26.11.2024

Обозначение узип на схеме: ГОСТ Р МЭК 61643-12-2011 Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения

Содержание

Обозначение УЗИП на схемах

Устройства защиты от импульсных перенапряжений, сокращенно УЗИП, оберегают электрооборудование от грозовых и коммутационных импульсных токов, например, при удаленном ударе молнии.

Они применяются не только в промышленности, часто используются и в бытовых схемах электроснабжения, при строительстве частных домов.

Графическое обозначение УЗИП

Общий вид УЗИП для схем, регламентируется в ГОСТ Р МЭК 61643-12-2011 (Читать PDF) «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения», согласно которому, условное обозначение выглядит следующим образом (см. изображение ниже):

Обозначение УЗИП на схеме

Современные модульные ограничители импульсных перенапряжений, устанавливаемые в электрических щитах (ВРУ, ЩС и т.д.), в зависимости от типа, включают и другие дополнительные средства защиты.

Например, в одном корпусе содержат как ограничивающие напряжение, так и ток компоненты. В таких случаях, допустимо к стандартному схематическому обозначению, добавлять и маркировку соответствующих контролируемых величин, например, так:

Схематическое отображение устройств защиты от импульсных перенапряжений

Также нередко на схемах, где применяется УЗИП, показывается графическое обозначение основного элемента, на котором он построен — Варистора, Разрядника или Газонаполненного разрядника:

Обозначение УЗИП на варисторах, простых и газонаполненных разрядниках

Каждый из представленных видов защиты имеет свои плюсы и минусы, поэтому, информация из однолинейной схемы о том, какое оборудование установлено, бывает очень важна. Дополнительно, об этом сообщает и маркировка УЗИП на схемах буквенным кодом.

Буквенная маркировка

Для устройств защиты от импульсных перенапряжений отдельного буквенного кода нет. Поэтому, на однолинейных схемах, принято маркировать УЗИП согласно ГОСТ 2-710-81 (ЧИТАТЬ PDF) «Обозначения буквенно-цифровые в электрических схемах» двумя возможными кодами, в зависимости от основного компонента, используемого в конкретной модели УЗИП:

FV – на разрядниках

RU – на варисторах

На изображении ниже, пример правильного обозначения узип на однолинейной схеме простейшего электрического щита:

Однолинейная схема электрического щита с УЗИП

На схеме показано устройство в которое, после вводного двухполюсного автомата, подключен нулевой и фазный проводники, а третяя клемма — соединена с шиной защитного заземления электрощита PE.

обозначение трехфазного узип на схеме

Для трехфазных УЗИП допустимо использовать стандартное, представленное выше обозначение , дополнительно показывая количество подключаемых проводников.

Но встречаются схемы, на которых трехфазные УЗИП, показаны в виде трех отдельных элементов, например варисторов, объединенных в одном корпусе. Оба этих вида правильные, но для удобства, простоты и лучшей читаемости чертежа, лучше пользоваться первым вариантом.

обозначение трехфазного узип на схеме

Маркировка УЗИП — характеристики — Студопедия.Нет

УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.


Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

 

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.



Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

Характеристики УЗИП:

· Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.

· Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.

· Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.

· Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.

· Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

Схема подключения УЗИП

Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

Особенности выбора, эксплуатации и контроля технического состояния устройств защиты от импульсных перенапряжений

В настоящее время на отечественном рынке появился целый ряд компаний-поставщиков, предлагающих широкий ассортимент устройств защиты от импульсных перенапряжений (УЗИП). Это стало явно заметно по результатам прошедших за последние два года выставок.

В большинстве случаев речь идет о фирмах, занимающихся продажей изделий, выпускаемых в Западной Европе, или об иностранных поставщиках, которые осуществляют поставки разнообразных технологических комплексов «под ключ». В результате, очень часто изделия разных производителей при установке на одном и том же объекте комбинируются между собой без какой-либо предварительной проверки их взаимной совместимости по амплитудам пропускаемых импульсных токов и уровням остающихся напряжений (уровней защиты). То есть появляется, так называемая, несогласованность между устройствами защиты и оборудованием.

Ситуацию к тому же частично усложняет то, что большинство видов предлагаемых УЗИП сконструировано в соответствии с немецким стандартом DIN VDE 0675. Данный стандарт имеет много общего со стандартом Международной Электротехнической Комиссии (МЭК) IEC 61643—1:1998 и его более поздними редакциями, но все же, он является национальным стандартом Германии. В России же действует ГОСТ Р 51992—2002 (Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Часть 1. Требования к работоспособности и методы испытаний), который является аутентичным тексту приведенного выше стандарта МЭК 61643—1:1998. И именно он должен приниматься за основу при сертификации данного оборудования. Надо добавить и то, что право выдачи сертификатов соответствия принадлежит техническому комитету ТК 331 «Низковольтная коммутационная аппаратура и комплектные устройства распределения, защиты, управления и сигнализации» при Федеральном агентстве по техническому регулированию и метрологии на основе результатов испытаний в аккредитованных им лабораториях или испытательных центрах. Сейчас уже стали известны факты выдачи подобных сертификатов, не имеющими на это права сертификационными органами. Выявление таких случаев и принятие мер по их исключению так же входит в функции ТК 331.

Что касается отечественных производителей, можно отметить, что в области напряжений свыше 1 кВ ограничители перенапряжений (ОПН) выпускаются в очень широком ассортименте и хорошего качества. Для напряжений менее 1 кВ данная проблема пока остается не решенной в достаточной степени. Устройств защиты от импульсных перенапряжений (УЗИП) отечественного производства, полностью соответствующих требованиям ГОСТ Р 51992—2002 на рынке до недавнего времени найти было невозможно. Сейчас, делаются первые шаги по организации производства устройств II и III классов. Их качество и доступность будут показаны временем. В большинстве же случаев выпускаемые варисторные УЗИП имеют примитивную конструкцию, основу которой составляет дисковый варистор и два приваренных к его боковым плоскостям болта или гайки (или т.п.). Производятся такие устройства на том же оборудовании, что и варисторы для высоковольтных ОПН, и по своей сути являются составными элементами такого высоковольтного ограничителя перенапряжений. Существуют УЗИП, предназначенные для установки на DIN-рейку 35 мм, но и они, и описанные выше конструкции не имеют в своем составе устройства теплового отключения, предназначенного для защиты неисправного варистора от перегрева при возникновении токов утечки и, соответственно, от вероятности возникновения пожара в электроустановке.

И еще необходимо добавить, что большая часть производимых отечественных УЗИП для низковольтных распределительных сетей относится всего лишь к третьему классу защиты согласно ГОСТ Р 51992. Эти устройства способны без разрушения или теплового пробоя варистора пропустить через себя максимальный импульсный ток Imax (волны 8/20 мкс) с амплитудным значением не более 10—15 кА, в то время как форма импульса тока при прямом ударе молнии Iimp описывается волной 10/350 мкс и значительно большими амплитудами тока (согласно [1, 2, 3]: 100, 150 × 200 кА (10/350 мкс) в зависимости от выбранного уровня надежности внешней системы молниезащиты). Таким образом, даже при условии того, что на долю ввода электропитания придется лишь часть тока, вызванного прямым ударом молнии (например 10—20%, с учетом его растекания по другим металлоконструкциям объекта [8]), а амплитудное значение тока Iimp (волны 10/350 мкс) может и не превысить значения Imax (волны 8/20 мкс) = 15 кА, при этом за счет большей почти на порядок длительности импульса тока Iimp, выделенная на варисторе тепловая энергия приведет к его выходу из строя! Этот процесс может сопровождаться взрывным разрушением варистора, что может стать причиной серьезных травм, повреждения изоляции проводников в электроустановке, а также за счет интенсивного искрения привести к возникновению пожара. Вопрос же защиты потребителей электроэнергии при этом может остаться нерешенным, так как часть импульса тока после выхода УЗИП из строя беспрепятственно пройдет непосредственно в защищаемое оборудование и неизбежно повредит его.

Несогласованность терминологии и системы обозначений

Существует очень важное правило: чтобы грамотно и быстро решать любую техническую проблему, необходимо иметь единую терминологию, систему обозначений основных параметров и применяемых сокращений.

Целью данной статьи не является поиск и глубокий анализ всех имеющихся недостатков и ошибок теоретического и конструктивного характера, возникающих при производстве и эксплуатации УЗИП. Но, тем не менее, привлечь внимание потребителей к данной проблеме необходимо. Хотя бы потому, что предусмотренные стандартом IEC 61643—1:1998 термины, определения и обозначения перенесены в ГОСТ Р 51992—2002 и имеют четкие и понятные формулировки, которые и рекомендуется использовать.

Ниже приведены наиболее часто встречающиеся недостатки, касающиеся определений, терминологии и сокращений:

Стандартом для низковольтных распределительных сетей предусмотрен термин «устройство защиты от импульсных перенапряжений», сокращение — УЗИП.

Определение: Устройство защиты от перенапряжений (УЗИП) — это устройство, которое предназначено для ограничения переходных перенапряжений и для отвода импульсов тока. Это устройство содержит, по крайне мере, один нелинейный элемент.

В качестве элементной базы для создания УЗИП, как правило, используют разрядники различных типов, оксидно-цинковые варисторы и полупроводниковые элементы

В рекламной продукции, сопроводительной документации данные устройства могут называться ограничителями перенапряжений (ОПН). Термин используется в высоковольтной технике и обозначает варисторные устройства, предназначенные для защиты оборудования электростанций, подстанций, высоковольтных линий электропередачи и т.д. Он не подразумевает использования искровых или газонаполненных разрядников, а также полупроводниковых приборов (первых — по причине сложности гашения сопровождающих токов больших величин, вторых — по причине маленьких значений выдерживаемых импульсных токов и напряжений). Однако на некоторых типах высоковольтных воздушных линий применяются длинно-искровые разрядники петлевого типа РДИП.

Иногда весь спектр устройств защиты от импульсных перенапряжений (I, II, и III-го классов) называют грозоразрядниками, разрядниками грозового тока и т.п., совершенно не привязываясь к предусмотренной ГОСТ классификации и не учитывая, что данные устройства могут защищать от перенапряжений не только вызванных ударом молнии, но и возникших в результате рабочих переключений оборудования на подстанциях, однофазных коротких замыканиях на высоковольтных линиях или при работе низковольтных нагрузок, имеющих в своем составе ключевые преобразователи (например, тиристорные выпрямители, сварочные аппараты).

И еще, обязательно надо отметить недостаточную корректность термина устройство защиты от перенапряжений (УЗП), который использован в новой «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», СО-153—34.21.122—2003. Приведенный выше термин не раскрывает главную суть и характеристику данного типа устройств. Перенапряжения, согласно ГОСТ-13109—97 «Нормы качества электрической энергии в системах электроснабжения общего назначения», могут быть импульсными и временными. Импульсные перенапряжения данным ГОСТом не нормируются, но в то же время ГОСТ предусматривает нормирование временных перенапряжений, длительность которых превышает 10 мс, а амплитуда превышает значение 1.1 Uном (где Uном — номинальное напряжение сети). Устройства, предназначенные для защиты от импульсных перенапряжений, как правило, сами нуждаются в дополнительной защите от временных перенапряжений, в случае превышения ими максимального длительного рабочего напряжения Uс, предусмотренного производителем. Такие перенапряжения приводят УЗИП к выходу из строя, часто сопровождающемуся большим нагревом и разрушением как самого нелинейного элемента, так и корпуса устройства, а иногда и возгоранием.

Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к однофазной нагрузке может оказаться приложенным межфазное напряжение величиной до 380 В. При этом устройство защиты от импульсных перенапряжений откроется, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер (и более). Практика показывает, что терморасцепитель варисторного УЗИП не успевает отреагировать в подобных ситуациях из-за тепловой инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора. При этом возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств.

На фотографии (рис. 1) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

На рис. 2 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

Сказанное выше относится не только к варисторным устройствам, но и к УЗИП на базе разрядников, которые не имеют в своем составе терморасцепителя. Для того, чтобы предотвратить подобные последствия, рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339.0—92 (МЭК 60269—1—86) или VDE-0636 (Германия) соответственно). На рисунке 3 показан вариант включения предохранителей в схему электроустановки.

Номиналы предохранителей и тип их время токовых характеристик определяются конкретным производителем УЗИП и отражаются в технической документации. Как уже указывалось выше, для этих целей обычно используются предохранители с характеристикой gG или gL (с кратностью 1,2 -: 3), предназначенные для защиты проводников и коммутационного оборудования от перегрузок и коротких замыканий. Они обладают значительно меньшим временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин, соответственно являются более простыми и надежными по конструкции.

Примерный вариант выбора номиналов предохранителей (зависит от требований производителя УЗИП) для схемы, рассмотренной на рисунке 3, показан ниже:

  • при номинале предохранителей FU1-FU3 более 315 А gG (или их отсутствии), номиналы FU4-FU6 выбираются — 315 А gG, номиналы FU7-FU9 выбираются — 160 А gG;
  • при номинале предохранителей FU1-FU3 менее 315 А gG, но более 160 А gG, предохранители FU4-FU6 можно не устанавливать, номиналы FU7-FU9 выбираются — 160 А gG.
  • при номинале предохранителей FU1-FU3 менее 160 А gG, предохранители FU4-FU6 и FU7-FU9 можно не устанавливать.
  • при наличии разделительных дросселей LL1-LL3 номинал предохранителей FU1-FU3 должен соответствовать номинальному току дросселей.

Следует обратить внимание на то, что ведущие и общепризнанные производители УЗИП в своих схемных решениях показывают именно предохранители, а не автоматические выключатели, в том числе и перед точкой установки УЗИП. Здесь можно говорить о непредвзятом выборе технического решения, так как никто из данных производителей не выпускает ни предохранители, ни автоматы.

Практический же опыт и данные экспериментальных испытаний показывают, что автоматические выключатели довольно часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции. Кроме этого, при установке автоматических выключателей последовательно с УЗИП (вместо FU4-FU6 и FU7-FU9 на рис. 3) за счет элементов их внутренней конструкции, имеющих индуктивные свойства, а следовательно, и повышенное индуктивное сопротивление при протекании импульсных токов, в точках подключения данной цепочки к защищаемой линии может повышаться значение остающегося напряжения, приложенного к нагрузке. Более подробно вопросы правильного выбора предохранителей и автоматических выключателей в цепях защиты УЗИП будут рассмотрены в следующих статьях.

Вывод: Безусловно, электроустановка должна быть дополнительно защищена от воздействия временных перенапряжений при помощи специальных устройств, к которым можно отнести, например, реле контроля напряжения с функцией управления контактором или реле контроля фаз и другие подобные им приборы, широко представленные на рынке (рисунок 4).

Требования к обозначениям параметров УЗИП

Для того, чтобы правильно выбрать устройство защиты от импульсных перенапряжений для конкретной цели, проектировщику или потребителю необходима следующая информация, которая обязательно должна быть показана в каталоге и нанесена на лицевой части корпуса УЗИП:

Un — номинальное напряжение сети. В большинстве случаев оно выбирается равным 230 В. Хотя производятся устройства с другими номинальными напряжениями.

Uс — максимальное длительное рабочее напряжение — это максимальное напряжение действующего значения переменного или постоянного тока, которое может длительно подаваться на выходы УЗИП.

Iimp — импульсный ток. Определяется пиковым значением тока Ipeak и зарядом Q (применяется, как правило, испытательный импульс с формой волны 10/350 мкс). Применяется для испытаний защитных устройств класса  I.

Imax — максимальный импульсный разрядный ток. Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

In — номинальный импульсный разрядный ток. Это пиковое значение тока, протекающего через УЗИП, с формой волны 8/20 мкс. Применяется для испытания УЗИП класса II. Ток данной величины защитное устройство может выдерживать многократно. При воздействии данного импульса определяется уровень защиты устройства. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Up — уровень напряжения защиты. Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока (In).

If — сопровождающий ток. (Параметр для УЗИП на базе разрядников). Это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т. е. электроэнергетической системой. Теоретически значение этого тока стремится к расчетному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). На практике же, сам разрядник своим внутренним сопротивлением уже существенно ограничивает этот ток.

Код IP — степень защиты, обеспечиваемая оболочкой. Определяется производителем, согласно ГОСТ 14254.

ν — диапазон рабочих температур УЗИП.

ta — время реагирования защитного устройства на импульсное воздействие.

Класс защитного устройства I, II или III. Указывается в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—98).

Наиболее часто встречающиеся недостатки в обозначении параметров и маркировке УЗИП

Не указывается класс УЗИП (I, II или III, в соответствии с ГОСТ Р 51992—2002 (МЭК 61643—1—98) вообще, или обозначается буквами B, C, D без ссылки на некоторый стандарт. Буквенное обозначение, например, принято в немецком национальном стандарте DIN VDE 0675, который не может быть использован в России как нормативный документ.

Не указывается диапазон рабочих температур прибора ν.

Данные основных параметров УЗИП, приведенные на фирменных табличках и в сопроводительной документации, часто значительно отличаются (завышаются) от данных, получаемых при испытании защитных устройств соответствующими импульсными токами и напряжениями в специальных лабораториях. Это касается, прежде всего, указываемых максимальных значений испытательных импульсных разрядных токов Iimp (10/350), Imax (8/20), In (8/20), а так же данных, определяющих максимальную удельную энергию W/R и максимальный заряд Q для УЗИП I и II классов. Частично этот недостаток можно объяснить разбросом параметров самих нелинейных элементов, которые обязательно существуют при их серийном производстве.

Кроме перечисленного выше, часто не указывается, какие критерии были положены в определение параметра Up (уровень напряжения защиты).

Совершенно ясно, что для УЗИП на базе разрядника параметр Up будет зависеть в первую очередь от крутизны фронта импульса и времени реагирования ta самого разрядника, которое в свою очередь зависит от его конструкции (рисунок 5).

Для варисторного УЗИП уровень напряжения защиты Up будет напрямую зависеть от амплитудного значения импульсного тока, и не будет зависеть от длительности и фронта импульса (падение напряжения на открытом варисторе зависит от его сопротивления и величины протекающего тока). Поэтому некоторые поставщики УЗИП часто показывают более низкое значение Up, что, конечно же, является более привлекательным для потребителя. При этом они не акцентируют внимание на том, при каком значении импульсного тока оно было измерено (In; Imax или при каком то меньшем — рисунок 6).

Сказанное выше подтверждается осциллограммами, полученными при испытании УЗИП на базе разрядника и варистора комбинированной волной напряжения и тока (формы 1.2/50 мкс и 8/20 мкс соответственно (рисунок 7 а-в).

( Продолжение.)

А. Л. ЗОРИЧЕВ,
заместитель директора ЗАО «Хакель Рос».

Узип обозначение на однолинейной схеме

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Во всех схемах электроприборов имеется тонкая электроника, обладающая повышенной чувствительностью на отклонения параметров сети. Особенно чутко они реагируют на импульсное перенапряжение, возникающее при ударах молнии, а также во время включения мощного оборудования, расположенного поблизости. Традиционные средства защиты – автоматы и УЗО – не способны защитить от подобных воздействий, поэтому, в последнее время все чаще используется УЗИП, схема подключения которого выбирается исходя из конкретных условий эксплуатации.

    УЗИП как элемент внутренней молниезащиты

    Молния относится к стихийным природным явлениям. Ее внезапное действие приводит к сильным разрушениям самого объекта и всей электроники, находящейся внутри помещений. Основные мероприятия по безопасности возлагаются на внешнюю молниезащиту. Это целая система, включающая в себя молниеприемник, расположенный на крыше, соединенный с молниеотводом и заземляющим контуром.

    Ток, возникающий в момент разряда, представляет собой кратковременный высоковольтный импульс, легко попадающий в действующую сеть при отсутствии внутренней защиты. Под его влиянием, во всей проводке, расположенной внутри здания, наводятся сильные перенапряжения, сжигающие изоляцию, разрушающие электронику бытовых приборов.

    Для предотвращения подобных ситуаций и их тяжелых последствий, предусматриваются схема подключения внутренней молниезащиты. Они оборудуются техническими устройствами и приборами, применяемыми в комплексе. Основой служат модули УЗИП – устройства защиты от импульсных перенапряжений, подключаемые к заземляющим системам, или УЗМ. Внутри здания они выполняют следующие защитные функции:

    • Нейтрализуют последствия грозовых разрядов, попавших непосредственно в дом.
    • Гасят импульсы, образующиеся при попадании молнии в ЛЭП, питающую дом.
    • Предотвращают последствия ударов по высоким деревьям и строениям, расположенным рядом.
    • Те же действия выполняются при попадании молнии в грунт возле дома.

    Именно два последних варианта становятся причиной проникновения импульса внутрь здания по заземляющему контуру, водопроводным и канализационным трубам. При наличии внутренней защиты, она мгновенно срабатывает, переводя импульс на варисторы или специальные разрядники, нейтрализующие высокое напряжение.

    Как работает защитное устройство УЗИП

    Принцип действия УЗИП основывается на использовании специальных элементов – полупроводниковых варисторов. Их сопротивление находится в нелинейной зависимости от прикладываемого напряжения. То есть, когда напряжение возрастет и превысит определенное значение, сопротивление варистора будет резко снижено.

    В обычном рабочем режиме напряжение находится в пределах 220 вольт, а сопротивление варистора, установленного в УЗИП или УЗМ, в этот период очень высокое, вплоть до нескольких тысяч Мом. Таким образом, варистор обладает практически нулевой проводимостью и не пропускает через себя электрический ток.

    Образование высокого импульса приводит к резкому росту напряжения, приводящего к мгновенному многократному снижению сопротивления варистора, стремящегося к нулю. В результате, он обретает свойства проводника, через который возможно свободное прохождение электрического тока. Происходит короткое замыкание электрической цепи на землю, и под его воздействием автоматический выключатель срабатывает и отключает всю цепь.

    Вместо варистора схема подключения предусматривает использование различных типов разрядников, но общий принцип работы УЗИП будет одинаково заключаться в нейтрализации и отводе в землю опасных импульсных перенапряжений через ноль и заземление.

    Классы защиты УЗИП

    Классификация этих защитных устройств производится в соответствии с ГОСТом Р 51992-20111.

    ГОСТ определяет следующие классы этих приборов:

    • 1-й класс или «В». Данные устройства защищают от непосредственных воздействий грозовых разрядов, когда удары молний попадают в систему. Они же нейтрализуют атмосферные и коммуникационные перенапряжения. Для монтажа используется схема подключения с ввода на объект, где устанавливаются ГРЩ и ВРУ. Приборы 1-го класса прежде всего применяются для зданий, расположенных отдельно на открытом пространстве или подключенных к воздушным ЛЭП. Другими факторами подключения служат соседние дома, оборудованные молниеотводами или высокие деревья, расположенные рядом. Величина номинального разрядного тока находится в пределах 30-60 кА.
    • 2-й класс или «С». Эти приборы нейтрализуют остатки перенапряжений атмосферного и коммутационного характера, преодолевших защиту 1-го класса. Местом установки, в том числе и для УЗМ, служат обычные вводные щитки квартиры, дома или офиса. Номинал разрядного тока – 20-40 кА.
    • 3-й класс или «D». Защищают электронную аппаратуру от остаточных повышенных напряжений и помех высокой частоты, пропущенных защитой 2-го класса. В качестве примера можно назвать сетевой фильтр, к которому подключается компьютер. Выдерживают разрядный ток от 5 до 10 кА. С использованием устройств всех трех классов создается однолинейная многоступенчатая защита.

    Характеристики и маркировка

    Каждое защитное устройство того или иного класса обладает индивидуальными параметрами, которые учитываются при подключение УЗИП. Основные технические характеристики наносятся на корпус изделия, а полная информация отражена в паспорте. Выбирая прибор, необходимо в первую очередь обращать внимание на обозначение и следующие показатели:

    • Напряжения номинального и максимального значения, при которых устройство может нормально функционировать в течение установленного времени.
    • Показатель рабочей частоты тока, на которую рассчитывается УЗИП.
    • Величина номинального разрядного тока. Рядом с цифрами указывается форма его волны. Представляет собой токовый импульс с волной 8/20 мс, выраженный в кА, пропускаемый устройством многократно, без каких-либо последствий.
    • Значение максимального разрядного тока, которое защита пропускает однократно, не утрачивая при этом общей работоспособности.
    • Уровень напряжения защиты указывает на возможности устройства по ограничению перенапряжения.

    Подключение УЗИП по степени защиты

    Для каждого устройства, обладающего индивидуальными защитными свойствами, предусмотрена своя схема подключения УЗИП.

    1. Устройства 1-й степени устанавливаются в щитки серии РВ. Непосредственное подключение осуществляется при помощи трансивера. Средняя величина выходного напряжения составляет 14 вольт. Проводимость может изменяться в соответствии с типом используемых резисторов. Вместе с ними используется усилитель. Пороговая проводимость в среднем равна 4,5 мк. Перед началом подключения нужно проверить показатель общего сопротивления цепи. Он должен составлять 50 Ом. Для других типов щитков эти устройства не подходят из-за высокой токовой проводимости.
    2. Аппараты 2-й степени используются в щитке серии РР. Здесь схема подключения УЗИП обходится без трансиверов и все соединения выполняются только проводниками. Перед подключением также проверяются параметры выходного напряжения на стабилизаторе, которое примерно составляет 13 вольт. В процессе работы задействуются двухконтактные расширители. В щитках РР20 устанавливаются изоляторы, а подключение УЗИП выполняется посредством сеточного триода с операционным усилителем. Щитки РР21 оборудованы интегральными выпрямителями, участвующими в преобразовании тока.
    3. УЗИП 3-й степени предназначены для установки в щитки, оборудованные проходным динистором. Для подключения оборудования применяется демпфер. Соединительные контакты имеют медную обкладку. Общее сопротивление цепи не превышает 40 Ом. В щитках РР19 тиристор устанавливается вместе с усилителем. В некоторых модификациях используются конденсаторные резисторы. Допускается подключение устройства вместе с адаптером.

    Подключение различных модификаций

    Все УЗИП выпускаются в разных модификациях, что существенно расширяет сферу их использования. С связи с этим, подключение этих устройств осуществляется своим способом в каждом конкретном случае.

    Подключение однополюсных устройств можно рассмотреть на примере модификации РН-101М. Этот прибор изготовлен в виде контактного блока и устанавливается в сетях переменного тока. Нередко они используются вместе с трансформаторами, оборудованными высоковольтными реле. Показатели общего сопротивления для этого аппарата в среднем равны 22 Ом, выходное напряжение – всего около 200 вольт. Конструкция дополнена внутренними контактами и модулятором. Подключение фазы выполняется с помощью трансивера линейного типа. Во многих моделях устанавливаются тетроды, работающие вместе с преобразователями и выпрямителями.

    Пример подключения двухполюсного прибора – модель РН-105М. Эти устройства подключаются в однофазной сети посредством пентодов, при общем сетевом сопротивлении в 40 Ом. Контакты и динистор в устройстве соединяются напрямую. Многие модели оборудуются компаратором, допускающим установку поворотного регулятора. Проводимость устройства зависит от модулятора. При интегральном компоненте она составит 2,2 мк, а при дуплексном – 3 мк.

    Модели серии АВВ очень часто подключаются в жилых домах. При их установке в щитки серии РР, конденсаторы будут подключаться вместе с расширителем. Модулятор и демпфер в устройствах АББ соединяются между собой. Общее сопротивление цепи равно 40 Ом, показатель проводимости составляет 4 мк.

    Особенности подключения защитного оборудования

    Перед монтажом УЗИП для частного дома или другого объекта, необходимо выяснить наличие заземляющего контура и его соответствие нормативным требованиям. Рекомендуется пригласить специалистов и замерить следующие параметры:

    • Сопротивление петли фаза-ноль.
    • Сопротивление контура заземления
    • Сопротивление изоляции кабелей и проводов, другие показатели, способные повлиять на работу защитного оборудования.

    При подключении УЗИП в однофазной сети необходимо учитывать особенности самого здания, его основные функции и все установленное в нем оборудование.

    К заземлению дополнительно предъявляются следующие требования:

    • Жилые дома и административные здания. При напряжении 220 или 380 вольт и схеме заземления TN-C-S сопротивление растеканию токов не должно превышать 30 Ом.
    • В молниеотводах этот показатель составляет не выше 10 Ом.
    • Для трансформаторных подстанций – не более 4 Ом.
    • Объекты с оборудование связи – не выше 4 Ом.
    • Воздушные линии связи. В защитной цепи сопротивление растеканию тока не превышает 2 Ом.

    В электрических сетях подключение УЗИП осуществляется совместно с плавкими предохранителями, существенно повышающими эффективность защиты. Отличительной чертой этой схемы является соединение нуля – нейтральной шины, расположенной на входе, с шиной заземляющего контура. Подключение УЗИП в трехфазной сети выполняется практически также, только в ней задействовано большее количество фазных проводов.

    Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

    Нормативные документы

    Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

    Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

    Номер ГОСТаКраткое описание
    2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
    2.747 68Требования к размерам отображения элементов в графическом виде.
    21.614 88Принятые нормы для планов электрооборудования и проводки.
    2.755 87Отображение на схемах коммутационных устройств и контактных соединений
    2.756 76Нормы для воспринимающих частей электромеханического оборудования.
    2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
    21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

    Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

    Виды электрических схем

    В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

    • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
    • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

    Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

    Пример однолинейной схемы

    • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

    Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

    Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

    Графические обозначения

    Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

    Примеры УГО в функциональных схемах

    Ниже представлен рисунок с изображением основных узлов систем автоматизации.

    Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

    Описание обозначений:

    • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
    • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
    • С – Отображение исполнительных механизмов (ИМ).
    • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
    1. Происходит открытие РО
    2. Закрытие РО
    3. Положение РО остается неизменным.
    • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
    • F- Принятые отображения линий связи:
    1. Общее.
    2. Отсутствует соединение при пересечении.
    3. Наличие соединения при пересечении.

    УГО в однолинейных и полных электросхемах

    Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

    Источники питания.

    Для их обозначения приняты символы, приведенные на рисунке ниже.

    УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

    Описание обозначений:

    • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
    • В – значок электричества, отображающий переменное напряжение.
    • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
    • D – Отображение аккумуляторного или гальванического источника питания.
    • E- Символ батареи, состоящей из нескольких элементов питания.

    Линии связи

    Базовые элементы электрических соединителей представлены ниже.

    Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

    Описание обозначений:

    • А – Общее отображение, принятое для различных видов электрических связей.
    • В – Токоведущая или заземляющая шина.
    • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
    • D — Символ заземления.
    • E – Электрическая связь с корпусом прибора.
    • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
    • G – Пересечение с отсутствием соединения.
    • H – Соединение в месте пересечения.
    • I – Ответвления.

    Обозначения электромеханических приборов и контактных соединений

    Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

    УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

    Описание обозначений:

    • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
    • В – УГО воспринимающей части электротепловой защиты.
    • С – отображение катушки устройства с механической блокировкой.
    • D – контакты коммутационных приборов:
    1. Замыкающие.
    2. Размыкающие.
    3. Переключающие.
    • Е – Символ для обозначения ручных выключателей (кнопок).
    • F – Групповой выключатель (рубильник).

    УГО электромашин

    Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

    Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

    Описание обозначений:

    • A – трехфазные ЭМ:
    1. Асинхронные (ротор короткозамкнутый).
    2. Тоже, что и пункт 1, только в двухскоростном исполнении.
    3. Асинхронные ЭМ с фазным исполнением ротора.
    4. Синхронные двигатели и генераторы.
    • B – Коллекторные, с питанием от постоянного тока:
    1. ЭМ с возбуждением на постоянном магните.
    2. ЭМ с катушкой возбуждения.

    Обозначение электродвигателей на схемах

    УГО трансформаторов и дросселей

    С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

    Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

    Описание обозначений:

    • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
    • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
    • С – Отображение двухкатушечного трансформатора.
    • D – Устройство с тремя катушками.
    • Е – Символ автотрансформатора.
    • F – Графическое отображение ТТ (трансформатора тока).

    Обозначение измерительных приборов и радиодеталей

    Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

    Примеры условных графических обозначений электронных компонентов и измерительных приборов

    Описание обозначений:

    1. Счетчик электроэнергии.
    2. Изображение амперметра.
    3. Прибор для измерения напряжения сети.
    4. Термодатчик.
    5. Резистор с постоянным номиналом.
    6. Переменный резистор.
    7. Конденсатор (общее обозначение).
    8. Электролитическая емкость.
    9. Обозначение диода.
    10. Светодиод.
    11. Изображение диодной оптопары.
    12. УГО транзистора (в данном случае npn).
    13. Обозначение предохранителя.

    УГО осветительных приборов

    Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

    Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

    Описание обозначений:

    • А – Общее изображение ламп накаливания (ЛН).
    • В — ЛН в качестве сигнализатора.
    • С – Типовое обозначение газоразрядных ламп.
    • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

    Обозначение элементов в монтажной схеме электропроводки

    Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

    Пример изображения на монтажных схемах розеток скрытой установки

    Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

    Обозначение выключатели скрытой установки Обозначение розеток и выключателей

    Буквенные обозначения

    В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

    Буквенные обозначения основных элементов

    К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

    Схема рекурсивной функции распаковки для более чем одного списка

    Переполнение стека

    1. Около
    2. Продукты

    3. Для команд
    1. Переполнение стека
      Общественные вопросы и ответы

    2. Переполнение стека для команд
      Где разработчики и технологи делятся частными знаниями с коллегами

    3. Вакансии
      Программирование и связанные с ним технические возможности карьерного роста

    4. Талант
      Нанимайте технических специалистов и создавайте свой бренд работодателя

    5. Реклама
      Обратитесь к разработчикам и технологам со всего мира

    6. О компании

    Загрузка…

    .

    zip — Gentoo Wiki

    zip обеспечивает классическое сжатие zip. Это удобно для кросс-платформенной совместимости с операционными системами Microsoft. Новые версии zip включают поддержку Unicode и шифрования. Их можно включить или отключить во время сборки в системах Gentoo с помощью соответствующих USE-флагов (см. Ниже).

    Аналогичная и противоположная программа для zip — это unzip, который включен в отдельный пакет (app-arch / unzip).

    Установка

    USE-флаги

    bzip2 Используйте библиотеку сжатия bzlib
    склеп Добавьте поддержку шифрования — используя mcrypt или gpg, если применимо
    natspec Используйте dev-libs / libnatspec для правильного декодирования имен файлов, отличных от ascii, заархивированных в Windows.
    юникод Добавить поддержку Unicode

    Выход

    После настройки USE-флагов:

    root # emerge --ask app-arch / zip

    При желании установите app-arch / unzip для возможности распаковки (дополнительную информацию см. В статье о распаковке).

    Удаление

    root # emerge --ask --unmerge app-arch / zip

    Конфигурация

    Переменные среды

    zip не имеет конфигурационных файлов , однако его работа может изменяться следующими переменными среды:

    • ZIPOPT — Может использоваться для установки любого параметра для команды zip.
    • ZIP — выполняет то же самое, что и переменная ZIPOPT (см. Выше).
    • Zip $ Options — Для использования в ОС RISC. Выполняет то же самое, что и переменная ZIPOPT (см. Выше).
    • Zip $ Exts — Для использования в ОС RISC. Содержит расширения, разделенные : (двоеточие), что приведет к добавлению собственных имен файлов с одним из указанных расширений в zip-файл с заменой базового имени и расширения.
    • ZIP_OPTS — Для использования VMS. Выполняет то же самое, что и переменная ZIPOPT .

    Использование

    ZIP файл
    Создает архив data.zip и помещает в него все файлы в текущем каталоге в сжатом виде, введите:

    Примечание. Нет необходимости добавлять расширение или суффикс .zip, поскольку они добавляются автоматически с помощью команды zip.

    Чтобы заархивировать весь каталог (включая все подкаталоги), введите следующую команду:

    Можно заархивировать файл и сохранить zip-файл в другом каталоге, указав новый путь назначения с именем zip-файла в конце.

    пользователь $ zip test / zipfolder / file10.zip file10

    Вы также можете попробовать опцию -9 для лучшего сжатияː

    пользователь $ zip -9 -r резервный файл mydata

    Обновите один файл или несколько файлов сжатого архива, предположим, что мы сжали архив, а затем изменили файл. Есть возможность добавить файл обновления в сжатый архив с помощью команды zip -u.

    пользователь $ zip -u backfile.zip foo boo

    Вы можете заменить (обновить) существующую запись в zip-архиве, только если она была изменена позже, чем версия, уже находящаяся в zip-архиве. В отличие от варианта обновления, при этом не будут добавляться файлы, которых еще нет в zip-архиве.

    Призыв

    молния

    пользователь $ zip --help

     Copyright (c) 1990-2008 Info-ZIP - Введите 'zip "-L"' для лицензии на программное обеспечение.
    Zip 3.0 (5 июля 2008 г.). Применение:
    zip [-options] [-b путь] [-t mmddyyyy] [-n суффиксы] [список zip-файлов] [-xi list]
      Действие по умолчанию - добавить или заменить записи zip-файла из списка, который
      может включать специальное имя - для сжатия стандартного ввода.Если zipfile и list опущены, zip сжимает стандартный ввод в стандартный вывод.
      -f freshen: только измененные файлы -u update: только измененные или новые файлы
      -d удалить записи в zip-файле -m переместить в zip-файл (удалить файлы ОС)
      -r рекурсивно переходить в каталоги -j нежелательные (не записывать) имена каталогов
      -0 сохранить только -l преобразовать LF в CR LF (-ll CR LF в LF)
      -1 сжимайте быстрее -9 сжимайте лучше
      -q тихая работа -v подробная информация о работе / версии для печати
      -c добавить однострочные комментарии -z добавить комментарий к zip-файлу
      - @ читать имена из stdin -o сделать zip-файл таким же старым, как и последняя запись
      -x исключить следующие имена -i включить только следующие имена
      -F исправить zipfile (-FF стараться больше) -D не добавлять записи в каталог
      -A настроить самораспаковывающийся exe-префикс junk zipfile (unzipsfx)
      -T проверить целостность zip-файла -X исключить атрибуты файла eXtra
      -y сохранять символические ссылки как ссылку вместо файла, на который есть ссылка
      -e encrypt -n не сжимать эти суффиксы
      -h3 показать дополнительную помощь
     
    плащ на молнии

    пользователь $ zipcloak --help

     ZipCloak 3.0 (5 июля 2008 г.)
    Использование: zipcloak [-dq] [-b путь] zipfile
      действие по умолчанию - зашифровать все незашифрованные записи в zip-файле.
    
      -d --decrypt расшифровать зашифрованные записи (копировать, если указан неверный пароль)
      -b --temp-path использовать «путь» для временного zip-файла
      -O --output-file записать вывод в новый zip-файл
      -q - тихая тихая работа, подавить некоторые информационные сообщения
      -h --help показать эту помощь
      -v --version показать информацию о версии
      -L --license показать лицензию на программное обеспечение
     
    почтовый индекс

    пользователь $ zipnote -h

     Copyright (c) 1990-2008 Info-ZIP - Введите zipnote "-L" 'для лицензии на программное обеспечение.ZipNote 3.0 (5 июля 2008 г.)
    Использование: zipnote [-w] [-q] [-b путь] zip-файл
      действие по умолчанию - записать комментарии из zip-файла в стандартный вывод
      -w писать комментарии к zip-файлу со стандартного ввода
      -b использовать «путь» для временного zip-файла
      -q более тихая работа, подавление некоторых информационных сообщений
      -h показать эту справку -v показать информацию о версии -L показать лицензию на программное обеспечение
    
    Пример:
         zipnote foo.zip> foo.tmp
         ed foo.tmp
         ... затем вы редактируете комментарии, сохраняете и выходите ...
         zipnote -w foo.zip 
    zipsplit

    пользователь $ zipsplit -h

     Copyright (c) 1990-2008 Info-ZIP - Введите 'zipsplit "-L"' для лицензии на программное обеспечение.
    
    ZipSplit 3.0 (5 июля 2008 г.)
    Использование: zipsplit [-tipqs] [-n размер] [-r комната] [-b путь] zipfile
      -t сообщать, сколько файлов потребуется, но не создавать их
      -i создать индекс (zipsplit.idx) и посчитать его размер по первому zip-файлу
      -n создавать zip-файлы размером не более "size" (по умолчанию = 36000)
      -r оставить место для байтов "места" на первом диске (по умолчанию = 0)
      -b использовать «путь» для выходных zip-файлов
      -q более тихая работа, подавление некоторых информационных сообщений
      -p пауза между выходными zip-файлами
      -s выполняет последовательное разделение, даже если требуется больше zip-файлов
      -h показать эту справку -v показать информацию о версии -L показать лицензию на программное обеспечение
     

    См. Также

    • P7zip - порт командной строки 7-Zip для POSIX-совместимых систем, таких как Unix, OS X, BeOS и Amiga.
    • Tar - архиватор, который предоставляет возможность создавать tar-архивы, а также различные другие виды манипуляций.
    • Unzip - обеспечивает распаковку для классических форматов zip.

    Внешние ресурсы

    .

    15 лучших инструментов проектирования баз данных

    Guru99

    • Home
    • Testing

        • Back
        • Agile Testing
        • BugZilla
        • Cucumber
        • Database Testing
        • 9000 J4000 J4000

        • 9000 Тестирование

        • JUnit
        • LoadRunner
        • Ручное тестирование
        • Мобильное тестирование
        • Mantis
        • Почтальон
        • QTP
        • Назад
        • Центр контроля качества (ALM)
        • Управление тестированием
        • TestLink
    • SAP

        • Назад
        • ABAP 9000 5
        • APO
        • Начинающий
        • Basis
        • BODS
        • BI
        • BPC
        • CO
        • Назад
        • CRM
        • Crystal Reports
        • FICO
        • 000

          9000 HRM

        • 9000 Заработная плата

        • Назад
        • PI / PO
        • PP
        • SD
        • SAPUI5
        • Безопасность
        • Менеджер решений
        • Successfactors
        • Учебники SAP
      • 8
        • Apache

        • AngularJS
        • ASP.Net
        • C
        • C #
        • C ++
        • CodeIgniter
        • СУБД
        • JavaScript
        • Назад
        • Java
        • JSP
        • Kotlin
        • Linux
        • Linux
        • Kotlin
        • Linux
        • js

        • Perl
        • Назад
        • PHP
        • PL / SQL
        • PostgreSQL
        • Python
        • ReactJS
        • Ruby & Rails
        • Scala
        • SQL
        • 000

          0004 SQL

        • UML
        • VB.Net
        • VBScript
        • Веб-службы
        • WPF
    • Обязательно учите!

        • Назад
        • Бухгалтерский учет
        • Алгоритмы
        • Android
        • Блокчейн
        • Business Analyst

    .

    Автоматическая компоновка схемы

    Visual Paradigm предоставляет средство компоновки для размещения элементов диаграммы в диаграммах. Элементы диаграммы не пересекаются, и связи взаимосвязей не пересекаются. Предоставляются различные стили макета и настраиваемые параметры, что позволяет применять к диаграммам чрезвычайно гибкие и сложные макеты.

    Схема автоматического размещения

    Существует несколько различных типов макетов: Auto Layout , Orthogonal Layout , Hierarchic Layout , Directed Tree Layout , Balloon Tree Layout , Compact Tree Layout , Горизонтально-вертикальный макет дерева , BBC Compact Circular Layout , BBC Isolated Circular Layout , Single Cycle Circular Layout , Organic Layout и Smart Organic Layout .

    Автоматическая раскладка

    Выбор автоматической компоновки означает, что наиболее подходящая компоновка размещается для форм автоматически. Это лучший выбор для пользователей, когда они не хотят выбирать конкретный макет. Чтобы применить Auto Layout к диаграмме, щелкните правой кнопкой мыши на диаграмме и выберите Layout> Auto Layout во всплывающем меню.

    Выбрать автоматический макет

    Диаграмма классов (иерархическая базовая / заводская диаграмма классов)

    База иерархии (Заводская диаграмма классов)

    Диаграмма классов (диаграмма классов навигационной базы / посредника)

    Навигационная база (диаграмма классов Mediator)

    Схема деятельности

    Автоматическая компоновка диаграммы активности

    Схема конечного автомата

    Автоматическая компоновка диаграммы состояний

    Схема связи

    Автоматическая компоновка коммуникационной схемы

    Прочие схемы

    Автоматическая компоновка других схем

    Ортогональная раскладка

    Фигуры располагаются на основе подхода топологии-формы-метрики в ортогональной компоновке.Это лучший способ упорядочивания фигур и соединителей на диаграммах классов. Поскольку в Visual Paradigm это макет по умолчанию, каждый раз, когда вы перетаскиваете модели из дерева модели на диаграмму, ортогональная компоновка будет применяться для упорядочивания вновь созданных фигур в диаграмме классов.

    Ортогональная компоновка

    Размер сетки макета: размер виртуальной сетки для макета. Каждая фигура будет размещена в соответствии с положением ее центральной точки на виртуальной точке сетки.

    Настройка ортогонального макета

    Иерархическая схема

    Иерархический макет размещает фигуры в потоке. Это лучший способ для пользователей упорядочивать фигуры, которые имеют иерархические отношения, такие как отношения обобщения и отношения реализации.

    Иерархическая компоновка

    Мин.Layer Distance: минимальное расстояние по горизонтали между фигурами.
    Мин. Расстояние между фигурами: минимальное расстояние по вертикали между фигурами.
    Мин. Расстояние соединителя: минимальное вертикальное расстояние сегментов соединителя.
    Ориентация: направление компоновки для расположения узлов и соединителей - сверху вниз, слева направо, снизу вверх и справа налево.
    Размещение формы: влияет на горизонтальное расстояние между формами и количество изгибов соединителей - маятника, линейных сегментов, полилинии, дерева и симплекса.

    Настройка иерархического макета

    Направленная структура дерева

    Directed Tree Layout - это один из древовидных макетов в Visual Paradigm, который упорядочивает фигуры в древовидной структуре. Это лучший способ для пользователей упорядочивать фигуры, за исключением тех, которые имеют иерархические отношения, такие как отношения обобщения и отношения реализации.

    Схема направленного дерева

    Мин.Layer Distance: минимальное расстояние по горизонтали между фигурами.
    Мин. Расстояние между фигурами: минимальное расстояние по вертикали между фигурами.
    Ориентация: направление компоновки для размещения узлов и соединителей - сверху вниз, слева направо, снизу вверх и справа налево.
    Стиль конечной точки соединителя: способ размещения конечных точек соединителя - по центру формы, по центру по границе, по распределению по границе.
    Ортогональный соединитель: , будут ли соединители располагаться ортогонально.

    Настройка направленного дерева

    Схема дерева воздушных шаров

    Макет

    «Воздушный шар», который является одним из древовидных макетов в Visual Paradigm, размещает фигуры в древовидной структуре радиально. Это лучший способ расставить большие деревья для пользователей.

    Схема дерева из воздушных шаров

    Мин.Длина соединителя: минимальное расстояние между соединителями и формами.
    Предпочтительный дочерний клин: угол, под которым дочерний узел будет размещен вокруг своего родительского узла.
    Предпочтительный корневой клин: угол, под которым узел будет размещен вокруг корневого узла.
    Политика корневого узла: определяет, какой узел выбран в качестве корневого узла дерева для компоновки - направленный корень, центральный корень и взвешенный центральный корень.

    Настройка макета воздушного шара

    Компактная структура дерева

    Компактный макет дерева - это один из древовидных макетов в Visual Paradigm, который упорядочивает фигуры в древовидной структуре.Соотношение сторон (отношение ширины дерева к высоте) результирующего дерева может быть установлено.

    Компактная структура дерева

    Интервал по горизонтали: интервал по горизонтали между фигурами.
    Интервал по вертикали: интервал по вертикали между фигурами.
    Мин. Длина соединителя: вертикальное расстояние сегментов соединителя.
    Соотношение сторон: отношение ширины дерева к высоте дерева.

    Компактная компоновка дерева

    Горизонтально-вертикальная структура дерева

    Horizontal-Vertical Tree Layout - это одна из древовидных схем в Visual Paradigm, которая упорядочивает фигуры в древовидной структуре по горизонтали и вертикали.

    Горизонтально-вертикальное расположение дерева

    Интервал по горизонтали: интервал по горизонтали между фигурами.
    Интервал по вертикали: интервал по вертикали между фигурами.

    Горизонтально-вертикальное расположение дерева

    BBC компактная круговая компоновка

    BBC Compact Circular Layout - это один из круговых макетов в Visual Paradigm, который упорядочивает фигуры в радиальной древовидной структуре. Обнаруженная группа выкладывается на отдельные кружки. Это лучший способ для пользователя расположить фигуры, принадлежащие более чем к одной группе, с помощью кольцевой структуры.

    BBC Компактная круглая компоновка

    Максимальный угол отклонения: максимальный угол отклонения.
    Предпочтительный дочерний клин: угол, под которым дочерний узел будет размещен вокруг своего родительского узла.
    Минимальная длина края: минимальное расстояние между фигурами.
    Коэффициент компактности: параметр, влияющий на длину разъема.Чем меньше коэффициент компактности, тем короче будут разъемы и компактнее будет компоновка.
    Разрешить перекрытия: , может ли форма перекрываться.

    BBC Компактная круговая компоновка

    Изолированная круглая компоновка BBC

    Изолированная круговая компоновка BBC - одна из круговых компоновок в Visual Paradigm, которая объединяет формы во множество изолированных кольцевых структур.Это лучший способ для пользователей расположить фигуры, принадлежащие к одной группе, с кольцевой структурой.

    Изолированная круглая компоновка BBC

    Максимальный угол отклонения: максимальный угол отклонения.
    Предпочтительный дочерний клин: угол, под которым дочерний узел будет размещен вокруг своего родительского узла.
    Минимальная длина края: минимальное расстояние между фигурами.
    Коэффициент компактности: параметр, влияющий на длину разъема. Чем меньше коэффициент компактности, тем короче будут разъемы и компактнее будет компоновка.
    Разрешить перекрытия: , может ли форма перекрываться.

    Настройка изолированного кругового макета BBC

    Круговая схема с одним циклом

    Single Cycle Layout - это один из круговых макетов в Visual Paradigm, который размещает фигуры в круговой структуре в едином круге.

    Одноцикловая круговая схема

    Выбрать радиус автоматически: определяет радиус круговой конструкции автоматически или вручную.
    Minimal Node Distance: минимальное расстояние между узлами.
    Фиксированный радиус: радиус круговой конструкции.

    Настройка круговой схемы одиночного цикла

    Органическая планировка

    Органический макет - это один из органических макетов в Visual Paradigm, который упорядочивает формы в виде звезды или кольца.Это лучший способ для пользователей расположить фигуры, которые имеют тесную взаимосвязь.

    Органический макет

    Активировать детерминированный режим: , находится ли компоновщик в детерминированном режиме.
    Activate Tree Beautifier: , активировать ли украситель поддерева.
    Притяжение: степень притяжения между формами.
    Конечная температура: фактор, влияющий на расстояние между формами.
    Фактор силы тяжести: фактор, влияющий на расстояние между фигурами и центром.
    Первоначальное размещение: первоначальная стоимость размещения.
    Начальная температура: начальное значение температуры.
    Коэффициент итерации: степень итерации.
    Максимальная длительность: максимальная продолжительность.
    Размер подчиненного узла: размер подчиняться форм.
    Предпочтительная длина ребра: предпочтительная длина между узлами.
    Отталкивание: фактор, влияющий на расстояние между фигурами, принадлежащими одной и той же кольцевой или звездной структуре.

    Настройка органического макета

    Интеллектуальная органическая планировка

    Smart Organic Layout - один из органических макетов в Visual Paradigm, который является вариантом Organic Layout.Устанавливает соотношение качества: время изготовления макета и контролирует компактность макета.

    Smart Organic Layout

    Компактность: фактор, определяющий меньшую / более компактную компоновку.
    Детерминированный: находится ли компоновщик в детерминированном режиме.
    Minimal Node Distance: минимальное расстояние между узлами.
    Допускается перекрытие узлов: указывает, может ли узел перекрываться.
    Node Size Aware: может ли знать размер узла.
    Предпочтительное минимальное расстояние между узлами: предпочтительное минимальное расстояние между узлами.
    Коэффициент времени качества: отношение качества верстки ко времени изготовления верстки.

    Настройка органического макета

    Автоматическая компоновка выбранных фигур

    Чтобы разместить все фигуры на схеме, щелкните схему правой кнопкой мыши и выберите «Макет» во всплывающем меню.

    Выполните макет со всеми формами диаграммы

    Для компоновки выбранных фигур щелкните выделение правой кнопкой мыши и выберите Макет во всплывающем меню (убедитесь, что выбрано более одного элемента схемы).

    Выполнить макет с выбранными формами

    Разъемы автоматические

    Существует 2 вида компоновки, которые не изменяют расположение фигур, а только меняют соединители: Схема маршрута органической границы и Схема маршрута ортогональной границы

    Органический контур трассы

    Схема

    Organic Edge Route Layout - одна из схем граничных маршрутов в Visual Paradigm, которая размещает соединители, не влияя на расположение фигур.Это может гарантировать, что формы не будут перекрываться и сохраняться на определенном минимальном расстоянии.

    Схема маршрута органической границы

    Минимальное расстояние: минимальное расстояние между разъемами.
    Route All: будут ли маршрутизированы все разъемы.
    Использовать существующие бобы: использовать ли существующие сгибы.

    Настройка разметки маршрута Organic Edge

    Схема трассы ортогональной кромки

    Соединители маршрута

    могут располагать соединители только с использованием вертикальных и горизонтальных отрезков линий.Это лучший способ для пользователей расположить соединители со сложной трассой.

    Схема трассировки ортогональных краев

    Отношение центра к пространству: отношение центра к расстоянию между центром и узлами.
    Связанные расстояния: расстояние между связанными узлами.
    Стоимость перехода: Стоимость переходов соединителей.
    Емкость таможенной границы: Емкость границы.
    Минимизация местного пересечения: , будет ли минимизировано локальное пересечение соединителей.
    Минимальное расстояние: минимальное расстояние разъемов.
    Минимальное расстояние до узла: минимальное расстояние между фигурами.
    Rerouting: , будет ли перенаправлен соединитель с большим количеством пересечений.
    Стиль трассировки: стиль трассировки.

    Настройка разметки маршрута ортогональной кромки

    Связанные ресурсы

    Следующие ресурсы могут помочь вам узнать больше о теме, обсуждаемой на этой странице.

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *