27.09.2024

Обозначение на схеме датчиков: ГОСТ 21.404-85 СПДС

Содержание

ГОСТ 2.781-96 Единая система конструкторской документации (ЕСКД). Обозначения условные графические. Аппараты гидравлические и пневматические, устройства управления и приборы контрольно-измерительные

ГОСТ 2.781-96

Группа Т52

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ

Аппараты гидравлические и пневматические, устройства управления и приборы контрольно-измерительные

Unified system for design documentation. Graphic designations. Hydraulic and pneumatic valves, control devices and measuring instruments, indicators, switches
 

МКС 01.080.30
ОКСТУ 0002

Дата введения 1998-01-01

1 РАЗРАБОТАН Научно-исследовательским и проектно-конструкторским институтом промышленных гидроприводов и гидроавтоматики (НИИГидропривод), Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 10 от 4 октября 1996 г. )

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Белстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Киргизская Республика

Киргизстандарт

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан

Туркменглавгосинспекция

Украина

Госстандарт Украины

3 Настоящий стандарт соответствует ИСО 1219-91* «Гидропривод, пневмопривод и устройства. Условные графические обозначения и схемы. Часть 1. Условные графические обозначения» в части направляющих и регулирующих аппаратов, устройств управления и контрольно-измерительных приборов
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 7 апреля 1997 г. N 122 межгосударственный стандарт ГОСТ 2.781-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

5 ВЗАМЕН ГОСТ 2.781-68

6 ПЕРЕИЗДАНИЕ. Ноябрь 2004 г.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает условные графические обозначения направляющих и регулирующих аппаратов, устройств управления и контрольно-измерительных приборов в схемах и чертежах всех отраслей промышленности.

Условные графические обозначения аппаратов, не указанных в настоящем стандарте, строят в соответствии с правилами построения и приведенными примерами.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения

ГОСТ 17752-81 Гидропривод объемный и пневмопривод. Термины и определения

ГОСТ 20765-87 Системы смазочные. Термины и определения

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применяют термины по ГОСТ 17752 и ГОСТ 20765.

4 ОСНОВНЫЕ ПОЛОЖЕНИЯ

4.1 Обозначения отражают назначение (действие), способ работы устройств и наружные соединения.

4.2 Обозначения не показывают фактическую конструкцию устройства.

4.3 Если обозначение не является частью схемы, то оно должно изображать изделие в нормальном или нейтральном положении (в положении «на складе»).

4.4 Обозначения показывают наличие отверстий в устройстве, но не отражают действительное месторасположение этих отверстий.

4.5 Применяемые в обозначениях буквы представляют собой только буквенные обозначения и не дают представления о параметрах или значениях параметров.

4.6 Размеры условных обозначений стандарт не устанавливает.

4.7 Общие принципы построения условных графических обозначений гидро- и пневмоаппаратов приведены в таблице 1.

Таблица 1

Наименование

Обозначение

1 Базовое обозначение: квадрат (предпочтительно) и прямоугольник

2 Обозначения гидро- и пневмоаппаратов составляют из одного или двух и более квадратов (прямоугольников), примыкающих друг к другу, один квадрат (прямоугольник) соответствует одной дискретной позиции

3 Линии потока, места соединений, стопоры, седельные затворы и сопротивления изображают соответствующими обозначениями в пределах базового обозначения:

— линии потока изображают линиями со стрелками, показывающими направления потоков рабочей среды в каждой позиции

— места соединений выделяют точками

— закрытый ход в позиции распределителя

— линии потока с дросселированием

4 Рабочую позицию можно наглядно представить, перемещая квадрат (прямоугольник) таким образом, чтобы внешние линии совпали с линиями потока в этих квадратах (прямоугольниках)

5 Внешние линии обычно изображают через равные интервалы, как показано. Если имеет место только одна внешняя линия с каждой стороны, то она должна примыкать к середине квадрата (прямоугольника)

6 Переходные позиции могут быть обозначены, если это необходимо, как показано, прерывистыми линиями между смежными рабочими позициями, изображенными сплошными линиями

7 Аппараты с двумя или более характерными рабочими позициями и с бесчисленным множеством промежуточных позиций с изменяемой степенью дросселирования изображают двумя параллельными линиями вдоль длины обозначения, как показано. Для облегчения вычерчивания эти аппараты можно изображать только упрощенными обозначениями, приведенными ниже. Для составления полного обозначения должны быть добавлены линии потоков:

Две крайние позиции

С центральной (нейтральной) позицией

— двухлинейный, нормально закрытый, с изменяющимся проходным сечением

Детальное

Упрощенное

— двухлинейный, нормально открытый, с изменяющимся проходным сечением

— трехлинейный, нормально открытый, с изменяющимся проходным сечением

4. 8 Общие правила построения условных графических обозначений устройств управления приведены в таблице 2.

Таблица 2

Наименование

Обозначение

1 Обозначения управления аппаратом могут быть вычерчены в любой удобной позиции с соответствующей стороны базового обозначения аппарата

2 Обозначение элементов мускульного и механического управления по ГОСТ 2.721

3 Линейное электрическое устройство

Например, электромагнит (изображение электрических линий необязательно):

— с одной обмоткой, одностороннего действия

— с двумя противодействующими обмотками в одном узле, двухстороннего действия

— с двумя противодействующими обмотками в одном узле, каждая из которых способна работать попеременно в рабочем режиме, двухстороннего действия

4 Управление подводом или сбросом давления

4. 1 Прямое управление:

— воздействие на торцовую поверхность (может быть осуществлено подводом или сбросом давления)

— воздействие на торцовые поверхности разной площади (если необходимо, соотношение площадей может быть указано в соответствующих прямоугольниках)

— внутренняя линия управления (канал управления находится внутри аппарата)

— наружная линия управления (канал управления находится снаружи аппарата)

4.2 Пилотное управление (непрямое управление):

— с применением давления газа в одноступенчатом пилоте (с внутренним подводом потока, без указания первичного управления)

— со сбросом давления

— с применением давления жидкости в двухступенчатом пилоте последовательного действия (с внутренним подводом потока управления и дренажом, без указания первичного управления)

— двухступенчатое управление, например электромагнит и одноступенчатый, пневматический пилот (наружный подвод потока управления)

— двухступенчатое управление, например пневмогидравлический пилот и последующий гидравлический пилот (внутренний подвод потока управления, наружный дренаж из гидропилота без указания первичного управления)

— двухступенчатое управление, например электромагнит и гидравлический пилот (центрирование главного золотника пружиной; наружные подвод потока управления и дренаж)

4. 3 Наружная обратная связь (соотношение заданного и измеренного значений контролируемого параметра регулируется вне аппарата)

4.4 Внутренняя обратная связь (механическое соединение между перемещающейся частью управляемого преобразователя энергии и перемещающейся частью управляющего элемента изображено с использованием линии механической связи; соотношение заданного и измеренного значений контролируемого параметра регулируется внутри аппарата)

4.5 Применение обозначений механизмов управления в полных обозначениях аппаратов:

— обозначения механизмов управления одностороннего действия изображают рядом с обозначением устройства, которым они управляют, таким образом, чтобы сила воздействия механизма мысленно перемещала обозначение устройства в другую позицию

— для аппаратов с тремя или более позициями управление внутренними позициями может быть пояснено расширением внутренних границ вверх или вниз и прибавлением к ним соответствующих обозначений механизмов управления

— обозначения механизмов управления для средней позиции трехпозиционных аппаратов могут быть изображены с внешней стороны крайних квадратов (прямоугольников), если это не нарушит понимания обозначения

— если механизм управления является центрирующим с помощью давления в нейтральной позиции, то изображают два отдельных треугольника по обеим внешним сторонам

— внутренний пилот и дренажные линии аппаратов с непрямым управлением обычно не включают в упрощенные обозначения

— если имеется один наружный пилот и/или одна дренажная линия в гидроаппаратах с непрямым управлением, то их показывают только с одного конца упрощенного обозначения. Дополнительный пилот и/или дренаж должны быть изображены на другом конце. На обозначениях, нанесенных на устройство, должны быть указаны все внешние связи

— при параллельном управлении (ИЛИ) обозначения механизмов управления показывают рядом друг с другом: например, электромагнит или нажимная кнопка независимо воздействуют на аппарат

— при последовательном управлении (И) обозначения ступени последовательного управления показывают в линию, например, электромагнит приводит в действие пилот, который приводит в действие основной аппарат

— фиксатор изображают количеством позиций и в порядке, соответствующем позициям управляемого элемента; выемки показаны только в тех позициях, в которых происходит фиксация. Черточку, показывающую фиксатор, изображают в соответствии с начерченной позицией аппарата

4. 9 Примеры построения условных графических обозначений аппаратов приведены в таблице 3.

Таблица 3

Наименование

Обозначение

1 Распределитель 2/2 (в сокращенных записях распределители обозначают дробью, в числителе которой цифра показывает число основных линий, т.е. исключая линии управления и дренажа, в знаменателе — число позиций

— запорный двухлинейный, двухпозиционный с мускульным управлением

— с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, двухпозиционный распределитель, управляемый электромагнитом и возвратной пружиной, давление управления — со стороны торцевой кольцевой поверхности основного распределителя, наружный слив

— Основная ступень. Двухлинейный, двухпозиционный распределитель, одна линия управления совмещена с камерой кольцевой поверхности, другая линия управления сообщена с камерой дифференциальной поверхности, пружинный возврат, срабатывающий от сброса давления управления

Кольцевая площадь =0

2 Распределитель 3/2

Трехлинейный, двухпозиционный, переход через промежуточную позицию, управление электромагнитом и возвратной пружиной

3 Распределитель 5/2

Пятилинейный, двухпозиционный, управление давлением в двух направлениях

4 Распределитель 4/3

— с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, управление двумя противоположными электромагнитами, с мускульным дублированием, наружным сливом

Детальное

Основная ступень.
Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, внутренний подвод давления управления в двух направлениях; линии управления в нейтральной позиции без давления

На упрощенном обозначении пружины центрирования пилота не показаны

Упрощенное

— с одноступенчатым пилотным управлением. Пилотная ступень. Четырехлинейный, трехпозиционный распределитель, пружинное центрирование, управление одним электромагнитом с двумя противоположными обмотками, с мускульным дублированием, наружным подводом потока управления

Детальное

Основная ступень
Четырехлинейный, трехпозиционный распределитель, центрирование давлением и пружинное, срабатывает от сброса давления управления; линии управления в нейтральной позиции под давлением

На упрощенном обозначении отдельные треугольники показывают центрирующее давление

Упрощенное

5 Дросселирующий распределитель

— четырехлинейный, две характерные позиции, одна нейтральная позиция, пружинное центрирование, бесконечный ряд промежуточных позиций

— с открытым центром все линии в нейтральной позиции сообщены

— с закрытым центром все линии в нейтральной позиции закрыты

— с серворегулированием, с закрытым центром, пружинным центрированием, электромагнитным управлением

6 Клапан обратный:

— без пружины; открыт, если давление на входе выше давления на выходе

Детальное

Упрощенное

— с пружиной; открыт, если давление на входе выше давления на выходе плюс давление пружины

7 Клапан обратный с поджимом рабочей средой, управление рабочей средой позволяет закрывать клапан без возвратной пружины

8 Гидрозамок односторонний

Детальное

Упрощенное

9 Гидрозамок двухсторонний

Детальное

Упрощенное

10 Клапан «ИЛИ»

Входная линия, соединенная с более высоким давлением, автоматически соединяется с выходом, в то время как другая входная линия закрыта

Детальное

Упрощенное

11 Клапан «И»

Выходная линия находится под давлением только тогда, когда обе входные линии под давлением

Детальное

Упрощенное

12 Клапан быстрого выхлопа

Когда входная линия разгружена, выходная свободна для выхлопа

Упрощенное

13 Пресс-масленка

14 Клапан напорный (предохранительный или переливной)

— прямого действия

— прямого действия — с дистанционным управлением гидравлический

— прямого действия — с дистанционным управлением пневматический

— непрямого действия

с обеспечением дистанционного управления

Детальное

Упрощенное

— прямого действия с электромагнитным управлением

— непрямого действия с пропорциональным электромагнитным управлением

15 Клапан редукционный: одноступенчатый, нагруженный пружиной

— с дистанционным управлением

— двухступенчатый, гидравлический, с наружным регулированием возврата

— со сбросом давления гидравлический

— со сбросом давления пневматический

— со сбросом давления, с дистанционным управлением, гидравлический

— со сбросом давления, с дистанционным управлением, пневматический

16 Клапан разности давлений

17 Клапан соотношения давлений

18 Клапан последовательности, одноступенчатый, нагруженный пружиной, на выходе может поддерживаться давление, с наружным дренажом

19 Клапан разгрузки смазочной системы

20 Дроссель регулируемый

Без указания метода регулирования или положения запорно-регулирующего элемента, обычно без полностью закрытой позиции

Детальное

Упрощенное

21 Дроссель регулируемый

Механическое управление роликом, нагружение пружиной

22 Вентиль

Без указания метода регулирования или положения запорно-регулирующего элемента, но обычно с одной, полностью закрытой позицией

23 Дроссель с обратным клапаном

С переменным дросселированием, со свободным проходом потока в одном направлении, но дросселированием потока в другом направлении

24 Регуляторы расхода

Значение расхода на выходе стабилизируется вне зависимости от изменения температуры и/или давления на входе (стрелка на линии потока в упрощенном обозначении обозначает стабилизацию расхода по давлению):

— регулятор расхода двухлинейный с изменяемым расходом на выходе

Детальное

Упрощенное

— регулятор расхода двухлинейный, с изменяемым расходом на выходе и со стабилизацией по температуре

— регулятор расхода трехлинейный с изменяемым расходом на выходе, со сливом избыточного расхода в бак

— регулятор расхода трехлинейный с предохранительным клапаном

25 Синхронизаторы расходов:

— делитель потока.

Поток делится на два потока, расходы которых находятся в установленном соотношении, стрелки обозначают стабилизацию расходов по давлению

Упрощенное

— сумматор потока.

Поток объединяется из двух потоков, расходы которых находятся в установленном соотношении

Упрощенное

26 Дроссельный смазочный дозатор (например, регулируемый)

Детальное

Упрощенное

Примечание — Предпочтительно использовать упрощенное обозначение

4.10 Примеры построения условных графических обозначений смазочных питателей приведены в таблице 4.

Таблица 4

Наименование

Обозначение

1 Импульсный питатель

Детальное

Упрощенное

2 Последовательный питатель

3 Двухмагистральный питатель

4 Маслянопленочный питатель

5 Питатель с индикатором срабатывания

4. 11 Примеры построения условных графических обозначений контрольно-измерительных приборов приведены в таблице 5.

Таблица 5

Наименование

Обозначение

1 Указатель давления

2 Манометр

3 Манометр, дающий электросигнал (электроконтактный)

4 Манометр дифференциальный

5 Переключатель манометра

РД 25.953-90 «Системы автоматические пожаротушения, пожарной, охранной и охранно-пожарной сигнализации. Обозначения условные графические элементов связи.»

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ

Стандарты условно графического обозначения электрооборудования на схемах (ГОСТ)

УГО – это условные графические обозначения. С появлением электротехнических чертежей возникла потребность в унификации графических обозначений электрических элементов на схемах, согласно ГОСТу. Недавняя стандартизация была утверждена восемь лет назад ГОСТом 2-702-2011. Доскональное владение графическими изображениями позволит свободно разбираться в сложных радиосхемах, чертёжной документации по электрооборудованию, обозначениях на планах квартир и многом другом.

Схема подключения розеток в квартире

Виды и типы электрических схем

На электрических схемах требуется размещать кодировку элементов. Чертежи бывают трёх типов:

  • функциональный;
  • принципиальный;
  • монтажный.

Функциональный

На плане указывают основные узлы электроустройства. Чертёж представляет определённое количество прямоугольников, между которыми проведены связующие линии. Внутрь каждой фигуры вписывают название функционального блока.

Функциональная схема

Принципиальный

План содержит сеть, связывающую радиоэлементы в единую систему. Это же относится к планировке электрических сетей. На схеме все детали отмечены маркировкой. Принципиальные чертежи создают как однолинейные, так и полные. План однолинейного построения передаёт изображение одних силовых цепей. Элементы контроля управления помещают на другом чертеже. Делают это из-за громоздкости электрических схем.

Важно! Когда строение приборов или устройств не представляют особую сложность, то чертежи объединяют в единый план, который называют полной схемой.

Принципиальный план радиоприёмного устройства

Монтажный

В отличие от вышеуказанных чертежей, монтажная схема, кроме указания элементов, определяет их точное положение в двумерном пространстве. Проводку электрической сети в доме или квартире изображают с точным положением розеток, включателей, светильников и других приборов. Указывают расстояния от элементов до стеновых ограждений. На монтажных радиосхемах отмечают положение радиокомпонентов, способы и порядок их монтажа.

Монтаж электропроводки и устройств в комнатах жилища

Графические обозначения в электросхемах

УГО на функциональных планах

К узлам коммутации относят контактные детали, работающие с помощью различных механизмов. Это включатели и контакторы. Устройства могут замыкать, размыкать и переключать контакты. Изначальное состояние размыкателя это, когда элементы замкнуты. У замыкателя происходит всё наоборот. В функциональных чертежах контакторы изображаются с учётом этих особенностей.

Виды контакторов

На рисунке изображён двухконтактный переключатель. Он может быть трёхпозиционным прибором. В нейтральном положении переключатель не соприкасается ни с одной ветвью электросхемы.

Внимание! Специальным знаком отмечают функциональное назначение контактора. Это относится к устройствам с подвижными ветвями.

Знак обозначения мобильных контактов

Функции деталей со стационарными контактами

Обозначения элементов электроснабжения на однолинейных схемах отображают только силовые элементы. Между элементами проводят линии связи. Их изображения помещают на щитовых.

УГО для однолинейных схем

Реле, контакторы и катушки по ГОСТу обозначает четырёхугольниками.

Реле, контакторы и катушки

Лампы, разъёмные, разборные узлы и измерители имеют своё характерное изображение. Их чётко видно на чертеже. Лампочки рисуют в виде кругов с перекрестьем внутри, измерители – это круги с двумя латинскими буквами и т.д.

Лампы, измерительные устройства

Шины – это массивные проводники с ответвлениями, их выделяют жирным контуром. Провода, наоборот, чертят тонкими линиями. Их соединения отмечают точками. Если они отсутствуют, то это означает бесконтактное пересечение проводников.

Провода и шины

Способы укладки кабелей имеют довольно простую графику.

Кабели с количеством жил

Выключатели и розетки с открытым и скрытым способом установки имеют свои условные обозначения на чертежах ГОСТ. Группы каждого вида установки отмечены черточками на клавишах приборов.

Выключатели

По-разному рисуют розетки для скрытой и открытой проводки. Их сразу можно отличить от других элементов.

Розетки

Светильники с лампочками накаливания, светодиодными и люминесцентными элементами рисуют так, что их всегда можно выделить.

Лампы

УГО принципиальных электросхем

Обозначения на принципиальных электрических схемах изображают разъёмы, предохранители, клеммы, ёмкости. Также это относится к резисторам, светодиодам, диодам, тиристорам и лампочкам. Большая часть этих условных обозначений, согласно ГОСТу, указана в нижеследующей таблице.

Элементы

УГО различных радиоэлементов по ГОСТу на схемах этого типа представлены на нижеследующей картинке.

УГО радиоэлементов ГОСТ

Обозначения питающих источников

В таблице ниже представлены графические обозначения источников питания для однолинейной планировки в квартирах и частных домостроениях.

Датчик холла обозначение на схеме

Широкое применение датчик Холла имеет в транспортных системах. Также Датчик Холла применяется для контроля положения узлов различных механизмов: перемещение деталей механизмов до концевых положений, построение энкодеров. Используется для измерения больших токов. Проводятся эксперименты по использованию датчика Холла в качестве чувствительного элемента магнитного компаса. Основу датчика составляет элемент Холла, соединенный с электрической схемой. Современный датчик Холла представляет собой микросхему, к которой подводится питание, а на выходе микросхемы формируется информационный сигнал. Принцип работы датчика Холла состоит в фиксировании магнитного поля. Для измерения скорости перемещения датчика Холла закрепляется на неподвижном элементе конструкции, а в движущейся части устанавливаются магниты. Применяют и более простое решение, намагничивают подвижные элементы не внося изменений в конструкцию механизма. Для измерения скорости вращения применяется пара постоянный магнит и датчик Холла. Между ними свободно перемещается пластина, экранирующая магнитное поле. При каждом обороте с выхода датчика Холла поступает электрический импульс в схему электронного тахометра. Для увеличения точности измерения устанавливают две и более пар магнит + датчик Холла.

Принцип работы датчика Холла позволяет создать регистрирующее устройство не имеющее механического контакта с подвижной частью контролируемого механизма, что позволяет многократно увеличить ресурс работы по сравнению с герконами или механическими переключателями, кнопками. На рисунке показан узел из бесконтактной системы зажигания автомобильной схемы, с использование датчика Холла.

1 — аккумулятор;
2 — замок зажигания;
3 — свечи зажигания;
4 — двухвыводная катушка зажигания;
5 — вольтметр;
6 — коммутатор;
7 — датчик Холла.

Проверить датчик Холла можно по такой технологии. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю. На снятом с двигателя датчике-распределителе зажигания датчик можно проверить по схеме, приведенной на рисунке ниже, при напряжении питания 8-14 В. Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно резко меняться от минимального (не более 0,4 В) до максимального (не более, чем на 3 В меньше напряжения питания).

Использование совместно с датчиком Холла постоянного магнита повышает надежность по сравнению с оптопарами, требующими источника света. Постоянный магнит «не погаснет”, а источник света требует подключения к питанию, постоянно потребляет ток. Обрыв питания источника света приведет к ложному сигналу с выхода оптопары, что не может произойти с датчиком Холла. Автор статьи — Сергей Куприянов.

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т. д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL – прибор электровакуумный

VS – тиристор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

СОДЕРЖАНИЕ. Код обозначения. Принципиальные схемы. Функциональное описание. Приложения. Датчики. Как читать обозначения датчиков

Магнитные датчики приближения

Магнитные датчики приближения Магнитные датчики приближения Обзор Страница 38 Принцип действия и установка Страница 39 Цилиндрические конструкции Страница 41 Прямоугольные конструкции Страница 42 37 Kurzübersicht Magnetoresistive

Дополнительная информация

Как использовать расходомер

Расходомер INLINE для непрерывного измерения расхода Экономическая интеграция в трубопроводные системы без дополнительных трубопроводов 3-проводная частотно-импульсная версия для прямого взаимодействия с ПЛК (как PNP, так и NPN) Подключение

Дополнительная информация

Датчик расхода турбины серии VTR

Турбинный датчик расхода серии VTR Турбинный датчик расхода серии VTR Сверхпрочный, впечатляюще точный турбинный датчик расхода SIKA VTR позволяет точно, надежно и легко определять расход

Дополнительная информация

Датчик скорости MiniCoder GEL 247

Датчик скорости MiniCoder GEL 47 Фланцевый узел Техническая информация версия 08.0 Семейство MiniCoder от Lenord + Bauer предлагает экономящие место решения для бесконтактного измерения вращательных движений

Дополнительная информация

Как привести в действие Schen

Автоматика / Миниатюрный датчик полого вала типа SCh42F — Ø ​​32 мм Полое отверстие: Ø 6 мм — Ø 3/8 дюйма Разрешение до 5000 ppr IP 65 (IP 50 для варианта разъема IDC) Электрические характеристики Код: Разрешение:

Дополнительная информация

Безопасность на высоком уровне!

Датчик уровня SIKA Датчик уровня SIKA Безопасность на высоком уровне! Убедительные преимущества простой и надежный метод контроля уровня жидкости проверенный принцип поплавка легкая боковая установка с использованием резьбы ¾ «или ½» BSP

Дополнительная информация

Электронное реле давления EDS 300

Электронное реле давления EDS 300 Руководство пользователя Стр. 2 из 16 Содержание 1.Функции EDS 300 … 3 2. Монтаж … 3 3. Кнопки управления на мембранной клавиатуре … 4 4. Цифровой дисплей … 4 5. Функция выхода … 5

Дополнительная информация

Сверхминиатюрный тензодатчик модели 8417

w Техническая информация о продукте Сверхминиатюрный тензодатчик 1. Введение … 2 2. Подготовка к работе … 2 2.1 Распаковка … 2 2.2 Первое включение прибора … 2 2.3 Заземление и подключение потенциала …

Дополнительная информация

MILE Encoder для EC 90 Flat

MILE Encoders Edition, октябрь 2014 г.

Дополнительная информация

Приводы ГЕРЦ-Термал

Приводы ГЕРЦ-Термал Лист данных 7708-7990, выпуск 1011 Размеры в мм 1 7710 00 1 7710 01 1 7711 18 1 7710 80 1 7710 81 1 7711 80 1 7711 81 1 7990 00 1 7980 00 1 7708 11 1 7708 10 1 7708 23 1 7709 01

Дополнительная информация

Датчик крутящего момента серии 7500

Свойства Вал отбора мощности (отбора мощности) со встроенным устройством измерения крутящего момента и угла Бесконтактная система измерения, высокая надежность Решение Plug & Play, дополнительная электроника не требуется Измерение рабочих характеристик

Дополнительная информация

Технические данные.Габаритные размеры

0102 Номер модели Характеристики Квази-заподлицо 15 мм Используется до SIL2 в соотв. с IEC 61508 Принадлежности BF 30 Монтажный фланец, 30 мм V1-G-N-2M-PUR, розетка, кабель, M12, 2-контактный, NAMUR, кабель PUR V1-W-N-2M-PUR, розетка

Дополнительная информация

Линейка датчиков скорости

Датчики скорости Line Guide Скорость и надежность. Honeywell S&PS предлагает электронный регулятор скорости, предназначенный для повышения надежности и увеличения срока службы.Honeywell использует несколько технологий для обнаружения изменений в

Дополнительная информация

EFC 3600. Преобразователи частоты.

2 Документация по электроприводам и элементам управления Bosch Rexroth AG Компактность и полная комплектация: компактная установка рядом друг с другом, съемные клеммы ввода / вывода, с тормозным прерывателем и сетевым фильтром для сверхпростой установки

Дополнительная информация

Датчик крутящего момента реакции

Усилие 1 1 Н · м до 1 000 1 000 Н · м Тип 9329A 9389A Эти простые в установке пьезоэлектрические датчики крутящего момента особенно подходят для измерения быстро меняющихся крутящих моментов на невращающихся валах.

Дополнительная информация

Добавление сердца к вашим технологиям

Компонент приемника сердечного ритма RMCM-01 Код продукта #: 3

74 КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ Блок высокой фильтрации Разработан для работы с постоянными шумовыми полями Компонент SMD: Устанавливается в качестве стандартного компонента на

Дополнительная информация

Как сделать ультразвуковой датчик

crm + ультразвуковые датчики Microsonic: TR Electronic: Тел: +49 231 975151-0 США: 248-244-2280 Факс: +49 231 975151-51 Канада: 519-452-1233 www.microsonic.de www.trelectronic.com [email protected] Описание

Дополнительная информация

Емкостный Prox E2K-X

Емкостный цилиндрический датчик Prox с резьбой для обнаружения металлических и неметаллических объектов Позволяет бесконтактно обнаруживать металлические и неметаллические объекты, такие как стекло, дерево, вода, масло и пластик Позволяет

Дополнительная информация

Селекторный переключатель Тип 01

Селекторный переключатель Тип 0 Компактный селекторный переключатель, 000 циклов переключения до.Момент переключения 0 Нсм Позолоченные контакты: микрон Прочный металлический корпус с металлическим стержнем Дополнительная передняя панель IP

Дополнительная информация

Индуктивные датчики приближения

Индуктивные бесконтактные датчики M12 стандартной длины Mini’s Extended Sensing 3-проводный DC 2-проводный DC 2-проводный AC (схема подключения) 3-проводный DC PNP нормально открытый (1) IMM32122C IMM35124C IMN32122C IMN35124C IMN32122M12

Дополнительная информация

Р.C.C.B. s двухполюсный LEXIC

87045 LIMOGES Cedex Телефон: (+33) 05 55 06 87 87 Факс: (+ 33) 05 55 06 88 88 R.C.C.B. s двухполюсный LEXIC 089 06/09/10/11/12/15/16/17/18/27/28/29/30/35, СОДЕРЖАНИЕ СТРАНИЦЫ 1. Электрические и механические характеристики …

Дополнительная информация

Технические данные. Габаритные размеры

0102 Номер модели Характеристики Серия Comfort 5 мм, заподлицо Используется до SIL 2 в соотв.согласно IEC 61508 Принадлежности BF 18 Монтажный фланец, 18 мм EXG-18 Кронштейн для быстрого монтажа с упором Технические характеристики

Дополнительная информация

Датчик влажности в воздуховоде

Канальный датчик влажности SDC-H Характеристики Сменный сенсорный элемент Измерение влажности для воздуховодов Память минимальных и максимальных значений 0 0 В, 0 0 мА или 0 В, 4 0 мА измерительные сигналы выбираются с помощью перемычек

Дополнительная информация

Серия плат входных / выходных реле DCS

Платы реле ввода / вывода серии ПЛАТА РЕЛЕ В / В (с функцией проверки по шлейфу) 8N Платы реле ввода / вывода серии 8N легко и быстро стандартизируют и упрощают установку релейной платы.Петлевой тест

Дополнительная информация

Принципиальная схема модуля инфракрасного датчика

DIY

Датчики

являются очень важной частью электроники, особенно в робототехнике и автоматике. Датчики в электронных устройствах упрощают нашу жизнь, автоматически обнаруживая устройства и управляя ими без вмешательства человека. Существует много видов датчиков, таких как датчик пожара, датчик влажности, датчик движения, датчик температуры, ИК-датчик и т. Д. В этой статье мы расскажем о ИК-датчике (инфракрасный датчик), как он работает и как создать ИК-датчик . Модуль датчика .

Инфракрасный датчик

— очень популярный датчик, который используется во многих приложениях в электронике, например, в системах дистанционного управления, детекторах движения, счетчиках продуктов, роботах-повторителях линий, сигнализациях и т. Д.

ИК-датчик

в основном состоит из ИК-светодиода и фотодиода , эта пара обычно называется ИК-парой или фотоэлементом . ИК-датчик работает по принципу, по которому ИК-светодиод излучает ИК-излучение, а фотодиод воспринимает это ИК-излучение.Сопротивление фотодиода изменяется в зависимости от количества падающего на него ИК-излучения, следовательно, падение напряжения на нем также изменяется, и с помощью компаратора напряжения (например, LM358) мы можем определить изменение напряжения и соответственно сгенерировать выходной сигнал.

Размещение ИК-светодиода и фотодиода может быть выполнено двумя способами: Прямой и Косвенный . В Прямое падение , ИК-светодиод и фотодиод расположены друг напротив друга, так что ИК-излучение может напрямую падать на фотодиод.Если мы поместим между ними какой-либо объект, то он прекратит попадание инфракрасного света на фотодиод.

И в Indirect Incidence и ИК-светодиод, и фотодиод размещены параллельно (бок о бок), обращены в одном направлении. Таким образом, когда объект находится перед парой ИК-излучения, ИК-свет отражается от объекта и поглощается фотодиодом. Обратите внимание, что объект не должен быть черным, поскольку он будет поглощать весь ИК-свет, а не отражать его. Обычно ИК-пара размещается в модуле ИК-датчика таким образом.

Для сборки ИК-модуля нам в основном нужна ИК-пара (ИК-светодиод и фотодиод) и LM358 с некоторыми резисторами и светодиодом.

ИК-светодиод

ИК-светодиод излучает свет в диапазоне инфракрасных частот. ИК-свет невидим для нас, так как его длина волны (700 нм — 1 мм) намного превышает диапазон видимого света. Все, что выделяет тепло, излучает инфракрасное излучение, как, например, наше человеческое тело. Инфракрасное излучение имеет те же свойства, что и видимый свет, например, его можно фокусировать, отражать и поляризовать, как видимый свет.

ИК-светодиод

выглядит как обычный светодиод, а также работает как обычный светодиод, потребляет ток 20 мА и мощность 3 точки. ИК-светодиоды имеют угол испускания света прибл. 20-60 градусов и диапазон прибл. от нескольких сантиметров до нескольких футов, это зависит от типа ИК-передатчика и производителя. Некоторые передатчики имеют дальность действия в километрах.

Фотодиод

Фотодиод

считается светозависимым резистором (LDR), что означает, что он имеет очень высокое сопротивление в отсутствие света и становится низким, когда на него падает свет.Фотодиод — это полупроводник, который имеет переход P-N, , работающий в режиме обратного смещения , что означает, что он начинает проводить ток в обратном направлении, когда на него падает свет, и величина протекающего тока пропорциональна количеству света. Это свойство делает его полезным для обнаружения ИК-излучения.

Фотодиод

выглядит как светодиод с черным покрытием на внешней стороне. Он используется с обратным смещением, как показано на принципиальной схеме ниже.

LM358

LM358 — это операционный усилитель (операционный усилитель), и в этой схеме мы используем его в качестве компаратора напряжения .LM358 имеет два независимых компаратора напряжения внутри, которые могут питаться от одного PIN-кода, поэтому мы можем использовать одну IC для создания двух модулей ИК-датчиков. Здесь мы использовали только один компаратор, который имеет входы на PIN 2 и 3 и выход на PIN 1. Компаратор напряжения имеет два входа, один инвертирующий вход, а второй неинвертирующий вход (PIN 2 и 3 в LM358). Когда напряжение на неинвертирующем входе (+) выше, чем напряжение на инвертирующем входе (-), тогда на выходе компаратора (PIN 1) высокий уровень.И если напряжение инвертирующего входа (-) выше, чем неинвертирующего конца (+), то выходное напряжение НИЗКОЕ.

Модуль ИК-датчика

Компоненты

  • ИК пара (ИК-светодиод и фотодиод)
  • Микросхема LM358
  • Резистор 100, 10к, 330 Ом
  • Резистор переменный — 10к
  • светодиод

Подключения можно увидеть на принципиальной схеме ИК-датчика . Фотодиод подключен с обратным смещением, инвертирующий конец LM358 (PIN 2) подключен к переменному резистору, чтобы настроить чувствительность датчика.А неинвертирующий конец (PIN 3) подключен к стыку фотодиода и резистора.

Когда мы включаем схему, на фотодиод не поступает ИК-излучение, а выход компаратора — НИЗКИЙ. Когда мы берем какой-нибудь объект (не черный) перед парой ИК-излучения, ИК-свет, излучаемый ИК-светодиодом, отражается объектом и поглощается фотодиодом. Теперь, когда отраженное ИК-излучение падает на фотодиод, напряжение на фотодиоде падает, а напряжение на последовательном резисторе R2 увеличивается.Когда напряжение на резисторе R2 (который подключен к неинвертирующему концу компаратора) становится выше, чем напряжение на инвертирующем конце, тогда выход становится ВЫСОКИМ и загорается светодиод.

Напряжение на инвертирующем конце, которое также называется Пороговое напряжение , можно установить, вращая ручку переменного резистора. Чем выше напряжение на инвертирующем конце (-), тем меньше чувствительность датчика, а чем ниже напряжение на инвертирующем конце (-), тем чувствительнее датчик.

Вся эта схема может быть размещена на печатной плате для создания надлежащего профессионального модуля ИК-датчика .

4 Простые схемы детектора движения с использованием PIR

Датчик движения PIR — это устройство, которое обнаруживает инфракрасное излучение от движущегося человеческого тела и включает звуковой сигнал.

В посте обсуждаются 4 простые схемы детектора движения, использующие операционный усилитель и транзистор. Мы также обсуждаем детали распиновки стандартного пассивного инфракрасного (PIR) датчика RE200B.

Мы узнаем:

  1. Как использовать датчик PIR для обнаружения инфракрасного излучения человеческого тела.
  2. Как использовать модуль PIR в качестве цепи охранной сигнализации
  3. Как использовать PIR для включения освещения при обнаружении присутствия человека.
  4. Как применить ИК-датчик для обнаружения объекта в промышленных приложениях

В первой схеме используется операционный усилитель, а во второй схеме используется один транзистор и реле для обнаружения ИК-излучения от движущегося человеческого тела и активации реле активировало тревогу.

Что такое PIR

PIR — это аббревиатура от Passive Infra Red.Термин «пассивный» указывает на то, что датчик не принимает активного участия в процессе, то есть он сам не излучает упомянутые инфракрасные сигналы, а скорее пассивно обнаруживает инфракрасное излучение, исходящее от находящихся поблизости теплокровных животных.

Обнаруженное излучение преобразуется в электрический заряд, пропорциональный обнаруженному уровню излучения. Затем этот заряд дополнительно усиливается встроенным полевым транзистором и подается на выходной контакт устройства, который становится применимым к внешней схеме для дальнейшего усиления и срабатывания ступеней сигнализации.

Описание выводов ИК-датчика

На изображении показана типичная схема расположения выводов ИК-датчика. Распиновка довольно проста для понимания, и их можно легко сконфигурировать в рабочую цепь с помощью следующих пунктов:

Как показано на следующей схеме, PIN # 3 датчика должен быть подключен к земле или отрицательной шине. поставки.

Контакт № 1, который соответствует клемме «стока» устройства, должен быть подключен к положительному источнику питания, который в идеале должен быть 5 В постоянного тока.

И контакт № 2, который соответствует «истоку» датчика, должен быть подключен к земле через резистор 47 кОм или 100 кОм. Этот контакт также становится выходным контактом устройства, и обнаруженный инфракрасный сигнал передается на усилитель от контакта №2 датчика.

1) Схема PIR-детектора движения человека с использованием операционного усилителя

В предыдущем разделе мы изучили техническое описание и распиновку стандартного ИК-датчика. Теперь давайте продолжим и изучим простое применение того же самого:

Первая ИК-схема Схема для определения движущихся людей показана выше.Здесь можно увидеть практическую реализацию объясненных деталей распиновки.

В присутствии инфракрасного излучения человека датчик обнаруживает излучение и мгновенно преобразует его в мельчайшие электрические импульсы, достаточные для того, чтобы транзистор стал проводящим, заставив его коллектор опуститься.

IC 741 был настроен как компаратор, где его контакт № 3 назначен как опорный вход, а контакт № 2 как вход считывания.

В момент, когда на коллекторе транзистора устанавливается низкий уровень, потенциал на выводе №2 микросхемы 741 IC становится ниже, чем на выводе №3.Это мгновенно повышает уровень на выходе ИС, вызывая срабатывание каскада драйвера реле, состоящего из другого транзистора BC547 и реле.

Реле активирует и включает подключенное устройство сигнализации.

Конденсатор 100 мкФ / 25 В гарантирует, что реле остается включенным даже после отключения ИК-датчика, возможно, из-за выхода источника излучения.

Обсуждаемое выше устройство PIR на самом деле является стержневым датчиком и может быть чрезвычайно чувствительным и трудным для оптимизации.Чтобы стабилизировать его чувствительность, датчик должен быть соответствующим образом заключен в крышку линзы Френеля, это дополнительно увеличит радиальный диапазон обнаружения.

Если вы не уверены в использовании открытого ИК-устройства, вы можете просто выбрать готовый ИК-модуль с линзой и другими усовершенствованиями, как описано ниже.

2) Датчик движения PIR и цепь охранной сигнализации

Следующая схема датчика движения PIR может быть легко построена с использованием следующей базовой настройки и применена в качестве цепи охранной сигнализации .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *