20.01.2025

Обозначение на схеме термостата: Терморегулятор обозначение на электрической схеме

Содержание

Терморегулятор обозначение на электрической схеме

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

Для установки и контроля температуры воды при стирке или воздуха при сушке применяются термостаты различных конструкций. Термостаты могут быть регулируемыми, нерегулируемыми (т. н. «кликсоны») и защитного типа.

На рис. 1 представлены некоторые типы нерегулируемых термостатов, а на рис. 2 такие же термостаты, но в малогабаритном исполнении.

Рис. 1. Обычные биметаллические нерегулируемые термостаты

Рис. 2. Малогабаритные нерегулируемые термостаты и термопредохранитель

На рис. 3 показано внутреннее устройство нерегулируемого термостата.

Рис. 3. Принцип действия биметаллического термостата

Основу его составляет биметаллическая мембрана сферическойформы.

Термостаты с мембраной устанавливаются в бак СМА таким образом, чтобы его металлический корпус с мембраной имел непосредственный контакт со средой внутри бака. Для этого в баках сделаны соответствующие круглые сквозные отверстия.

Малогабаритные термостаты обычно устанавливаются на наружных сторонах металлических баков или камер сушки. Внутреннее устройство малогабаритных термостатов точно такое же.

Принцип действия нерегулируемых термостатов простой: при нагревании до определенной температуры (той, на которую рассчитан термостат), биметаллическая мембрана практически мгновенно выгибается в обратную сторону. При этом она перемещает также и керамический плунжер (керамический стерженек диаметром 1,5—2,5 мм), который в свою очередь размыкает исполнительные контакты. По остывании мембрана принимает первоначальную форму, и исполнительные контакты вновь замыкаются.

По начальному состоянию контактов термостаты бывают нормально закрытыми типа NC т. е. в холодном состоянии контакты такого термостата — замкнуты между собой или нормально открытыми типа NO (NA) (контакты изначально не замкнуты).

На корпусах термостатов или на их металлических крышках обычно имеется маркировка с обозначением состояния контактов и значением температуры срабатывания. Например: 130 NC — нормально закрытый (контакты замкнуты) термостат с температурой включения 130 °С, или 30 NO (NA) — нормально открытый (контакты незамкнуты), температура срабатывания 30 °С. Обозначения NO или NA зависят от страны-производителя данного изделия.

На термостатах привозных СМА может также присутствовать маркировка с обозначением температуры по шкале Фаренгейта. Например, на рис. 4 показан подобный термостат.

Рис. 4. Пример обозначения температур срабатывания

Его маркировка обозначает температуру включения и сброса.

По функциональному назначению термостаты бывают регулируемыми и защитными. Защитные термостаты имеют в основе биметаллическую мембрану. В отличие от регулируемых термостатов мембрана в защитном после остывания не возвращается в первоначальное положение. Для повторного включения после остывания в корпусе термостата сделана специальная кнопка, которая при нажатии возвращает мембрану в первоначальное положение.

На рис. 9.5 показанынекоторые модели защитных термостатов.

Рис. 5 Защитные термостаты

По конструкции термостаты бывают сдвоенными и совмещенными. В обоих имеется по две мембраны, настроенных на разные температуры. Каждая из мембран связана с исполнительными контактами через свой керамический плунжер. Вот, например, на рис. 6 показан термостат совмещенного типа: в одном корпусе размещены регулируемый и защитный термостат с кнопкой возврата.

Рис. 6. Устройство сдвоенного термостата

Ясно, что одна из мембран имеет в центре отверстие через которое проходит соответствующий плунжер. Совмещенными могут быть и NO- и NC-термостаты, все зависит от конструктивных особенностей СМА. Нерегулируемые термостаты в схемах СМА как правило соединены последовательно с ТЭНом и защитным термостатом.

Наряду с биметаллическими термостатами широко применяются газонаполненные термостаты. Они также бывают регулируемыми и нерегулируемыми. Последние настроены на заводе-изготовителе и имеют фиксированные значения температур срабатывания.

Рассмотрим, как устроены газонаполненые термостаты. На рис. 7 представлено несколько типов регулируемых термостатов.

Рис. 7. Типы регулируемых термостатов

Подобные термостаты служат для установки и поддержания температуры воды или моющего раствора в баке СМА. Принцип работы таких термостатов показан на рис. 8.

Рис. 8. Принцип действия регулируемого газонаполненного термостата

Основу термостатов составляет так называемый гидравлический контур, который показан на рис. 9.9.

Рис. 9. Соединительный капилляр с камерой нагрева и сильфоном. Гидравлический контур

Он состоит из сильфона и камеры нагрева — баллона. Сильфон и баллон соединены длинной тонкой трубочкой — капилляром, «одетым» в защитную оболочку (кембрик) из хлорвинила. Сильфон находится в корпусе термостата, а баллон установлен на баке СМА в специальном сквозном отверстии через резиновую прокладку.

Как действуют подобные термостаты? Внутри гидравлического контура находится фреон (определенная марка). При нагревании баллона газ расширяется и сильфон переключает исполнительные контакты. Подобные термостаты могут быть как двухконтактными, так и трехконтактными.

Вернемся к нашему термостату подробнее. Как уже упоминалось, сильфон с исполнительными контактами находится в отдельном корпусе, который устанавливается на панели управления. Ручка установки температуры нагрева имеет соответствующие обозначения: от значка *, обозначающего выключенное состояние, до цифры 90—95 °С — это максимальная температура, которая может быть задана. Также на ручке или на шкале панели может присутствовать и значение начальной температуры (минимума), как правило, это 30 °С. Это минимально возможная из заданного диапазона температур.

Ручка установки температуры надета на ось регулировки. Эта ось имеет несколько ниток мелкой резьбы, благодаря которой ось при вращении немного сдвигается вверх или вниз. Нижним торцом ось связана непосредственно с сильфоном, который в свою очередь связан с контактной системой и с регулировочным винтом, которым на заводе осуществляют точную настройку термостата.

В положении, когда задана какая-либо температура нагрева, контакты С и 1 замкнуты. По достижении заданной температуры сильфон расширяется и замыкаются контакты С и 2 — так работает трехконтактный термостат.

Подобные термостаты также бывают и с фиксированными настройками на несколько значений температур. Такие термостаты называются многопозиционными, и у них отсутствует ручка управления.

На рис. 10 показан один из таких термостатов.

Рис. 10. Трехпозиционный нерегулируемый термостат

Основу его также составляет гидравлический контур из баллона цилиндрической вытянутой формы, капилляра в защитной оболочке и сильфона, который помещен в корпус с контактной системой. Регулировочные винты законтрены краской.

Проверку термостатов можно произвести, аккуратно нагревая их крышку, под которой находится биметаллическая мембрана, или нагревая баллон. Лучше всего при проверке использовать теплую или горячую воду.

Состояние контактов термостата контролируется омметром или звуковой «прозвонкой». Основной дефект газонаполненных термостатов — это повреждение капилляра: он может быть обломан или перетерт в каком-либо месте. Обозначения термостатов в некоторых электросхемах СМА показаны на рис. 9.11.

Рис. 11 Примеры обозначений термостатов на электросхемах

А теперь напомним, как происходят измерения и контроль температуры воды в СМА с электронными модулями управления. Эти модули (или блоки) бывают двух типов: в первом типе еще присутствует электромеханический программатор со всеми своими функциями: подключение ТЭНа, переключение направления ведущего мотора, включение сливного насоса-помпы и т. д.

Во втором типе модулей управление всеми силовыми элементами — мотором, ТЭНом, насосом, клапанами — осуществляется с помощью электронных ключей на основе мощных полевых транзисторов в редких моделях СМА или, чаще, симисторов.

В обоих типах модулей чувствительными элементами для контроля температуры служит так называемые NTC-термисторы.

Внешний вид некоторых показан на рис. 12.

Рис. 12. Типы термисторов

А на рис. 13 показано устройство термисторов.

Рис. 13. Устройство термисторов

Как видно, в корпусе из металла или термостойкой пластмассы находится термосопротивление (терморезистор) с отрицательным коэффициентом сопротивления (Negative Temperature Controlо1). При увеличении температуры терморезистор уменьшает свое сопротивление в десятки раз.

Термисторы обычно устанавливают в специальные отверстия в баке СМА так, чтобы днище корпуса термистора, к которому приклеено термосопротивление, имело непосредственный контакт со средой внутри бака СМА.

Довольно часто термистор цилиндрической формы устанавливают прямо в основании ТЭНа, например, как на рис. 14.

Рис. 14. Термистор встроенный в основание нагревательного элемента

В этом случае в уплотняющей резине и в скобах проделаны дополнительные отверстия для термистора.

Принцип измерения (контроля температуры) — по сути: измерения сопротивления методом сравнения измеряемой величины с образцовой мерой — широко известен под именем мостовой схемы Уитстона, или моста Уитстона.

В нашем случае мы имеем дело с одинарным мостом. Схема его показана на рис. 15.

Рис. 15. Принцип работы измерительной схемы на основе моста Уитстона

Для удобства понимания схема представлена в виде квадрата из четырех резисторов. У этого квадрата две диагонали: АВ и CD. К точкам А и В прикладывается разность потенциалов (напряжение источника питания), а между точками С и D разность потенциалов измеряется (т. е. с этих точек снимается управляющее напряжение для последующих каскадов измерительной схемы в электронном модуле).

Предположим, мост находится в состоянии баланса: R1 = R3, а R2= R4, т. е. между точками С и D разность потенциалов равно нулю. Если изменить величину хотя бы одного из сопротивлений, например R2, то между точками С и D возникнет разность потенциалов, которая будет тем больше, чем больше изменится сопротивление R2.

На месте R2 У нас установлен термистор, а для балансировки моста будем использовать резистор R4. Именно он будет служить для задания значения температуры, до которой должна будет нагреться вода в баке СМА.

В реальных электросхемах СМА этот резистор может быть переменным — в этом случае обеспечивается плавная регулировка, либо может быть установлен регулятор ступенчатого типа — на несколько фиксированных значений температуры. Такие регуляторы могут состоять из набора отдельных резисторов либо набора резисторов в виде интегральной матрицы.

Внешний вид некоторых регуляторов показан на рис. 16.

Рис. 16. Типы регуляторов температуры

В статье «Программаторы» мы упоминали электромагнит — термостоп. Именно с диагонали CD снимается сигнал для управления этим электромагнитом. Сигнал подается сначала на каскады усиления, а затем на симистор, через который и подается напряжение питания на обмотку электромагнита. По достижении баланса мостовой схемы, т. е. по достижении установленной температуры, напряжение питания снимается (симистор закрывается) и программа стирки будет продолжаться.

Для каждой конкретной электросхемы СМА применяется термистор определенного номинала. Позже мы отметим это на некоторых примерах электросхем СМА.

В заключение этой главы приведем фрагмент электросхемы СМА. В основе этой схемы все тот же мост Уитстона. Он включен на входе усилителя постоянного входа (операционный усилитель) — назовем его «блок сравнения параметров». Изменение величины сопротивления термистора сравнивается с заданным значением (значение температуры задается ступенчатым регулятором). На выходе блока включено реле, которое отключает нагрузку (ТЭН) при совпадении величин сопротивлений на входе блока. Точно так же вместо реле на входе блока может быть включен и управляющий симистор, через который будет подаваться напряжение питания на ТЭН.

В заключение раздела приведем номиналы термисторов, применяющихся в разных СМА.

На этой странице представлено обозначение терморегулятора на схеме трубопроводов в соответствии с ГОСТ 21.205-93.

Общие сведения:

1. Трубопроводы и их элементы на чертежах указывают условными графическими обозначениями и упрощенными изображениями;
2. Размеры условных графических обозначений элементов систем на чертежах и схемах (в том числе и обозначение терморегулятора на чертежах и схемах) принимают без соблюдения масштаба;
3. На схеме, выполняемой в аксонометрической проекции, элементы систем допускается изображать упрощенно в виде контурных очертаний.

Термостат. Устройство и нюансы маркировки 🙂

Другое название заметки — «невозможное возможно» 🙂  Родилось оно потому как попался очень любопытный экземпляр термостата, некоторые люди когда я им рассказывал эту историю — не верили, дескать невозможно. Вот и выкладываю «пруф»…

tSAM_3694

На фото — обыкновенный термостат биметаллический с нормально замкнутыми контактами.   То есть пока он не нагрет до температуры срабатывания — пропускает через себя ток. Нагрелся — размыкает цепь. Остыл до какого-то порога — снова замкнулся.

Вот собственно в температуре срабатывания и есть особенность данного экземпляра 🙂  На корпусе обозначено 180 градусов, а на выводе — 105 🙂   Стоит ли упоминать что покупал я его как 180 а оказался он на 105 🙂 Иначе статьи бы не было…

Обозначение я попытался выделить подчеркиванием, но если плохо видно — вот крупнее (придётся поверить что фотографировался одна и та же деталь).

tSAM_3707 tSAM_3705

Так что, приобретая, будьте бдительны! 🙂

Ну, и если кому интересно что  внутри у подобного элемента, показываю:

Собственно биметаллическая пластинка:

tSAM_3698

Не очень видно — на самом деле она не совсем плоская, имеет некоторую «полусферность».  Биметаллической она называется потому что сделана из двух («би-«) слоёв металлов с разным коэффициентом расширения от температуры (все в школе учили что тела при нагреве расширяются?)  Один металл при нагреве расширяется больше. другой меньше, что вызывает деформацию пластины.   Деформировавшись, пластина через керамический стерженек

tSAM_3699_cr

давит на контактную пару. вызывая ее размыкание:

tSAM_3700_cr

Или, всё сразу на одном фото (обделенный вниманием третий слева черный круг — все го лишь часть корпуса, с отверстием для керамического штырька посредине и пазом для удобного размещения той самой биметаллической пластины) :

tSAM_3701_cr

После остывания, пластина принимает прежнюю форму, и контакты замыкаются снова.  Есть термостаты и обратного действия — нормально разомкнутые, которые замыкаются при нагреве.

У термостата подороже, бренда Klixon (производитель выпускает комплектующие военного назначения, а также для NASA и кофеаппаратов Saeco 🙂  ), механизм передачи движения от биметаллической пластины к контактной паре несколько сложнее, без штырька, на основе рычага:

tSAM_3709

А термочувствительным элементом, повторюсь, остается та же биметаллическая пластинка.

Ну, и для повышения информативности статьи, информация о маркировке популярных в местных торговых точках вариантов термостатов:

tcr1 t2015-05-26_013936 t2015-05-26_013858

Какие бывают терморегуляторы — типы и виды

Что может быть проще, чем комнатный терморегулятор? Но нет — купить терморегулятор, не подходящий для конкретной задачи, очень просто.

Поэтому перед покупкой терморегулятора надо уяснить — чем же отличаются с виду одинаковые модели.

Бытовые терморегуляторы отличаются:

  • исполнением;
  • назначением;
  • схемами подключения;
  • питанием;
  • интеграцией;
  • электронный или механический;
  • используемыми датчиками;
  • способом передачи сигнала.

Виды терморегуляторов по по исполнению.

  1. В корпусе.
  2. Для установочной коробки.
  3. Без нормального корпуса.
  4. В виде розетки.

1. В корпусе для настенного монтажа.

2. Для встраивания в обычную установочную коробку.

3. Без нормального корпуса.

Первое и второе исполнение можно нормально использовать в комнате.

Третий тип исполнения невозможно нормально установить в жилом помещении без дополнительных затрат, только в гараже или курятнике.

Такие терморегуляторы подробно рассмотрены в этом обзоре терморегуляторов.

4. В виде розетки.

Терморегулятор выглядит как тройник, но с одной розеткой.

Возможно три варианта работы терморегулятора:

В одном корпусе и коммутационное устройство и органы управления.

Розетка не содержит органов управления и управляется по радиоканалу выносным терморегулятором.

В одном корпусе коммутационное устройство и органы управления с возможностью настройки по Wi-Fi.

Виды терморегуляторов по назначению.

  1. Для управления котлом.
  2. Для электрических теплых полов.
  3. Для конвекторов, эллектрокотлов и панелей.
  4. Для водяных теплых полов.
  5. Для охлаждения.

1. Терморегуляторы для управления котлом.

Управление котлами отопления осуществляется при помощи слаботочного нормально разомкнутого сухого контакта.

Нормально-разомкнутый — это когда контакт разомкнут в покое. Хотя конечно что такое нормальный режим котла — вопрос дискуссионный.

Котел обычно поставляется с контактами управления, замкнутыми перемычкой: вытаскиваешь перемычку — котел останавливается.

Поэтому терморегулятор для управления котлом должен содержать контакт реле, размыкающийся при включении отопления.

Подойдет любой слаботочный контакт.

Желательно, чтобы контакт был перекидной — а вдруг котел управляется нормально-замкнутым контактом.

Обычно этот контакт маркируют нагрузочной способностью 3А.

2. Для электрических теплых полов.

Основной особенностью управления электрическими полами является необходимость коммутации мощной нагрузки.

Поэтому терморегуляторы для электрических теплых полов будет с маркировкой 16А.

Еще одной особенностью терморегуляторов для теплого пола есть отсутствие сухих контактов реле. Контакты реле не сухие, то-есть на них присутствует напряжение.

Такое решение упрощает подключение: два провода пришло — два ушло, и для каждого имеется клемма. Очень хорошо что для большой нагрузки не надо делать дополнительную перемычку.

Перемычки уже сделаны внутри корпуса терморегулятора.

Вот классическая схема подключений терморегуляторов для отопления теплыми полами с выходом напряжения:

Как видно, использовать такой терморегулятор для управления устройством, требующим сухой контакт, невозможно без промежуточного реле.

Еще одна особенность терморегулятора для электрического теплого пола — наличие выносного датчика температуры. Внутренний датчик может быть, а может не быть — но датчик температуры в полу обязателен для защиты пола от перегрева.

3. Для конвекторов, и панелей.

Терморегулятор нужен такой же, как и для электрических теплых полов, но без выносного датчика.

Не нужно контролировать и ограничивать температуру пола.

К тому же конвекторы и панели отопления скорее всего имеют вилку для включения в розетку.

Поэтому терморегулятор имеет смысл использовать в виде тройника.

4. Для водяных теплых полов.

Управление теплым полом осуществляется либо включением насоса смесительного узла, либо открытием электронной головки коллектора.

Для прямого управления водяным теплым полом подойдет любой терморегулятор.

Часто терморегулятор для водяного пола выполнен тоже без сухих контактов реле, а с выходом напряжения, к которому непосредственно подключается головка.

Только, в отличие от управления электрическим теплым полом, не требуется силовая коммутация и выход терморегулятора маркируется 3А.

Выхода 3А хватит хоть для питания насоса, хоть для питания головки.

Понятно что подойдет и терморегулятор с выходом 16А.

Для управления головкой подойдет и терморегулятор с сухим контактом — необходимо только через этот контакт подать фазу.

Попадаются терморегуляторы с двумя выходами: одновременно и для управления котлом и для управления головкой.

Также имеют место быть терморегуляторы с двумя выходными контактами фазы: на одном контакте присутствует напряжение, когда терморегулятор включил отопление, на другом — когда выключил.

Это может пригодится, когда головка НО — нормально-открытая (обычно головки НЗ — закрыты, если питание не подано).

Также возможен случай, когда управление происходит моторизованным краном и требуется питание и для движения в сторону открытия и для движения в сторону закрытия.

Собственно существует три способа управления зонами отопления водяными теплыми полами.

Но редко когда терморегулятор для управления головкой коллектора теплого пола используется самостоятельно.

Причина в этом такая, что при выключении отопления во всех зонах и закрытии всех головок на коллекторе целесообразно было бы отключить насос и отключить котел.

Поэтому используется весьма простое промежуточное устройство, но с грозным названием — центральный контроллер водяных теплых полов.

И тут самое интересное — не ко всем зональным контроллерам подходят терморегуляторы с выходом напряжения.

В обзоре центральных блоков зонального управления водяным теплым полом можно встретить, как контроллеры, требующие контактов реле, так и контроллеры, требующие напряжения.

Из контакта реле всегда можно сделать напряжение; наоборот — очень сложно.

5. Для охлаждения.

Понятно что для обычного кондиционера терморегулятор не нужен — в кондиционере уже есть терморегулятор.

А нужен терморегулятор, наверное, для центральной системы кондиционирования.

Терморегулятор должен открыть кран для охлаждающего вещества и включить вентилятор для охлаждения помещения.

Хотя во многих терморегуляторах с перекидными контактами реле есть опция: для охлаждения/нагрева.

Вероятно какими-то охлаждающими устройствами можно управлять просто сухими контактами.

Некоторые терморегуляторы имеют сразу несколько выходов для охлаждения и отопления.

Схемы подключения терморегуляторов.

Однозначное представление о назначении терморегулятора дает схема его подключений.

Схемы подключения немного рассматривались в статьях «Какой Wi-Fi терморегулятор купить на AliExpress?» и «Обзор моделей терморегуляторов с WiFi и облачным сервисом».

Рассмотрим несколько терморегуляторов одной модели различного исполнения.

Схемы подключения терморегулятора MOES BHT-002.

AliExpress.com Product — Smart WiFi Thermostat Temperature Controller Water and Gas Boiler Works with Alexa Echo Google Home Tuya

В паспорте терморегулятора найдем схемы подключения.

Из схем подключения видно, что бывают несколько исполнений этой модели терморегулятора: GA, GB, GC.

GA — для водяных теплых полов.

GB — для водяных теплых полов.

GC — для котла.

Схемы подключения на примере терморегуляторов POER PTC10.

Инструкция по эксплуатации на русском POER PTC10.

AliExpress.com Product — Wireless Boiler Room Controller 868MHz Heating Thermostat Weekly Programmable With Large LCD, App Remotely Control

Схемы подключения на примере терморегуляторов POER PTC20.

AliExpress.com Product — WiFi Smart Thermostat Temperature Controller for gas boiler electric underfloor heating humidity display works with Alexa

Несколько пополнений одной модели:

Дешевые терморегуляторы.

Это терморегуляторы без нормального корпуса, стоимостью до 200р.

W3001 Digital Control Temperature Microcomputer Thermostat Switch Thermometer New

Стоит иметь ввиду что они бывают двух видов: с выходными сухими контактами реле и с выходом 220В.

Вот схемы некоторых с виду похожих терморегуляторов.

Разница видна только при изучении схемы из документации.

Держа в руках сам терморегулятор сложно понять какого он исполнения.

Перед использованием необходимо убедиться что терморегулятор имеет именно то исполнение, которое предполагается.

Терморегуляторы с двумя управляющими выходами.

Выпускаются терморегуляторы с двумя выходами для управления двумя различными устройствами, которые могут управлять и котлом при помощи сухого контакта и актуатором при помощи слаботочного высоковольтного выхода.

Второй канал управления появляется в ущерб клеммам выносного датчика.

А выносной датчик и не нужен при управлении водяным теплым полом.

Необычные по схемам подключения терморегуляторы.

Модели с 4-7 канальным управлением.

Предназначены для управления централизованным кондиционированием. Для этого необходимо управлять вентилятором сплит системы и краном подачи охлаждающей жидкости.

Схемы соединения этих терморегуляторов тоже достойны пополнить коллекцию схем соединения. Можно выбрать модель с возможностью управления двумя или тремя устройствами.

Виды терморегуляторов по питанию.

Терморегуляторы могут питаться:

  • от сети;
  • от батареек;
  • от низковольтного входа.

Терморегуляторы без кнопок и дисплея.

Такие терморегуляторы бывают механические и электронные.

Может возникнуть путаница, поскольку и те и другие именуются механическими.

Но одном случае механическое только управление. Работа все-равно происходит под управлением электроники.

Во втором случае управляющим элементом является биметаллическая пластина, как в утюге.

Различить их можно по количеству контактов: в полностью механических нет контактов входного питания.

Электронный терморегулятор с механическим управлением.

Задание температуры у механических терморегуляторов более удобное, но нет дисплея с индикацией текущей температуры. электронные механические терморегуляторы имеют такой же гистерезис и точность, как и электронные с дисплеем.

AliExpress.com Product — AC200~240V Electric Heating Temperature Regulator Knob Thermoregulator

Электронный терморегулятор с дисплеем и механическим управлением.

AliExpress.com Product — LCD Display Wall-hung Gas Boiler Thermostat Weekly Programmable Room Heating Thermostat Digital Temperature Controller

Механический терморегулятор.

У полностью механических терморегуляторов большой гистерезис и то, что установлено: температура включения или выключения зависит от направления движения ручки к установленному значению.

AliExpress.com Product — 220V AC Mechanical Room Air Thermostat Regulator Floor Heating Temperature Controller With on/off switch and LED indicator

По датчикам температуры.

  • С внутренним датчиком.
  • С внешним датчиком
  • С обеими датчиками.

Терморегуляторы с внутренним датчиком измеряют температуру в месте своей установки своим внутренним датчиком. Не подходят для электрического теплого пола.

Терморегуляторы с одним выносным датчиком предназначены для управления температурой пола.

Если в терморегуляторе присутствует внутренний датчик и есть клеммы для внешнего датчика, то скорее всего этот терморегулятор все равно осуществлять управление может только по температуре внутреннего датчика.

Внешний датчик служит для аварийного контроля температуры пола с целью недопущения его перегрева.

Ограничение температуры пола актуально для электрических теплых полов.

Встречались диковинные терморегуляторы, в которых встроенный датчик служил для защиты от перегрева самого терморегулятора.

Терморегуляторы, которые на выбор могут регулировать хоть по внутреннему, хоть по внешнему датчику редкие — я встречал только два таких с ценой около 5000р. Рискну предположить, что терморегуляторы дороже 5000р все могут управлять по любому из датчиков.

Терморегуляторы с интеграцией с внешними системами.

терморегулятор может быть обычным устройством, а может быть и интегрирован в системы умного дома или доступен для управления дистанционно и из других систем.

Можно выделить такие способы внешней связи с терморегулятором:

  • Wi-Fi;
  • WEB;
  • Облачный сервис;
  • MOD Bus;
  • Радиоканал;

Wi-Fi.

В статье «Что такое терморегулятор с Wi-Fi» рассматривались способы управления терморегуляторами по Wi-Fi. Самый простой способ — непосредственное подключение к терморегулятору, как к точке доступа.

WEB.

Более удобное подключение к Wi-Fi терморегулятору через Wi-Fi роутер.

Но такой терморегулятор является WEB-устройством и к нему можно подключаться через интернет.

Облачный сервис.

Для того, чтобы получать доступ к терморегулятору без Ip-адреса используется сторонний сервер — облачный сервис с мобильным приложением или WEB-интерфейсом.

Такие терморегуляторы подробно рассматривались в статье «Обзор моделей терморегуляторов с WiFi и облачным сервисом».

MOD Bus.

Встречал обсуждения о таких терморегуляторах. Скорее всего имеет смысл для управления охлаждением с центральным кондиционером и с центральным контроллером кондиционирования.

Вероятно его можно как-то применить в системах зонального отопления с центральным контроллером.

Модель SML-1000 исполнения GB,GD,GC.

16A Touchscreen Black Colour Programmable Modbus Thermostat for Electric Heating (with Modbus function)

Дистанционный пульт.

Терморегулятор с возможностью дистанционного управления при помощи пульта, как от телевизора.

Возможно имеет смысл при управлении кондиционером или нагревательной инфракрасной панелью.

Нагрев/охлаждение.

Самый простой способ сделать из терморегулятора нагрева терморегулятор охлаждения — перекидной контакт.

В некоторых терморегуляторах есть опция в настройках, явно указывающая что необходима работа на охлаждение.

Существуют терморегуляторы с отдельными каналами управления нагревателем и кондиционером.

Терморегуляторы для охлаждения с несколькими выходами предназначены для систем централизованного кондиционирования, где необходимо управление вентилятором кондиционера и краном охлаждающего агента сплит-системы.

Передача управляющего сигнала по радиоканалу.

Терморегулятор не имеет выходов. В комплекте с терморегулятором поставляется исполнительное устройство — блок с управляющими реле в виде коробочки или розетки.

Терморегулятор по радиоканалу дистанционно управляет исполнительным устройством.

Терморегуляторы адресных систем.

Для полноты картины дополню статью и такими гаджетами.

Эти терморегуляторы не могут использоваться самостоятельно, а являются частью интегрированной системы.

Термогигрометр с индикатором радиоканальный Болид С2000-ВТИ.

Беспроводной датчик температуры ИПРО.

Еще записи по теме

Подбор, характеристики Термостата для холодильника

Устройство

Термостат состоит из:

  • Гофрированного баллона (сильфона), заправленного фреоном, из которого выходит капиллярная (сильфонная) трубка, являющаяся чувствительным элементом.
  • Рычага, который меняет своё положение в зависимости от давления внутри сильфона.
  • Контактов, размыкающихся и замыкающихся рычагом.
Принцип работы термостата

Сильфонная трубка крепится на поверхности испарителя, и при понижении температуры в испарителе, давление в сильфонной трубке и самом сильфоне падает, сильфон сжимается, и рычаг размыкает контакт цепи питания мотор-компрессора.

Холодильник отключается, температура на поверхности испарителя начинает повышаться, давление в сильфонной трубке и сильфоне возрастает, и сильфон, расширяясь, давит на рычаг, замыкая таким образом контакты.

Принципиальная схема работы термостата

Здесь мы рассмотрим три основных типа термостатов. Внешне они выглядят одинаково, различия состоят в температуре размыкания и замыкания контактов.

1. На однокамерные холодильники устанавливались термостаты следующих обозначений:

Т-110; Т-111; Т-112. Термостат Т-112 может иметь обозначение ТАМ-112, или ТАМ-112-1М. По температурным параметрам все эти термостаты одинаковы. Различаются они внешним видом — диаметром стержня ручки и сильфонной трубки, наличием поперечной планки для крепления термостата. Конец сильфонной трубки термостата обычно крепится прямо к испарителю через пластиковую прокладку. Длина сильфонной трубки указывается на корпусе термостата и имеет вид двух цифр, разделённых запятой. Пример: а) 0,6 — длина трубки — 60 см.; б)1.3 — длина трубки — 1 метр 30 см.

На торце корпуса термостата три клеммы. Сдвоенная — это «земля», т.е. корпус термостата. Два других под номерами 3 и 4 являются контактами, через которые запитан мотор-компрессор.

 

Температура включения — 12°С

Температура выключения −14°С

 

Для установки термостатов новой ТАМ-112 вместо Т-110 предусмотрен установочный комплект, состоящий из планки-перекладины, гайки и капронового переходника, увеличивающего диаметр регулировочного стержня.

2. На двухкамерные холодильники и холодильные камеры двухмоторных двухкамерных холодильников устанавливались термостатыследующих обозначений: Т-130; Т-132; Т-133; ТАМ-133 и ТАМ-133-1М.

Температурные параметры одинаковы. Различаются внешним видом, диаметром стержня ручки и сильфонной трубки, наличием поперечной планки для крепления термостата.

 

Температура включения +4°С

Температура выключения −14°С

 

3. На морозильные шкафы, в основном, устанавливались термостаты Т-144 и Т-145.

На термостате Т-144 нет стержня для регулирования температуры, это значение выставляется на заводе-изготовителе.

 

Температура включения −20°С

Температура выключения −24°С

 

На торце корпуса термостата четыре клеммы. Сдвоенная — это «земля», т.е. корпус термостата. Два других под номерами 3 и 4 являются контактами, через которые запитан мотор-компрессор. Через контакт 6 запитана красная аварийная лампа, означающая повышенную температуру в морозильном шкафу. Температура размыкания этого контакта −15°С.

4. Отдельно мы рассмотрим термостаты для холодильников «Стинол»:

Это могут быть термостаты К-57 и К-59 компании RANCO, а также отечественные термостаты ТАМ-133-1М и ТАМ-145-1М. Они отличаются от других термостатов сильфонной трубкой, которая покрыта виниловой оболочкой. К тому же они снабжены третьим контактом под номером 6, с которого запитывается мотор-компрессор.

ВНИМАНИЕ! Температура включения-отключения термостатов дана усреднённо для каждой модели термостата и не может быть руководством для диагностики или ремонта.

Приводим внешний вид термостатов производства различных фирм:

Термостат производства RANCO

  • Регулировочный винт диапазона температур;

 

  • Регулировочный винт перепада срабатываний.

 

Термостат производства DANFOSS

  • Регулировочный винт перепада срабатываний;

  • Регулировочный винт диапазона температур.

Вид с торца термостата

Вид при снятой группе контактов.

Отечественный

  • Нижний винт регулирует диапазон температур

устройство терморегулятора

Терморегулятор предназначен для поддержания в холодильнике, заданной температуры путем автоматических выключений и включений электродвигателя компрессора (в компрессионных холодильниках) или нагревателя в (в абсорбционных холодильниках).

При регулировании холодопроизводительности путем периодических остановок и пусков агрегата температура в холодильнике будет несколько колебаться, что в определенной мере зависит от чувствительности терморегулятора.ustroystvo termoregulyatora.jpg

По принципу действия терморегуляторы бытовых холодильников относятся к приборам манометрического типа, работа которых основана на изменении давления рабочего наполнителя при изменении его температуры (в настоящее время в отдельных моделях холодильников зарубежного производства применяют электронные терморегуляторы).

Терморегулятор бытового холодильника представляет собой рычажный механизм с силовым рычагом и контактной системой,  в электрическую цепь холодильника. На силовой рычаг воздействует упругий элемент (сильфон) термочувствительной системы и основная пружина, регулируемая винтом. Электроизоляционная прокладка изолирует электрическую цепь прибора от его механических частей. Термочувствительная система манометрического типа состоит из упругого элемента – сильфона (металлический баллон с гофрированными стенками) или мембраны с припаянной к ним трубкой. Система наполнена небольшим количеством фреона или хлорметила и тщательно герметизирована.

В рабочих условиях фреон находится в состоянии насыщенного пара, давление которого, как известно, изменяется в определенной зависимости (для данного пара) от его температуры. Жидкая фаза фреона находится в конечной части трубки. Эта часть трубки, особенно в месте раздела жидкости и пара фреона, реагирует на изменение температуры, и ее помещают контролируемую среду охлаждаемого объекта.

Работа терморегулятора.

При понижении температуры трубки понизится  давление насыщенных паров  в термосистеме. Под воздействием основной пружины гофры сильфона будут сжиматься и силовой рычаг повернется на своей оси, в результате чего контакты разомкнутся. При повышении температуры давление насыщенных паров соответственно возрастет. Преодолевая сопротивление пружины, гофры сильфона расширятся, и рычаг повернется в противоположную сторону, а контакты при этом замкнутся.

Из этого следует, что задаваемая температура, при которой будут размыкаться контакты, зависит от усилия пружины. Так, при меньшем усилии основной пружины контакты будут размыкаться при соответственно меньшем давлении паров в термочувствительной системе и, следовательно,  при более низкой температуре.

Наоборот, для получения более высокой температуры, усилие пружины должно быть большим. В этом случае пружина должна преодолеть относительно большее сопротивление сильфона, так как при более высокой температуре будет большее давление паров фреона в термочувствительной системе. Таким образом, для изменения задаваемой температуры, необходимо изменять усилие основной пружины. Практически это осуществляют ручкой терморегулятора, при повороте которой изменяется натяжение пружины.

Основные элементы терморегулятора.

В бытовых холодильниках применяют терморегуляторы различных конструкций, однако отдельные их элементы выполняют вполне определенные функции, одинаковые для всех конструкций. 

Узел резкого размыкания контактов предохраняет контакты терморегулятора от обгорания при размыканиях. В приведенной выше принципиальной схеме терморегулятора с целью упрощения подвижный контакт помещен на силовом рычаге, на который непосредственно действуют сильфон и основная пружина. При таком расположении подвижного контакта неизбежно сильное обгорание контактов и быстрый выход их из строя. Объясняется это тем, что разрыв электроцепи  при размыкании контактов будет происходить медленно в соответствии с перемещением рычага, что, в свою очередь, определяется, медленным изменением температуры и,  соответственно, давления паров фреона в термочувствительной системе. Кроме того, при подобном расположении подвижного контакта, незначительный поворот силового рычага будет сразу же размыкать или замыкать контакты, т.е. часто разрывать цепь. Узел резкого размыкания контактов ликвидирует эти недостатки. В этом случае подвижный контакт расположен на другом рычаге (пластинке), соединенным с силовым рычагом специальной перекидной пружиной. При поворотах силового рычага до определенных положений рычаг с контактом будет оставаться неподвижным, а затем перекидная пружина резко изменит его положение и контакты резко разомкнутся (или замкнутся).

Узел изменения температуры представляет собой устройство, при помощи которого изменяют натяжение основной пружины. В одних терморегуляторах натяжение пружины изменяют вращением винта, который перемещает гайку, упирающуюся в торец пружины, в других – вращением валика с напрессованным на него профильным кулачком, действующим на пружину. Винт  (валик)  вращают ручкой, имеющей указатель для установки ее в определенное положение на шкале прибора.

Термочувствительная система является датчиком, реагирующим на изменение температуры в контролируемом объекте и действующем на контактную систему прибора.

Конечная часть трубки, чувствительная к изменению температуры, у разных терморегуляторов, может несколько отличаться, что зависит, в основном, от уровня жидкой фазы фреона в ней. При малом внутреннем диаметре трубки или относительно большом количестве фреона в трубке, когда уровень его жидкой фазы превышает 80….100 мм, обеспечить на такой длине плотное прилегание трубки к стенке испарителя трудно. В этих случаях конец трубки завивают в спираль, изгибают в колено или припаивают баллончик с большим, чем у трубки,  внутренним диаметром.

Узел настройки дифференциала служит для регулирования величины дифференциала. Дифференциалом терморегулятора называют разность между температурой размыкания и замыкания контактов (при определенном натяжении основной пружины). Чем меньше величина дифференциала прибора, тем более в узких пределах будет поддерживаться заданная температура. В терморегуляторах бытовых холодильников этот узел используют только для заводской установки прибора. Во многих конструкциях он отсутствует.

Дифференциал изменяют при помощи винта, который, являясь ограничителем для перемещения силового рычага, приближает или удаляет момент перебрасывания перекидной пружиной рычага с подвижным контактом.

Узел полуавтоматического оттаивания испарителя создает удобства при удалении снежного покрова. Узел применяется в отдельных конструкциях терморегуляторов. Принцип его действия и устройство зависит от способа удаления снежного покрова, принятого в том или ином холодильнике.

        

 ТАМ 133

1 – термочувствительная система ; 2, 7 – рычаги, 3-корпус, 4,5 – пружины, 5-ползун, 6- гайка, 7,10,14- винт настройки, 8-колодка, 9-дополнительные контакты, 11- основные контакты, 12 рычаг, 13-пружина, 16-ось, 17-рычаг

ГОСТ 30815-2002 «Терморегуляторы автоматические отопительных приборов систем водяного отопления зданий. Общие технические условия»

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

ГОСТ 21.205-93 «СПДС. Условные обозначения элементов санитарно-технических систем»

ГОСТ 21.205-93

 

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СИСТЕМА ПРОЕКТНОЙ ДОКУМЕНТАЦИИ

ДЛЯ СТРОИТЕЛЬСТВА

УСЛОВНЫЕ
ОБОЗНАЧЕНИЯ

ЭЛЕМЕНТОВ

САНИТАРНО-ТЕХНИЧЕСКИХ СИСТЕМ

 

МЕЖГОСУДАРСТВЕННАЯ
НАУЧНО-ТЕХНИЧЕСКАЯ КОМИССИЯ

ПО СТАНДАРТИЗАЦИИ И ТЕХНИЧЕСКОМУ НОРМИРОВАНИЮ

В СТРОИТЕЛЬСТВЕ

Москва

 

 

Предисловие

1 РАЗРАБОТАН Государственным проектным,
конструкторским и научно-исследовательским
институтом «СантехНИИпроект», Центральным
научно-исследовательским и проектно-экспериментальным
институтом инженерного оборудования городов, жилых
и общественных зданий (ЦНИИЭП
инженерного оборудования) и Центральным научно-исследовательским и проектно-экспериментальным
институтом по методологии, организации, экономике и автоматизации
проектирования (ЦНИИпроект)

ВНЕСЕН Госстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по
стандартизации и техническому нормированию в строительстве 10 ноября 1993 г.

За принятие проголосовали:










Наименование государства

Наименование органа
государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектура
Республики Армения

Республика Беларусь

Госстрой Республики Беларусь

Республика
Казахстан

Минстрой
Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Российская Федерация

Госстрой России

Республика
Таджикистан

Госстрой
Республики Таджикистан

Украина

Минстройархитектуры
Украины

3 ВВЕДЕН В ДЕЙСТВИЕ с 1 июля 1994 г. в качестве государственного стандарта Российской
Федерации Постановлением Госстроя России с 5 апреля 1994 г. № 18-29

4 ВВЕДЕН ВПЕРВЫЕ

5 Переиздание. Май 1995
г.

 

МЕЖГОСУДАРСТВЕННЫЙ  СТАНДАРТ

Система
проектной документации для
строительства

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ЭЛЕМЕНТОВ

САНИТАРНО-ТЕХНИЧЕСКИХ СИСТЕМ

System
of design documents for
construction.

Elements оf sanitary engineering systems — sumbols

Дата
введения 1994-07-01

1 Настоящий стандарт устанавливает
основные условные графические обозначения элементов санитарно-технических
систем и буквенно-цифровые
обозначения трубопроводов этих систем на чертежах и схемах при проектировании
зданий и сооружений различного назначения.

2 В настоящем стандарте использованы
ссылки на следующие стандарты:

ГОСТ 21.206-93 СПДС.
Условные обозначения трубопроводов

ГОСТ 21.404-85 СПДС. Автоматизация технологических процессов. Обозначения условные приборов и
средств автоматизации в схемах

ГОСТ 21.609-83 СПДС. Газоснабжение. Внутренние устройства

3 Трубопроводы и их элементы
на чертежах указывают условными графическими обозначениями и упрощенными
изображениями по

Схема электрических соединений термостата теплового насоса

Если вы хотите лучше понять проводку термостата теплового насоса, вот пример типичной проводки электронного управления тепловым насосом, которая находится внутри вашего дома.

В наши дни на рынке представлено много типов электронных термостатов, поэтому, пожалуйста, убедитесь, что тип термостата, который вы используете, можно заменить на более новый. Новый программируемый термостат теплового насоса можно приобрести менее чем за 50 долларов.

Обычно электронный термостат в США питается от источника питания 24 В переменного тока, который поступает от силового трансформатора 110 В / 24 В. Если вы не уверены, всегда обращайтесь к руководству по эксплуатации термостата в вашем доме, прежде чем предпринимать какие-либо действия по устранению неисправностей или замене. Как всегда, если вы не обучены обращению с электрическим оборудованием, обратитесь к квалифицированному специалисту для этого.

Всегда полезно сфотографировать текущую проводку термостата теплового насоса, прежде чем начинать их демонтировать.

В системе с тепловым насосом есть не менее 8 проводов, которые необходимо подключить к термостату для правильной работы.

Схема электрических соединений термостата теплового насоса

heat pump thermostat wiring

Электропроводка термостата теплового насоса — Типичный цвет проводов и схема соединений

Как показано на схеме, вам нужно будет включить термостат, и питание 24 В переменного тока подключено к клеммам R и C . Цвет провода R обычно КРАСНЫЙ и C ЧЕРНЫЙ .C известен как общий терминал. Эти два соединения обеспечат подачу питания на термостат, которым вы управляете.

К клемме Y подключается сигнал для сигнала кондиционера охлаждающего воздуха. Этот терминал вызывает необходимость охлаждения помещения, когда установленная температура ниже, чем температура в помещении. Терминал G подключен к внутреннему вентилятору, который обеспечивает циркуляцию воздуха в помещении.

Реверсивный клапан — это устройство, которое меняет направление потока хладагента в системе трубопроводов.В большинстве случаев реверсивный клапан находится под напряжением при работе в режиме охлаждения. Однако бывают случаи, когда реверсивный клапан выключен при работе в режиме охлаждения.

Следовательно, важно проверить спецификации производителя системы теплового насоса, которую вы используете, прежде чем вы сможете выполнить правильное подключение к термостату.

Терминал O используется, когда в системе, которую вы используете, есть реверсивный клапан (или четырехходовой клапан), который включается при работе в режиме охлаждения.Если реверсивный клапан включен при работе в режиме нагрева, вам необходимо подключить реверсивный клапан к клемме B . В любой момент времени активно только одно соединение, то есть используется терминал O или B , но не оба.

В некотором оборудовании имеется 2-я ступень охлаждения, которая помогает увеличить охлаждающую способность помещения. В этом случае обычно используется клемма Y2 . Цвет провода различается.

Иногда имеется 2-я ступень отопления, когда дополнительное отопление дополняет основную систему отопления.Обычно это устанавливается в регионах, где случилась экстремальная зима. В этом случае будет присутствовать терминал W2 .

Некоторые термостаты могут иметь функцию под названием Emergency Heat , при установке которой она отключает тепловой насос. Затем он включит нагрев полосы, который станет основным источником нагрева. Эту функцию следует использовать только на время, поскольку стоимость энергии обычно выше, чем у системы с тепловым насосом. Используемый терминал — E .

Обратите внимание на следующие функции, которые встроены в большинство современных программируемых термостатов теплового насоса.

  • Проверка низкого напряжения, сообщающая о низком уровне входящей мощности.
  • Коды ошибок, которые говорят вам причину, по которой ваша система не работает должным образом.
  • Минимальное время выключения компрессора 3 минуты для предотвращения коротких циклов компрессора. Короткое включение компрессора сокращает его срок службы.
  • Программируемые дневные и ночные настройки заданной температуры.
  • Настройки выходных и функции ограничения для отпуска.
  • Возможность проверять состояние термостата и управлять настройками удаленно через смартфон или компьютер. Наличие этой функции повысит стоимость термостата.

Вернуться к домашней странице «Электропроводка термостата теплового насоса»

.

% PDF-1.4
%
4819 0 объект
>
endobj
xref
4819 96
0000000016 00000 н.
0000002294 00000 н.
0000002676 00000 н.
0000002829 00000 н.
0000002887 00000 н.
0000004789 00000 н.
0000005202 00000 н.
0000005272 00000 н.
0000005404 00000 п.
0000005591 00000 н.
0000005750 00000 н.
0000005926 00000 н.
0000006075 00000 н.
0000006217 00000 н.
0000006347 00000 п.
0000006488 00000 н.
0000006667 00000 н.
0000006853 00000 н.
0000006974 00000 п.
0000007094 00000 п.
0000007232 00000 н.
0000007370 00000 н.
0000007565 00000 н.
0000007705 00000 н.
0000007829 00000 н.
0000008023 00000 н.
0000008170 00000 п.
0000008291 00000 п.
0000008442 00000 н.
0000008656 00000 н.
0000008814 00000 н.
0000008956 00000 н.
0000009101 00000 п.
0000009234 00000 п.
0000009397 00000 н.
0000009571 00000 н.
0000009678 00000 н.
0000009837 00000 н.
0000009959 00000 н.
0000010075 00000 п.
0000010191 00000 п.
0000010323 00000 п.
0000010498 00000 п.
0000010617 00000 п.
0000010739 00000 п.
0000010878 00000 п.
0000011031 00000 п.
0000011163 00000 п.
0000011277 00000 п.
0000011398 00000 п.
0000011529 00000 п.
0000011669 00000 п.
0000011807 00000 п.
0000011945 00000 п.
0000012091 00000 п.
0000012234 00000 п.
0000012413 00000 п.
0000012582 00000 п.
0000012738 00000 п.
0000012886 00000 п.
0000013052 00000 п.
0000013211 00000 п.
0000013330 00000 п.
0000013453 00000 п.
0000013587 00000 п.
0000013756 00000 п.
0000013882 00000 п.
0000014067 00000 п.
0000014201 00000 п.
0000014311 00000 п.
0000014423 00000 п.
0000014541 00000 п.
0000014673 00000 п.
0000014703 00000 п.
0000014734 00000 п.
0000015319 00000 п.
0000015342 00000 п.
0000015744 00000 п.
0000015962 00000 п.
0000016186 00000 п.
0000016506 00000 п.
0000017183 00000 п.
0000017409 00000 п.
0000017641 00000 п.
0000018327 00000 п.
0000018559 00000 п.
0000019128 00000 п.
0000031416 00000 п.
0000042166 00000 п.
0000079414 00000 п.
0000079622 00000 п.
0000079763 00000 п.
0000106357 00000 п.
0000129725 00000 н.
0000003062 00000 н.
0000004765 00000 н.
трейлер
]
>>
startxref
0
%% EOF

4820 0 объект
) >> >>
/ LastModified (+ G_? UC_)
/ MarkInfo>
/ PageLayout / SinglePage
>>
endobj
4821 0 объект
*} T6l% LiX} J2)
/ U (oc # И? ͬWΞ @ 2j Դ Q)
/ П-12
/ V 1
/ Длина 40
>>
endobj
4822 0 объект
>
endobj
4823 0 объект
>
endobj
4913 0 объект
>
поток
嵏} 西! ~>%] WF35 (HKs & Xo = w [& L% 8 \ MB «Ҭsd» O2lfz]
, = & VBIH

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *