25.11.2024

Оптический датчик принцип работы: Конспект Оптические датчики положения

Содержание

Конспект Оптические датчики положения

Оптические датчики положения

Оптический датчик положения представляет собой электронное устройство, реагирующее на изменение принимаемого светового потока. Оптические датчики положения используются для определения наличия (отсутствия) объекта в заданном пространстве, поскольку наличие (отсутствие) объекта приводит к изменению параметров светового потока, принимаемого датчиком. Для повышения эффективности работы оптических датчиков положения и улучшения их характеристик производится модуляция и пространственная селекция светового излучения.

Эти меры позволяют устранять влияние посторонних световых засветок и помехи от других оптических датчиков.

Принцип работы оптических датчиков положения

Оптические датчики положения состоят из 2-х функционально законченных узлов — источника оптического излучения и приемника этого излучения. Источник оптического излучения (передатчик) и приемник могут быть в одном корпусе или в разных корпусах.

Рис.109. Оптический датчик

Источник: http://www.straus-com.ru/fstore/vb1.jpg

Передатчик

Генератор вырабатывает последовательность электрических импульсов на излучатель оптического датчика положения

Излучатель — светодиод, создающий излучение оптического диапазона.

Индикатор показывает наличие напряжения питания на передатчике оптического датчика положения.

Оптическая система формирует диаграмму направленности излучения и при необходимости его поляризацию.

Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

Приемник излучения

Оптическая система формирует диаграмму направленности приемника излучения и при необходимости производит поляризационную селекцию.

Фотоприемник воспринимает оптическое излучение и преобразует его в электрический сигнал.

Усилитель усиливает входной сигнал до необходимого значения.

Пороговый элемент обеспечивает необходимую крутизну фронта выходного сигнала и величину гистерезиса.

Электронный ключ обеспечивает коммутацию выходного тока датчика, определяет схему подключения нагрузки, имеет защиту от перегрузки и короткого замыкания.

Светодиодный цветной индикатор показывает состояние датчика, позволяет определить функциональный резерв по выбранному объекту, обеспечивает контроль работоспособности, оперативность настройки.

Регулятор чувствительности позволяет производить настройку датчика по фактической контрастности объекта на фоне окружающих предметов.

Функциональный резерв определяется как отношение светового потока, полученного приемником, к минимальному световому потоку, вызывающему срабатывание выключателя. Функциональный резерв позволяет компенсировать ослабление сигнала в результате загрязнения оптики и наличия аэрозольных компонентов в окружающем пространстве.

Цветной светодиодный индикатор работает следующим образом:

при отсутствии сигнала на входе приемника индикатор не светится

при появлении сигнала с уровнем, при котором происходит срабатывание выключателя, индикатор светится зеленым цветом

при дальнейшем увеличении уровня сигнала зеленый цвет плавно изменяется через желтый — оранжевый до красного

Контрастность объекта определяется его собственным коэффициентом отражения и величиной отраженного света от окружающего фона.

Принцип работы оптических датчиков положения на прямом луче (Тип T)

Оптические датчики, работающие на прямом луче, состоят из приемника и передатчика, выполненных в отдельных корпусах. При эксплуатации они располагаются соосно дуг против друга. Поток излучения от излучателя передатчика направлен на приемник. Срабатывание происходит при прерывании луча объектом. Датчики использующие принцип прерывания луча, отличаются большой дальностью действия — до нескольких десятков метров и большой помехозащищенностью от воздействия посторонних факторов (пыль, капли воды и других жидкостей)

Основными недостатками таких датчиков является наличие двух отдельных изделий, что не всегда удобно при их монтаже и прокладке проводов питания к ним.

Необходимо иметь в виду, что:

посторонние предметы с высоким коэффициентом отражения, подобные рефлектору, находящиеся в области перекрытия диаграмм направленностей приемника и передатчика, могут вызвать ложное срабатывание;

прозрачные и полупрозрачные объекты недостаточно ослабят луч до порога срабатывания.

Для уменьшения или полного устранения вышеперечисленных эффектов оптические выключатели снабжены регуляторами чувствительности.

Диаметр прямого луча определяет минимальный размер регистрируемого объекта.

Принцип работы оптических датчиков положения на отраженном луче (Тип D)

В оптических датчиках, использующих эффект диффузного и зеркального отражения потока излучения от объекта, приемник и излучатель выполнены в одном корпусе. Поток излучения от передатчика попадает на поверхность объекта, от которого происходит его отражение в различных направлениях. Распределение отраженного потока определяется оптическими свойствами объекта. Часть потока возвращается обратно в приемник, вызывая его срабатывание.

Преимущество данного вида датчиков заключается в простоте применения, при котором не требуется никаких дополнительных приборов.

При использовании датчиков данного типа необходимо учитывать возможность появления ложных срабатываний в случае появления за контролируемым объектом предметов с гораздо большей отражательной способностью. В этих случаях следует применять диффузные оптические датчики с подавлением фона.

Поскольку различные материалы отражают падающий на них поток излучения по-разному, то для нормирования расстояния срабатывания выбран стандартный объект воздействия — лист белой бумаги с размерами 100×100мм для выключателей с расстоянием срабатывания до 400мм и лист белой бумаги с размерами 200×200мм для выключателей с расстоянием срабатывания более 400мм.

Принцип работы оптических датчиков положения на отраженном от рефлектора луче (Тип R)

Излучение светодиода имеет круговую поляризацию, т.е. представляет собой совокупность множества плоскополяризованных пространственных световых колебаний (волн) с различными плоскостями поляризации.

Если на пути луча установить оптический поляризационный фильтр, то через него пройдут только те волны, плоскость поляризации которых совпадает с плоскостью поляризации фильтра. Таким образом, поляризационный фильтр формирует луч с плоской поляризацией.

При отражении поляризованного луча от различных предметов плоскости поляризации падающего и отраженного луча, как правило, совпадают.

Плоскость поляризации изменяется на 90 град. при отражении от специальных световозвращателей (уголковых отражателей или рефлекторов).

Если на пути поляризованного луча расположить еще один поляризационный фильтр с плоскостью поляризации, развернутой на 90град. по отношению к первому, то луч через него не пройдет. Таким образом, данный фильтр будет для него барьером.

Принцип работы оптических датчиков положения на отраженном от рефлектора луче (Тип R)

Выбор, применение и подключение оптоволоконных датчиков

Знания о наличии деталей в машинах, работе осветительной арматуры, наличии деталей на конвейерах автоматических линий – один из важнейших компонентов промышленной автоматизации. Последовательность ошибок при сборке деталей и управлении процессами часто необходимо для выявления причины отказа. Во многих случаях ошибка происходит из-за отсутствия детали, необходимой для сборки, или ее плохого качества. Для избегания этого устанавливается датчик, который выполняет функцию проверки наличия необходимых деталей.

Существует огромное количество различных типов датчиков – индуктивные, емкостные, магнитные, фотоэлектрические. Каждый из них имеет свои сильные и слабые стороны в зависимости от области применения. Тем не менее, фотоэлектрические датчики имеют наиболее широкое предложение различных технологий  и типов, а также самый широкий спектр применения.

Фотоэлектрические датчики бывают с различными типами светового излучения (инфракрасного, видимого красного, класс лазера 1 и 2), чувствительных технологий (диффузных, подавление фона, светоотражающих, однолучевой) и с различными конфигурациями корпуса (фото глаз (photo eye) или волоконно-оптические). В данной статье рассматриваются определение и применение волоконно-оптических датчиков (или как их еще называют оптоволоконные датчики), которые предлагают расширенные возможности и параметры конфигурации, и прекрасно подходят для узких мест, которые слишком малы для датчика фото глаз (photo eye).

Оптоволоконная технология

Оптоволоконные датчики включают в себя два устройства, которые обычно указываются отдельно: усилитель, который часто называют электронным или  волоконно-фотоэлектрическим усилителем; и оптоволоконный кабель, который включает в себя оптическую головку и волоконно-оптический кабель, пропускающий свет от усилителя.

Принцип работы всех фотоэлектрических датчиков довольно прост. Каждый прибор имеет излучатель световых волн и приемник, который обнаруживает этот сигнал. При этом существует множество технологий для обнаружения и измерения световых волн, поступающих на приемник. Например, датчики подавления фона отслеживают угол, под которым возвращается световая волна, в то время как стандартные фотоизмерители отслеживают количество света, возвращаемого к датчику. Другие разновидности фотоизмерительных устройств контролируют время возврата световой волны, тем самым обеспечивая измерение расстояния.

Пара источник-приемник может устанавливаться как в одной оптической головке (при использовании диффузных и отражательных единиц), так и в двух оптических головках (использование однолучевых единиц). Волоконно-оптические датчики помещают в один корпус всю электронику с оптическими головками для излучателя и приемника световых волн, в котором приемник отделен от подключенной к корпусу электроники оптоволоконным кабелем. Излучаемые и получаемые волны проходят через этот кабель так же, как и при высокоскоростной передачи данных в волоконно-оптических сетях.

Одним из преимуществ такого разделения является то, что головка измерителя должна устанавливаться на измеряемом объекте. Интегрированный волоконно-оптический кабель прокладывается и подключается к усилителю, который может быть установлен в безопасном месте (как правило, шкаф управления), защищая его от часто жесткой производственной среды.

Разнообразие вариантов, доступных для обоих усилителей и волоконно-оптических кабелей просто огромен. Усилители варьируются от примитивных до сложных, а машиностроители продолжают требовать больше функций, в том числе логических и коммуникационных возможностей.

Усилители для оптоволоконных датчиков

Волоконно-оптические усилители варьируются от имеющих базовую комплектацию электронных компонентов и функциональности, до  устройств типа «подключи и работай»,  для моделей с полностью настраиваемой электроникой.  У некоторых даже есть электронные блоки, которые могут обрабатывать до 15 входов волокон в конфигурации коллекторного типа. Индикация выхода крайне желательна, поскольку он показывает, работает ли датчик корректно, но другие основные функции (таблица ниже) также должны быть указаны:

Формат вывода и подключения к усилителям имеют важное значение, поскольку они определяют интерфейс к контроллеру, так как установка и сброс настроек является неотъемлемой частью конфигурации усилителя.

Типы выходов могут быть либо нормально открытыми (NO), либо нормально закрытыми (NC), а подключение может осуществляться по типу sinking, sourcing или push-pull. Параметры электрического соединения предварительно монтируются, как правило, с кабелем длиной 2 метра или quick disconnect со стандартным многоконтактным разъемом  M8 или M12. Установки переключателей программируются с помощью потенциометра или в цифровом виде, с помощью кнопок.

Помимо основных, расширенные возможности усилителей обеспечивают существенную гибкость с такими функциями как: импульсные выходы, задержки включения / отключения, а также возможность исключить прерывистые сигналы. Эти передовые элементы современной электроники дают машиностроителям возможность детализировать и корректировать параметры усилителя в соответствии с требованиями установки.

Задержки включения / отключения часто применяют для замедления реакции системы управления на изменения регистрируемых параметров. В случае прерывистых сигналов, некоторые приложения возвращают датчикам краткосрочные паразитные сигналы, которые не согласуются с общими условиями эксплуатации. Возможность устранить эти сигналы на датчике освобождает контроллер от этой задачи.

Большинство моделей снабжены светодиодами выходного состояния, в то время как некоторые предлагают дисплеи, на которых представлены сведения о силе сигнала и состояния выхода. Более продвинутые блоки имеют многострочные OLED дисплеи с настраиваемыми функциями диагностики и возможностью программирования.

Фильтрация сигнала часто требует увеличения частоты дискретизации, так как это обеспечивает более устойчивое измерение при изменяющихся условиях окружающей среды. Это усиливает сигнал, но заставляет блок работать на более низких частотах коммутации. Импульсные выходы позволяют растягивать входной сигнал, что может быть полезно в случае слишком большой частоты для входа программируемого логического контроллера ПЛК. Задержки включения/отключения позволяют потребителям устанавливать необходимые времена задержки выходных и входных сигналов.

Дополнительные блоки обеспечивают больше возможностей программирования, например, настройка чувствительности. С помощью данных опций пользователи могут подгонять чувствительность измерительного элемента для работы со сложными материалами, такими как стекло. Данная функция обучения устраняет или уменьшает необходимость в программировании контроллера для выполнения данных функций. Они также могут запрограммировать выход для включения/отключения между двух точек переключения. Например, для позиционирования деталей, переключатель включается в одном положении и отключается в другом, отслеживая при этом положение детали в пространстве.

Видимость света оптоволоконного кабеля

Волоконно-оптические кабели не проводят электрический ток — они пропускают свет. Они изготавливаются с различными конфигурациями и из различного материала, а также имеют различные типы чувствительной головки. В таблице ниже приведены некоторые из основных параметров оптоволоконных кабелей:

Диффузные волоконно-оптические кабели состоят  из двух шпон – одна для соединения с усилителем, а вторая с чувствительной головкой. При чем с чувствительной головкой соединяют два кабеля – тот который подключается к источнику света, и тот который подключается к измерительному элементу. Однолучевые волоконно-оптические кабели имеют два отдельных идентичных кабеля, которые подключаются к усилителю и каждый имеет свою оптическую головку. Один кабель передает свет – другой его принимает. Частая ошибка при работе с однолучевыми кабелями – это заказ только одного кабеля из двух. Это связано с тем, что некоторые поставщики могут поставлять только одну часть системы по номеру детали, поэтому при выборе однолучевых кабелей будьте внимательны.

Волоконные материалы, как правило, состоят из пластика или стекла. Пластиковые блоки тоньше, дешевле, обеспечивают большие радиусы изгиба. Стеклянные блоки более прочные и имеют более высокие рабочие температуры. Пластиковые волокна можно отрезать до нужной длины с помощью специального резака, в то время как стеклянные обрезаются только раз – при изготовлении и поставляются нужной длины. Оболочка волоконного материала может варьироваться от экструдированного пластика до оплетки из нержавеющей стали, для работы в самых неблагоприятных условиях.

Выбор оптической головки – самый важный этап в выборе оптоволоконного датчика.  Это связано с тем, что именно чувствительность головки влияет на обнаружение небольших неподвижных или подвижных частей. Выбор головки зависит от того, под каким углом излучатель и приемник расположены к измеряемому объекту, а также от дисперсии. Головки могут иметь округлые пучки волокна для создания кругового луча или протяженные, для создания горизонтальных проекций.

Круглые пучки в диффузионной головке могут быть строго разветвлены со всеми волокнами источника на одной половине, и с волокнами  приемника на другой половине. Такая конструкция встречается часто, но она может приводить к запаздыванию считывания информации с части, движущейся перпендикулярно к бифуркационной линии. Существует вариант с равномерным распределением волокон источника и приемника сигнала для получения более равномерных лучей. Равномерное распределение позволяет выравнивать воздействия при отправке и получении световых волн, что обеспечивает обнаружение независимо от направления движения.

На расстояние срабатывания волоконной оптики будет оказывать влияние усилитель, тип оптической головки, длина волокна кабеля. Исходя из этих трех параметров, влияющих на работу датчика, точную оценку точности и диапазона срабатывания дать трудно, но производители, как правило, приводят эти данные. Однолучевой датчик имеет больший диапазон, чем диффузный. Чем длиннее волокна кабеля, тем короче диапазон, а также стоит отметить, усовершенствованные усилители обычно имеют более сильные излучающие сигналы и более длинные диапазоны.

Подключение волоконно-оптических датчиков

Использование распределенного ввода / вывода и распределенных интеллектуальных систем растет во всей промышленной автоматизации, и волоконно-оптические датчики не являются исключением. Подключение нескольких волоконно-оптических кабелей датчиков к одному электронному коллектору имеет свои преимущества.

Волоконно-оптические усилители, как правило, одноканальные автономные устройства. С тонкими корпусами и креплением на DIN-рейку, они легко могут быть вмонтированы в панели управления. Один из недостатков может касаться маршрутизации электрических соединений для каждого отдельного усилителя.

Другой вариант заключается в использовании волоконно-оптический коллектора, который группирует множественные каналы волокна в одном центре управления:

Эти волоконно-оптические коллекторы обычно оснащены дисплеем OLED с меню, чтобы позволить программирование каждого канала волокна. Каждый оптоволоконный канал может быть сконфигурирован отдельно, например, установка на свет или затемнение, или гистерезис переключения. Этот централизованный контроль также позволяет группировку выходов через И / ИЛИ логику, которая может сократить и упростить выходной сигнал в ПЛК.

Применения и основные вопросы

Волоконная оптика работает довольно хорошо и обычно используется в системах со значительными электрическими шумами. Волокно кабеля не восприимчиво к электрическому шуму, а усилитель (восприимчив к шумам) может устанавливаться вдали от источника шума (например, в шкафу управления).

Другой, весьма распространённой область применения, являются небольшие сборочные линии. Операции на этих линиях, как правило, полностью автоматизированные и требуют наличия датчиков обнаружения детали на конвейере или в сборочном механизме, чтобы подтвердить сборочную операцию.

Оптоволоконные решения могут быть различными – размеры оптических головок, иметь различную ориентацию и дисперсию для обеспечения минимальных и максимально точных  фокусов света для каждого приложения независимо от размера корпуса. С помощью логики на плате управления и использовании двухканального датчика один канал может использоваться  для определения наличия детали в месте сборки, а второй канал может использоваться для подтверждения окончания операции сборки.

Общей проблемой всех видов оптоволоконных систем является чрезмерное сгибание волокон. Кабели и пучки отдельных волокон довольно податливы, чем позволяют монтажнику легко согнуть их больше, чем это допускает максимальный радиус изгиба. Это может привести к непоправимой пластической деформации волокон, что значительно снизит пропускание световых волн, или вовсе приведет к разрыву волокна и невозможности пропускать сигнал. Максимальный радиус изгиба варьируется в зависимости от типа волоконного материала, размеров, дисперсии волокон в пучке, и он должен выполнятся при любых условиях.

Вне зависимости от применения, потребители должны выбрать подходящую технологию датчиков. Волоконно-оптические датчики, усилители и волоконно-оптические головки должны быть тщательно отобраны для приложения, чтобы обеспечить надежную производительность измерения.

Принципы работы датчиков в газоанализаторе

Принципы работы датчиков в газоанализаторе

19.02.2020


При выборе того или иного газоанализатора можно опираться на различные критерии, но критически важно подобрать подходящий для поставленной задачи принцип измерения, руководствуясь типом измеряемого газа, средой, в которой выполняются измерения, и целью.


На сегодняшний день самыми востребованными типами датчиков являются:

• термокаталитический
• термокондуктивный
• полупроводниковый
• электрохимический
• гальванический
• инфракрасный (оптический)
• интерферометрический
• фотоионизационный (ФИД)
• пиролитический
• фотометрический




Термокаталитический


Самый распространенный и универсальный тип датчика, принцип работы которого основан на вычислении количества тепла, выделяемого при сгорании горючего газа или паров в катализаторе. Керамический принцип является разновидностью термокаталитического, однако в отличие от последнего использует другой тип катализатора – мелкодисперсный (керамический). Архитектурно датчик состоит из двух чувствительных элементов – рабочего и компенсирующего. Рабочий элемент представляет собой спираль из драгоценного металла (как правило, платины) и катализатора, чувствительного к горючим газам. Воздушная смесь, содержащая горючий газ, вступает в реакцию с катализатором, увеличивая температуру элемента, и, как следствие, приводит к изменению электрического сопротивления спирали в почти линейной зависимости от концентрации газа. Компенсирующий элемент состоит из платиновой спирали и стекла, которое не обладает чувствительностью к горючим газам, и предназначен для компенсации окружающих условий.


   


  


Преимущества термокаталического датчика: линейность выходной характеристики, быстрый отклик, устойчивость к изменениям в температуре и влажности окружающей среды, а также долговечность.  
Применение: измерение довзывоопасных концентраций (ДВК) горючих газов и паров в диапазоне от 0 до 100% НКПР.  
Газоанализаторы: GP-03, GX-2009, GX-3R/Pro, GX-2012, GX-8000, GD-A80, SD-1GP

Преимущества керамического датчика: линейность характеристики, более быстрый отклик, возможность измерения ПДК (в единицах млн-1), устойчивость к изменениям в окружающих условиях. 
Применение: измерение довзрывоопасных концентраций (ДВК) и предельно-допустимых концентраций (ПДК) горючих газов и паров. 
Газоанализаторы: GX-6000, SD-1NC




Термокондуктивный

Принцип работы термокондуктивного датчика основан на измерении разницы в теплопроводности. Как в случае с термокаталитическим датчиком, сенсор состоит из рабочего и компенсирующего элемента. Контакт с газом происходит на рабочем элементе, а компенсирующий элемент изолирован. При попадании целевого газа на рабочий элемент происходит изменение в теплоотдаче, связанное с теплопроводностью и приводящее к росту температуры элемента. Это, в свою очередь, приводит к изменению сопротивления платиновой спирали. 



Полупроводниковый

В данном типе датчиков используется полупроводник с металлоксидным напылением, сопротивление которого меняется при контакте с газом. Датчик состоит из нагревательной спирали и проводника, нанесенного на трубку из глинозёма, а по краям трубки находятся контакты из драгоценного металла, предназначенные для измерения сопротивления. При попадании газа на поверхность датчика он окисляется, что приводит к уменьшению электрического сопротивления, которое преобразуется в концентрацию. 



Преимущества: линейная характеристика, стабильность показаний, долговечность, возможность измерения негорючих газов (аргона, азота и углекислого газа), а также возможность измерений в бескислородной среде.   

Применение: измерение высоких концентраций горючих газов и паров.
Газоанализаторы: GX-2012, GX-8000

Преимущества: чувствительность к сверхнизким концентрациям, которые сложно фиксировать другими типами датчиков, долговременная стабильность, устойчивость к отравлению, а также селективность.
Применение:  измерение ПДК широкого спектра токсичных и горючих газов.
Газоанализаторы: GX-2012GT, GD-A80V, SD-1GH





Электрохимический

Гальванический

В основе данного принципа измерения лежит процесс электролиза. Датчик состоит из трех электродов — рабочего (газопроницаемой пленки с нанесенным катализатором из драгоценного металла), референсного и интегрирующего, — которые размещены в пластиковом корпусе с электролитом. В датчике используется потенциостатическая цепь, которая обеспечивает постоянное напряжение между рабочим и референсным электродами. Ток, возникающий в ходе химических реакций на рабочем и интегрирующем электродах, пропорционален концентрации измеряемого газа.



Принципиальная схема датчика гальванического типа повторяет простой аккумулятор: датчик состоит из катода, изготовленного из драгоценного металла, анода (проволоки), которые помещены в электролит, а также разделительной мембраны, прикрепленной к внешней стороне катода. Кислород, проходя через разделительную мембрану, на катоде восстанавливается, а на аноде — окисляется. Возникающий электрический ток конвертируется в напряжение и в таком виде подается на выход, при этом напряжение пропорционально концентрации кислорода. 



Преимущества: линейный выходной сигнал, высокая точность и хорошая воспроизводимость результатов.
Применение: измерение ПДК токсичных веществ.
Газоанализаторы: HS-03, CO-03, CX-5, GX-3R/Pro, GX-2012, GX-6000, GX-8000, RX-8500, RX-8700, SC-8000, TP-70D, SD-1EC, GD-70D

Преимущества: простота, долговечность в сравнении с электрохимическим датчиком, не требует внешнего питания, линейная выходная характеристика, быстрый отклик и отсутствие зависимости от колебаний температуры/влажности.
Газоанализаторы: OX-03, GX-2012/GT, GX-6000, GX-8000, RX-8000, RX-8500, RX-8700, SD-1OX, GD-70D




Инфракрасный (оптический)

Данный принцип измерения основан на известном факте о том, что многие газы поглощают инфракрасные лучи и каждый из этих газов имеет определенный спектр поглощения. Сенсор состоит из источника ИК-света и датчика, между которыми установлены оптический фильтр и измерительная ячейка. Поступая в измерительную ячейку, газ поглощает некоторое количество инфракрасного света, а датчик при этом фиксирует снижение интенсивности поступающего ИК-света и на базе известной зависимости (калибровочной кривой) генерирует выходной сигнал. Несмотря на то, что зависимость не линейная, она хороша известна производителям датчиков. 



Интерферометрический

Принцип интерферометрии основан на измерении коэффициента рефракции газа. Архитектурно интерферометрический сенсор состоит из источника света и оптической системы из зеркал, линз, призмы и светочувствительного датчика. Свет от источника разделяется плоскопараллельным зеркалом на два луча (А и В) и отражается призмой. Луч А движется по круговому маршруту через камеру D, наполненную измеряемым газом, а луч В – через камеру E с референсным газом. После этого лучи А и В встречаются в точке С зеркала и, проходя через систему зеркал и линз, формируют на светочувствительном датчике картину интерференции. Данная картина сдвигается в пропорции к разнице в коэффициенте рефракции между измеряемым и референсным газами. Датчик измеряет сдвиг, чтобы измерить коэффициент рефракции, и преобразует его в концентрацию газа или количество тепла. 



Преимущества: быстрый отклик, повторяемость, стабильность при изменении окружающих условий, отсутствие эффектов старения и отравления.
Применение:  измерение довзывоопасных концентраций (ДВК) горючих газов и паров в диапазоне от 0 до 100% НКПР, а также концентрации в диапазоне от 0 до 100% объема.
Газоанализаторы: GX-3R Pro, GX-6000, RX-8000, RX-8500, RX-8700, SD-1RI

Преимущества: низкая погрешность измерений, долговременная стабильность, высокая линейность и быстрый отклик, отсутствие влияния изменений в температуре и давлении (за счет механизма коррекции).   
Применение: измерение концентраций горючих газов, углекислого газа и элегаза, а также калорийности природного газа.
Газоанализаторы: FI-8000




Фотоионизационный (ФИД)

В фотоионизационных датчиках измеряемый газ ионизируется с помощью ультрафиолетового света, а это, в свою очередь, приводит к возникновению электрического тока. Когда газ попадает в ионизационную камеру, он подвергается воздействию УФ-света, под воздействием которого газ начинает терять электроны и генерировать катионы (положительные ионы). Электроны и катионы, в свою очередь, притягиваются катодом и анодом, возбуждая электрический ток, который пропорционален значению концентрации. Для ионизации требуются фотоны с энергией выше энергии данного конкретного газа, поэтому в ФИД, как правило, используют УФ-лампы с энергией 10,6 эВ (изготовлены из фторида магния и наполнены криптоном) или 11,7 эВ (изготовлены из фторида лития и наполнены аргоном). 



Пиролитический

В основе этого принципа лежит процесс пиролиза измеряемого газа с образованием оксида, частицы которого измеряются датчиком. Пиролитический сенсор состоит из нагревателя, в центре которого находится кварцевая трубка с нагревательным элементом, и датчика частиц, содержащего две камеры – рабочую и компенсационную. Измеряемый газ (например, TEOS или NF3) под воздействием температуры окисляется и попадает в рабочую камеру датчика частиц с источником α-частиц, который используется для ионизации воздуха и возбуждения электрического тока. Как только частицы газа попадают в камеру, они начинают поглощать ионы, приводя к снижению тока ионизации. Это снижение выходного сигнала пропорционально концентрации измеряемого газа. Компенсационная камера позволяет компенсировать флуктуации температуры, влажности и давления окружающей среды.



Преимущества:  чувствительность к низким концентрациям, широкий спектр измеряемых веществ.
Применение: измерение крайне малых концентраций (на уровне ppm и ppb) летучих органических соединений.
Газоанализаторы: GX-6000

Преимущества: непревзойденная стабильность показаний (благодаря использованию источника америция-241 с периодом полураспада около 400 лет), быстрый отклик, линейность выходного сигнала и устойчивость к изменениям в окружающих условиях.
Применение: измерение ПДК высокотоксичных газов.
Газоанализаторы: GD-70D

Читайте также


  • При выборе того или иного газоанализатора можно опираться на различные критерии, но критически важно подобрать подходящий для поставленной задачи принцип измерения, руководствуясь типом измеряемого газа, средой, в которой выполняются измерения, и целью.

  • В последние годы на металлургических предприятиях особое внимание уделяется вопросу безопасности. Это связано с участившимися случаями отправления угарным газом, нехватки кислорода, а также опасностью взрыва из-за утечек метана и водорода. Предлагаем вашему вниманию презентацию решений RIKEN для металлургического производства, призванных свести к минимуму риски взрыва и отравления.

  • В медицинских учреждениях широкое применение нашли технические и медицинские газы, например, жидкий азот (N2), который используется в трансплантации, криотерапии и криобиологии. Низкая температура (-196°C), при которой азот находится в жидком состоянии, обеспечивает длительное хранение донорской крови, плазмы, стволовых клеток, а также органов.

оптическая схема и блок обработки сигналов