18.10.2024

Перевести амперы в киловатты в трехфазной сети: Как перевести Амперы в Киловатты (формула, пример, таблица конвертации для напряжения 12, 220 и 380 вольт)

Содержание

Как перевести Амперы в Киловатты (формула, пример, таблица конвертации для напряжения 12, 220 и 380 вольт)

 Название нашей статьи несколько странно, особенно если вдуматься в соизмеримость приведенных в заголовке величин, ведь по сути мы хотим сопоставить значения электрического тока с мощностью. Все без ничего, но такая конвертация невозможна без еще одной составляющей, без напряжения, которая как раз и определяет ключевое значение для мощности. Но не будем начинать нашу статью с нагромождений «сложностей», что говорится с места в карьер, а разложим все по полочкам, чтобы пришло понимание качественного и количественного значения величин. Такое понимание намного важнее сухих фактов к запоминанию, ведь один раз поняв, вы сможете всегда восстановить ход событий, даже не помня мелких особенностей протекания процесса, они сами выстроятся в логический и правильный ряд…

Что такое электрический ток, в чем он измеряется или откуда появились Амперы

 Начнем мы совсем не с определения электрического тока, как и до этого еще надо дойти. Начнем мы с самых низов или азов, это кому как угодно. Проводники, чаще всего это металлы, обладают определенной структурой с электронами вращающихся вокруг атомов на «высоких» орбитах, что позволяет при незначительных воздействиях (тепло, свет, радиация…) выбивать эти электроны с орбиты. В итоге электроны могут довольно легко переходить от одного атома металла к другому. То есть в проводнике электроны могу свободно перемещаться одни туда, другие сюда, в некой хаотичности, словно при броуновском движении. Образуется некое электронное облако, но четкого направления движения электронов в нем нет. Так вот, если же с разных стороны проводника обеспечить разность потенциалов, скажем подключением элемента питания, то образуется направленное движение электронов. Итак, именно направленное движение электронов и называется электрическим током.  Электроны перемещаются к плюсовому полюсу, хотя при указании направления электрического тока всегда руководствуются тем, что ток течет от плюса к минусу, что по факту как вы уже поняли, не совсем корректно. То есть получается, электроны направляются к плюсу, а вектор электрического тока к минусу. Так уж повелось. Теперь, когда мы знаем что такое электрический ток, необходимо каким-то образом фиксировать его значение, то есть измерять.
 Измеряется сила тока в амперах. Не будем подводить что и как получилось в этом случае, когда ток получил именно эти единицы измерения, скажем лишь что к ним причастен Андре Ампер, и электромагнитная сила…
 Итак, если между двумя проводниками с пренебрежительно малой площадью и длиной 1 метр, расположенных между собой на расстоянии 1 метр в вакууме при постоянном токе возникнет сила в 2*10-7 ньютона, то  в проводниках как раз и будет течь ток в 1 А.

Здесь из самого важного надо понять 2 вещи. Первое, что вокруг проводника с электрическим током образуется магнитное поле, с помощью которого как раз и меряют силу тока. А второе, это то, что сила электрического тока это величина мгновенная, то есть она берется в конкретное время, а не за период времени. Скажем в проводнике может протекать 5 секунд назад ток в 5 А, в настоящее время 10 А, а через еще 5 секунд 3 А. То есть ток измеряется сейчас и здесь. По сути, такую величину можно сравнить с силой наших мышц, для того чтобы вам было более понятно. Скажем, вначале мышцы были  расслаблены, а затем напряглись. Также и ток, может меняться от 0 до максимума. И нас в этом случае не столько интересует время, за которое изменился ток или тонус наших мышц, как конечные показатели. То есть электрический ток в Амперах это количественный показатель, а не качественный, когда работа проделана, ток имеется определенной силы, но за какое время он вырос до своей величины это не важно. Здесь более важно количество электронов которое прошло или проходит в данный момент. Именно количество электронов и создает тот самый ток – количественный показатель. А вот что на счет качества этого тока, то есть на счет потенциала с каким электроны стремятся преодолеть сопротивления, это уже качественный а не количественны показатель, который мы затронем в следующем нашем абзаце.

Что такое мощность, в чем она измеряется или откуда появились Киловатты

 Итак, что на счет мощности и Киловатов, в которых она измеряется, то здесь все несколько иначе… По сути мгновенная мощность это количество электронов, взятое с учетом их потенциала. То есть с учетом напряжения. Именно такое произведения количества на качество способно отразить всю имеющуюся мощность, которая обеспечивается не только определенным количеством электронов проходящих в проводнике, но и их потенциалом. Здесь напряжение является качественным показателем, который также учитывается при расчете мощности. Что же, теперь не трудно понять, что мощность это произведения тока на напряжения.

P=UI

 Если быть до конца объективным, то в игру иногда вступает и поправочный коэффициент, который зависит от индуктивности проводника и изменения скорости тока, то есть его частоты. (cos φ). Влияет это следующим образом. В самом начале возрастания напряжения при его подаче (постоянный ток) или полуволне возрастания этого напряжения, когда ток переменный, происходит образование магнитного поля, которое в свою очередь влияет на рост этого самого напряжения. То есть масло масляное, напряжение порождает магнитное поле, а поле влияет на напряжение. В итоге, пока напряжение не вырастет до номинального, происходит этот процесс влияния магнитного поля. Можно сказать, устанавливается баланс между влиянием магнитного поля на напряжения и влиянием напряжения на магнитное поле. В этом случае при возрастании напряжения магнитное поле задерживает его потенциал, в итоге напряжение возрастает плавно, а не мгновенно. То же самое при отключении тока (постоянный ток) или полуволне  на спаде (переменный ток). Напряжение падает, магнитное поле меняется и тем самым влияет вновь на напряжение. В этом случае напряжение дольше остается с большим потенциалом, чем изначально поступает в проводник. Если кратко, что в этих процессах происходит трансформация энергии в магнитное поле, а потом из магнитного поля в электрический ток. Причем это влияние в большей степени зависит от скорости изменения магнитного поля и от индуктивности проводника, то есть от того, что наиболее актуально влияет на образование магнитного поля.
В итоге, с учетом этого, формула мощности будет записана так…

P=UI cos φ

В большинстве случаев обывателями этот поправочный коэффициент не учитывается, так как он более применим для мощных производственных электродвигателей и чего-то аналогичного.
 Что же, теперь не трудно вычислить зависимость мощности от тока.

Как перевести Амперы в Киловатты для мгновенной мощности (пример)

 Из формулы выше становится понятно, что I = P/U. То есть Амперы равны Вт, разделить на вольты. Если вы возьмете эти величины и именно в этих значениях, то есть Амперы, Вт, и вольты, то у вас получится корректный перевод одного показателя в другой. Для того чтобы вам было понятно на все 100 приведем пример. Скажем, у нас чайник потребляет 2 КВт и подключен к напряжению в 220 вольт. Какой же ток протекает в проводе? По умозаключениях, которые достигнуты в абзаце выше получаем.
I=P/U=2000/220=9.09А. То есть чайник потребляет ток более 9 Ампер, когда он включен.

Перевод Ампер в Киловатты для напряжения в 12 вольт, 220 вольт и 380 вольт (таблица)

Так как чаще всего в нашей жизни фигурируют напряжения на 12 вольт в машине, на 220 вольт в розетке и 380 вольт на промышленных предприятиях, то именно используя эти напряжения, мы и приводим таблицу конвертации тока, то есть Ампер в КВт. К этим справочным данным может обратиться тот, кому лень считать по выше приведенной нами формуле.

Особенно эта информация будет актуальна при выборе проводов под определенный ток и автоматических выключателей, так называемых автоматов. Все это важно при выборе сечения проводов и при выборе номинал автоматов. Об этом в статье «Расчет и выбор сечения медного и алюминиевого провода, кабеля по мощности потребляемой нагрузкой».

Подводя итог о том, как перевести Амперы в Киловатты

 Наша статья получилась не такая уж и короткая, как хотели бы многие. Быть может кто-то сможет даже нас упрекнуть, мол необходимо было не тянуть резину, а сказать сразу как переводить Амперы в Киловатты да и делу край. В свое оправдание и ответ мы можем лишь аппелировать к тому, что хотели как лучше, то есть донести до читателя всю суть происходящих процессов, а значит и понимание что и откуда берется. В этом случае, если вы все поняли, то вам уже никогда не придется возвращаться к нашей статье, ведь то, что ты понял, остается с тобой навсегда! 

Как перевести Амперы в Киловатты и обратно: правила и примеры

Как перевести Амперы в Киловатты: принципы перевода + практические примеры с пояснениями

Амперы и киловатты — разные физические величины. Первая — количество или сила тока, вторая — напряжение. Перевести амперы в киловатты можно только условно. Собственно речь идет не о переводе в прямом смысле, а о соответствии мощности величине силы тока или наоборот, согласованности между силой тока и установленной мощностью.

О том, как зная одну величину, вычислить другую, пойдет речь дальше.

Содержание статьи:

  • Причины для выполнения перевода
  • Правила проведения перевода
    • Однофазная электрическая цепь
    • Трехфазная электрическая цепь
  • Примеры перевода ампер в киловатты
    • Пример №1 —перевод А в кВт в однофазной сети 220В
    • Пример №2 — обратный перевод в однофазной сети
    • Пример №3 — перевод ампер в кВт в трехфазной сети
    • Пример №4 — обратный перевод в трехфазной сети
  • Выводы и полезное видео по теме

Причины для выполнения перевода

Мощность и ток — ключевые характеристики оборудования. Если известна только одна из них, возникает необходимость в переводе одной величины в другую.

Ситуация такая возникает, когда нужно выбрать коммутационную и защитную аппаратуру типа предохранителя или автомата. При этом обязательным является условие, что потребляемая суммарная мощность — величина известная. Под потребителями подразумевается как любая бытовая техника, так и осветительные приборы.

Чтобы определить, какой прибор и в каком месте можно эксплуатировать с соблюдением правил безопасности, нужно уметь правильно интегрировать амперы в киловатты

На всех аппаратах, относящихся к потребителям, как правило, указывают номинальную потребляемую мощность. На защитной аппаратуре, наоборот, обозначают номинальный ток. Во втором случае определяют суммарную мощность, которую способен выдержать предохранитель либо автомат по известным номинальным токам.

Правила проведения перевода

Часто, изучая инструкцию, прилагаемую к некоторым приборам, можно увидеть обозначение мощности в вольт-амперах. Специалисты знают разницу между ваттами (Вт) и вольт-амперами (ВА), но практически эти величины обозначают одно и то же, поэтому преобразовывать здесь ничего не нужно. А вот кВт/час и киловатты — понятия разные и путать их нельзя ни в коем случае.

Чтобы продемонстрировать, как выразить электрическую мощность через ток, нужно воспользоваться следующими инструментами:

  • тестером;
  • токоизмерительными клещами;
  • электротехническим справочником;
  • калькулятором.

При перерасчете ампер в кВт используют следующий алгоритм:

  • Берут тестер напряжения и измеряют напряжение в электроцепи.
  • Используя токоизмерительные ключи, замеряют силу тока.
  • Производят перерасчет, используя формулу для постоянного напряжения в сети или переменного.
  • В результате мощность получают в ваттах. Чтобы преобразить их в киловатты, делят получившееся на 1000.

    Однофазная электрическая цепь

    На однофазную цепь (220 В) рассчитано большинство бытовых приборов. Нагрузка здесь измеряется в киловаттах, а маркировка АВ содержит амперы.

    Чтобы не заниматься вычислениями, при выборе автомата можно воспользоваться ампер-ватт таблицей. Здесь уже есть готовые параметры, полученные путем выполнения перевода при соблюдении всех правил

    Ключевым при переводе в этом случае является закон Ома, который гласит, что P, т.е. мощность, равна I (силе тока) умноженной на U (напряжение). Отсюда вытекает:

    кВт = (1А х 1 В) х 1 0ᶾ

    А как же это выглядит на практике? Чтобы разобраться, рассмотрим конкретный пример. Допустим, автоматический предохранитель на счетчике старого типа рассчитан на 16 А. С целью определения мощности приборов, которые можно безболезненно включить в сеть одновременно, нужно осуществить перевод ампер в киловатты с применением вышеприведенной формулы. Получим:

    220 х 16 х 1 = 3520 Вт = 3,5КВт

    Как для постоянного, так и переменного тока применяется одна формула перевода, но справедлива она только для активных потребителей, таких как нагреватели лампы накаливания. При емкостной нагрузке обязательно возникает сдвиг фаз между током и напряжением.

    Это и есть коэффициент мощности или cos φ. Тогда как при наличии только активной нагрузки этот параметр принимают за единицу, то при реактивной нагрузке его нужно принимать во внимание.

    Если нагрузка смешанная, значение параметра колеблется в диапазоне 0,85. Чем меньше приходится на реактивную составляющую мощности, тем незначительней потери и тем выше коэффициент мощности. По этой причине последний параметр стремятся повысить. Обычно производители указывают значение коэффициента мощности на этикетке.

    Трехфазная электрическая цепь

    В случае переменного тока в трехфазной сети берут значение электрического тока одной фазы, затем умножают на напряжение этой же фазы. То, что получили, умножают на косинус фи.

    Подключение потребителей может быть выполнено в одном из двух вариантов — звездой и треугольником. В первом случае это 4 провода, из которых 3 являются фазными, а один — нулевым. Во втором применяют три провода

    После подсчета напряжения во всех фазах, полученные данные складывают. Сумма, полученная в результате этих действий, является мощностью электроустановки, подсоединенной к трехфазной сети. Основные формулы имеют следующий вид:

    Ватт = √3 Ампер х Вольт или P = √3 х U х I

    Ампер = √3 х Вольт либо I= P/√3 х U

    Следует иметь понятие о разнице между напряжением фазным и линейным, а также между токами линейными и фазными. Перевод ампер в киловатты в любом случае выполняют по одной и той же формуле. Исключение — соединение треугольником при расчете нагрузок, подключенных индивидуально.

    На корпусах или упаковке последних моделей электроприборов указана и сила тока, и мощность. Обладая этими данными, можно считать вопрос, как быстро перевести амперы в киловатты, решенным.

    Специалисты применяют для цепей с переменным током конфиденциальное правило: силу тока делят на два, если нужно примерно вычислить мощность в процессе подбора пускорегулирующей аппаратуры. Также поступают и при расчете диаметра проводников для таких цепей.

    Примеры перевода ампер в киловатты

    Преобразование ампер в киловатты — довольно простая математическая операция.

    Бывает так, что на этикетке электроприбора присутствует значение мощности в кВт. В этом случае придется киловатты переводить в амперы. При этом I = P : U = 1000 : 220 = 4,54 А. Справедливо и обратное — P = I х U = 1 х 220 = 220 Вт = 0,22 кВт

    Существует также много онлайн – программ, где нужно всего-навсего ввести известные параметры и нажать соответствующую кнопку.

    Пример №1 —перевод А в кВт в однофазной сети 220В

    Перед нами стоит задача: определить предельную мощность, допустимую для автоматического выключателя однополюсного с номинальным током 25 А. Применим формулу:

    P = U х I

    Подставив значения, которые известны, получим: P = 220 В х 25 А = 5 500 Вт = 5,5 кВт. Это обозначает, что к этому автомату могут быть подключены потребители, общая мощность которых не выходит за пределы 5,5 кВт.

    По такой же схеме можно решить вопрос подбора сечения провода для электрочайника, потребляющего 2 кВт. В этом случае I = P : U= 2000 : 220 = 9 А. Это совсем маленькое значение. Нужно серьезно подойти к выбору сечения шнура и материалу. Если отдать предпочтение алюминиевому, он выдержит только слабые нагрузки, медный с такого же диаметра будет мощнее в два раза.

    Пример №2 — обратный перевод в однофазной сети

    Усложним задачу — продемонстрируем процесс перевода киловатт в амперы. Имеем какое-то число потребителей. Среди них:

    • четыре лампы накаливания каждая по 100 Вт;
    • один обогреватель мощностью 3 кВт;
    • один ПК мощностью 0,5 кВт.

    Определению суммарной мощности предшествует приведение величин всех потребителей к одному показателю, точнее — киловатты следует перевести в ватты.

    Розетки, АВ в своей маркировке содержат амперы. Для непосвященного человека сложно понять, отвечает ли нагрузка по факту расчетной, а без этого невозможно правильно выбрать предохранитель

    Мощность обогревателя равна 3 кВт х 1000 = 3000 Вт. Мощность компьютера — 0,5 кВт х 1000 = 500 Вт. Лампы — 100 Вт х 4 шт. = 400 Вт. Тогда обобщенная мощность: 400 Вт + 3000 Вт + 500 Вт = 3 900 Вт или 3,9 кВт.

    Такой мощности соответствует сила тока I = P : U = 3900Вт : 220В = 17,7 А. Из этого вытекает, что приобрести следует автомат, рассчитанный на номинальный ток не меньше, чем 17,7 А.

    Наиболее соответствующим нагрузке мощностью 2,9 кВт является автомат стандартный однофазный 20 А.

    Пример №3 — перевод ампер в кВт в трехфазной сети

    Алгоритм перевода ампер в киловатты и в обратном направлении в трехфазной сети отличается от сети однофазной только формулой. Допустим, нужно высчитать, какую же наибольшую мощность выдержит АВ, номинальный ток которого 40 А. В формулу подставляют известные данные и получают:

    P = √3 х 380 В х 40 А = 26 296 Вт = 26,3кВт

    Трехфазный АБ на 40 А гарантировано выдержит нагрузку 26,3 кВт.

    Пример №4 — обратный перевод в трехфазной сети

    Если мощность потребителя, подключаемого к трехфазной сети, известна, ток автомата вычислить легко. Допустим, имеется трехфазный потребитель мощностью 13,2 кВт. В ватах это будет:

    13,2 кт х 1000 = 13 200 Вт

    Далее, сила тока:

    I = 13200Вт : (√3 х 380) = 20,0 А

    Получается, что этому электропотребителю нужен автомат номиналом 20 А.

    Для однофазных аппаратов существует следующее правило: один киловатт соответствует 4,54 А. Один ампер — это 0,22 кВт или 220 В. Это утверждение — прямой результат, вытекающий из формул для напряжения 220 В.

    Выводы и полезное видео по теме

    О связи ватт, ампер и вольт:

    Зависимость между амперами и киловольтами описывает закон Ома. Здесь наблюдается обратная пропорциональность силы электротока по отношению к сопротивлению. Что касается напряжения, то прослеживается прямая зависимость силы тока от этого параметра.

    Источник

    Как перевести амперы в киловатты и наоборот для сетей в 220 и 380 вольт: правила

     

    Все автоматы, которые имеются в продаже, содержат в маркировке величину предельно допустимого тока (но никак не поддерживаемой мощности в ваттах), а большинство потребителей имеют пометку на бирке о потребляемой мощности. Чтобы правильно подобрать кабель и автоматический выключатель нужно знать, как перевести амперы в киловатты и обратно.

    Блок: 1/3 | Кол-во символов: 409
    Источник: https://samelectrik.ru/kak-perevesti-ampery-v-kilovatty-i-obratno.html

    Разделы статьи

    Краткие о напряжении, токе и мощности

    Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

    В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

    P=I*U*cosФ

    Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

    Блок: 2/3 | Кол-во символов: 1200
    Источник: https://samelectrik.ru/kak-perevesti-ampery-v-kilovatty-i-obratno. html

    Единицы мощности

    Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

    Блок: 2/4 | Кол-во символов: 429
    Источник: https://odinelectric.ru/knowledgebase/kak-perevesti-ampery-v-vatty-i-obratno

    Перевести амперы в киловатты? Легко!

    Чтобы подобрать автомат определенной нагрузки, который бы обеспечивал оптимальную работу какого-либо прибора, необходимо знать, как одну информацию или данные, интегрировать в другую. А именно – как перевести амперы в киловатты.

    Для того, чтобы безошибочно выполнить такой расчет, многие опытные электрики используют формулу I=P/U, где I – это амперы, P – это ватты, а U – это вольты. Получается, что амперы вычисляются путем деления ватт на вольты. Для примера, обычный электрический чайник потребляет 2 кВт и питается от сети в 220 В. Чтобы в этом случае вычислить ампераж тока в сети, применяем вышеуказанную формулу и получаем: 2000 Вт/220 В = 9,09 А. То есть, когда чайник включен он потребляет ток больше 9 Ампер.

    На многочисленных сайтах в сети, чтобы узнать сколько ампер в 1 кВт таблица и многие другие данный приведены со всеми подробными пояснениями. Также в этих таблицах указано как рассчитать количество киловатт в самых распространенных случаях, когда речь идет о напряжении в 12, 220 и 380 вольт. Это наиболее распространенные сети, поэтому потребность в расчетах возникает именно в отношении данных сетей.

    Для того, чтобы рассчитать и перевести амперы в киловатты не нужно заканчивать специальных учебных заведений. Знание всего лишь одной формулы помогает на бытовом уровне решить многие задачи и быть уверенным в том, что вся бытовая техника в доме работает в оптимальном режиме и надежно защищена.

    Мощность Вт, при напряжении в В
    А12220380
    112220380
    224440760
    3366601140
    4488801520
    56011001900
    б7213202280
    78415402660
    89617603040
    910819803420
    1012022003800
    1113224204180
    1214426404560
    1315628604940
    1416830805320
    1518033005700
    1619235206080
    1720437406460
    1821639606840
    1922841807220
    2024044007600
    2125246207980
    2226448408360
    2327650608740
    2428852809120
    25ЗСО55009500
    2631257209880
    27324594010260
    28336616010640
    29348638011020
    30360660011400

    Блок: 2/2 | Кол-во символов: 2348
    Источник: https://www. 0rv.ru/2017-06-07/kak-perevesti-ampery-v-kilovatty

    Как перевести амперы в киловатты в однофазной сети?

    1. — Ватт = Ампер * Вольт:
    • — Ампер = Ватты / Вольт:

    Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. То есть в 1000 Вт = 1 кВт.

    Блок: 2/3 | Кол-во символов: 238
    Источник: http://electricvdome.ru/instrument-electrica/perevod-amper-v-kilovatt.html

    Как перевести ватт в ампер?

    Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.

    Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500Вт. Подставляем значения в формулу и получаем: 1500Вт / 220В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.

    Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6Вт, утюг мощностью 2 кВт и телевизор 30Вт. Сначала все показатели нужно перевести в ватты, получается:

    • лампы 6*10= 60 Вт,
    • утюг 2 кВт=2000 Вт,
    • телевизор 30 Вт.

    60+2000+30=2090 Вт.

    Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10А. Ответ: потребляемый ток около 10А.

    Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.

    Ампер (А)Мощность (кВт)
    220 В380 В
    20,41,3
    61,33,9
    102,26,6
    163,510,5
    204,413,2
    255,516,4
    327,021,1
    408,826,3
    5011,032,9
    6313,941,4

    Блок: 4/4 | Кол-во символов: 1572
    Источник: https://odinelectric.ru/knowledgebase/kak-perevesti-ampery-v-vatty-i-obratno

    Кол-во блоков: 6 | Общее кол-во символов: 6878
    Количество использованных доноров: 4
    Информация по каждому донору:

    1. https://samelectrik. ru/kak-perevesti-ampery-v-kilovatty-i-obratno.html: использовано 2 блоков из 3, кол-во символов 1609 (23%)
    2. https://www.0rv.ru/2017-06-07/kak-perevesti-ampery-v-kilovatty: использовано 1 блоков из 2, кол-во символов 2348 (34%)
    3. http://electricvdome.ru/instrument-electrica/perevod-amper-v-kilovatt.html: использовано 1 блоков из 3, кол-во символов 238 (3%)
    4. https://odinelectric.ru/knowledgebase/kak-perevesti-ampery-v-vatty-i-obratno: использовано 2 блоков из 4, кол-во символов 2001 (29%)

    таблица, формулы, примеры – Ремонт своими руками на m-stone.ru

    Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

    Краткие о напряжении, токе и мощности

    Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

    В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

    P=I*U*cosФ

    Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

    Для чего бывают необходимы такие расчеты?

    Давайте посмотрим, так ли нужен бывает подобный расчет?

    Даже неопытный в электротехнике человек наверняка видел в паспортных характеристиках бытовых приборов показатель их потребляемой мощности, выраженный в ваттах или киловаттах. А для обеспечения безопасности эксплуатации электропроводка в доме (или, что лучше – отдельные ее линии) должна защищаться автоматическими включателями. Ну или плавкими предохранителями – «пробками», что еще встречается в домах старой постройки. И на автоматах или предохранителях максимальный ток указан в амперах. Вот – классический пример, когда требуется оценить, какой же по номиналу прибор защиты подойдёт к той или иной нагрузке, выраженной в ваттах.

    Обычная картина – в характеристиках приборов указывается мощность, а автоматы рассчитаны на определенный ток. Приходится просчитывать соответствие.

    Особенно это важно, если выделяются линии для подключения мощной бытовой техники. Здесь будет важен не только номинал автомата, но и сечение кабеля для прокладки такой линии.

    Какой кабель должен прокладываться в домашней электросети?

    Однозначно на этот вопрос не ответить – приходится принимать во внимание множество нюансов. Они хорошо изложены в специальной публикации нашего портала «Какой кабель использовать для проводки в квартире».

    Ограничения по току могут быть и на изделиях электротехнической арматуры – розетках, выключателях, клеммных разъемах и т.п. Они часто указываются непосредственно на корпусе прибора. То есть необходимо подсчитать, какую допустимую нагрузку в ваттах можно подключать к такой точке. Опять же – особую важность такие расчёты должны представлять для любителей использовать удлинители с тройниками (что делать настоятельно не рекомендуется), тем самым подключающих к одной розетке сразу несколько приборов.

    Некоторые даже не задумываются, способна ли розетка долго выдерживать такую нагрузку. А это чревато очень серьезными последствиями.

    Ситуация с необходимостью подсчета в одну или другую сторону может возникнуть и у автолюбителей. Например, приобретен какой-то прибор, и требуется узнать, каким предохранителем следует защитить линию его подключения.
    Случается необходимость и в обратной задаче. Она может быть вызвана отсутствием информации о реально потребляемой мощности того или иного прибора. Кстати, с показателями мощности некоторыми недобросовестными производителями бытовой техники устраивается порой такая неразбериха, что не знаешь, чему верить. И чтобы реально оценить потребление, приходится прибегать к замерам. Прибор для прямого измерения мощности, ваттметр – штука редкая, но вполне можно обойтись обычным мультиметром, замерив сначала напряжение, а поток ток, и затем проведя необходимый расчет.

    Как правильно измерить силу тока?

    Работа с амперметром – не такая простая, так как его приходится подключать в разрыв тестируемой цепи. Кроме того, требуется соблюдение особых мер предосторожности, иначе можно просто погубить свой измерительный прибор. Как измерить силу тока мультиметром – читайте в специальной публикации нашего портала.

    4

    Сила тока – как вычислить в реальных условиях

    Прокладывая электропроводку, предварительно следует узнать силу тока. Ошибки чреваты неприятностями – проводка, розетки плавятся. Если он фактически превышает расчетный, проводка нагревается, плавится, происходит обрыв или замыкание. Ее приходится менять, но это не самое неприятное – возможен и пожар.

    При монтаже проводки необходимо знать силу тока

    Ток сети для практических потребностей находят, зная мощность приборов: I=P/U, где P – мощность потребителя. В реальности учитывается коэффициент мощности – cos φ. Для однофазной сети: I = P/(U∙cos φ),

    трехфазной – I = P/(1,73∙U∙cos φ).

    Для одной фазы U принимают 220, для трех – 380. Коэффициент большинства приборов 0,95. Если подключают электродвигатель, сварку, дроссель, коэффициент 0,8. Подставляя 0,95, для однофазной сети выходит:

    I = P/209, трехфазной – I = P/624. Если коэффициент 0,8, для двух проводов: I = P/176, для четырех: I = P/526.

    Трехфазный ток меньше втрое, нагрузка распределяется поровну между фазами. Подсчитывая нагрузку, предусматривают запас 5%!,(MISSING) для двигателей, сварочных агрегатов – 20%!

    Приборы иногда используют одновременно. Чтобы вычислить нагрузку, суммируют токи устройств. Подход возможен, если они имеют схожий коэффициент мощности. Для потребителей с разными коэффициентами используют средний показатель. Иногда к трехфазной  системе подключают однофазные и трехфазные изделия. Вычисляя ток, складывают все нагрузки.

    Онлайн калькулятор по расчету ватт в амперы

    Для получения результата обязательно указывать напряжение и потребляемую мощность.

    напряжение (В):
    Потребляемую мощность (Вт):
    Сила тока:А

    Калькуляторы от wpcalc. com

    В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

    Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

    Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
    Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
    В вольтах измеряется напряжение протекания электрического тока.

     

    Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

    Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором  мощности  позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

    шением. Все просто и доступно!

    Таблица значенийТаблица  расчета Ампер и нагрузки в Ватт

    Видео по теме:  определения мощности и силы тока

    Видео: КАК ОПРЕДЕЛИТЬ МОЩНОСТЬ ТОКА [РадиолюбительTV 29]

    Видео: Еще немного о мощности

    Как выполнить перевод

    Постоянный ток

    В сфере автоэлектрики и декоративной подсветки используются цепи 12 В. Давайте рассмотрим на практике, как перевести амперы в ватты на примере светодиодной ленты. Для её подключения зачастую необходим блок питания, но подключить «просто так» его нельзя, он может сгореть, или наоборот, вы можете купить слишком мощный и дорогой БП там, где он не нужен и зря потратить деньги.

    В характеристиках блока питания на бирке указываются такие величины, как напряжение, мощность и ток. Причем количество Вольт указываются обязательно, а вот мощность или ток могут быть описаны вместе, а может быть и такое, что только одна из характеристик указана. В характеристиках светодиодной ленты указаны те же характеристики, но мощность и ток с учетом на метр.

    Представим, что вы купили 5 метров ленты 5050 с 60 светодиодами на 1 метр. На упаковке написано «14,4 Вт/м», а в магазине на бирках БП указан только ток. Подбираем правильный источник питания, для этого умножим количество метров на удельную мощность и получим общую мощность.

    14,4*5=72 Вт – необходимо для питания ленты.

    Значит нужно перевести в амперы по этой формуле:

    I=P/U

    Итого: 72/12=6 Ампер

    Итого нужен блок питания минимум на 6 Ампер. Более подробно узнать о том, как выбрать блок питания для светодиодной ленты, вы можете узнать из нашей отдельной статьи.

    Другая ситуация. Вы установили на свой автомобиль дополнительные фары, но на лампочках указана характеристика, допустим 55 Вт. Подключение всех потребителей в авто лучше производить через предохранитель, но какой нужен для этих фар? Нужно перевести ватты в амперы по формуле выше – разделив мощность на напряжение.

    55/12=4,58 Ампера, ближайший номинал – 5 А.

    Однофазная сеть

    Большинство бытовых приборов рассчитаны на подключение к однофазной сети 220 В. Напомним, что в зависимости от страны, в которой вы живете, напряжение может быть и 110 вольт и любым другим. В России принятая за стандарт величина именно 220 В для однофазной и 380 В для трёхфазной сети. Большинству читателей чаще всего приходится работать именно в таких условиях. Чаще всего нагрузку в таких сетях измеряют в киловаттах, при этом автоматические выключатели содержат маркировку в Амперах. Рассмотрим немного практических примеров.

    Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Здесь эффективна та же формула, связывающая силу тока и напряжение в мощность.

    P=I*U*cosФ

    Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

    С помощью таблицы можно быстро перевести амперы в киловатты при выборе автоматического выключателя:

    Немного сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Чтобы определить, сколько у вас будет потреблять киловатт в час такой двигатель, нужно обязательно учитывать коэффициент мощности в формуле:

    P=U*I*cosФ

    Следует отметить, что cosФ должен быть указан на бирке, обычно от 0,7 до 0,9. В данном случае, если полная мощность двигателя 5,5 киловатт или 5500 Ватт, то потребляемая активная мощность (а мы платим, в отличие от предприятий, только за активную):

    5,5*0,87= 4,7 киловатта, а если точнее то 4785 Вт

    Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

    Еще один пример, сколько ампер потребляет чайник на 2 кВт? Делаем расчет, сначала нужно выполнить перевод киловатт в ватты: 2*1000 = 2000 Ватт. После этого переводим ватты в Амперы, а именно: 2000/220 = 9 Ампер.

    Это значит, что пробка на 16 Ампер выдержит чайник, но если вы включите еще один мощный потребитель (например, обогреватель) и в суммарная мощность будет выше 16 Ампер – она через время выбьет. Также дело обстоит и с автоматами, и предохранителями.

    Для подбора кабеля, который выдержит определенное количество ампер чаще, чем формулы используют таблицу. Вот пример одной из них, кроме тока в ней и указана мощность нагрузки в киловаттах, что очень удобно:

    Трёхфазная сеть

    В трёхфазной сети есть две основных схемы соединения нагрузки, например обмоток электродвигателя – это звезда и треугольник. Формула определения и перевода мощности в ток несколько иная, чем в предыдущих вариантах:

    P = √3*U*I*cosФ

    Так как наиболее частым потребителем трёхфазной электросети является электродвигатель, рассмотрим на его примере. Допустим, у нас есть электродвигатель мощностью в 5 киловатт, собранный по схеме звезды с напряжением питания 380 В.

    Нужно запитать его через автоматический выключатель, но чтобы его подобрать, нужно знать ток двигателя, значит нужно перевести из киловатт в амперы. Формула для расчета будет иметь вид:

    I=P/(√3*U*cosФ)

    На нашем примере это будет 5000/(1,73*380*0,9)=8,4 А. Таким образом мы без труда смогли перевести киловатты в амперы в трехфазной сети.

    Напоследок рекомендуем просмотреть полезное видео по теме:

    Для оперативной работы электромонтеру необходимо освоить навыки быстрого перевода. На электродвигателях часто указывается и ток, и напряжение, и мощность, и её коэффициент, но случается, так, что табличка утеряна, или же информация на ней читается не полностью. Кроме электродвигателей часто приходится подключить ТЭНы или тепловую пушку, где кроме напряжения питания и мощности зачастую ничего не известно. Для оптимального подбора кабеля нужно знать, как быстро перевести амперы в киловатты соответственно. Мы надеемся, что предоставленные формулы и советы помогли вам понять всю нюансы перевода. Если вы не можете самостоятельно перевести мощность в амперы или наоборот, пишите в комментариях, мы вам постараемся помочь!

    Будет полезно прочитать:

    Как выбрать автоматический выключатель
    Расчет сечения кабеля по току и мощности
    Как определить потребляемую мощность приборов

    Проводим расчеты

    Как уже говорилось, для начала исходные величины необходимо привести к единому представлены. Оптимальный вариант – к «чистым» значениям, то есть вольтам, амперам, ваттам.

    Расчет для постоянного тока

    Здесь – никаких сложностей. Формула была показана выше.

    При расчете мощности по силе тока:

    P = U × I

    Если считается сила тока по известной мощности,

    I = P / U

    Расчет для однофазного переменного тока

    Вот здесь может быть особенность. Дело в том, что некоторые виды нагрузок в работе потребляют не только обычную, активную мощность, но и так называемую реактивную. Упрощенно говоря, она затрачивается на обеспечение условий работы прибора – создание электромагнитных полей, индукции, заряда мощных конденсаторов. Интересно, что на само общее потребление электроэнергии эта составляющая особо не влияет, так как, образно говоря, «сбрасывается» обратно в сеть. Но вот для определения номиналов защитной автоматики, сечения кабеля – ее желательно принимать в расчет.

    Для этого применяется специальный коэффициент мощности, иначе называемый косинусом φ (cos φ). Он обычно указывается в технических характеристиках приборов и устройств с выраженной реактивной составляющей мощности.

    Значение коэффициента мощности (cos φ) на шильдике асинхронного электродвигателя.

    Формулы с этим коэффициентом приобретают следующий вид:

    P = U × I × cos φ

    и

    I = P / (U × cos φ)

    У приборов, в которых реактивная мощность не используется (лампы накаливания, обогреватели, электроплиты, телевизионная и оргтехника и т. п.), этот коэффициент равен единице, и не влияет на результаты расчета. Но если для изделий, например, с электроприводами или индукторами этот показатель указан в паспортных данных,  будет правильным принять его в расчет. Разница в показателях силы тока может быть довольно существенной.

    Расчет для трехфазного переменного тока

    Не будем углубляться в теорию и разновидности схем трёхфазных подключений нагрузки. Просто приведем несколько видоизмененные формулы, использующиеся для расчетов в таких условиях:

    P = √3 × U × I × cos φ

    и

    I = P / (√3 × U × cos φ)

    Чтобы нашему читателю было легче произвести необходимые расчеты, ниже размещены два калькулятора.

    Для обоих общей исходной величиной является напряжение. А далее, в зависимости от направления расчета, указывается или замеренное значение тока, или известное значение мощности прибора.

    Коэффициент мощности по умолчанию указан, равным единице. То есть для постоянного тока и для приборов, в которых используется только активная мощность, он оставляется как есть, по умолчанию.

    Других вопросов по расчету, наверное, возникнуть не должно.

    Калькулятор расчеты силы тока по известному значению потребляемой мощности

    Перейти к расчётам

    Калькулятор расчета потребляемой мощности по промеренному значению силы тока

    Перейти к расчётам

    Укажите запрашиваемые значения и нажмите
    «РАССЧИТАТЬ ПОТРЕБЛЯЕМУЮ МОЩНОСТЬ»

    Напряжение питания

    Расчет проводится:

    — для цепи постоянного тока или для переменного однофазного тока

    — для цепи переменного трехфазного тока

    Коэффициент мощности (cos φ)

    Полученные значения могут использоваться для дальнейшего подбора необходимого защитного или стабилизирующего оборудования, для прогнозов потребления энергии, для анализа правильности организации своей домашней электросети.

    А пример, как рассчитываются параметры для выделенной линии с последующим подбором автоматического выключателя, хорошо показан в предлагаемом вниманию видеосюжете:

    5

    Проводка – как посчитать сечение и номиналы защиты

    Ток, протекающий по проводке, нагревает ее. Степень нагрева зависит от его силы и сечения проводки. Правильно подобранный греется несильно. Если ток имеет большую силу, проводка недостаточное сечение, она сильно нагревается, изоляция плавится, возможен пожар. Для правильного подбора сечения пользуются таблицами ПУЭ.

    Сечение провода и сила тока определяют степень нагрева проводки

    Предположим, требуется подключить электрокотел 5 кВт. Используем медный трехжильный кабель в рукаве. Проводим вычисления: 5000/220 = 22,7. Подходящее значение в таблице 27 А, сечение 4 мм2, диаметр – 2,3 мм. Сечение всегда выбирают с небольшим запасом для полной гарантии. Теперь есть уверенность, что провода не перегреются, не загорятся.

    Для защиты сети пользуются плавкими предохранителями. Они работают так, что при некоторой силе тока предохранитель плавится и разрывает цепь. Поэтому гвоздь или первый попавшийся медный провод вместо предохранителя использовать нельзя, когда-нибудь это приведет к серьезным проблемам. Если нужного предохранителя нет, используют медный провод подходящего диаметра, пользуясь таблицей.

    Плавкие предохранители постепенно уходят, им на смену пришли автоматические выключатели. Выбрать их не так просто, как кажется. Допустим, проводка рассчитана на 22 А, ближайший автомат на 25 А. Значит, ставить его? Оказывается, нет. Обозначение С25 вовсе не значит, что при 26 амперах он разорвет цепь. Даже если нагрузка превысит значение в полтора раза, он моментально не отключит сеть. Нагреется и сработает минуты через две.

    Ставить нужно автомат меньшего номинала. Ближайший – С16. Он может отключить сеть при 17 А и при 24, и никто не скажет, сколько времени пройдет. На срабатывание влияет много факторов. Устройство имеет две защиты – электромагнитную и тепловую. Электромагнитная защита отключает сеть за 0,2 секунды при значительной перегрузке.

    Следует выбирать автомат, срабатывающий при возможно меньшей силе тока.

    Еще один вид устройств отключения – УЗО. Он лишен тепловой и электромагнитной защиты. Указанный номинал служит, чтобы определять ток, который выдержит УЗО без повреждений. Так что логично после УЗО поставить автомат на максимальный ток. Существуют приборы защиты, представляющие симбиоз автомата с УЗО – дифавтоматы.

    Источники:

    • http://sdelalremont.ru/konverter-vatt-v-ampery.html
    • https://samelectrik.ru/kak-perevesti-ampery-v-kilovatty-i-obratno.html
    • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/kak-perevesti-ampery-v-kilovatty.html
    • http://obustroen.ru/inghenernye-sistemy/elektrichestvo/provodka/kak-rasschitat-silu-toka.html

     

    Перевести Амперы в Киловатты. Формулы рассчетов


    Автор Alexey На чтение 4 мин. Просмотров 6k. Опубликовано
    Обновлено

    Часто, покупая новый электроприбор или устанавливая технику у себя дома, мы сталкиваемся с разного рода трудностями. И все потому, что инструкции к этим приборам написаны сложным техническим языком, который понятен далеко не всем.

    Одной из основных проблем являются разные единицы измерения, которые и могут нас запутать.

    Всем известно, что выключатели, розетки, предохранители, автоматы и счетчики имеют свой предел электрического напряжения, который они могут пропускать. Это надо учитывать при подключении к ним электроприборов, так каждый из них имеет свою мощность. Если мощность прибора будет превышать возможную проводимость розетки, это может привести к замыканию проводки и даже пожару.

    Для того, чтобы узнать, можно ли подключить стиральную машину к розетке или предохранителю, нужно сравнить их технические данные. Но дело в том, что максимальная проводимость розетки измеряется в Амперах, а мощность стиральной машины в Ваттах. О том, как привести эти данные к одному значению, мы расскажем в нашей статье.

    Как перевести киловатты в амперы

    Для того, чтобы перевести амперы в киловатты и наоборот, необходимо также знать значение напряжения в сети. В этом нет особой трудности, так как в большинстве случаев вся сеть в наших домах находится под переменным напряжением в 220 В.

    Итак, формулы перевода единиц в однофазной электрической сети следующие:

    Р = I * U или I = Р/U,

    Где Р – мощность измеряемая в Ваттах, I– сила тока в Амперах и U– напряжение в Вольтах.

    Ниже в таблице приведены наиболее часто используемые показатели силы тока и соответствующие им показатели мощности для двух распространенных видов напряжения в 220 и 380 В:

    Если вы не нашли свои значения в этой таблице, необходимо самостоятельно рассчитать данные согласно формуле.

    Рассмотрим действие формулы на конкретном примере.

    Допустим, вы приобрели пылесос мощность 1,5 кВт. Переменное напряжение в сети – 220 В. Теперь нужно рассчитать, какой силы ток будет идти по проводам при подключении пылесоса к розетке.

    Сначала необходимо перевести киловатты мощности в ватты. Для этого показатель мощности умножаем на 1000, т.к. 1 кВт = 1000 Вт:

    1,5 кВт * 1000 = 1500 Вт

    Затем подставляем данные в вышеприведенную формулу. Так как нам нужно узнать силу тока, то выбираем формулу неизвестной I:

    I = Р/ U (А)

    I = 1500 / 220 ≈ 6,81 А

    Как вы заметили, сила тока, необходимая для работы такого мощного пылесоса нужна немаленькая. Если проводка в вашем доме старая, она может не выдержать такой нагрузки. Поэтому стоит подумать о ее замене.

    Как перевести амперы в киловатты

    Если же замена проводки кажется вам слишком трудоемким делом, можно пойти другим путем. Для этого необходимо знать максимальную силу тока, которую может выдержать проводка в вашем доме и уже потом выбирать новую технику с соответствующей мощностью.

    Допустим, проводка может выдержать силу тока в 25 А, переменное напряжение сети также равно 220 В. Подставляем данные в формулу с неизвестной Р:

    Р = I * U (Вт)

    Р = 25 * 220 = 5500 Вт или 5,5 кВт

    Теперь, при выборе кабелей для новой проводки, автоматов и предохранителей необходимо помнить о максимальной силе тока, которую они будут пропускать.

    В частности, при выборе кабеля для проводки нужно обратить внимание на его сечение. Кабель медного сечения выдерживает большие нагрузки нежели алюминиевого. Также роль играет и толщина кабеля. Следует с ответственностью подходить к выбору розеток, счетчиков, кабелей, предохранителей и, если вы не до конца уверены, посоветоваться со специалистом в магазине.

    Как вы смогли заметить, ничего сложного в переводе Ампер в Киловатты и наоборот нет. Необходимо только знать все необходимые данные и делать расчеты по простой формуле, приведенной выше. Используя полученные данные вы сможете не только выбрать разного типа устройства и технику, но и рассчитать потребление электроэнергии отдельными приборами в течение определенного периода времени.

    Как перевести амперы в киловатты в однофазной и трехфазной сети — правила расчета. Основные правила при переводе амперов в киловатты в однофазных сетях.

    Что тянул новую и т.д. Тогда я реально «лохонулся» с кабелем – не ожидал, что индукционная плита будет расходовать 7,5 кВт. И ее не включить в обычную розетку в 16A (Ампер). Прошло какое-то время, и мне написал парень, что он также врезает варочную поверхность, и хочет подключить ее в обычную розетку в 16А? Вопрос был примерно таким – а выдержит ли розетка напряжение от плиты? И 16

    A это сколько киловатт

    ? Просто ужас! Парня я светить не стал, но такое подключение может спалить вам квартиру! Обязательно читайте дальше …

    Ребята если сами не знаете, что и как рассчитывается! Если в школе с физикой, а особенно с электрикой было плохо! То лучше вам не лезть в подключение электрических плит! Вызывайте понимающего человека!

    А теперь давайте о напряжении и силе тока!

    Для начала отвечу на вопрос – 16
    A сколько киловатт (кВт)?

    Все очень просто – напряжение в домашней электрической сети 220В (Вольт), чтобы узнать сколько может выдержать розетка в 16А достаточно – 220 Х 16 = 3520 Ватт, а как мы знаем в 1кВт – 1000 Вт, то получается – 3,52кВт

    Если формула из школьной физики P= I * U, где P (мощность), I (сила тока), U (напряжение)

    Простыми словами розетка в 16A в цепи 220В, может максимально выдержать 3,5кВТ!

    Индукционная плита и розетка

    Индукционная плита потребляет 7,5кВт энергии, при всех включенных 4 конфорках. Если разделить в обратном порядке, то получается 7,5кВт (7500Вт)/220В = 34,09А

    Как видите потребление 34А, ваша розетка в 16А просто расплавится!

    Ну хорошо думаете вы …

    Тогда поставлю розетку в 32 – 40 А и подключу плиту! А не тут то было, нужно знать какой провод у вас заложен в стене, а также на какой автомат все выведено в щитке!

    Все дело в том, что провода также имеют максимальный порог мощности! Так если у вас заложен провод в 2,5 мм сечением, то он может выдержать всего 5,9кВт!

    Также и автомат нужно ставить на 32A, а лучше на 40A. Еще раз ! Там более подробно!

    Так что рассчитывайте правильно! Иначе ваша розетка – проводка расплавится от высоко напряжения и запросто может возникнуть пожар!


    Часто, покупая новый электроприбор или устанавливая технику у себя дома, мы сталкиваемся с разного рода трудностями. И все потому, что инструкции к этим приборам написаны сложным техническим языком, который понятен далеко не всем.

    Одной из основных проблем являются разные единицы измерения, которые и могут нас запутать.

    Всем известно, что выключатели, розетки, предохранители, автоматы и счетчики имеют свой предел электрического напряжения, который они могут пропускать. Это надо учитывать при подключении к ним электроприборов, так каждый из них имеет свою мощность. Если мощность прибора будет превышать возможную проводимость розетки, это может привести к замыканию проводки и даже пожару.

    Для того, чтобы узнать, можно ли подключить стиральную машину к розетке или предохранителю, нужно сравнить их технические данные. Но дело в том, что максимальная проводимость розетки измеряется в Амперах, а мощность стиральной машины в Ваттах. О том, как привести эти данные к одному значению, мы расскажем в нашей статье.

    Как перевести киловатты в амперы

    Для того, чтобы перевести амперы в киловатты и наоборот, необходимо также знать значение напряжения в сети. В этом нет особой трудности, так как в большинстве случаев вся сеть в наших домах находится под переменным напряжением в 220 В.

    Итак, формулы перевода единиц в однофазной электрической сети следующие:

    Р = I * U или I = Р/U,

    Где Р – мощность измеряемая в Ваттах, I– сила тока в Амперах и U– напряжение в Вольтах.

    Ниже в таблице приведены наиболее часто используемые показатели силы тока и соответствующие им показатели мощности для двух распространенных видов напряжения в 220 и 380 В:

    Если вы не нашли свои значения в этой таблице, необходимо самостоятельно рассчитать данные согласно формуле.

    Рассмотрим действие формулы на конкретном примере.

    Допустим, вы приобрели пылесос мощность 1,5 кВт. Переменное напряжение в сети – 220 В. Теперь нужно рассчитать, какой силы ток будет идти по проводам при подключении пылесоса к розетке.

    Сначала необходимо перевести киловатты мощности в ватты. Для этого показатель мощности умножаем на 1000, т.к. 1 кВт = 1000 Вт:

    1,5 кВт * 1000 = 1500 Вт

    Затем подставляем данные в вышеприведенную формулу. Так как нам нужно узнать силу тока, то выбираем формулу неизвестной I:

    I = 1500 / 220 ≈ 6,81 А

    Как вы заметили, сила тока, необходимая для работы такого мощного пылесоса нужна немаленькая. Если проводка в вашем доме старая, она может не выдержать такой нагрузки. Поэтому стоит подумать о ее замене.

    Как перевести амперы в киловатты

    Если же замена проводки кажется вам слишком трудоемким делом, можно пойти другим путем. Для этого необходимо знать максимальную силу тока, которую может выдержать проводка в вашем доме и уже потом выбирать новую технику с соответствующей мощностью.

    Допустим, проводка может выдержать силу тока в 25 А, переменное напряжение сети также равно 220 В. Подставляем данные в формулу с неизвестной Р:

    Р = I * U (Вт)

    Р = 25 * 220 = 5500 Вт или 5,5 кВт

    Теперь, при выборе кабелей для новой проводки, автоматов и предохранителей необходимо помнить о максимальной силе тока, которую они будут пропускать.

    В частности, при выборе кабеля для проводки нужно обратить внимание на его сечение. Кабель медного сечения выдерживает большие нагрузки нежели алюминиевого. Также роль играет и толщина кабеля. Следует с ответственностью подходить к выбору розеток, счетчиков, кабелей, предохранителей и, если вы не до конца уверены, посоветоваться со специалистом в магазине.

    Как вы смогли заметить, ничего сложного в переводе Ампер в Киловатты и наоборот нет. Необходимо только знать все необходимые данные и делать расчеты по простой формуле, приведенной выше. Используя полученные данные вы сможете не только выбрать разного типа устройства и технику, но и рассчитать потребление электроэнергии отдельными приборами в течение определенного периода времени.

    Абсолютно на всех электроприборах и их отдельных деталях имеется собственная маркировка по техническим характеристикам. Однако довольно часто получается так, что неподготовленный человек не может в ней разобраться из-за определенных проблем и путаницы в показателях и обозначениях. Сегодня мы рассмотрим вопрос, как перевести амперы в ватты.

    Необходимость узнать, сколько ампер в киловатте может возникнуть, например, если вам требуется определить объем потребляемой электроприбором энергии за месяц использования. Также данная информация может понадобиться при подключении нового электроприбора к источнику питания и определения выдержит ли сеть такое подключение.

    Как перевести амперы в ватты

    Основная проблема при пересчете заключается в том, что на вилках, автоматах, розетках и прочих устройствах указывается сила тока – Амперы. В то же время на приборах, подключаемых к сети, указывается мощность в ваттах или киловаттах. Из-за этого и возникает путаница и сложности с переводом.

    Для того чтобы осуществить перевод ампер в ватты вам понадобиться знать еще один показатель – напряжение. Расчет выполняется по следующей формуле:

    Где P это мощность (Ватты), I – сила тока (Амперы), а U – напряжение (Вольты). В том же случае, если вам требуется узнать силу тока, вам необходимо мощность поделить на величину напряжения. Как правило, мощность указывается в киловаттах. В таком случае, следует помнить, что в одном киловатте 1000 ватт.

    Для наглядности, разберем эту формулу на бытовом примере. Вы купили электрический чайник, на котором указана мощность – 2 кВт (2000 Ватт). Чтобы определить силу тока в сети во время его использования необходимо мощность разделить на напряжение. В нашей стране в электросетях поддерживается напряжение 220 Вольт. Теперь просто делим:

    2000Вт/220В=9А

    Как видите это достаточно большой показатель, именно поэтому при подключении современной техники к устаревшим сетям у вас в доме может выбить автомат или перегореть проводка. В связи с этим, рекомендуется менять проводку в старых квартирах на более современную. С помощью этой несложной формулы можно установить и сколько ампер в ватте и легко перевести кВт в амперы.
    Подробнее о ваттах и амперах смотрите в видео:

    Перевод ампер в киловатты

    Для того чтобы перевести амперы в киловатты лучше взять калькулятор, поскольку некоторые цифры проблематично подсчитать в уме. Ниже приведена таблица перевода ампер в киловатты. В ней приведены самые популярные показатели. Все расчеты делают исходя из предположения, что напряжение в сети 220 Вольт:

    Как видите ничего особо сложного в пересчете хоть Ампер в Ватты, хоть наоборот нет. Достаточно просто запомнить одну формулу, приведенную в самом начале статьи, а дальше уже делать расчеты в зависимости от своих потребностей. Основываясь на этих данных вы сможете не только определить какой толщины кабель брать для проводки в новую квартиру, но и сколько вам придется платить за электроэнергию при использовании различных приборов на протяжении месяца.

    Из школьного курса физики всем нам известно, что силу электротока измеряют в амперах, а механическую, тепловую и электрическую мощность – в ваттах. Данные физические величины связаны между собой определенными формулами, но так как они являются разными показателями, то просто взять и перевести их друг в друга нельзя. Для этого нужно одни единицы выразить через другие.

    Мощность электротока (МЭТ) – это количество работы, совершенной за одну секунду. Количество электричества, которое проходит через поперечное сечение кабеля за одну секунду называется силой электротока. МЭТ в таком случае это прямо пропорциональная зависимость разности потенциалов, иными словами напряжения, и силы тока в электрической цепи.

    Теперь разберемся, как же соотносятся сила электротока и мощность в различных электрических цепях.

    Нам понадобится следующий набор инструментов:

    • калькулятор
    • электротехнический справочник
    • токоизмерительные клещи
    • мультиметр или аналогичный прибор.

    Алгоритм пересчета А в кВт на практике следующий:

    1.Измеряем с помощью тестера напряжения в электрической цепи.

    2.Измеряем с помощью токоизмерительных ключей силу тока.

    3.При постоянном напряжении в цепи величина тока умножается на параметры напряжения сети. В результате мы получим мощность в ваттах. Для перевода ее в киловатты, делим произведение на 1000.

    4.При переменном напряжении однофазной электросети величина тока умножается на напряжение сети и на коэффициент мощности (косинус угла фи). В результате мы получим активную потребляемую МЭТ в ваттах. Аналогичным образом переводим значение в кВт.

    5.Косинус угла между активной и полной МЭТ в треугольнике мощностей равен отношению первой ко второй. Угол фи – это сдвиг фаз между силой тока и напряжением. Он возникает в результате индуктивности. При чисто активной нагрузке, например, в лампах накаливания или электрических нагревателях, косинус фи равняется единице. При смешанной нагрузке его значения варьируются в пределах 0,85. Коэффициент мощности всегда стремиться к повышению, так как, чем меньше реактивная составляющая МЭТ, тем меньше потери.

    6.При переменном напряжении в трехфазной сети параметры электротока одной фазы умножается на напряжение этой фазы. Затем рассчитанное произведение умножается на коэффициент мощности. Аналогичным образом производится расчет МЭТ других фаз. Далее все значения суммируются. При симметричной нагрузке общая активная МЭТ фаз равняется утроенному произведению косинуса угла фи на фазный электроток и на фазное напряжение.

    Отметим, что на большинстве современных электрических приборов, сила тока и потребляемая МЭТ уже указана. Найти эти параметры можно на упаковке, корпусе или в инструкции. Зная исходные данные, перевести амперы в киловатты или амперы в киловатты дело нескольких секунд.

    Для электроцепях с переменным током существует негласное правило: для того, чтобы получить приблизительное значение мощности при расчете сечений проводников и при выборе пусковой и регулирующей аппаратуры, нужно значения силы тока разделить на два.

    Как перевести Амперы в Киловатты

    Часто возникает проблема с подбором автоматов для определённой нагрузки. Совершенно понятно, что для освещения нужен один автомат, а для розеточной группы – более мощный.

    Возникает вполне логический вопрос и проблема как перевести Амперы в Киловатты
    . Благодаря тому, что в Украине напряжение в электрической сети переменное, существует возможность самостоятельно рассчитать соотношение Ампер \ Ватт, используя нижеприведённую информацию.

    Как перевести амперы в киловатты в однофазной сети

    Ватт = Ампер * Вольт:

    Ампер = Ватты / Вольт:

    Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. То есть в 1000 Вт = 1 кВт.

    Как перевести амперы в киловатты в трехфазной сети

    Ватт = √3 * Ампер * Вольт:

    Ампер = Ватты / (√3 * Вольт):

    Итак, например, рассчитывая ток, который будет течь по проводам при включении электрического чайника мощностью 2 кВт (2000 Ватт) и с переменным напряжением в сети 220 Вольт, следует применить следующую формулу. Разделить 2 КВт на 220 вольт. В итоге получим 9 – это и будет количество Ампер.

    По сути это не малый ток, поэтому, подбирая кабель, следует учитывать его сечение. Провода, изготовленные из алюминия могут выдерживать значительно меньшие нагрузки, чем медные того же сечения.

    200?»200px»:»»+(this.scrollHeight+5)+»px») дано: t = 24 часа * 30 дней, I = 112 ампер, U = 220 вольтт 50 герц, P =.

    Электрический прибор — трансформатор работает 24 часа в сутки * 30 дней, обеспечивает 40 потребителей. Мощность трансформатора = 112 ампер, нужно перевести амперы в киловатты (т.к. оплата за кВт/часы) и узнать рекомендованое потребление кВт в 30 дней каждым потребителем. Нужно найти P, (возможно по формуле P = IU -не уверен), P — перевести в киловатты. Найденое P, за период 30 дней разделить на 40 единиц.

    Частный сектор, поставщик переменного тока РЭС. На трансформаторе стоит 100 амперный счётчик + 100 амперный пакетник, напряжение 3 фазы — 220 вольт 50 герц. После замеров по трём фазам выведена суммарная загрузка главного трёхфазного 100 амперного пакетника на трансформаторе = 112 ампер. Увеличена нагрузка в зимнее время, связанная с отоплением электрокотлами — часто выбивает пакетник на трансформаторе, а из дома в два часа ночи не каждый захочет выходить чтобы включить рубильник. Решили рассчитать рекомендованое потребление электроэнергии, каждого электропользователя:

    1) _- как это сделать?

    2) _ — нужно перевести амперы в киловатты.

    Искал в иннете при переводе ампер в киловатты, для дизельных электростанций малой и средней мощности существует определенный поправочный коэффициент, который составляет 0,8 Может быть знающие форумчане подскажут решение перевода ампер в киловатты или поправочный коэффициент для трёхфазного электротрансформатора переменоого тока.

    У вас может выбивать автомат из-за перекоса нагрузок по фазам, 112 А ничего не говорит, нужны нагрузки общие по каждой фазе, тогда будет яснее картина.

    Источники: http://electrikagid.ru/instrument/kak-perevesti-kilovatty-v-ampery.html, http://www.voltage220.com.ua/perevod-a-v-kvt/, http://ukrelektrik.com/forum/9-24-1

    При покупке любого прибора, который связан с электросетью, всегда идет техническая характеристика к нему, но не всегда можно хорошо в ней разобраться, особенно без определенного опыта работы. Можно рассмотреть счетчик или розетку, на которых маркировка показывает силу тока в амперах. То есть, это является показателем максимального электрического тока, который способен выдерживать данный агрегат. Что касается электрических приборов, то на них указывают обозначение тока в ваттах или киловаттах. Из-за этого и бывают проблемы, в правильном переводе данных величин.

    1. Для начала нужно разобраться с ваттами. 1 Ват = Ампер * Вольт. Из этого выходит формула:
    2. Чтобы узнать сколько и чему будет равняться Ампер, необходимо знать, что 1 Ампер= Ват/Вольт. Тогда получаем следующую формулу:
      b. I= P/U

    Также нужно помнить и знать, для того, чтобы вычислить ватты с киловатт, необходимо значение, которое в итоге выйдет поделить на тысячу. Это будет выглядеть примерно так: 1 тысяча Ват – это 1 киловатт. Из этого получаем такую формулу:

    с. киловатты = ватты/ 1000

    Основные правила при переводе амперов в киловатты в трехфазных сетях

    В этом случае основные формулы будут такие:

    1. Для начала для расчета Ватта, необходимо знать, что Ватт= √3*Ампер*Вольт. Из этого получается такая формула: P = √3*U*I.
    2. Для правильного подсчета Ампера, нужно склоняться к таким расчетам:
      Ампер = Ват/ (√3 * Вольт), получаем I= P/√3 *U

    Можно рассмотреть пример с чайником, он заключается в таком: есть определенный ток, он проходит по проводке, тогда когда начинает свою работу чайник с мощностью два киловатта, а также имеет переменную электроэнергию 220 вольт. Для такого случая, необходимо использовать такую формулу:

    I = P/U= 2000/220 = 9 Ампер.

    Если рассматривать данный ответ, можно сказать о нем, что это маленькое напряжение. При подборке шнура, который будет использоваться, необходимо верно и умно подобрать его сечения. Например, шнур из алюминия выдерживает на много меньшие нагрузки, а вот медный провод с таким же сечением выдерживает нагрузку в два раза мощнее.

    Поэтому, чтобы произвести правильный расчет и перевод амперов в киловатты, необходимо придерживаться выше наведенных формул. Также следует быть предельно осторожными в работе с электрическими приборами, чтобы не навредить своему здоровью и не испортить данный агрегат, который будет использоваться в дальнейшем.

    Ампер в КВт — Ампер в Киловатт Конвертер единиц:

    Ампер в кВт — это конвертер электрической энергии. Это поможет вам преобразовать ампер в киловатты для постоянного тока (DC) и переменного тока (AC). Вам нужно выбрать тип преобразования, который вы хотите AC или DC. Введите значение ампер, нажмите «Рассчитать», чтобы получить примерно равное значение переменного или постоянного тока.

    Ампер — единица измерения электрического тока. Ампер обозначается буквой «А». Киловатт – это единица измерения электрической энергии.Ватты используются для измерения небольшой электрической энергии и получаются из ватт. Киловатты – это единицы измерения высокой электрической энергии. Киловатт в 1000 раз больше мощности ватта. Все современное оборудование и гаджеты откалиброваны в киловаттах.

    Мы знаем, что мощность равна напряжению, умноженному на силу тока.

    Р = В х I

    Формула преобразования ампер постоянного тока в кВт:

    Мощность постоянного тока равна силе тока I в амперах, умноженной на напряжение V в вольтах, деленному на 1000.

    P (кВт) = V x I / 1000

    Где

    P = мощность в киловаттах.

    В = напряжение.

    I = Ток.

    Для преобразования однофазного переменного тока используются разные формулы. Преобразование однофазного переменного тока нам нужно использовать коэффициент мощности.

    Формула преобразования однофазных ампер переменного тока в кВт:

    Мощность переменного тока равна току I в амперах, умноженному на напряжение V в вольтах, умноженному на коэффициент мощности, деленному на 1000.

    Коэффициент мощности – это отношение реальной мощности к полной мощности.

    P (кВт) = V x I x PF / 1000

    Где

    P = мощность в киловаттах

    В = напряжение.

    I = Ток.

    PF = коэффициент мощности.

    Формула преобразования трехфазных ампер переменного тока в кВт:

    Формула преобразования трехфазных ампер переменного тока в кВт аналогична формуле преобразования однофазного переменного тока, но значение коэффициента мощности изменено. Здесь, в трехфазном переменном токе, мы умножаем коэффициенты мощности на √3.

    P (кВт) = √3 x PF x V x I / 1000

    Где

    P = мощность в киловаттах

    В = напряжение.

    I = Ток.

    PF = коэффициент мощности.

    Типовой коэффициент мощности бытовых приборов:

    Ссылка // Летнее исследование ACEE по энергоэффективности зданий, 2014 г. / electric-installation.com

    Типовой коэффициент мощности в различных конструкциях:

    Ссылка // IEEE Std 141-1993 (Красная книга IEEE)

    Ссылка // CriticalPowerGroup.ком

    Ссылка

    // Коэффициент мощности в управлении электроэнергией-A. Бхатия, BE-2012
    Требования к коэффициенту мощности для электронных нагрузок в Калифорнии — Брайан Фортенбери, 2014 г.
    http://www.engineeringtoolbox.com

    Эквивалентные амперы и киловатты при 120 В переменного тока
    Эквивалентные значения в амперах и киловаттах при напряжении 240 Вольт.

    Часто задаваемые вопросы о генераторах

    — Часто задаваемые вопросы о генераторах

    В Generator Source многие клиенты полагаются на нас, чтобы предоставить им точные и информативные ответы на их вопросы, связанные с электричеством, двигателем и генератором. Это приводит к многочисленным вопросам каждый день, некоторые из которых довольно распространены, и мы отвечаем довольно часто. Чтобы лучше информировать наших клиентов и посетителей веб-сайта о некоторых наиболее популярных темах и проблемах, с которыми мы сталкиваемся, мы решили начать список часто задаваемых вопросов. Мы планируем со временем расширять этот раздел и добавлять любые другие часто задаваемые вопросы, с которыми мы сталкиваемся. Если у вас есть какие-либо дополнительные вопросы, которые вы хотели бы видеть здесь, пожалуйста, напишите нам с вашими предложениями, и мы сделаем все возможное, чтобы ответить и включить их здесь.

    1. В чем разница между кВт и кВА?

    2. Что такое коэффициент мощности?

    3. В чем разница между номинальной мощностью в режиме ожидания, постоянной и основной мощности?

    4. Если меня интересует генератор, напряжение которого не соответствует мне, можно ли изменить напряжение?

    5. Что делает автоматический переключатель?

    6. Может ли генератор, который я рассматриваю, работать параллельно с генератором, который у меня уже есть?

    7.Можно ли преобразовать генератор 60 Гц в 50 Гц?

    8. Как определить, какой размер генератора мне нужен?

    В чем разница между кВт и кВА?
    Основное различие между кВт (киловатт) и кВА (киловольт-ампер) заключается в коэффициенте мощности. кВт — это единица реальной мощности, а кВА — единица полной мощности (или реальной мощности плюс реактивная мощность). Таким образом, коэффициент мощности, если он не определен и не известен, является приблизительным значением (обычно 0.8), и значение кВА всегда будет выше, чем значение для кВт.

    Что касается промышленных и коммерческих генераторов, кВт чаще всего используется для обозначения генераторов в Соединенных Штатах и ​​некоторых других странах, которые используют 60 Гц, в то время как в большинстве стран остального мира обычно используется кВА в качестве основного значения, когда ссылки на генераторные установки.

    Чтобы немного расширить это, номинальная мощность в кВт — это, по сути, результирующая выходная мощность, которую генератор может обеспечить на основе лошадиных сил двигателя.кВт рассчитывается как номинальная мощность двигателя, умноженная на 0,746. Например, если у вас есть двигатель мощностью 500 лошадиных сил, его номинальная мощность составляет 373 кВт. Киловольт-ампер (кВА) — это конечная мощность генератора. Генераторные установки обычно показаны с обоими номиналами. Для определения соотношения кВт и кВА используется приведенная ниже формула.

    ,8 (пф) x 625 (кВА) = 500 кВт

    Что такое коэффициент мощности?
    Коэффициент мощности (pf) обычно определяется как отношение между киловаттами (кВт) и киловольт-амперами (кВА), которое потребляется от электрической нагрузки, как более подробно обсуждалось в вопросе выше.Определяется подключаемой нагрузкой генераторов. Значение pf на паспортной табличке генератора соотносит кВА с номинальной мощностью в кВт (см. формулу выше). Генераторы с более высоким коэффициентом мощности более эффективно передают энергию подключенной нагрузке, в то время как генераторы с более низким коэффициентом мощности менее эффективны и приводят к увеличению затрат на электроэнергию. Стандартный коэффициент мощности для трехфазного генератора равен 0,8.

    В чем разница между номинальной мощностью в режиме ожидания, постоянной и основной мощности?
    Резервные генераторы чаще всего используются в аварийных ситуациях, например, при отключении электроэнергии.Он идеально подходит для приложений, которые имеют другой надежный источник непрерывного питания, например электроэнергию. Чаще всего рекомендуется использовать только на время отключения электроэнергии и регулярного тестирования и обслуживания.

    Основная номинальная мощность может быть определена как имеющая «неограниченное время работы» или, по сути, генератор, который будет использоваться в качестве основного источника питания, а не только для резервного или резервного питания. Генератор основной мощности может обеспечивать электроэнергию в ситуации, когда нет источника коммунального обслуживания, как это часто бывает в промышленных применениях, таких как горнодобывающая промышленность или нефтегазовые операции, расположенные в удаленных районах, где сеть недоступна.

    Непрерывная мощность похожа на основную мощность, но имеет номинальную базовую нагрузку. Он может непрерывно подавать питание на постоянную нагрузку, но не может работать в условиях перегрузки или работать с переменными нагрузками. Основное различие между основной и постоянной номинальной мощностью заключается в том, что генераторные установки основной мощности настроены на максимальную мощность, доступную при переменной нагрузке в течение неограниченного количества часов, и они обычно включают способность к перегрузке 10% или около того в течение коротких периодов времени.

    Если меня интересует генератор не того напряжения, которое мне нужно, можно ли изменить напряжение?
    Концы генератора могут быть повторно соединяемыми или непересоединяемыми. Если генератор указан как повторно подключаемый, напряжение может быть изменено, следовательно, если он не является повторно подключаемым, напряжение не подлежит изменению. 12-выводные переподключаемые концы генератора могут переключаться между трехфазным и однофазным напряжением; однако имейте в виду, что изменение напряжения с трехфазного на однофазное снизит выходную мощность машины.10 проводов с возможностью повторного подключения могут быть преобразованы в трехфазное напряжение, но не в однофазное. Для получения дополнительной информации см. информативную статью об изменении напряжения.

    Что делает автоматический переключатель?
    Автоматический переключатель ввода резерва (АВР) переводит питание от стандартного источника, такого как коммунальное предприятие, на аварийное питание, такое как генератор, когда стандартный источник выходит из строя. ATS обнаруживает перебои в подаче электроэнергии на линии и, в свою очередь, сигнализирует панели управления двигателем о запуске. Когда стандартный источник восстанавливает нормальную мощность, АВР передает питание обратно на стандартный источник и выключает генератор. Автоматические переключатели резерва часто используются в средах с высокой доступностью, таких как центры обработки данных, производственные планы, телекоммуникационные сети и т. д.

    Может ли генератор, который я рассматриваю, работать параллельно с генератором, который у меня уже есть?
    Генераторные установки могут быть подключены параллельно либо для резервирования, либо для обеспечения требований к мощности.Параллельное подключение генераторов позволяет электрически соединить их, чтобы объединить их выходную мощность. Параллельное подключение идентичных генераторов не вызовет проблем, но следует тщательно продумать общий дизайн, исходя из основного назначения вашей системы. Если вы пытаетесь работать параллельно, в отличие от генераторов, конструкция и установка могут быть более сложными, и вы должны помнить о влиянии конфигурации двигателя, конструкции генератора и конструкции регулятора, и это лишь некоторые из них.
    Можно ли преобразовать генератор с частотой 60 Гц в генератор с частотой 50 Гц?
    Как правило, большинство коммерческих генераторов можно преобразовать с 60 Гц на 50 Гц.Общее эмпирическое правило заключается в том, что машины с частотой 60 Гц работают со скоростью 1800 об/мин, а генераторы с частотой 50 Гц работают со скоростью 1500 об/мин. Для большинства генераторов изменение частоты потребует только снижения оборотов двигателя. В некоторых случаях может потребоваться замена деталей или внесение дополнительных модификаций. Более крупные машины или машины, уже настроенные на низкую скорость вращения, отличаются друг от друга и всегда должны оцениваться в каждом конкретном случае. Мы предпочитаем, чтобы наши опытные технические специалисты подробно изучили каждый генератор, чтобы определить осуществимость и все, что потребуется.

    Как определить, какой размер генератора мне нужен?
    Приобретение генератора, способного удовлетворить все ваши потребности в электроэнергии, является одним из наиболее важных аспектов решения о покупке. Независимо от того, заинтересованы ли вы в основном или резервном питании, если ваш новый генератор не может удовлетворить ваши конкретные требования, он просто никому не принесет никакой пользы, потому что он может создать чрезмерную нагрузку на устройство и даже повредить некоторые устройства, подключенные к нему. Это. Определить, какой именно размер генератора выбрать, часто бывает очень сложно и включает в себя ряд факторов и соображений.Чтобы получить более подробную информацию по этому вопросу, пожалуйста, посетите нашу расширенную статью о размерах генератора.

    Как рассчитать ампер для электродвигателя?

    Как правило, для размера электродвигателя он оценивается в лошадиных силах (л.с.) или киловаттах (кВт). Мы можем узнать размер электродвигателя, когда ссылаемся на его киловатты или лошадиные силы. полная нагрузка ампер для электродвигателя?

    На этот раз я хочу поделиться тем, как рассчитать ток полной нагрузки (FLA) электродвигателя по его номинальной мощности. Это не сложно, если мы знаем правильную формулу, чтобы получить ответ. Из этого расчета мы можем только оценить значение ампера при полной нагрузке.

    Мы не можем получить фактическую силу тока при полной нагрузке, поскольку она зависит от КПД двигателя. Если электродвигатели имеют более высокий КПД, они будут потреблять меньше ампер, например, двигатель мощностью 10 л.с. с КПД 60% будет потреблять около 65 ампер при 230 В переменного тока по сравнению с примерно 45 А для двигателя с номиналом 80%.

     

    Как рассчитать мощность (кВт и л.с.) в амперах (I)?

    1) Киловатт (кВт) → ампер ( л )

    Для трехфазного питания ; кВт = I х В х 1.732 х пф

    Для однофазного источника питания ; кВт = I x V x pf

    Пример: 1 блок компрессора мощностью 37 кВт, 415 В переменного тока, 3 фазы и коэффициент мощности 80%, рассчитайте ток при полной нагрузке?

    Расчет :

    кВт = I x V x 1,732 x pf

    I = кВт / (В x 1,732 x пф)

    I = 37 / (415 х 1,732 х 0,8)

    I = (37/575) х 1000

    I = 64,4 ампера (ампер при полной нагрузке)

     

    2) Мощность в лошадиных силах (л. с.) → ампер (I)

    Сначала мы должны преобразовать л.с. в кВт по этой формуле:

    1 л.с. = 0.746 кВт

    После этого используйте формулу кВт в ампер:

    Для трехфазного питания ; кВт = I x V x 1,732 x pf

    Для однофазного источника питания; кВт = I x V x pf

     

    Пример :-

    1 асинхронный двигатель мощностью 25 л.с., 200 В переменного тока, 3 фазы, коэффициент мощности 90 %, рассчитанный ток при полной нагрузке.

    Расчет: —

    кВт = 25 л.с. x 0,746

    кВт = 18,65

    кВт = I х В х 1.732 х пф

    I = кВт/В x 1,732 x пф

    I = 18,65 / (200 х 1,732 х 0,9)

    I = (18,65 / 311,76) х 1000

    I = 59,8 ампер (ампер при полной нагрузке)

    🔥 Калькулятор перевода ампер в кВт (киловатт)

    Аналогичный преобразователь кВт в ампер и кВтч в Ач

    Перевести ампер в киловатты

    При работе с расчетами конверсий необходимо убедиться, что набор единиц непротиворечив, чтобы получить правильные ответы. Когда дело доходит до того, сколько энергии будет потребляться определенными приборами и осветительными приборами, чаще всего используются термины «Ампер» и «Ватт». Между ними существует огромная разница, поскольку ватты могут быть комплексной мерой мощности, тогда как амперы — это просто количество потребляемого тока.

    Ампер (Ампер): Важно уметь количественно определять величину тока, протекающего в цепи, поскольку это позволяет определить характеристики цепи и обеспечить ее работу в соответствии с требованиями.Для этого необходимо иметь единицу измерения ампер или ампер.

    кВт (киловатт): кВт известно как фактическая мощность или рабочая мощность. Киловатты — это количество энергии, которое преобразуется в полезную мощность. Мощность может быть мерой того, насколько быстро что-то генерирует или генерирует энергию. Во многих отношениях со средними значениями KW легче работать.

    Переменный ток (AC): Переменный ток представляет собой поток заряда. В результате вместе с этим дополнительно реверсируется уровень напряжения.Переменный ток используется для подачи электроэнергии в дома, офисные здания и т. д. Переменный ток может производиться генератором переменного тока.

    Постоянный ток (DC): Постоянный ток может быть немного проще для понимания, чем переменный. Вместо периодического движения вперед и назад постоянный ток обеспечивает постоянное напряжение или ток. Генератор переменного тока, оснащенный устройством, называемым коммутатором, может производить постоянный ток.

    Калькулятор

    Ампер в кВт

    Калькулятор преобразования силы тока в амперах (А) и напряжения в вольтах (В) в мощность в киловаттах (кВт).Первым шагом является выбор текущего типа. Это может быть постоянный ток (DC) или переменный ток (AC). Следующим шагом является ввод тока в амперах, после чего в следующем поле можно ввести напряжение в вольтах. Затем вам просто нужно нажать на кнопку расчета, и он выполнит расчет одним щелчком мыши. Кнопка сброса стирает все в текстовых полях и может использоваться для дальнейших расчетов.

    Преобразования в соответствии с текущими типами:

    1.Расчет постоянного тока в киловаттах

    P(кВт) = I(A) × V(В) / 1000
    P (мощность) в кВт (киловаттах) равна I (силе тока) в A (амперах), умноженной на V (напряжение) в В (вольт) разделить на 1000.

    2. Расчет однофазных ампер переменного тока в киловаттах

    P(кВт) = PF × I(A) × V(V) /1000
    P (мощность) в киловаттах является произведением PF (коэффициента мощности), I (силы тока) в (амперах) и RMS V (напряжения ) в (вольтах), разделенных на 1000.

    3.Расчет трехфазных ампер переменного тока в киловаттах
    Расчет с линейным напряжением

    P(кВт) = √3 × PF × I(A) × VL-L (В) / 1000 фаза I (ток) в А (амперах), умноженная на среднеквадратичное напряжение между фазами VL-L в В (вольтах), деленное на 1000

    Расчет с линейным напряжением

    P(кВт) = 3 × PF × I(A) × VL-N (В)/1000 ), умноженное на среднеквадратичное напряжение нейтрали VL-N, деленное на 1000
    VL-N в В (вольтах), деленное на 1000.

    Чтобы загрузить наш калькулятор ампер в кВт, нажмите здесь для Google Play и App Store

    Нажмите здесь, чтобы посмотреть видео о калькуляторе ампер в кВт

    Калькулятор размеров 3-фазного генератора, калькулятор кВА, размер генератора

    Как преобразовать кВА в кВт для генераторов

    Самое важное, что следует учитывать при выборе генератора, — это высокие пусковые токи, связанные с запуском электродвигателей и трансформаторов, которые обычно в шесть раз превышают ток полной нагрузки.

    Однако пусковые токи для современных высокоэффективных двигателей могут быть почти в два раза выше.

    В результате стало обычной практикой использовать требования к пусковой мощности двигателя и трансформатора в кВА в качестве критерия для определения размера генератора.

    Этот подход часто приводит к тому, что мощность генератора превышает рабочую нагрузку двигателя, а не соответствует фактическим потребностям приложения. Более того, в нем не учитываются другие ключевые факторы, играющие ключевую роль при определении размеров генераторов.Например, гармоники, вызванные частотно-регулируемыми приводами и последовательным пуском двигателей.

    При пуске двигателей или трансформаторов также могут возникать большие провалы напряжения и частоты, если генераторная установка не рассчитана должным образом. Кроме того, другие нагрузки, подключенные к выходу генератора, могут быть более чувствительны к скачкам напряжения и частоты, чем двигатель или пускатель двигателя, что может вызвать проблемы.

    К счастью, помощь уже рядом. Многие генераторы теперь могут быть оснащены решениями, позволяющими отказаться от дополнительных систем возбуждения, необходимых в генераторе переменного тока.

    Обычно предлагается два варианта: постоянный магнит или вспомогательная обмотка. Оба обеспечивают генератор током, в три раза превышающим номинальный, для покрытия пусковых пиков от электродвигателя в течение минимальной продолжительности десять секунд за счет остаточного тока возбуждения.

    В некоторых случаях доступны еще более расширенные параметры. Например, некоторые генераторы оснащены цифровым автоматическим регулятором напряжения (D-AVR), который специально разработан для работы с высокими пусковыми токами, связанными с пусковыми двигателями и трансформаторами.В определенных приложениях этот тип регулятора напряжения позволяет операторам уменьшить требования к генератору, поскольку лучше управляется переходное поведение мощности.

    Другим вариантом может быть использование системы «Замыкание перед возбуждением», которая замыкает прерыватель сразу после запуска двигателя. Это позволяет постепенно увеличивать возбуждение по мере увеличения скорости двигателя, обеспечивая очень плавный пуск нагрузок, подключенных к генератору.

    Это особенно полезно для намагничивания повышающих трансформаторов в установках, где требуется среднее напряжение.

    В результате больше нет необходимости покупать генераторы большей мощности, чем необходимо, только для того, чтобы справиться с первоначальным скачком напряжения при запуске. Более того, благодаря интеллектуальному управлению напряжением генератора можно добиться снижения расхода топлива, снижения затрат на техническое обслуживание и увеличения срока службы.

    Как определить требуемую мощность ИБП?

    Мощность ИБП, измеряемая в ваттах, является важным фактором, который следует учитывать при выборе ИБП (источник бесперебойного питания).Он определяет, сколько электронных устройств может поддерживать система ИБП. Этот пост расскажет вам, как выбрать правильный ИБП с требуемой мощностью ИБП, выполнив следующие четыре шага.

    Уточнить единицы измерения UPS и их взаимосвязь

    Системы ИБП оцениваются либо в киловаттах (кВт), либо в киловольт-амперах (кВА). Их можно считать одинаковыми по количеству. Например, в цепи постоянного тока (DC) ватты = вольты x ампер. Другими словами, 1 кВт = 1 кВА.

    Однако они не равны, когда в системе бесперебойного питания используется переменный ток. Обычно переменный ток питает здания и оборудование более эффективно. Поэтому в центрах обработки данных обычно используются источники питания AC UPS. Однако при попадании на трансформатор устройства переменный ток будет проявлять реактивные характеристики, что снижает доступную мощность (ватты) в полной мощности (вольт-ампер). Отношение этих двух чисел называется коэффициентом мощности (КМ). Следовательно, в цепях переменного тока ватты = вольты x амперы x коэффициент мощности.Коэффициенты мощности отличаются друг от друга в разных сценариях. Например, большие системы ИБП рассчитаны на коэффициент мощности 0,8, что означает, что ИБП мощностью 100 кВА может поддерживать только 80 кВт реальной мощности.

    Рассчитайте максимальную нагрузку ИБП

    Нагрузка — это суммарное количество энергии, потребляемой электрическими устройствами. Чтобы рассчитать нагрузку, необходимо составить список оборудования, который включает общее количество ватт, необходимое для правильной работы каждой единицы оборудования. Например, если вы хотите одновременно запустить ПК мощностью 120 Вт, VPN-маршрутизатор мощностью 30 Вт, сервер мощностью 960 Вт, два сетевых коммутатора мощностью 280 Вт и устройство хранения мощностью 480 Вт, общая требуемая нагрузка составит 2150 Вт.

    Примечание. Если часть оборудования имеет резервный источник питания, учитывайте мощность только одного источника питания.

    Оцените требуемую мощность ИБП

    В зависимости от коэффициента мощности ИБП обычно работает примерно на 80 % от фактической номинальной мощности, поскольку общий коэффициент мощности равен 0.8. То есть система бесперебойного питания работает только на 80% мощности, чтобы поддерживать расчетную нагрузку. Например, если общая требуемая мощность/нагрузка составляет 200 Вт, лучше выбрать ИБП мощностью 250 Вт (250 Вт x 0,8 = 200 Вт) или около того.

    Следует ли выбирать ИБП напрямую с расчетной мощностью ИБП?

    Можно подумать, что выбор ИБП возможен непосредственно по расчетной мощности ИБП. На самом деле не рекомендуется выбирать соответствующий ИБП, основываясь только на расчетной мощности ИБП.В дополнение к расчетной мощности ИБП следует учитывать два основных фактора: пространство для маневра и время работы ИБП.

    Покачивание комнаты

    Не было бы никакого пространства для маневра, если бы кто-то купил ИБП мощностью 1 кВА с мощностью ИБП 900 Вт (PF = 0,9) для поддержки расчетной нагрузки 900 Вт. В таких условиях вся система будет работать на 100% мощности. На самом деле, независимо от того, как заявлены значения коэффициента мощности (даже если коэффициент мощности равен 1), ИБП мощностью 100 кВА никогда не будет поддерживать фактическую полную нагрузку в 100 кВт в реальном мире центра обработки данных.Он не будет работать на 100% мощности.

    Поскольку большие системы ИБП являются трехфазными, в качестве примера возьмем ИБП мощностью 100 кВА в трехфазной системе с мощностью 0,9 PF (мощность 90 кВт). Как показано в таблице ниже, если фаза A загружена на 95 %, фаза B — на 60 %, а фаза C — только на 25 %, у ИБП останется неиспользованная мощность 40 кВА или 36 кВт. Следовательно, если требуемая фактическая нагрузка составляет 90 кВт (100 кВА), ИБП мощностью 90 кВт (100 кВА) не рекомендуется, поскольку он обеспечивает фактическую нагрузку только 54 кВт (60 кВА).Если вам нужна полная нагрузка 900 Вт, было бы разумно получить систему мощностью 2 кВА для работы с нагрузкой 50%.

    Время работы ИБП

    Фактическая требуемая мощность ИБП также может зависеть от времени работы ИБП в ситуациях, когда требуется больше времени для работы устройств. Например, если устройства, которые необходимо подключить, находятся на разных этажах или в удаленных местах, ИБП должен предоставлять больше времени для поддержания работы устройств. В противном случае любой сбой, вызванный простоем сети, может привести к неизмеримым потерям.Обычно время работы увеличивается, если фактическая мощность ИБП намного превышает требуемую нагрузку. Представьте, что если ИБП мощностью 1 кВА/900 Вт предлагает 11 минут работы при 100% нагрузке (900 Вт), то можно использовать ИБП 2 кВА/1800 Вт того же производителя, работающего при нагрузке 50% (900 Вт), чтобы получить 24 минуты работы.

    Измерение и анализ мощности электродвигателя

    Билл Гатеридж, менеджер по продукции, приборы для измерения мощности, Yokogawa Corporation of America

    Часть 1: Основные измерения электрической мощности

    Электродвигатели представляют собой электромеханические машины, преобразующие электрическую энергию в механическую.Несмотря на различия в размерах и типах, все электродвигатели работают примерно одинаково: электрический ток, протекающий по проволочной катушке в магнитном поле, создает силу, которая вращает катушку, тем самым создавая крутящий момент.

    Понимание производства электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

    Что такое сила? В самой простой форме мощность — это работа, выполняемая в течение определенного промежутка времени. В двигателе мощность передается в нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

    В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Взяв напряжение и умножив его на соответствующий ток, можно определить мощность.

    P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах и ​​ток (I) в амперах

    Ватт (Вт) — это единица мощности, определяемая как один джоуль в секунду.Для источника постоянного тока расчет представляет собой просто произведение напряжения на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

    Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняющей работу при нагрузке. При коэффициентах мощности меньше единицы, что почти всегда имеет место, будут потери активной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальный характер, при этом амплитуда тока и напряжения в цепи переменного тока постоянно меняются и обычно не идеально совпадают.

    Поскольку мощность равна напряжению, умноженному на ток (P=V*I), мощность максимальна, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на кривых напряжения и тока возникают в одно и то же время. Это типично для простой резистивной нагрузки. В этой ситуации две формы волны находятся «в фазе» друг с другом, и коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

    Два сигнала называются «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке.Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет реализована меньше.

    Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими различными способами.

    Реальная или истинная мощность — это фактическое количество энергии, используемой в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки входных сигналов напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на рис. 1.

    В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t). Истинный расчет мощности будет работать для любого типа сигнала независимо от коэффициента мощности (рис. 2).

    Гармоники создают дополнительную сложность. Несмотря на то, что электросеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока.Полная мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

    Методы расчета, показанные на рис. 2, используются для обеспечения истинного измерения мощности и истинного среднеквадратичного значения сигнала любого типа, включая все гармоники, вплоть до полосы пропускания прибора.

    Измерение мощности

    Далее мы рассмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и силу тока для определения мощности в ваттах.Теория Блонделя утверждает, что общая мощность измеряется как минимум на один ваттметр меньше, чем количество проводов. Например, в однофазной двухпроводной цепи будет использоваться один ваттметр с одним измерением напряжения и одним измерением тока.

    Однофазная трехпроводная расщепленная система часто встречается в общедомовой проводке. Этим системам требуются два ваттметра для измерения мощности.

    В большинстве промышленных двигателей используются трехфазные трехпроводные цепи, которые измеряются с помощью двух ваттметров. Точно так же три ваттметра потребуются для трехфазной четырехпроводной цепи, где четвертый провод является нейтральным.

    На рис. 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода двух ваттметров для измерения. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc). Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

    Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, упрощается установка и конфигурация проводки.Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и недорогая установка делают его подходящим для производственных испытаний, в которых требуется измерение только мощности или нескольких других параметров.

    Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он дает дополнительную информацию, которую можно использовать для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока.Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

    Рис. 4. При проектировании двигателей и приводов важно учитывать все три значения напряжения и тока, что делает метод трех ваттметров, показанный на рисунке выше, лучшим выбором.

    Измерение коэффициента мощности

    При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Он определяется как коэффициент мощности «смещения» и верен только для синусоидальных волн.Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как реальная мощность в ваттах, деленная на кажущуюся мощность в амперах напряжения. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

    Однако, если нагрузка несбалансированная (фазные токи разные), это может привести к ошибке при расчете коэффициента мощности, поскольку при расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, получается ошибочный результат.

    Поэтому лучше всего использовать метод трех ваттметров для несбалансированных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.

    Анализаторы мощности

    от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом разводки 3V-3A (три напряжения, три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильное измерение общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

    Основные измерения механической мощности

    В электродвигателе механическая мощность определяется как произведение скорости на крутящий момент. Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), где один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

    лошадиных сил — это работа, совершаемая в единицу времени. Одна л.с. равна 33 000 фунт-футам в минуту. Преобразование л.с. в ватты достигается с помощью соотношения: 1 л.с. = 745,69987 Вт.Однако преобразование часто упрощается за счет использования 746 Вт на л.с. (рис. 9).

    Для асинхронных двигателей переменного тока фактическая скорость или скорость вращения ротора — это скорость, с которой вращается вал (ротор), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

    Скольжение — это разница между скоростью вращения ротора и синхронной скоростью. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

    Эффективность может быть выражена в простейшей форме как отношение выходной мощности к общей входной мощности или эффективность = выходная мощность/входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, а входная мощность — электрической, поэтому уравнение эффективности принимает вид КПД = механическая мощность / входная электрическая мощность.
     

    Часть 2. Выбор приборов для измерения и анализа мощности электродвигателя

    Различные ассоциации разработали стандарты тестирования, определяющие точность приборов, необходимую для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390. Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. д. Трансформаторы тока (ТТ) и трансформаторы напряжения (ПТ) являются одними из основных контрольно-измерительных приборов, используемых для проведения этих измерений.

    Соответствующие стандарты очень похожи за некоторыми исключениями. Допустимые ошибки приборов для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторую разницу в температурах и показаниях.

    Например, требование входной мощности для CSA C390 2006 составляет ±0,5% от показаний и должно включать погрешности ТТ и РТ, тогда как требования для IEEE 112 2004 и NVLAP 150 требуют только ±0,5% от полной шкалы (полная шкала).

    Датчики тока

    Датчики тока обычно требуются для тестирования, потому что большой ток не может быть подведен непосредственно к измерительному оборудованию.Доступны различные датчики для конкретных приложений. Накладные датчики можно использовать с анализаторами мощности. Также можно использовать щупы Scope, но при использовании этих щупов необходимо соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию больших токов.

    Для ТТ провод питания может быть подключен через окно (ТТ обычно имеют форму пончика или продолговатую форму, с отверстием или внутренней частью, называемой окном), или слаботочные соединения могут быть выполнены к клеммам в верхней части трансформатора. устройство.Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей до нескольких сотен Гц. Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще используются в осветительных приборах, а не в двигателях и приводах.

    Yokogawa совместно с LEM Instruments разработали уникальную систему трансформаторов тока, обеспечивающую высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, в котором используется блок стабилизации напряжения питания и который обеспечивает точность около 0.05 до 0,02% от показаний. Этот тип системы трансформаторов тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которые могут варьироваться от 0 Гц до рабочей скорости подключенного двигателя.

    Трансформаторы напряжения

    просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

    Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество необходимых преобразователей в определенных измерительных приложениях.

    Рекомендации по выбору и меры предосторожности

    При принятии решения о том, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Синусоидальные волны с частотой между линиями могут использовать шунты постоянного тока, которые обеспечивают высокую точность и простоту установки. Для приложений переменного и постоянного тока можно использовать трансформатор Холла или измерительный трансформатор активного типа.Технология эффекта Холла имеет меньшую точность, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

    Следующим фактором является требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность отношения витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не компенсируют фазовый сдвиг.

    Фазовый сдвиг в основном зависит от коэффициента мощности при измерении мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока с максимальным фазовым сдвигом 2°, как часть спецификации, внесет погрешность косинуса (2°) или погрешность 0,06 %. Пользователь должен решить, является ли этот процент ошибки приемлемым для приложения.

    Трансформатор тока является источником тока. Согласно закону Ома, напряжение (E) равно силе тока через проводник (I), умноженной на сопротивление (R) проводника в единицах Ом.Размыкание вторичной обмотки трансформатора тока эффективно увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насытит катушку, напряжение также уйдет в бесконечность, и устройство повредит или разрушит себя. Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

    Никогда не размыкайте вторичную цепь трансформатора тока. Пользователи могут получить серьезные травмы, а СТ может быть поврежден или уничтожен.

    Совместимость с приборами

    Для определения совместимости прибора необходимо определить выходной уровень ТТ.Накладные и другие трансформаторы тока обычно имеют выходной сигнал, указанный в милливольтах/амперах, миллиамперах/амперах или амперах. Типичный выходной ток приборного ТТ может быть указан в диапазоне от 0 до 5 ампер.

    Необходимо учитывать импеданс и нагрузку ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка представляет собой сопротивление или нагрузку на прибор и, таким образом, может влиять на измерение.

    Датчики осциллографа

    могут создавать собственные проблемы при неправильном использовании.Многие пробники осциллографа предназначены для работы с входным импедансом осциллографа, но диапазоны входного импеданса анализатора мощности могут отличаться, и это необходимо учитывать.

    Другим фактором, который необходимо учитывать при определении совместимости прибора, являются физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, накладного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

    Пример системы трехфазного двигателя

    Теперь мы рассмотрим типичное измерение мощности трехфазного трехпроводного двигателя с использованием метода двухваттметра.Теорема Блонделя утверждает, что количество необходимых измерительных элементов на один меньше, чем количество проводников с током. Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако при наличии нейтрали используются три преобразователя, поскольку проводников теперь четыре.

    Трехфазное питание используется главным образом в коммерческой и промышленной среде, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать крупное оборудование с трехфазным питанием.Чтобы рассчитать трехфазную мощность, напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, а это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1,732).

    Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рис. 1 показано типичное соединение с дисплеем, показывающим все три напряжения, все три тока, общую мощность и коэффициент мощности.

    На рис. 2 показано измерение мощности в трехфазной трехпроводной сети, выполненное с использованием метода двух ваттметров.Все три значения тока и напряжения, а также общее количество ВА и ВАР. Эта конфигурация может отображать показания мощности отдельных фаз, но их не следует использовать напрямую, поскольку для этого метода измерения точным показанием является только общая мощность.

    В принципе, при использовании метода двух ваттметров в трехпроводной трехфазной системе мощность отдельных фаз не может быть измерена напрямую, а также не могут быть измерены какие-либо параметры фазы, включая коэффициенты мощности фазы. Тем не менее, сумма фазовых параметров может быть измерена.

    Для трехфазного трехпроводного двигателя, соединенного треугольником, можно измерять междуфазные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерить фазные напряжения невозможно. Эта ситуация приводит к некоторым показаниям, которые необходимо объяснить.

    Глядя на формы сигналов на рис. 3, можно увидеть междуфазные напряжения Vab, Vbc и Vac. Линейные напряжения, видимые прибором, в симметричной системе разнесены на 60°. Токи представляют собой фазные токи, которые воспринимаются приборами как разнесенные на 120°.

    Другое представление этой системы изображено на векторной векторной диаграмме, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения междуфазного напряжения черным цветом, значения фазного напряжения красным (но это теоретические значения). потому что нейтрали нет), а фазные токи синим цветом.

    Нижняя часть рисунка показывает разность фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60°, а фазные токи — на 120°.Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, двигателе) синие векторы тока не совпадают по фазе с напряжениями.

    Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут смещаться дополнительно на 30° относительно напряжений. Суть в том, что правильно настроенный анализатор мощности будет учитывать все эти условия.

    Что делать, если фазную мощность и фазный коэффициент мощности необходимо точно измерить в трехфазной трехпроводной системе, а не просто приблизить? На рис. 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

    Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью. Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

    Кроме того, метод плавающей нейтрали работает только для оборудования с синусоидальной формой волны. При использовании привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

    Трехпроводное и четырехпроводное измерение мощности

    Важно понимать, что показания мощности будут одинаковыми независимо от того, измеряется ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при использовании трехфазного четырехпроводного соединения измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

    На рис. 6 показан снимок экрана анализатора мощности, показывающий, насколько похожи показания мощности и коэффициента мощности для ШИМ-привода, работающего от двигателя, при сравнении трехфазного трехпроводного входного сигнала с частотой 500 Гц с фильтром и трехфазного четырехпроводного вход с плавающей нейтралью.

    Альтернативное решение использует функцию измерения дельты, которая используется в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного линейного напряжения, даже если фазы не сбалансированы. Вычисление векторной амплитуды внутри процессора делает это возможным. Эта функция также обеспечивает измерение фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает измерение тока нейтрали.

    Часть 3. Измерения электрической мощности трехфазного двигателя переменного тока

    Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

    Оптимальный метод — интегрировать все три шага с помощью одного анализатора мощности, чтобы устранить временную асимметрию. Это также обеспечивает отличные расчеты эффективности, и все это в одном программно-аппаратном решении.

    Рис. 7. На этом снимке экрана анализатора мощности показано, как можно использовать функцию измерения дельты для получения истинных показаний и фазной мощности, даже если фазы не сбалансированы.

    Некоторые анализаторы мощности имеют вариант двигателя, в котором сигналы скорости и крутящего момента могут интегрироваться таким образом. Эти анализаторы мощности могут измерять электрическую и механическую мощность и отправлять данные на ПК с установленным программным обеспечением от производителя оригинального анализатора или специальным программным обеспечением от системного интегратора.

    Измерения привода ШИМ для двигателей переменного тока

    При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто необходимо измерять как вход, так и выход частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может измерять не только трехфазную мощность, но и постоянную или однофазную мощность. См. рис. 1.

    В зависимости от анализатора режим настройки будет выполняться в нормальном режиме или в режиме RMS. Конфигурация проводки должна быть настроена в соответствии с приложением, например, трехфазный вход и трехфазный выход.

    Все линейные фильтры или фильтры нижних частот должны быть отключены, поскольку фильтрация будет мешать измерениям. Тем не менее, фильтр пересечения нуля или частотный фильтр должны быть включены, потому что они будут отфильтровывать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

    На рис. 2 показана форма выходного напряжения ШИМ с сильно искаженным напряжением, обрезанными высокими частотами и большим количеством шума на токовой стороне, что затрудняет измерение. Высокочастотное включение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота изменяется от 0 Гц до рабочей скорости.

    Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности ШИМ также требуются анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

    На рис. 3 приведен пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (приблизительно 30 кГц). Большая часть гармонического содержания находится в более низких частотах на текущей стороне.

    Проблемы с измерением привода двигателя ШИМ

    Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать измерение истинного среднеквадратичного значения, которое включает общее содержание гармоник. Однако, поскольку основная форма волны в первую очередь влияет на крутящий момент двигателя, можно выполнить и использовать более простое измерение. В большинстве приложений требуется измерение только основной формы волны.

    Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если анализатор мощности имеет этот фильтр, просто включите его.Надлежащая фильтрация даст среднеквадратичное напряжение основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация не является самым точным методом.

    Второй метод представляет собой метод измерения выпрямленного среднего значения, который позволяет получить среднеквадратичное значение напряжения основной волны без фильтрации с использованием обнаружения среднего значения напряжения, масштабированного по среднеквадратичному напряжению. Алгоритм выпрямленного среднего среднего цикла обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

    С помощью этого метода можно измерить общую мощность, общий ток и основное напряжение.

    Измерение амплитуды основной волны с помощью гармонического анализа

    Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это обеспечивает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратичных значений наряду с измерениями гармоник.

    На рис. 4 значение Urms2 (среднеквадратичное значение на выходе ШИМ) очень велико, а F2 (среднее значение основной гармоники) несколько меньше. Значение Urms3 (фильтрация основной гармоники) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений БПФ основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет БПФ U2 (1) считается наиболее точным.

    Ток инвертора обычно измеряется только одним способом, а именно как истинное среднеквадратичное значение сигнала, поскольку все гармонические токи вносят свой вклад и являются причиной повышения температуры двигателя, поэтому все они должны быть измерены.

    Другим важным измерением является привод В/Гц (Вольт на Герц). Привод ШИМ должен поддерживать постоянное соотношение В/Гц на рабочей скорости двигателя. Анализатор мощности может вычислять В/Гц, используя среднеквадратичное значение или значение основного напряжения. Определяемая пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

    Измерение напряжения на шине постоянного тока

    Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение можно выполнить внутри привода на клеммах конденсаторной батареи. Однако более простым методом является использование отображения формы сигнала анализатора мощности с курсорным измерением.

    При отображении сигнала с помощью курсорных измерений необходимо убедиться, что курсор не находится прямо над небольшими пиками на дисплее. Вместо этого курсор должен располагаться поперек сигнала, чтобы выполнить точное измерение. На рис. 5 показано измерение напряжения ШИМ с высокой скоростью переключения.Курсор помещается для считывания значения, такого как 302,81 В в этом измерении.

    Измерение механической мощности

    Механическая мощность измеряется как произведение скорости двигателя на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Несмотря на то, что анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, целесообразно подтверждать совместимость в каждом случае. Эти датчики можно использовать для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

    Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Обработанный сигнал может быть аналоговым выходом или выходом последовательной связи, который поступает на ПК и его прикладное системное программное обеспечение.

    Одним из вариантов реализации измерений механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Этот подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показания крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

    Более комплексный подход показан на рис. 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, позволяя одновременно оценивать электрические и механические измерения мощности, а также непрерывно выполнять расчеты эффективности.

    Эффективность двигателя, привода и системы

    Эффективность инвертора в его простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и представляется в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности к входу и выходу, при этом показания двух счетчиков используются для расчета эффективности.

    Более комплексный метод заключается в использовании анализатора мощности с несколькими входами для одновременного измерения входной и выходной мощности, как показано на рис. 1.Это приводит к более точному расчету эффективности, поскольку используется один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временной асимметрии.

    С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление с помощью меню для расчета потерь и эффективности привода.

    Какой метод следует использовать?

    IEEE 112 — это отраслевой стандарт США для тестирования электродвигателей, в котором описано несколько методов.На рис. 7 показан дисплей анализатора мощности, поддерживающий «Метод А» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, подводимую к двигателю. Стандарт определяет многие параметры помимо измерения тока и напряжения двигателя, а также содержит инструкции по проведению общепринятых испытаний и отчетности для многофазных и асинхронных двигателей и генераторов. Кроме того, стандарт содержит 11 методов испытаний, определяющих, как проводить измерения эффективности двигателей.

    Метод испытаний A — вход-выход, определенный IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после температурных и динамометрических поправок, если применимо.Испытания проводят при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой 1 кВт или менее.

    Метод испытаний B — вход-выход с разделением потерь: В методе B выполняются измерения как входной, так и выходной мощности, но различные потери выделяются. Большинство этих потерь просто производят тепло, которое должно быть рассеяно узлом двигателя, и представляет собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования для U.S. автомобильная промышленность для двигателей с полной номинальной нагрузкой от 1 до 300 кВт.

    В то время как оба метода A и B работают, метод B требует большого количества инструментов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут различаться. В технических данных производителей двигателей и приводов могут использоваться разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

    Заключение

    При измерении мощности электродвигателя необходимо учитывать множество факторов, таких как общий и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

    После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость с приборами — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и именно в этой области необходимо учитывать входы/опции анализатора. При правильных входных сигналах датчика измерения механической мощности также можно выполнить с помощью анализатора мощности.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *