Конспект Оптические датчики положения
Оптические датчики положения
Оптический датчик положения представляет собой электронное устройство, реагирующее на изменение принимаемого светового потока. Оптические датчики положения используются для определения наличия (отсутствия) объекта в заданном пространстве, поскольку наличие (отсутствие) объекта приводит к изменению параметров светового потока, принимаемого датчиком. Для повышения эффективности работы оптических датчиков положения и улучшения их характеристик производится модуляция и пространственная селекция светового излучения.
Эти меры позволяют устранять влияние посторонних световых засветок и помехи от других оптических датчиков.
Принцип работы оптических датчиков положения
Оптические датчики положения состоят из 2-х функционально законченных узлов — источника оптического излучения и приемника этого излучения. Источник оптического излучения (передатчик) и приемник могут быть в одном корпусе или в разных корпусах.
Рис.109. Оптический датчик
Источник: http://www.straus-com.ru/fstore/vb1.jpg
Передатчик
Генератор вырабатывает последовательность электрических импульсов на излучатель оптического датчика положения
Излучатель — светодиод, создающий излучение оптического диапазона.
Индикатор показывает наличие напряжения питания на передатчике оптического датчика положения.
Оптическая система формирует диаграмму направленности излучения и при необходимости его поляризацию.
Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.
Приемник излучения
Оптическая система формирует диаграмму направленности приемника излучения и при необходимости производит поляризационную селекцию.
Фотоприемник воспринимает оптическое излучение и преобразует его в электрический сигнал.
Усилитель усиливает входной сигнал до необходимого значения.
Пороговый элемент обеспечивает необходимую крутизну фронта выходного сигнала и величину гистерезиса.
Электронный ключ обеспечивает коммутацию выходного тока датчика, определяет схему подключения нагрузки, имеет защиту от перегрузки и короткого замыкания.
Светодиодный цветной индикатор показывает состояние датчика, позволяет определить функциональный резерв по выбранному объекту, обеспечивает контроль работоспособности, оперативность настройки.
Регулятор чувствительности позволяет производить настройку датчика по фактической контрастности объекта на фоне окружающих предметов.
Функциональный резерв определяется как отношение светового потока, полученного приемником, к минимальному световому потоку, вызывающему срабатывание выключателя. Функциональный резерв позволяет компенсировать ослабление сигнала в результате загрязнения оптики и наличия аэрозольных компонентов в окружающем пространстве.
Цветной светодиодный индикатор работает следующим образом:
при отсутствии сигнала на входе приемника индикатор не светится
при появлении сигнала с уровнем, при котором происходит срабатывание выключателя, индикатор светится зеленым цветом
при дальнейшем увеличении уровня сигнала зеленый цвет плавно изменяется через желтый — оранжевый до красного
Контрастность объекта определяется его собственным коэффициентом отражения и величиной отраженного света от окружающего фона.
Принцип работы оптических датчиков положения на прямом луче (Тип T)
Оптические датчики, работающие на прямом луче, состоят из приемника и передатчика, выполненных в отдельных корпусах. При эксплуатации они располагаются соосно дуг против друга. Поток излучения от излучателя передатчика направлен на приемник. Срабатывание происходит при прерывании луча объектом. Датчики использующие принцип прерывания луча, отличаются большой дальностью действия — до нескольких десятков метров и большой помехозащищенностью от воздействия посторонних факторов (пыль, капли воды и других жидкостей)
Основными недостатками таких датчиков является наличие двух отдельных изделий, что не всегда удобно при их монтаже и прокладке проводов питания к ним.
Необходимо иметь в виду, что:
посторонние предметы с высоким коэффициентом отражения, подобные рефлектору, находящиеся в области перекрытия диаграмм направленностей приемника и передатчика, могут вызвать ложное срабатывание;
прозрачные и полупрозрачные объекты недостаточно ослабят луч до порога срабатывания.
Для уменьшения или полного устранения вышеперечисленных эффектов оптические выключатели снабжены регуляторами чувствительности.
Диаметр прямого луча определяет минимальный размер регистрируемого объекта.
Принцип работы оптических датчиков положения на отраженном луче (Тип D)
В оптических датчиках, использующих эффект диффузного и зеркального отражения потока излучения от объекта, приемник и излучатель выполнены в одном корпусе. Поток излучения от передатчика попадает на поверхность объекта, от которого происходит его отражение в различных направлениях. Распределение отраженного потока определяется оптическими свойствами объекта. Часть потока возвращается обратно в приемник, вызывая его срабатывание.
Преимущество данного вида датчиков заключается в простоте применения, при котором не требуется никаких дополнительных приборов.
При использовании датчиков данного типа необходимо учитывать возможность появления ложных срабатываний в случае появления за контролируемым объектом предметов с гораздо большей отражательной способностью. В этих случаях следует применять диффузные оптические датчики с подавлением фона.
Поскольку различные материалы отражают падающий на них поток излучения по-разному, то для нормирования расстояния срабатывания выбран стандартный объект воздействия — лист белой бумаги с размерами 100×100мм для выключателей с расстоянием срабатывания до 400мм и лист белой бумаги с размерами 200×200мм для выключателей с расстоянием срабатывания более 400мм.
Принцип работы оптических датчиков положения на отраженном от рефлектора луче (Тип R)
Излучение светодиода имеет круговую поляризацию, т.е. представляет собой совокупность множества плоскополяризованных пространственных световых колебаний (волн) с различными плоскостями поляризации.
Если на пути луча установить оптический поляризационный фильтр, то через него пройдут только те волны, плоскость поляризации которых совпадает с плоскостью поляризации фильтра. Таким образом, поляризационный фильтр формирует луч с плоской поляризацией.
При отражении поляризованного луча от различных предметов плоскости поляризации падающего и отраженного луча, как правило, совпадают.
Плоскость поляризации изменяется на 90 град. при отражении от специальных световозвращателей (уголковых отражателей или рефлекторов).
Если на пути поляризованного луча расположить еще один поляризационный фильтр с плоскостью поляризации, развернутой на 90град. по отношению к первому, то луч через него не пройдет. Таким образом, данный фильтр будет для него барьером.
Принцип работы оптических датчиков положения на отраженном от рефлектора луче (Тип R)
Выбор, применение и подключение оптоволоконных датчиков
Знания о наличии деталей в машинах, работе осветительной арматуры, наличии деталей на конвейерах автоматических линий – один из важнейших компонентов промышленной автоматизации. Последовательность ошибок при сборке деталей и управлении процессами часто необходимо для выявления причины отказа. Во многих случаях ошибка происходит из-за отсутствия детали, необходимой для сборки, или ее плохого качества. Для избегания этого устанавливается датчик, который выполняет функцию проверки наличия необходимых деталей.
Существует огромное количество различных типов датчиков – индуктивные, емкостные, магнитные, фотоэлектрические. Каждый из них имеет свои сильные и слабые стороны в зависимости от области применения. Тем не менее, фотоэлектрические датчики имеют наиболее широкое предложение различных технологий и типов, а также самый широкий спектр применения.
Фотоэлектрические датчики бывают с различными типами светового излучения (инфракрасного, видимого красного, класс лазера 1 и 2), чувствительных технологий (диффузных, подавление фона, светоотражающих, однолучевой) и с различными конфигурациями корпуса (фото глаз (photo eye) или волоконно-оптические). В данной статье рассматриваются определение и применение волоконно-оптических датчиков (или как их еще называют оптоволоконные датчики), которые предлагают расширенные возможности и параметры конфигурации, и прекрасно подходят для узких мест, которые слишком малы для датчика фото глаз (photo eye).
Оптоволоконная технология
Оптоволоконные датчики включают в себя два устройства, которые обычно указываются отдельно: усилитель, который часто называют электронным или волоконно-фотоэлектрическим усилителем; и оптоволоконный кабель, который включает в себя оптическую головку и волоконно-оптический кабель, пропускающий свет от усилителя.
Принцип работы всех фотоэлектрических датчиков довольно прост. Каждый прибор имеет излучатель световых волн и приемник, который обнаруживает этот сигнал. При этом существует множество технологий для обнаружения и измерения световых волн, поступающих на приемник. Например, датчики подавления фона отслеживают угол, под которым возвращается световая волна, в то время как стандартные фотоизмерители отслеживают количество света, возвращаемого к датчику. Другие разновидности фотоизмерительных устройств контролируют время возврата световой волны, тем самым обеспечивая измерение расстояния.
Пара источник-приемник может устанавливаться как в одной оптической головке (при использовании диффузных и отражательных единиц), так и в двух оптических головках (использование однолучевых единиц). Волоконно-оптические датчики помещают в один корпус всю электронику с оптическими головками для излучателя и приемника световых волн, в котором приемник отделен от подключенной к корпусу электроники оптоволоконным кабелем. Излучаемые и получаемые волны проходят через этот кабель так же, как и при высокоскоростной передачи данных в волоконно-оптических сетях.
Одним из преимуществ такого разделения является то, что головка измерителя должна устанавливаться на измеряемом объекте. Интегрированный волоконно-оптический кабель прокладывается и подключается к усилителю, который может быть установлен в безопасном месте (как правило, шкаф управления), защищая его от часто жесткой производственной среды.
Разнообразие вариантов, доступных для обоих усилителей и волоконно-оптических кабелей просто огромен. Усилители варьируются от примитивных до сложных, а машиностроители продолжают требовать больше функций, в том числе логических и коммуникационных возможностей.
Усилители для оптоволоконных датчиков
Волоконно-оптические усилители варьируются от имеющих базовую комплектацию электронных компонентов и функциональности, до устройств типа «подключи и работай», для моделей с полностью настраиваемой электроникой. У некоторых даже есть электронные блоки, которые могут обрабатывать до 15 входов волокон в конфигурации коллекторного типа. Индикация выхода крайне желательна, поскольку он показывает, работает ли датчик корректно, но другие основные функции (таблица ниже) также должны быть указаны:
Формат вывода и подключения к усилителям имеют важное значение, поскольку они определяют интерфейс к контроллеру, так как установка и сброс настроек является неотъемлемой частью конфигурации усилителя.
Типы выходов могут быть либо нормально открытыми (NO), либо нормально закрытыми (NC), а подключение может осуществляться по типу sinking, sourcing или push-pull. Параметры электрического соединения предварительно монтируются, как правило, с кабелем длиной 2 метра или quick disconnect со стандартным многоконтактным разъемом M8 или M12. Установки переключателей программируются с помощью потенциометра или в цифровом виде, с помощью кнопок.
Помимо основных, расширенные возможности усилителей обеспечивают существенную гибкость с такими функциями как: импульсные выходы, задержки включения / отключения, а также возможность исключить прерывистые сигналы. Эти передовые элементы современной электроники дают машиностроителям возможность детализировать и корректировать параметры усилителя в соответствии с требованиями установки.
Задержки включения / отключения часто применяют для замедления реакции системы управления на изменения регистрируемых параметров. В случае прерывистых сигналов, некоторые приложения возвращают датчикам краткосрочные паразитные сигналы, которые не согласуются с общими условиями эксплуатации. Возможность устранить эти сигналы на датчике освобождает контроллер от этой задачи.
Большинство моделей снабжены светодиодами выходного состояния, в то время как некоторые предлагают дисплеи, на которых представлены сведения о силе сигнала и состояния выхода. Более продвинутые блоки имеют многострочные OLED дисплеи с настраиваемыми функциями диагностики и возможностью программирования.
Фильтрация сигнала часто требует увеличения частоты дискретизации, так как это обеспечивает более устойчивое измерение при изменяющихся условиях окружающей среды. Это усиливает сигнал, но заставляет блок работать на более низких частотах коммутации. Импульсные выходы позволяют растягивать входной сигнал, что может быть полезно в случае слишком большой частоты для входа программируемого логического контроллера ПЛК. Задержки включения/отключения позволяют потребителям устанавливать необходимые времена задержки выходных и входных сигналов.
Дополнительные блоки обеспечивают больше возможностей программирования, например, настройка чувствительности. С помощью данных опций пользователи могут подгонять чувствительность измерительного элемента для работы со сложными материалами, такими как стекло. Данная функция обучения устраняет или уменьшает необходимость в программировании контроллера для выполнения данных функций. Они также могут запрограммировать выход для включения/отключения между двух точек переключения. Например, для позиционирования деталей, переключатель включается в одном положении и отключается в другом, отслеживая при этом положение детали в пространстве.
Видимость света оптоволоконного кабеля
Волоконно-оптические кабели не проводят электрический ток — они пропускают свет. Они изготавливаются с различными конфигурациями и из различного материала, а также имеют различные типы чувствительной головки. В таблице ниже приведены некоторые из основных параметров оптоволоконных кабелей:
Диффузные волоконно-оптические кабели состоят из двух шпон – одна для соединения с усилителем, а вторая с чувствительной головкой. При чем с чувствительной головкой соединяют два кабеля – тот который подключается к источнику света, и тот который подключается к измерительному элементу. Однолучевые волоконно-оптические кабели имеют два отдельных идентичных кабеля, которые подключаются к усилителю и каждый имеет свою оптическую головку. Один кабель передает свет – другой его принимает. Частая ошибка при работе с однолучевыми кабелями – это заказ только одного кабеля из двух. Это связано с тем, что некоторые поставщики могут поставлять только одну часть системы по номеру детали, поэтому при выборе однолучевых кабелей будьте внимательны.
Волоконные материалы, как правило, состоят из пластика или стекла. Пластиковые блоки тоньше, дешевле, обеспечивают большие радиусы изгиба. Стеклянные блоки более прочные и имеют более высокие рабочие температуры. Пластиковые волокна можно отрезать до нужной длины с помощью специального резака, в то время как стеклянные обрезаются только раз – при изготовлении и поставляются нужной длины. Оболочка волоконного материала может варьироваться от экструдированного пластика до оплетки из нержавеющей стали, для работы в самых неблагоприятных условиях.
Выбор оптической головки – самый важный этап в выборе оптоволоконного датчика. Это связано с тем, что именно чувствительность головки влияет на обнаружение небольших неподвижных или подвижных частей. Выбор головки зависит от того, под каким углом излучатель и приемник расположены к измеряемому объекту, а также от дисперсии. Головки могут иметь округлые пучки волокна для создания кругового луча или протяженные, для создания горизонтальных проекций.
Круглые пучки в диффузионной головке могут быть строго разветвлены со всеми волокнами источника на одной половине, и с волокнами приемника на другой половине. Такая конструкция встречается часто, но она может приводить к запаздыванию считывания информации с части, движущейся перпендикулярно к бифуркационной линии. Существует вариант с равномерным распределением волокон источника и приемника сигнала для получения более равномерных лучей. Равномерное распределение позволяет выравнивать воздействия при отправке и получении световых волн, что обеспечивает обнаружение независимо от направления движения.
На расстояние срабатывания волоконной оптики будет оказывать влияние усилитель, тип оптической головки, длина волокна кабеля. Исходя из этих трех параметров, влияющих на работу датчика, точную оценку точности и диапазона срабатывания дать трудно, но производители, как правило, приводят эти данные. Однолучевой датчик имеет больший диапазон, чем диффузный. Чем длиннее волокна кабеля, тем короче диапазон, а также стоит отметить, усовершенствованные усилители обычно имеют более сильные излучающие сигналы и более длинные диапазоны.
Подключение волоконно-оптических датчиков
Использование распределенного ввода / вывода и распределенных интеллектуальных систем растет во всей промышленной автоматизации, и волоконно-оптические датчики не являются исключением. Подключение нескольких волоконно-оптических кабелей датчиков к одному электронному коллектору имеет свои преимущества.
Волоконно-оптические усилители, как правило, одноканальные автономные устройства. С тонкими корпусами и креплением на DIN-рейку, они легко могут быть вмонтированы в панели управления. Один из недостатков может касаться маршрутизации электрических соединений для каждого отдельного усилителя.
Другой вариант заключается в использовании волоконно-оптический коллектора, который группирует множественные каналы волокна в одном центре управления:
Эти волоконно-оптические коллекторы обычно оснащены дисплеем OLED с меню, чтобы позволить программирование каждого канала волокна. Каждый оптоволоконный канал может быть сконфигурирован отдельно, например, установка на свет или затемнение, или гистерезис переключения. Этот централизованный контроль также позволяет группировку выходов через И / ИЛИ логику, которая может сократить и упростить выходной сигнал в ПЛК.
Применения и основные вопросы
Волоконная оптика работает довольно хорошо и обычно используется в системах со значительными электрическими шумами. Волокно кабеля не восприимчиво к электрическому шуму, а усилитель (восприимчив к шумам) может устанавливаться вдали от источника шума (например, в шкафу управления).
Другой, весьма распространённой область применения, являются небольшие сборочные линии. Операции на этих линиях, как правило, полностью автоматизированные и требуют наличия датчиков обнаружения детали на конвейере или в сборочном механизме, чтобы подтвердить сборочную операцию.
Оптоволоконные решения могут быть различными – размеры оптических головок, иметь различную ориентацию и дисперсию для обеспечения минимальных и максимально точных фокусов света для каждого приложения независимо от размера корпуса. С помощью логики на плате управления и использовании двухканального датчика один канал может использоваться для определения наличия детали в месте сборки, а второй канал может использоваться для подтверждения окончания операции сборки.
Общей проблемой всех видов оптоволоконных систем является чрезмерное сгибание волокон. Кабели и пучки отдельных волокон довольно податливы, чем позволяют монтажнику легко согнуть их больше, чем это допускает максимальный радиус изгиба. Это может привести к непоправимой пластической деформации волокон, что значительно снизит пропускание световых волн, или вовсе приведет к разрыву волокна и невозможности пропускать сигнал. Максимальный радиус изгиба варьируется в зависимости от типа волоконного материала, размеров, дисперсии волокон в пучке, и он должен выполнятся при любых условиях.
Вне зависимости от применения, потребители должны выбрать подходящую технологию датчиков. Волоконно-оптические датчики, усилители и волоконно-оптические головки должны быть тщательно отобраны для приложения, чтобы обеспечить надежную производительность измерения.
Принципы работы датчиков в газоанализаторе
Принципы работы датчиков в газоанализаторе
19.02.2020
При выборе того или иного газоанализатора можно опираться на различные критерии, но критически важно подобрать подходящий для поставленной задачи принцип измерения, руководствуясь типом измеряемого газа, средой, в которой выполняются измерения, и целью.
На сегодняшний день самыми востребованными типами датчиков являются:
• термокаталитический
• термокондуктивный
• полупроводниковый
• электрохимический
• гальванический
• инфракрасный (оптический)
• интерферометрический
• фотоионизационный (ФИД)
• пиролитический
• фотометрический
| |
Преимущества термокаталического датчика: линейность выходной характеристики, быстрый отклик, устойчивость к изменениям в температуре и влажности окружающей среды, а также долговечность. Применение: измерение довзывоопасных концентраций (ДВК) горючих газов и паров в диапазоне от 0 до 100% НКПР. Газоанализаторы: GP-03, GX-2009, GX-3R/Pro, GX-2012, GX-8000, GD-A80, SD-1GP |
Преимущества керамического датчика: линейность характеристики, более быстрый отклик, возможность измерения ПДК (в единицах млн-1), устойчивость к изменениям в окружающих условиях. Применение: измерение довзрывоопасных концентраций (ДВК) и предельно-допустимых концентраций (ПДК) горючих газов и паров. Газоанализаторы: GX-6000, SD-1NC |
Термокондуктивный Принцип работы термокондуктивного датчика основан на измерении разницы в теплопроводности. Как в случае с термокаталитическим датчиком, сенсор состоит из рабочего и компенсирующего элемента. Контакт с газом происходит на рабочем элементе, а компенсирующий элемент изолирован. При попадании целевого газа на рабочий элемент происходит изменение в теплоотдаче, связанное с теплопроводностью и приводящее к росту температуры элемента. Это, в свою очередь, приводит к изменению сопротивления платиновой спирали.
|
Полупроводниковый В данном типе датчиков используется полупроводник с металлоксидным напылением, сопротивление которого меняется при контакте с газом. Датчик состоит из нагревательной спирали и проводника, нанесенного на трубку из глинозёма, а по краям трубки находятся контакты из драгоценного металла, предназначенные для измерения сопротивления. При попадании газа на поверхность датчика он окисляется, что приводит к уменьшению электрического сопротивления, которое преобразуется в концентрацию.
|
Преимущества: линейная характеристика, стабильность показаний, долговечность, возможность измерения негорючих газов (аргона, азота и углекислого газа), а также возможность измерений в бескислородной среде. Применение: измерение высоких концентраций горючих газов и паров. Газоанализаторы: GX-2012, GX-8000 |
Преимущества: чувствительность к сверхнизким концентрациям, которые сложно фиксировать другими типами датчиков, долговременная стабильность, устойчивость к отравлению, а также селективность. Применение: измерение ПДК широкого спектра токсичных и горючих газов. Газоанализаторы: GX-2012GT, GD-A80V, SD-1GH |
Электрохимический |
Гальванический |
В основе данного принципа измерения лежит процесс электролиза. Датчик состоит из трех электродов — рабочего (газопроницаемой пленки с нанесенным катализатором из драгоценного металла), референсного и интегрирующего, — которые размещены в пластиковом корпусе с электролитом. В датчике используется потенциостатическая цепь, которая обеспечивает постоянное напряжение между рабочим и референсным электродами. Ток, возникающий в ходе химических реакций на рабочем и интегрирующем электродах, пропорционален концентрации измеряемого газа.
|
Принципиальная схема датчика гальванического типа повторяет простой аккумулятор: датчик состоит из катода, изготовленного из драгоценного металла, анода (проволоки), которые помещены в электролит, а также разделительной мембраны, прикрепленной к внешней стороне катода. Кислород, проходя через разделительную мембрану, на катоде восстанавливается, а на аноде — окисляется. Возникающий электрический ток конвертируется в напряжение и в таком виде подается на выход, при этом напряжение пропорционально концентрации кислорода.
|
Преимущества: линейный выходной сигнал, высокая точность и хорошая воспроизводимость результатов. Применение: измерение ПДК токсичных веществ. Газоанализаторы: HS-03, CO-03, CX-5, GX-3R/Pro, GX-2012, GX-6000, GX-8000, RX-8500, RX-8700, SC-8000, TP-70D, SD-1EC, GD-70D |
Преимущества: простота, долговечность в сравнении с электрохимическим датчиком, не требует внешнего питания, линейная выходная характеристика, быстрый отклик и отсутствие зависимости от колебаний температуры/влажности. Газоанализаторы: OX-03, GX-2012/GT, GX-6000, GX-8000, RX-8000, RX-8500, RX-8700, SD-1OX, GD-70D |
Инфракрасный (оптический) Данный принцип измерения основан на известном факте о том, что многие газы поглощают инфракрасные лучи и каждый из этих газов имеет определенный спектр поглощения. Сенсор состоит из источника ИК-света и датчика, между которыми установлены оптический фильтр и измерительная ячейка. Поступая в измерительную ячейку, газ поглощает некоторое количество инфракрасного света, а датчик при этом фиксирует снижение интенсивности поступающего ИК-света и на базе известной зависимости (калибровочной кривой) генерирует выходной сигнал. Несмотря на то, что зависимость не линейная, она хороша известна производителям датчиков.
|
Интерферометрический Принцип интерферометрии основан на измерении коэффициента рефракции газа. Архитектурно интерферометрический сенсор состоит из источника света и оптической системы из зеркал, линз, призмы и светочувствительного датчика. Свет от источника разделяется плоскопараллельным зеркалом на два луча (А и В) и отражается призмой. Луч А движется по круговому маршруту через камеру D, наполненную измеряемым газом, а луч В – через камеру E с референсным газом. После этого лучи А и В встречаются в точке С зеркала и, проходя через систему зеркал и линз, формируют на светочувствительном датчике картину интерференции. Данная картина сдвигается в пропорции к разнице в коэффициенте рефракции между измеряемым и референсным газами. Датчик измеряет сдвиг, чтобы измерить коэффициент рефракции, и преобразует его в концентрацию газа или количество тепла.
|
Преимущества: быстрый отклик, повторяемость, стабильность при изменении окружающих условий, отсутствие эффектов старения и отравления. Применение: измерение довзывоопасных концентраций (ДВК) горючих газов и паров в диапазоне от 0 до 100% НКПР, а также концентрации в диапазоне от 0 до 100% объема. Газоанализаторы: GX-3R Pro, GX-6000, RX-8000, RX-8500, RX-8700, SD-1RI |
Преимущества: низкая погрешность измерений, долговременная стабильность, высокая линейность и быстрый отклик, отсутствие влияния изменений в температуре и давлении (за счет механизма коррекции). Применение: измерение концентраций горючих газов, углекислого газа и элегаза, а также калорийности природного газа. Газоанализаторы: FI-8000 |
Фотоионизационный (ФИД) В фотоионизационных датчиках измеряемый газ ионизируется с помощью ультрафиолетового света, а это, в свою очередь, приводит к возникновению электрического тока. Когда газ попадает в ионизационную камеру, он подвергается воздействию УФ-света, под воздействием которого газ начинает терять электроны и генерировать катионы (положительные ионы). Электроны и катионы, в свою очередь, притягиваются катодом и анодом, возбуждая электрический ток, который пропорционален значению концентрации. Для ионизации требуются фотоны с энергией выше энергии данного конкретного газа, поэтому в ФИД, как правило, используют УФ-лампы с энергией 10,6 эВ (изготовлены из фторида магния и наполнены криптоном) или 11,7 эВ (изготовлены из фторида лития и наполнены аргоном).
|
Пиролитический В основе этого принципа лежит процесс пиролиза измеряемого газа с образованием оксида, частицы которого измеряются датчиком. Пиролитический сенсор состоит из нагревателя, в центре которого находится кварцевая трубка с нагревательным элементом, и датчика частиц, содержащего две камеры – рабочую и компенсационную. Измеряемый газ (например, TEOS или NF3) под воздействием температуры окисляется и попадает в рабочую камеру датчика частиц с источником α-частиц, который используется для ионизации воздуха и возбуждения электрического тока. Как только частицы газа попадают в камеру, они начинают поглощать ионы, приводя к снижению тока ионизации. Это снижение выходного сигнала пропорционально концентрации измеряемого газа. Компенсационная камера позволяет компенсировать флуктуации температуры, влажности и давления окружающей среды.
|
Преимущества: чувствительность к низким концентрациям, широкий спектр измеряемых веществ. Применение: измерение крайне малых концентраций (на уровне ppm и ppb) летучих органических соединений. Газоанализаторы: GX-6000 |
Преимущества: непревзойденная стабильность показаний (благодаря использованию источника америция-241 с периодом полураспада около 400 лет), быстрый отклик, линейность выходного сигнала и устойчивость к изменениям в окружающих условиях. Применение: измерение ПДК высокотоксичных газов. Газоанализаторы: GD-70D |
Читайте также
При выборе того или иного газоанализатора можно опираться на различные критерии, но критически важно подобрать подходящий для поставленной задачи принцип измерения, руководствуясь типом измеряемого газа, средой, в которой выполняются измерения, и целью.В последние годы на металлургических предприятиях особое внимание уделяется вопросу безопасности. Это связано с участившимися случаями отправления угарным газом, нехватки кислорода, а также опасностью взрыва из-за утечек метана и водорода. Предлагаем вашему вниманию презентацию решений RIKEN для металлургического производства, призванных свести к минимуму риски взрыва и отравления.
В медицинских учреждениях широкое применение нашли технические и медицинские газы, например, жидкий азот (N2), который используется в трансплантации, криотерапии и криобиологии. Низкая температура (-196°C), при которой азот находится в жидком состоянии, обеспечивает длительное хранение донорской крови, плазмы, стволовых клеток, а также органов.
оптическая схема и блок обработки сигналов
Просмотров: 11 956
Среди большого многообразия охранных извещателей, инфракрасный датчик движения является самым распространенным устройством. Доступная цена и эффективность, вот качества, обеспечившие им популярность. А все благодаря тому, что в начале девятнадцатого века обнаружили инфракрасное излучение.
Оно находится за границей видимого красного света в диапазоне 0,74-2000 мкм. Оптические свойства веществ сильно различаются и зависят от типа облучения. Небольшой слой воды является непрозрачным для ИК излучения. Инфракрасное излучение солнца составляет 50 процентов всей излучаемой энергии.
Область применения
Инфракрасные датчики движения для охраны применяются давно. Они фиксировали перемещения теплых объектов в помещениях, и передавали сигнал тревоги на контрольную панель. Их стали совмещать с видеокамерами и фотоаппаратами. При нарушении происходила фиксация происшествия. Потом область применения расширилась. Зоологи стали применять в фотоловушках для контроля исследуемых животных.
Больше всего ИК датчики применяются в системе умный дом, где играют роль сенсора присутствия. При попадании теплокровного объекта в область действия устройства, оно включает освещение в помещении или на улице. Экономится электричество и облегчается жизнь людям.
Инфракрасный датчик движения для освещения
В системах контроля доступа извещатели движения управляют открыванием и закрыванием дверей общественных сооружений. По расчетам экспертов рынок ИК сенсоров будет расти на 20% ежегодно ближайшие 3-5 лет.
Принцип работы ИК датчика движения
Работа ИК извещателя заключается в контроле инфракрасного излучения определенной области, сравнении его с фоновым уровнем, и по результатам анализа выдачи сообщения.
ИК датчики движения для охраны используют активные и пассивные виды сенсоров. Первые для контроля используют собственный передатчик, облучающие все в зоне действия устройства. Приемник получает отраженную часть ИК излучения и по его характеристикам определяет, было нарушение зоны охраны или нет. Активные датчики бывают комбинированного типа, когда принимающие и передающие блоки разделены, это извещатели контролирующие периметр объекта. Имеют большую дальность действия по сравнению с пассивными устройствами.
Зона действия инфракрасного датчика
Пассивный инфракрасный датчик движения не имеет излучателя, он реагирует на изменение окружающего ИК излучения. В общем случае, извещатель имеет два чувствительных элемента, способных фиксировать инфракрасное излучение. Перед сенсорами устанавливается линза Френеля, разбивающая пространство на несколько десятков зон.
Маленькая линза собирает излучение с конкретного участка пространства и посылает на свой чувствительный элемент. Соседняя линза, контролирующая смежный участок посылает поток излучения на второй сенсор. Излучения соседних участков примерно одинаковы. При нарушении баланса, превышении какого-то порогового значения, прибор извещает контрольную панель о нарушении зоны охраны.
Схема ИК датчика
Каждый производитель имеет уникальную принципиальную схему ИК извещателя, но функционально они примерно одинаковы.
Устройство инфракрасного датчика
ИК датчик имеет оптическую систему, пирочувствительный элемент, блок обработки сигналов.
Оптическая система
Рабочая область современных датчиков движения весьма разнообразна благодаря различным формам оптической системы. От устройства расходятся лучи в радиальном направлении в различных плоскостях.
Так как извещатель имеет сдвоенный сенсор, то все лучи раздваиваются.
Сенсор инфракрасного датчика
Оптическая система ориентируется таким образом, что будет контролировать только одну плоскость или несколько плоскостей на разных уровнях. Может контролировать пространство вкруговую или по лучу.
При построении оптики ИК-датчиков часто используются линзы Френеля, представляющих множество призматических фасеток на выпуклой пластиковой чашке. Каждая линза собирает ИК поток со своего участка пространства и отправляет на ПИР элемент.
Конструкция оптической системы такова, что избирательность по всем линзам одинакова. Чтобы защититься от собственного тепла элементов, насекомых в устройстве устанавливается герметичная камера. Редко используется зеркальная оптика. Это значительно повышает дальность действия устройства и цену прибора.
Пирочувствительный элемент
Роль сенсора в ИК датчике играет пироэлектрический преобразователь на чувствительных полупроводниковых элементах. Он состоит из двух сенсоров. На каждый из них от двух соседних лучей поступает поток излучения. При одинаковом равномерном фоне сенсор молчит. При возникновении дисбаланса, в одной зоне появляется дополнительный источник тепла, а в другой нет, сенсор срабатывает.
Для повышения надежности и уменьшения ложных срабатываний в последнее время стали применять счетверенные ПИР элементы. Это увеличило чувствительность и помехозащищенность прибора. Но уменьшило расстояние уверенного распознавания нарушителя. Для решения этого приходится использовать прецизионную оптику.
Блок обработки сигналов
Главной задачей блока является надежное распознавание человека на фоне помех.
Они бывают самые разнообразные:
- солнечное излучение;
- искусственные ИК источники;
- кондиционеры и холодильники;
- животные;
- конвекция воздуха;
- электромагнитные помехи;
- вибрация.
Блок обработки для анализа использует амплитуду, форму и длительность выходного сигнала пироэлектрического преобразователя. Воздействие нарушителя вызывает симметричный двухполярный сигнал. Помехи выдают несимметричные значения на обрабатывающий модуль. В простейшем варианте сравнивается амплитуда сигнала с пороговым значением.
Распознавание животных инфракрасным датчиком
При превышении порога извещатель сообщает об этом, подавая определенный сигнал на контрольную панель. В более сложных датчиках измеряется длительность превышения порога, количество этих превышений. Для повышения помехозащищенности прибора используется автоматическая термокомпенсация. Она обеспечивает постоянную чувствительность во всем диапазоне температур.
Обработка сигнала осуществляется аналоговыми и цифровыми устройствами. В новейших устройствах начали применять цифровые алгоритмы обработки сигнала, что позволило улучшить избирательность прибора.
Эффективность использования ИК извещателя в охранной сигнализации
От правильности выбора вида сенсора, расположения на объекте охраны во многом зависит его эффективность. Пассивные ИК датчики движения уличные и внутреннего применения реагируют на перемещения теплых по сравнению с фоном объектов при определенных скоростях перемещения. При маленькой скорости движения, изменения потоков инфракрасного излучения в соседних секторах настолько незначительны, что он воспринимается, как фоновый дрейф, и не реагирует на нарушение зоны охраны.
Если нарушитель облачится в защитный костюм с отличной теплоизоляцией, то ИК датчик движения не отреагирует, не будет нарушения баланса излучения в соседних зонах. Человек сольется с фоновым излучением.
Нарушитель двигается вдоль лучей извещателя движения с малой скоростью, в этом случае он нередко молчит.
Схема работы инфракрасного датчика движения
Изменения потоков оказываются недостаточными для срабатывания устройства. Особенно свойственно извещателям с функцией защиты от животных. В них уменьшают чувствительность, чтобы избежать реакции на появления домашних питомцев.
Важно правильно установить инфракрасный датчик. Требуется по конфигурации здания применять устройство типа «шторка», следует так и делать. Производитель рекомендует монтаж прибора на определенной высоте, надо соблюсти и это.
Для повышения эффективности работы инфракрасных датчиков их применяют совместно с сенсорами, работающими на других принципах.
Обычно, дополнительно придается радиоволновой извещатель с высокой чувствительностью, что снижает процент ложных срабатываний и повышает надежность охранной сигнализации. При защите окон от проникновения дополнительно устанавливается ультразвуковой извещатель, реагирующий на разбитие стекла.
Заключение
Постепенно ИК датчики усложняются, повышается их чувствительность, улучшается избирательность. Сенсоры находят широкое распространение в системах «умный дом», видеонаблюдения, контроль доступа. Совместное использование с различными устройствами повысило потребительские свойства датчиков. Им уготована долгая жизнь.
Видео: Датчик движения, принцип работы
Волоконно-оптический датчик — Википедия
Материал из Википедии — свободной энциклопедии
Волоконно-оптический датчик
Определение
Волоконно-оптический датчик — небольшое по размерам устройство, в котором оптическое волокно используется как в качестве линии передачи данных, так и в качестве чувствительного элемента, способного детектировать изменения различных величин.
Элементы, используемые в волоконно-оптических датчиках, являются абсолютно пассивными по отношению к электричеству, что позволяет применять их в различных отраслях[1].
Преимущества
Датчики на оптическом волокне, обладают целым рядом преимуществ:
- возможность мультиплексирования
- дистанционные измерения
- устойчивость к электромагнитным помехам
- отсутствие электричества в точке измерения
- долговременная стабильность
Принципы работы
Точечные датчики
Чувствительным элементом точечных волоконно-оптических датчиков являются волоконные брэгговские решетки. Волоконная брэгговская решетка представляет из себя селектирующее зеркало. Это значит, что если завести в оптоволокно излучение от широкополосного источника, то обратно отразится свет с очень узкой спектральной полосой с центром на длине волны Брэгга. Оставшийся свет продолжит идти в оптоволокне без каких-либо потерь. Длина волны Брэгга определяется периодом решетки и показателем преломления сердцевины.
Технология волоконных брэгговских решеток позволяет размещать множество датчиков в одной оптоволоконной линии и производить абсолютные измерения без калибровки. Эти уникальные особенности делают данную технологию наиболее подходящим и надежным решением для продолжительного мониторинга.
Распределенные датчики
Распределенный датчик температуры (distributed temperature sensor) состоит из двух частей — опросного устройства с лазерным источником и оптоволоконного измерительного кабеля. Данная система способна производить измерение температуры на большие расстояния. Принцип работы системы распределенного датчика заключается в следующем: опросное устройство испускает лазерный импульс длительностью 10 нс, который претерпевает обратное рассеивание в каждой точке оптоволоконного кабеля. Анализ спектра обратного рассеивания позволяет определить температуру каждой точки волоконно-оптического кабеля.[2]
Аналогично устроен распределённый акустический датчик (distributed acoustic sensor) — когерентный рефлектометр, только анализируется в нём не изменения спектра, а колебания интенсивности рассеянного излучения. По параметрам этих флуктуаций можно судить о вызвавшем данную акустическую волну источнике. Прибор используется как система мониторинга протяжённых объектов, а также для составления акустических сечений скважин.
Классификация датчиков
Точечные датчики
Существуют точечные датчики различных величин:
- деформации
- температуры
- давления
- вибрации
- угла наклона
- линейных перемещений
Распределенные датчики
Существуют распределенные датчики таких величин как:
- температуры
- деформации
Применения
Благодаря своим уникальным характеристикам, оптоволоконные датчики на основе брэгговских решеток нашли своё применение во многих областях, таких как строительство и геотехника, аэрокосмическая, энергетическая и нефтегазовая промышленность.
Системы мониторинга, основанные на данной технологии, экономически эффективны при использовании на
Различные типы оптических датчиков и приложения
Оптический датчик преобразует световые лучи в электронный сигнал. Назначение оптического датчика — измерить физическое количество света и, в зависимости от типа датчика, преобразовать его в форму, которая может быть считана встроенным измерительным устройством. Оптические датчики используются для бесконтактного обнаружения, подсчета или позиционирования деталей. Оптические датчики могут быть как внутренними, так и внешними. Внешние датчики собирают и передают необходимое количество света, в то время как внутренние датчики чаще всего используются для измерения изгибов и других небольших изменений направления.
Различные оптические датчики могут измерять такие величины, как температура, скорость, уровень жидкости, давление, смещение (положение), вибрации, химические вещества, силовое излучение, значение pH, деформация, акустическое поле и электрическое поле.
Типы оптических датчиков
Существуют различные типы оптических датчиков, наиболее распространенные типы, которые мы использовали в наших реальных приложениях, как указано ниже.
- Фотопроводящие устройства, используемые для измерения сопротивления путем преобразования изменения падающего света в изменение сопротивления.
- Фотоэлектрический элемент (солнечный элемент) преобразует количество падающего света в выходное напряжение.
- Фотодиоды преобразуют падающий свет в выходной ток.
Фототранзисторы — это тип биполярных транзисторов, в которых переход база-коллектор подвергается воздействию света. Это приводит к тому же поведению фотодиода, но с внутренним усилением.
Принцип действия заключается в передаче и приеме света в оптическом датчике, объект, который должен быть обнаружен, отражает или прерывает световой луч , излучаемый излучающим диодом .В зависимости от типа устройства оценивается прерывание или отражение светового луча. Это позволяет обнаруживать объекты независимо от материала, из которого они сделаны (дерево, металл, пластик или другой). Специальные устройства даже позволяют обнаруживать прозрачные объекты, объекты разного цвета или контрастности. Различные типы оптических датчиков описаны ниже.
Различные типы оптических датчиков
Датчики на пересечение луча
Система состоит из двух отдельных компонентов: передатчик и приемник расположены напротив друг друга.Передатчик проецирует световой луч на приемник. Прерывание светового луча интерпретируется приемником как сигнал переключения. Неважно, где происходит прерывание.
Преимущество: Могут быть достигнуты большие рабочие расстояния, и распознавание не зависит от структуры поверхности объекта, цвета или отражательной способности.
Чтобы гарантировать высокую эксплуатационную надежность, необходимо убедиться, что объект достаточно большой, чтобы полностью перекрыть световой луч.
Датчики на отражение от рефлектора
Передатчик и приемник находятся в одном доме, через отражатель излучаемый световой луч направляется обратно в приемник. Прерывание светового луча инициирует операцию переключения. Неважно, где происходит прерывание.
Преимущество: Датчики с отражением от рефлектора позволяют работать на больших расстояниях с точками переключения, которые точно воспроизводятся, требуя небольших усилий при установке. Все объекты, прерывающие световой луч, точно обнаруживаются независимо от структуры или цвета их поверхности.
Датчики диффузного отражения
Передатчик и приемник находятся в одном корпусе. Проходящий свет отражается обнаруживаемым объектом.
Преимущество: Интенсивность рассеянного света на приемнике служит условием переключения. Независимо от настройки чувствительности задняя часть всегда отражает лучше, чем передняя. Это приводит к ошибочным операциям переключения.
Различные источники света для оптических датчиков
Существует много типов источников света.Солнце и свет от горящих факелов были первыми источниками света, использованными для изучения оптики. Фактически, свет, исходящий от определенного (возбужденного) вещества (например, ионов йода, хлора и ртути), по-прежнему является опорными точками в оптическом спектре. Одним из ключевых компонентов оптической связи является источник монохроматического света. В оптической связи источники света должны быть монохромными, компактными и долговечными. Вот два разных типа источников света.
1.Светодиод (светоизлучающий диод)
В процессе рекомбинации электронов с дырками на стыках n-легированных и p-легированных полупроводников энергия выделяется в виде света. Возбуждение происходит путем приложения внешнего напряжения, и может происходить рекомбинация, или она может быть стимулирована как другой фотон. Это облегчает соединение светодиода с оптическим устройством.
Светодиод — это полупроводниковое устройство p-n, которое излучает свет, когда на его два вывода подается напряжение.
2.ЛАЗЕР (усиление света с помощью вынужденного эмиссионного излучения)
Лазер создается, когда электроны в атомах в специальных стеклах, кристаллах или газах поглощают энергию электрического тока, который они возбуждают. Возбужденные электроны перемещаются с орбиты с более низкой энергией на орбиту с более высокой энергией вокруг ядра атома. Когда они возвращаются в свое нормальное или основное состояние, это приводит к тому, что электроны испускают фотоны (частицы света). Все эти фотоны имеют одну длину волны и когерентны.Обычный видимый свет состоит из нескольких длин волн и не является когерентным.
LASAR Light Emission Process
Применение оптических датчиков
Применение этих оптических датчиков варьируется от компьютеров до датчиков движения. Чтобы оптические датчики работали эффективно, они должны быть подходящего типа для применения, чтобы сохранять чувствительность к измеряемым свойствам. Оптические датчики являются неотъемлемой частью многих распространенных устройств, включая компьютеры, копировальные аппараты (ксерокопии) и осветительные приборы, которые автоматически включаются в темноте.И некоторые из распространенных приложений включают системы сигнализации, синхронизаторы для фотографических вспышек и системы, которые могут обнаруживать присутствие объектов.
Датчики внешней освещенности
В основном мы видели этот датчик на наших мобильных телефонах. Это продлит срок службы батареи и позволит создавать удобные для просмотра дисплеи, оптимизированные для окружающей среды.
Датчики окружающего света
Биомедицинские приложения
Оптические датчики
находят надежное применение в биомедицине. Некоторые из примеров Анализ дыхания с использованием перестраиваемого диодного лазера. Оптический монитор сердечного ритма. Оптический монитор сердечного ритма измеряет ваш пульс с помощью света.Светодиод просвечивает сквозь кожу, а оптический датчик исследует отраженный свет. Поскольку кровь поглощает больше света, колебания уровня освещенности можно преобразовать в частоту сердечных сокращений. Этот процесс называется фотоплетизмографией.
Индикатор уровня жидкости на основе оптического датчика
Индикатор уровня жидкости на основе оптического датчика состоит из двух основных частей: инфракрасного светодиода, соединенного со световым транзистором, и прозрачного наконечника призмы на передней панели. Светодиод излучает инфракрасный свет наружу, когда наконечник датчика окружен воздухом, свет реагирует, отражаясь назад внутрь наконечника, прежде чем вернуться к транзистору.Когда датчик погружается в жидкость, свет рассеивается по всей поверхности и меньше возвращается в транзистор. Количество отраженного на транзисторе света влияет на выходные уровни, что делает возможным определение точечного уровня.
Оптический датчик уровня
У вас есть основная информация об оптическом датчике? Мы подтверждаем, что приведенная выше информация разъясняет основы концепции оптического датчика со связанными изображениями и различными приложениями в реальном времени. Кроме того, любые сомнения относительно этой концепции или реализации каких-либо проектов на основе датчиков, пожалуйста, дайте свои предложения и комментарии к этой статье, которые вы можете написать в разделе комментариев ниже.Вот вам вопрос, каковы разные источники света оптического датчика?
Типы тактильных датчиков и принцип их работы
WSG-DSA — это палец захвата, который объединяет тактильное распознавание для получения обратной связи профиля с высоким разрешением во время захвата. Для измерения используется интеллектуальный тактильный датчик DSA9205i. Он устанавливается поверх базовых губок WSG и напрямую связан с контроллером захвата через встроенный сенсорный порт в базовых губках, так что не требуются внешние компоненты и кабели для подключения тактильного устройства к вашим приложениям обработки.Эти типы датчиков пальцев обнаруживаются автоматически и параметризуются WSG. Профиль давления можно использовать изнутри контроллера захвата с помощью мощного интерфейса сценариев. В этой статье рассматриваются типы тактильных датчиков и их работа.
Что такое тактильный датчик?
Тактильный датчик — это устройство. Он измеряет поступающую информацию в ответ на физическое взаимодействие с окружающей средой. Чувство осязания у людей обычно моделируется, то есть кожное ощущение и кинестетическое чувство.Кожное прикосновение позволяет обнаруживать раздражители, возникающие в результате механической стимуляции, боли и температуры. Кинестетическое прикосновение получает сенсорные сигналы от рецепторов, находящихся внутри мышц, сухожилий и суставов.
Тактильный датчик
Типы тактильных датчиков
Существуют различные типы тактильных датчиков, которые приведены ниже
- Датчик силы / момента
- Динамический датчик
- Тепловой датчик
Датчик силы / момента
Датчики силы / момента используются в сочетании с тактильной антенной, чтобы предоставить информацию для управления силой.Эти типы датчиков могут воспринимать нагрузку в любом месте, например, на дистальном звене манипулятора, и в ограничениях, как датчик кожи. Датчик кожи обычно обеспечивает более точное измерение силы при более широкой полосе пропускания. Если звено манипулятора определено в общем и предполагается контакт точки сигнала, то датчик силы / момента может дать информацию о местоположении контакта силы и моментов — это называется внутренним тактильным восприятием. Изображение датчика крутящего момента показано ниже.
Датчик силы или крутящего момента
Динамический датчик
Динамические датчики — это небольшие акселерометры, расположенные на полосках пальцев или на коже пальца робота.Общая функция подобна тельцам Пачини у людей и имеет одинаково большие соответствующие поля; таким образом, одного или двух акселерометров достаточно для всего пальца. Эти датчики эффективно обнаруживают установление и разрыв контакта, вибрации, связанные со скольжением по текстурированным поверхностям.
Динамический датчик
Датчик уровня стресса — это второй тип динамических тактильных датчиков. Если кончик пальца скользит со скоростью несколько см / с в целом по поверхности с небольшими неровностями или ямками, временные изменения на коже становятся важными.Пьезоэлектрический полимер, такой как PVDF, производит заряд в ответ на повреждение, который может быть применен для создания тока, который прямо пропорционален диапазону изменения.
Датчик температуры
Датчик температуры важен для способности человека определять материалы, из которых изготовлены объекты, но некоторые из них также используются в робототехнике. Тепловое зондирование включает в себя определение температурных градиентов на коже, которые соответствуют как температуре, так и теплопроводности объекта.Роботизированные термодатчики задействованы в переходах Пельтье в сочетании с термисторами.
Тепловой датчик
Принцип работы и принципиальная схема тактильного датчика
Тактильные датчики разработаны для обеспечения тактильного ощущения для телеоперационных манипуляторов и интеллектуальных роботов. Тактильные датчики могут идентифицировать нормальную силу, приложенную к тактильным пикселям, чтобы гипнотизировать управление силой и тактильные изображения, а также для распознавания объектов. Однако для получения тактильных изображений и нормальных сил информация о касательной имеет решающее значение для управления силой и предотвращения скольжения, что завораживает успех задачи — поэтому требуются трехмерные тактильные датчики.
Принципиальная схема тактильного датчика
Существует несколько трехмерных тактильных датчиков, разработанных с использованием пьезорезистивных, емкостных и дополнительных чувствительных элементов, и эти тактильные датчики изготовлены по технологии MEMS. Интегрированные чувствительные элементы и схемы предварительной обработки предназначены для компактности, но они слишком слабы и легко ломаются для большинства приложений; и, например, диапазон силы тактильного датчика составляет всего 0,01 Н w4x, а другие тактильные датчики не предусмотрены технологией MEMS.На приведенной ниже схеме показана схема тактильного датчика.
Тактильный датчик в робототехнике
Тактильный датчик, который используется в роботах НАСА, приведен ниже
- Один из примеров, непосредственно связанных с исследованием планет.
- НАСА использует эти датчики на международной космической станции для помощи людям в ремонте / обслуживании окружающей среды.
- НАСА испробовало множество тактильных датчиков в робототехнике, которые находятся на начальной стадии. Они использовали резистор, чувствительный к силе, и теперь используются композиты с квантовым туннелированием. используется в
Преимущества тактильного датчика
Ниже приведены преимущества тактильного датчика:
- Они предлагают простые в использовании решения тактильных датчиков
- Тактильный датчик не имеет внешних компонентов и кабелей
- Компактное извлечение
- Проверено тактильно сенсорная техника от робототехники.
Речь идет о принципе работы и применении тактильного датчика. мы надеемся, что данная информация будет полезна для предоставления хорошей информации и понимания проекта. Кроме того, если у вас есть какие-либо вопросы относительно этой концепции в электрических и электронных проектах, вы можете прокомментировать их в следующем разделе. Вот вам вопрос — каковы функции тактильных датчиков?
Авторы фотографий:
Что такое датчик? Различные типы датчиков, приложения
Мы живем в мире датчиков.Вы можете найти различные типы датчиков в наших домах, офисах, автомобилях и т. Д., Которые облегчают нашу жизнь, включая свет, обнаруживая наше присутствие, регулируя температуру в помещении, обнаруживая дым или огонь, готовя нам вкусный кофе, открывая двери гаража как только наша машина оказывается у дверей и многие другие задачи.
Все эти и многие другие задачи автоматизации возможны благодаря датчикам. Прежде чем перейти к деталям того, что такое датчик, каковы различные типы датчиков и области применения этих различных типов датчиков, мы сначала рассмотрим простой пример автоматизированной системы, которая возможна благодаря датчикам ( а также многие другие компоненты).
Применение датчиков в реальном времени
Пример, о котором мы говорим, — это система автопилота в самолетах. Почти все гражданские и военные самолеты имеют функцию автоматического управления полетом или иногда называются автопилотом.
Автоматическая система управления полетом состоит из нескольких датчиков для различных задач, таких как контроль скорости, высоты, положения, дверей, препятствий, топлива, маневрирования и многих других. Компьютер берет данные со всех этих датчиков и обрабатывает их, сравнивая с заранее заданными значениями.
Затем компьютер передает управляющий сигнал различным частям, таким как двигатели, закрылки, рули направления и т. Д., Которые помогают обеспечить плавный полет. Комбинация датчиков, компьютеров и механики позволяет управлять самолетом в режиме автопилота.
Все параметры, то есть датчики (которые предоставляют входные данные для компьютеров), компьютеры (мозги системы) и механики (выходные данные системы, такие как двигатели и моторы) одинаково важны для построения успешной автоматизированной системы.
Но в этом руководстве мы сконцентрируемся на сенсорной части системы и рассмотрим различные концепции, связанные с сенсорами (например, типы, характеристики, классификация и т. Д.).
Что такое датчик?
Существует множество определений того, что такое датчик, но я хотел бы определить датчик как устройство ввода, которое обеспечивает выход (сигнал) по отношению к определенной физической величине (вход).
Термин «устройство ввода» в определении датчика означает, что он является частью более крупной системы, которая обеспечивает ввод данных для основной системы управления (например, процессора или микроконтроллера).
Еще одно уникальное определение датчика: это устройство, которое преобразует сигналы из одной энергетической области в электрическую. Определение сенсора можно понять, если мы рассмотрим пример.
Простейшим примером датчика является LDR или светозависимый резистор. Это устройство, сопротивление которого зависит от интенсивности света, которому оно подвергается. Когда свет, падающий на LDR, больше, его сопротивление становится очень меньше, а когда света меньше, ну, сопротивление LDR становится очень высоким.
Мы можем подключить этот LDR к делителю напряжения (вместе с другим резистором) и проверить падение напряжения на LDR. Это напряжение можно откалибровать по количеству света, падающего на LDR. Следовательно, датчик освещенности.
Теперь, когда мы узнали, что такое датчик, мы продолжим классификацию датчиков.
Классификация датчиков
Существует несколько классификаций датчиков, составленных разными авторами и экспертами. Некоторые из них очень простые, а некоторые очень сложные.Следующая классификация датчиков может уже использоваться специалистом в данной области, но это очень простая классификация датчиков.
В первой классификации датчиков они делятся на активные и пассивные. Активные датчики — это датчики, которым требуется внешний сигнал возбуждения или сигнал мощности.
С другой стороны, пассивные датчики
не требуют внешнего сигнала питания и напрямую генерируют выходной сигнал.
Другой тип классификации основан на средствах обнаружения, используемых в датчике.Некоторые из средств обнаружения: электрические, биологические, химические, радиоактивные и т. Д.
Следующая классификация основана на явлении преобразования, то есть на входе и выходе. Некоторые из общих явлений преобразования: фотоэлектрические, термоэлектрические, электрохимические, электромагнитные, термооптические и т. Д.
Окончательная классификация датчиков — аналоговые и цифровые датчики. Аналоговые датчики выдают аналоговый выходной сигнал, т.е. непрерывный выходной сигнал в зависимости от измеряемой величины.
Цифровые датчики
, в отличие от аналоговых датчиков, работают с дискретными или цифровыми данными. Данные в цифровых датчиках, которые используются для преобразования и передачи, имеют цифровой характер.
Различные типы датчиков
Ниже приводится список различных типов датчиков, которые обычно используются в различных приложениях. Все эти датчики используются для измерения одного из физических свойств, таких как температура, сопротивление, емкость, проводимость, теплопередача и т. Д.
- Датчик температуры
- Датчик приближения
- Акселерометр
- ИК-датчик (инфракрасный датчик)
- Датчик давления
- Датчик освещенности
- Ультразвуковой датчик
- Датчик дыма, газа и алкоголя
- Датчик касания
- Датчик цвета
- Датчик влажности
- Датчик наклона
- Датчик расхода и уровня
Мы вкратце рассмотрим некоторые из вышеупомянутых датчиков.Дополнительная информация о датчиках будет добавлена позже. Список проектов, использующих вышеуказанные датчики, приведен в конце страницы.
Датчик температуры
Одним из самых распространенных и популярных датчиков является датчик температуры. Датчик температуры, как следует из названия, определяет температуру, то есть измеряет изменения температуры.
В датчике температуры изменения температуры соответствуют изменению его физических свойств, таких как сопротивление или напряжение.
Существуют различные типы датчиков температуры, такие как микросхемы датчиков температуры (например, LM35), термисторы, термопары, RTD (резистивные датчики температуры) и т. Д.
Датчики температуры
используются везде, например, в компьютерах, мобильных телефонах, автомобилях, системах кондиционирования воздуха, в промышленности и т. Д.
В этом проекте реализован простой проект с использованием LM35 (датчик температуры по шкале Цельсия): СИСТЕМА УПРАВЛЕНИЯ ТЕМПЕРАТУРОЙ .
Датчики приближения
Датчик приближения — это датчик бесконтактного типа, определяющий присутствие объекта.Датчики приближения могут быть реализованы с использованием различных методов, таких как оптические (например, инфракрасные или лазерные), ультразвуковые, на эффекте Холла, емкостные и т. Д.
Некоторые из применений датчиков приближения: мобильные телефоны, автомобили (датчики парковки), промышленность (выравнивание объектов), определение расстояния до земли в самолетах и т. Д.
В этом проекте реализован датчик приближения
при парковке задним ходом: ЦЕПЬ ДАТЧИКА ЗАДНЕЙ ПАРКОВКИ .
Инфракрасный датчик (ИК-датчик)
Инфракрасные датчики
или инфракрасный датчик — это датчик на основе света, который используется в различных приложениях, таких как обнаружение приближения и объектов.ИК-датчики используются в качестве датчиков приближения почти во всех мобильных телефонах.
Существует два типа инфракрасных или инфракрасных датчиков: пропускающий и отражающий. В ИК-датчике пропускающего типа ИК-передатчик (обычно ИК-светодиод) и ИК-детектор (обычно фотодиод) расположены лицом друг к другу, так что, когда объект проходит между ними, датчик обнаруживает объект.
Другой тип ИК-датчика — ИК-датчик отражающего типа. При этом передатчик и детектор располагаются рядом друг с другом лицом к объекту.Когда объект приближается к датчику, датчик обнаруживает объект.
Различные области применения, в которых используется ИК-датчик: мобильные телефоны, роботы, промышленная сборка, автомобили и т. Д.
Небольшой проект, в котором ИК-датчики используются для включения уличных фонарей: УЛИЧНЫЕ ФОНАРИИ ИСПОЛЬЗУЮТ ИК-ДАТЧИКИ .
Ультразвуковой датчик
Ультразвуковой датчик — это устройство бесконтактного типа, которое можно использовать для измерения расстояния, а также скорости объекта.Ультразвуковой датчик работает на основе свойств звуковых волн с частотой выше, чем у человеческого слышимого диапазона.
Используя время распространения звуковой волны, ультразвуковой датчик может измерить расстояние до объекта (аналогично SONAR). Свойство звуковой волны Доплеровский сдвиг используется для измерения скорости объекта.
Дальномер на базе Arduino — это простой проект, использующий ультразвуковой датчик: ПОРТАТИВНЫЙ УЛЬТРАЗВУКОВОЙ ДИАМЕТР .
Ниже приводится небольшой список проектов, основанных на нескольких из вышеупомянутых датчиков.
Датчик освещенности — СВЕТИЛЬНИК, ИСПОЛЬЗУЮЩИЙ LDR
Датчик дыма — ЦЕПЬ СИГНАЛИЗАЦИИ ДЫМОВОГО ДЕТЕКТОРА
Датчик алкоголя — КАК ЗАВОДИТЬ КОНТУРУ ДЫХАТЕЛЬНОГО АЛКОГОЛЯ?
Датчик касания — ЦЕПЬ ПЕРЕКЛЮЧАТЕЛЯ СЕНСОРНОГО ДИММЕРА, ИСПОЛЬЗУЯ ARDUINO
Датчик цвета — ДЕТЕКТОР ЦВЕТА НА ОСНОВЕ ARDUINO
Датчик влажности
— ДАТЧИК ВЛАЖНОСТИ DHT11 НА ARDUINO
Датчик наклона — КАК СДЕЛАТЬ ДАТЧИК НАКЛОНА С ARDUINO?
В этой статье мы узнали о том, что такое датчик, какова классификация датчиков и различные типы датчиков, а также их практическое применение.
IoT-приложений популярных датчиков
В этой статье мы обсудим самый популярный датчик со свойствами в платформе IoT. В настоящее время сенсоры играют важнейшую роль в устройствах.
Датчики — преобразует физическую величину в электрический или цифровой сигнал.
Вот некоторые типы датчиков, которые мы собираемся обсудить в этой статье:
- Датчик влажности и температуры
- Датчик температуры
- Датчик приближения
- Индуктивный датчик
- Емкостный датчик
- Оптический датчик
- Ультразвуковой датчик
- Акселерометр
- Датчик движения PIR
- Датчик изображения
- Датчик газа
- Датчик качества воздуха
- Датчик дыма
- ИК-датчик
- Датчик уровня
Датчик влажности и температуры
Датчики влажности и температуры используются для измерения влажности и температуры окружающего воздуха.Различные датчики температуры разработаны на основе применения с аналоговым и цифровым выходом. Пример LM35 и DHT11, DHT22. В приложении автоматизации широко используется датчик DHT11 из-за вывода в цифровой форме. Цифровые данные поступают с вывода данных каждые 2 секунды. Здесь мы обсуждаем спецификацию DHT11 .
Определение контакта
- Vcc — Входное напряжение
- GND — Контакт заземления
- NC — Контакт без соединения (в этот контакт необходимо добавить изготовление SOIC14)
- Out — Цифровой вывод данных.
Технические характеристики
Рабочее напряжение
от 3,3 до 5 В постоянного тока
Диапазон измерения
20-95% RH (относительная влажность) ; 0-50 ℃
Разрешение
8-битная влажность, 8-битная температура
Интерфейсы
3-контактные интерфейсы, 4-контактные интерфейсы
Размер печатной платы
22.0 мм X 20,5 мм X 1,6 мм
Датчик температурыЭтот датчик используется для измерения температуры окружающей среды и выходного напряжения, линейно пропорционального температуре по Цельсию. Рабочее напряжение составляет 4-30 В, и это аналоговый датчик, основанный на применении различных транзисторов.
Технические характеристики
Рабочее напряжение 4-30 В Рабочая температура (C)
от -40 до 110, от -55 до 150, от 0 до 100, от 0 до 70
Ток питания (мкА)
114 Выход Аналоговый выход Датчик приближения
Датчик способен обнаруживать ряд объектов с помощью излучения электромагнитного поля или пучка электромагнитного излучения без какого-либо физического контакта.Его также можно использовать для распознавания воздушных жестов и манипуляций при наведении курсора.
Схема контактов
- Vcc — источник питания 5V
- Out — Вывод данных
- GND — Земля
Есть четыре типа датчиков приближения:
1. Индуктивный датчик приближения
Это электромагнитный датчик, используемый для обнаружения металлических предметов, не касаясь их, а также принцип работы катушки и высокочастотного генератора.Катушка и генератор создают магнитное поле на окружающей поверхности. Дальность обнаружения зависит от размера катушки. Он обнаружит только металлические предметы.
Приложения
- Автостоянка
- Промышленное применение
2. Емкостной датчик приближения
Это бесконтактный металлический предмет и неметаллические предметы, такие как вода и пластик. Он измеряет изменение емкости между датчиком и объектом и диапазон расстояний с помощью одного микродюйма, который можно измерить.Объект приближается к датчику и емкость увеличивается — из-за этого объект удаляется, и емкость уменьшается.
Приложения
- Мобильные телефоны
- Ноутбуки
- Компьютерные дисплеи
3. Оптический датчик приближения
Это неметаллический датчик, используемый для обнаружения объекта и измерения расстояния между объектом и датчиком. Принцип работы Оптический датчик состоит из передатчика (источника света) и приемника (детектора света).Когда передатчик передает источники света, а объект отражает источник света, объект отражается как приемник (фотодиод).
Приложения
- Безопасность
- Автомобиль
- Измеренное расстояние
- Датчик уровня
4. Ультразвуковой датчик
Ультразвуковой датчик или ультразвуковой преобразователь — один из самых популярных датчиков, используемых в приложениях IoT.
Принцип работы: Передатчик передает ультразвуковые волны в воздухе направления пересылки, и когда объект находится там, он отражается в сторону приемника.Приемник (фотодиод) принимает ультразвуковые волны .Расстояние = Скорость x Время
Теперь мы должны знать скорость и расстояние, а затем рассчитать расстояние до объекта.
Определение штифта
VCC Источник питания 5 В Триг Триггер — это входной контакт. Он будет держаться на высоком уровне за 10 мкс Эхо Выходной контакт. ЗЕМЛЯ Штифт заземления. Технические характеристики
Теоретическое расстояние измерения
2–450 см
Практическое расстояние измерения
2–80 см
Точность
3 мм
Рабочий ток
<15 мА
Частота
40 Гц
Приложения
Акселерометр
Этот датчик теперь представлен миллионами интеллектуальных устройств.Как и смартфон, защита от кражи и т. Д., Принцип работы заключается в том, что механическая энергия преобразуется в выходной электрический сигнал. Он определяется скоростью изменения скорости во времени.
Определение штифта
Vcc +3 к + 5В Земля Земля системы SCL Последовательные часы через связь I2C
SDA Последовательные данные через связь I2C
XCL Интерфейс часов, другие модули I2C (дополнительно)
XDA Интерфейс данных другие модули I2C
АДО Более 1 датчика в MCU, затем этот вывод используется для изменения адреса
Прерывание Данные доступны на микросхеме для чтения MP
Технические характеристики
- Связь — протокол I2C
- 16-битный АЦП
- Другой интерфейс I2C
- Настраиваемый адрес ICC
Приложения
Датчик движения PIR
Датчик движения PIR означает пассивный инфракрасный датчик.Он может обнаруживать присутствие людей или животных. Выходное напряжение датчика составляет 3,3 В. Он имеет одну секцию триггера для повторяющегося и неповторяемого режима. В повторяющемся режиме он может обнаруживать низкое напряжение на выходном контакте человека, но неповторяемый режим не может иметь низкий выходной сигнал. Когда объект выходит за пределы диапазона, он понижается. Внутренняя часть пироэлектрического датчика была прикреплена.
Спецификация схемы контактов
Блок питания 4.5 — 12В Выходная мощность
3,3 В при низком выходном сигнале обнаружения движения (0 В)
Земля
Заземлите
Время задержки
Повернуть до регулировки
Чувствительность
Поверните для регулировки чувствительности
Триггерная секция Повторяющийся и неповторяемый режим
Угол зондирования
от 110 до 90 градусов
Приложения
- Камеры безопасности
- Сигнализация
- Садовая сигнализация
- Управление автоматикой
Датчик изображения
Датчики изображения используются для преобразования оптических изображений в электрические сигналы.Устройство камеры используется для захвата света. Это отражает способность дальтоника CMOS-сенсора реагировать на различные цвета света. Микролинза используется для фокусировки входящего сигнала. Это один из самых популярных датчиков в отрасли .
Приложения
- Камера
- Сонар
- Оборудование ночного видения
- Производство автомобилей
- Радар
Датчик газа
Он используется для отслеживания изменений качества воздуха и обнаружения различных газов.В этом датчике, который в основном используется в обрабатывающей промышленности, на космических станциях и в химической промышленности, доступен альтернативный датчик газа, но в основном MQ2 используется в отраслях Интернета вещей.
Датчики газа различных типов:
- Каталитический шариковый датчик
- Датчик водорода
- Датчик загрязнения воздуха
- Датчик оксида азота
- Датчик кислорода
- Озоновый монитор
- Датчик газа электрохимический
- Детектор газа
- Гигрометр
Датчик MQ2
DOUT Цифровой выход от 0 до 5 В AOUT Аналоговый выход от 0 до 5 В ЗЕМЛЯ Земля для системы Vcc + 5В Приложения
- Лаборатория
- Химический завод
- Промышленное и др.
ИК-датчик
ИК-датчик используется для удаленного приложения, такого как TV Remote. Светодиод датчика излучает инфракрасное излучение, а фотодиод может принимать инфракрасное излучение. В ИК-диапазоне излучение прозрачное.
Определение штифта
Vcc + 5В ЗЕМЛЯ Земля ВЫХ Цифровой выход Электропитание 20 мА ИК-излучатель 5 мм светодиод ИК-приемник Фотодиод Триггер Отрегулируйте расстояние Индикатор питания Состояние устройства Светодиод препятствий Уведомление об обнаружении препятствий Диапазон до 20 см Приложения
- Пульт дистанционного управления
- отрасли Безопасность
Датчик уровня
Датчик уровня используется для контроля уровня или количества жидкости.
- НАСА испробовало множество тактильных датчиков в робототехнике, которые находятся на начальной стадии. Они использовали резистор, чувствительный к силе, и теперь используются композиты с квантовым туннелированием. используется в