раз, она была разработана таким образом, чтобы не было двусмысленности, какая бы часть системы для описания типов радиоизлучения ни использовалась.
Система имеет следующий формат:
BBBB 123 45
Где:
BBBB — символы, определяющие полосу пропускания
Символ « 1 » — это буква, указывающая тип модуляции
Символ « 2 » — это цифра, которая указывает тип модулирующего сигнала
Символ « 3 »- это буква, обозначающая тип передаваемой информации.
— Символ« 4 »- дополнительная буква, указывающая практические детали передаваемой информации.
-« 5 »- дополнительная буква, указывающая подробные сведения о любом мультиплексировании, если оно используется .
Таблицы для различных символов от 1 до 5 приведены ниже.
Список обозначений полосы пропускания
Обозначение полосы пропускания состоит из трех цифр, обозначающих значащие цифры, и буквы, используемой для десятичной точки.
Используемые буквы:
H : указывает на герцы
k : указывает на килогерцы
M : указывает на мегагерцы
G : указывает на гигагерцы
Примеры могут включать 200H для передачи с полосой пропускания 200 Гц, 6K00 для полосы пропускания 6 кГц и 1M25 для передачи 1.Передача шириной 25 МГц и т. Д.
Знак 1 — тип модуляции
Этот символ описывает формат самой модуляции. Он предоставляет информацию о способе наложения сигнала на несущую.
Список обозначений выбросов для символа 1 | |
---|---|
Буква индикатор | Детали |
А | Двойная боковая полоса, DSB, включая полную несущую DSB, i.е. амплитудная модуляция |
B | Независимая боковая полоса, т. Е. Две боковые полосы, каждая из которых несет различную информацию |
К | Остаточная боковая полоса |
Д | Сочетание AM и FM или PM одновременно или в заранее установленной последовательности |
F | Частотная модуляция, FM |
г | Фазовая модуляция, PM |
H | Полная несущая с одной боковой полосой |
Дж | Однополосная несущая с подавлением, SSBSC |
К | Амплитудно-импульсная модуляция, PAM |
л | Широтно-импульсная модуляция, ШИМ |
M | Импульсная позиционная модуляция, PPM |
№ | Немодулированная несущая |
п. | Серия импульсов без модуляции |
Q | Последовательность импульсов, фазовая или частотная модуляция в каждом импульсе |
Одна боковая полоса с несущей пониженного или переменного уровня | |
В | Комбинация методов импульсной модуляции |
Вт | Комбинация любого из вышеперечисленных |
х | случаев, не подпадающих под вышеприведенные определения |
Стоит отметить, что частотная модуляция и фазовая модуляция также могут называться общим термином «угловая модуляция».«
Знак 2 — тип модулирующего сигнала
Этот символ в обозначениях ITU для радиоизлучений детализирует характеристики модулирующего сигнала. Он предоставляет информацию, включая информацию о том, является ли модуляция аналоговой или цифровой, и есть ли один или несколько каналов передачи информации.
Список обозначений выбросов для символа 2 | |
---|---|
Буква индикатор | Детали |
0 | Нет модулирующего сигнала |
1 | Один канал, содержащий цифровую информацию без использования модулирующих поднесущих (исключая мультиплексирование с временным разделением) |
2 | Один канал, содержащий цифровую информацию с использованием модулирующей поднесущей (исключая мультиплексирование с временным разделением) |
3 | Один канал, содержащий аналоговую информацию |
7 | Более одного канала с цифровой информацией |
8 | Более одного канала с аналоговой информацией |
9 | Комбинация аналоговых и цифровых каналов |
х | случаев, не охватываемых вышеуказанными |
Символ 3 — тип передаваемой информации
Этот символ в обозначении радиоизлучения МСЭ указывает на тип передаваемой информации.Он дает некоторое представление об использовании и способах декодирования информации.
Список обозначений выбросов для символа 3 | |
---|---|
Буква индикатор | Детали |
А | Телеграфия для приема на слух — например, Код Морзе |
B | Телеграфия для автоматического приема, т.е. машинное декодирование |
К | Факс |
Д | Передача данных, телеметрия или команда |
E | Телефония, i.е. голос или музыка, предназначенные для прослушивания человеком (включая звуковое вещание) |
F | Видео — телевидение |
Вт | Любая комбинация более |
х | Ни одно из вышеперечисленных |
Символ 4 — подробная информация
Этот символ дает некоторое представление о формате информации — ее кодировании и, следовательно, о требованиях к декодированию информации после ее демодуляции.
Список обозначений выбросов для символа 4 | |
---|---|
Буква индикатор | Детали |
А | Два кода состояния — элементы различаются по количеству и продолжительности |
B | Два кода состояния — элементы с фиксированным количеством и продолжительностью |
К | Два кода состояния — элементы различаются по количеству и продолжительности — исправление ошибок включено |
Д | Код с четырьмя условиями, в котором каждое условие представляет собой элемент сигнала (или один или несколько битов) |
E | Код с несколькими условиями, в котором каждое условие представляет собой элемент сигнала (из одного или нескольких битов) |
F | Код нескольких условий — один символ, представленный одним или несколькими условиями |
г | Монофонический звук вещательного качества |
H | Звук стереофонического или квадрофонического качества вещания |
Дж | Коммерческий, не вещательный, качественный звук (за исключением K&L ниже) |
К | Звук коммерческого качества с использованием инверсии частоты и / или разделения полос |
л | Звук коммерческого качества с независимыми FM-сигналами для контроля уровня демодулированного сигнала, e.г. пилотные тоны, используемые для управления процессом демодуляции |
M | Монохромные изображения или видео |
№ | Полноцветные изображения или видео |
Вт | Комбинация вышеперечисленного |
х | Случаи, на которые не распространяется приведенное выше описание |
Символ 5 — детали мультиплексирования
Радиоканалы все чаще используются для передачи более одного потока информации, или от них может потребоваться совместное использование канала с другими пользователями или потоками информации.Этот символ в обозначении радиопередач ITU предоставляет информацию о любом мультиплексировании.
Список обозначений выбросов для символа 5 | |
---|---|
Буква индикатор | Детали |
К | Мультиплексирование с кодовым разделением (включая методы расширения кода, такие как расширение спектра прямой последовательностью) |
F | Мультиплексор с частотным разделением каналов |
№ | Не используется |
т | Мультиплексор с временным разделением каналов |
Вт | Комбинация частотного и временного разделения |
х | Другие типы мультиплексирования — не более |
Список обозначений радиоизлучения широко используется, особенно в лицензиях и другой документации.Обозначения излучения ITU обеспечивают простой метод точного определения используемой формы передачи.
Другие важные темы по радио:
Радиосигналы
Типы и методы модуляции
Амплитудная модуляция
Модуляция частоты
OFDM
ВЧ микширование
Петли фазовой автоподстройки частоты
Синтезаторы частот
Пассивная интермодуляция
ВЧ аттенюаторы
RF фильтры
Типы радиоприемников
Радио Superhet
Избирательность приемника
Чувствительность приемника
Обработка сильного сигнала приемника
Вернуться в меню тем радио.. .
.
Статья | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Сравнение электролитических конденсаторов — май 2008 г. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последняя редакция июнь 2008 г. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Сравнение электролитических конденсаторов — май 2008, Эрик Хуанеда Трудно выбрать хорошие сглаживающие электролитические конденсаторы.На форумах каждый дает свой рецепт. Для этой попытки я использую свой предусилитель модели 3 со следующим источником питания. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Технические данные производителя | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
* Не тестировалось | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Первые замечания | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Серия | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тест на прослушивание | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Понятные диаграммы.Только чтобы понять, какое решение звучат лучше, чем другой. Диаграммы не в масштабе. Не сравнивайте между нами. Только сравнительные значения, без абсолютных значений. Примечание о тесте на прослушивание | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тест на прослушивание (по качеству) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вывод | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Стандартные конденсаторы (например, Sprague) по-прежнему являются хорошим выбором для стандартных аудиоустройств. Это звучит лучше, чем неадекватные конденсаторы с низким ESR. Этот тест подтверждает хорошую репутацию Panasonic FC. Это лучшие конденсаторы без звука. Конденсатор аудиосистемы (Elna, Black Gate) звучит лучше, чем везде. Эти устройства предназначены для высококачественного звука. Если вы ищете конденсаторы Elna получше, обратите внимание на конденсаторы из металлизированного полипропилена. |
.