Pnp транзистор в режиме ключа
Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.
Что такое электронный ключ?
Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:
На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.
Коммутация нагрузки
Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.
Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.
Электромагнитное реле
Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.
Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.
Выводы электромагнитного реле
Обычно в электромагнитных реле имеется 5 выводов:
- Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
- Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.
В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.
Как работает электромагнитное реле
Принцип работы электромагнитного реле довольно простой:
- Обмотка через кнопку соединяется с питанием.
- В разрыв цепи питания потребителя включаются силовые контакты реле.
- При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
- Подается ток на потребителя.
Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.
Проводимость транзисторов
Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:
- P-N-P.
- N-P-N.
К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.
Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.
Транзистор в режиме ключа
Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:
- От микроконтроллера через переход «база – эмиттер».
- При этом канал «коллектор – эмиттер» открывается.
- Через канал «коллектор – эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.
Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов – около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.
Принцип работы транзистора
Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.
В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер – коллектор» может меняться в больших пределах.
Пример работы транзистора в режиме ключа
Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер – коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор – эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).
При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор – эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.
Режим насыщения
У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база – эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.
Практические конструкции
Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.
Работа с микроконтроллерами
При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.
Применяются несложные конструкции, состоящие из таких элементов:
- Биполярный транзистор.
- Резистор для ограничения входного тока.
- Полупроводниковый диод.
- Электромагнитное реле.
- Источник питания 12 вольт.
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.
Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор – эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.
Использование транзисторов в конструкциях
Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.
Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.
Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.
Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.
Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.
Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.
Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.
Рисунок 1. Входная характеристика транзистора
Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!
Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».
Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер – бетта» может достигать 1000 и более раз.
Как рассчитать режим работы ключевого каскада
Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.
Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, – обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.
Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.
Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.
Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.
При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).
Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база – эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.
Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.
Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»
Назначение этого резистора – надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.
Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить – просто замкнули вход всего каскада на «землю».
Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.
Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.
Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.
Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.
Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.
С чего все начиналось
Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.
Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.
Транзисторный ключ
Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.
Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:
Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.
Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Базовая схема транзисторного ключа
А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:
Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже
В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!
Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉
И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.
Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:
Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.
Второй способ. Добиться того, чтобы UБЭ
Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.
Расчет транзисторного ключа
Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:
Для начала можно найти ток базы:
IБ – это базовый ток, в Амперах
kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.
IK– коллекторный ток, в Амперах
Ну а дальше дело за малым
Это самый простой расчет без всяких заморочек.
Расчет транзисторного ключа на практике
Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.
Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.
Транзистор КТ819Б структуры NPN
А вот и его цоколевка
Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.
Лампочка при питании 6 В светит примерно вот так:
А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.
0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.
Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148
Итак, находим ток базы по формуле
Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН
P – это мощность в Ваттах
UКЭ – напряжение между коллектором и эмиттером, В
IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А
Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор
Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:
Теперь считаем базовый резистор по формуле:
Берем ближайший из ряда, то есть 1 кОм.
Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.
Собираем схему и смотрим, как она работает
В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)
Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.
Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.
Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.
Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Заключение
В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.
Метки: |
Биполярный транзистор
Биполярный транзистор — трёхвыводный полупроводниковый прибор. Каджый вывод подключен к своему слою полупроводника.
Ключевой режим работы транзистора
В автомобильной электронике это самый распространённый режим работы транзистора. В этом режиме транзисторы управляют исполнительными механизмами. Схема включения транзистора в ключевом режиме транзистора n-p-n структуры показана на рисунке
База транзистора — вход. Эмиттер — источник земли. Коллектор — выход.
Если на базу не подавать никакого напряжения, то сопротивление между выводами эмиттер-коллектор будет очень высоким. То есть ключ будет разомкнут.
Если на базу подать напряжение, то через переход база-эмиттер потечёт ток, создавая ток базы. Этот ток базы насыщает переход и сопротивление между выводами коллектор-эмиттер резко падает. Тоесть ключ открывается.
Переход база-эмиттер ведёт себя как обычный диод. Это означает что какое бы напряжение мы не подавали на базу, на базе напряжение будет всегда 0,6 вольта. По этому если мы подадим на базу 12 вольт и не ограничим ток, то наш транзистор сгорит. Для ограничения тока базы в базу ставят последовательно сопротивление. Номинал этого сопротивления будет задавать значение тока текущего через базу. Слишком большой ток будет зря нагревать транзистор, слишком маленький не позволит транзистору пропустить через выводы коллектор-эмиттер нужный ток.
Какой ток базы должен быть?
Биполярный транзистор это токовый прибор и он имеет параметр коэффициент усиления по току. Этот параметр показывает во сколько раз транзистор сможет пропустить ток через выводы коллектор-эмиттер по отношению к току базы. Тоесть при коэффициенте усиления 100, чтобы транзистор пропустил через коллектор-эмиттер ток в 100ма. Нужно чтобы через базу протекал ток минимум 100ма/100 = 1ма. При токе меньшем 1 ма, транзистор не откроется, при большем токе будет бесполезный нагрев. При превышении максимально допустимого тока базы, транзистор сгорит.
Примечание:
Ток базы всегда выбирается больше чем нужно (с запасом), так как коэффициент усиления по току зависит от температуры. И если мы хотим чтобы наш ключ работал во всём диапазоне температур, мы должны учесть уменьшение этого коэффициента.
Ещё одна полезная особенность транзистора, это то, что напряжение на коллекторе может быть выше чем на базе. Оно ограничивается только характеристиками самого транзистора.
Повторим основные характеристики транзистора которые нам нужны
- Коэффициент усиления по току
- Максимально допустимый ток коллектор-эмиттер
- Максимальное напряжение коллектор-эмиттер.
По этим характеристикам вы можете подобрать замену если вы знаете название заменяемого транзистора и знаете его характеристики. Все три параметра должны быть такими же или больше. Больший ток, Большее напряжение и больший коэффициент усиления по току. Обратите внимание чтобы тип биполярного транзистора (pnp или npn или Дарлингтона) был таким же.
Пример расчета схемы
Исходные данные.
Нам нужно управлять автомобильной лампочкой. Напряжение лампочки 12 Вольт, ток потребления 200ма.
Управляем мы ключом от микропроцессора у которого выход 5 вольт.
- Выбираем транзистор по максимальному напряжению коллетор-эмиттер
- Транзистор должен иметь максимальный ток коллектор-эмиттер более чем 200ма.
- Расчитываем ток базы.
- Расчитываем токоограничивающий резистор, не забывая, что напряжение будет на 0,6 вольта ниже.
Примечание:
Если базу транзистора никуда не подключить, то он будет закрыт, но в реальных условиях существуют наводки напряжения. И в базе может появиться ток, хотя напряжение на базу никто не подавал, и транзистор может открыться. Для исключения этого, между землёй и базой транзистора ставят сопротивление. Его выбирают большим, чтобы оно не отбирало от базы ток, и в тоже время наводка напряжения которая появляется уходит мимо базы в землю.
Как правильно подобрать замену транзистора для ключа если неизвестен его тип?
- Выбираем транзистор по максимальному напряжению коллектор-эмиттер
- Транзистор должен иметь максимальный ток коллектор-эмиттер более чем 200ма.
- Определяем ток базы по напряжению подаваемому на базу и резистору который установлен в плате.
- Вычисляем
Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой
Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой
Упрощенный расчет транзистора для
работы в ключевом режиме на резистивную нагрузку.
Ключевой режим работы характеризуется тем, что транзистор
находится в одном из двух состояний: в полностью открытом (режим насыщения), или
полностью закрытом (состояние отсечки).
Рассмотрим пример, где в
качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой
сопротивлением 150 Ом. Индуктивным характером катушки в данном примере
пренебрежем, считая, что реле будет включено раз и надолго.
Рассчитываем ток коллектора:
Ik=(Ucc—Uкэнас)/Rн ,
где
Ik –ток коллектора
Ucc-
напряжение питания (27В)
Uкэнас-
напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и
может прилично различаться для разных транзисторов), в нашем случае примем 0.4В
Rн-
сопротивление нагрузки (150 Ом)
Итак,
Ik= (27-0.4)/150 =
0.18A = 180мА
На практике из соображений
надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент
1.5
Таким образом, нужен транзистор
с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением
коллектор-эмиттер не менее 1.5*27=40В.
Открываем
справочник по биполярным транзисторам .
По заданным параметрам подходит
КТ815А (Ikмакс=1.5А
Uкэ=40В)
Следующим этапом рассчитываем ток базы, который нужно создать, чтобы
обеспечить ток коллектора 0.18А.
Как известно, ток коллектора связан с током базы соотношением
Ik=Iб*h21э,
где
h31э – статический
коэффициент передачи тока.
При отсутствии дополнительных данных
можно взять табличное гарантированное минимальное значение для КТ815А (40). Но
для КТ815 есть график зависимости
h31э от тока
эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует
h31э=60. Разница
невелика, но для чистоты эксперимента возьмем графические данные.
Итак,
Iб=180/60=3мА
Для
расчета базового резистора R1
смотрим второй график, где приведена зависимость напряжения насыщения
база-эмиттер (Uбэнас)
от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет
0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ
перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение
база-эмиттер находится в пределах 0.6-0.8 В)
Следовательно, сопротивление резистора
R1 должно быть равно:
R1=(Uвх-Uбэнас)/Iб
= (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.
Из
стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)
Если к
базе подключен шунтирующий резистор (вводится для более быстрого выключения
транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и
тогда формула примет вид:
R1= (Uвх-Uбэнас)/(Iб+IR2)
= (Uвх-Uбэнас)/(Iб+
Uбэнас/R2)
Так, если
R2=1 кОм, то
R1=
(5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм
Рассчитываем потери мощности на транзисторе:
P=Ik*Uкэнас
Uкэнас берем из
графика: при 180мА оно составляет 0.07В
P= 0.07*0.18=
0.013 Вт
Мощность
смешная, радиатора не потребуется.
Режимы работы биполярного транзистора | Основы электроакустики
Биполярный транзистор – полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.
Рис.7.1. Биполярные транзисторы и их диодные эквивалентные схемы: а) p-n-p, б) n-p-n транзистор
Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.
Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора
Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):
1. Коллектор имеет более положительный потенциал, чем эмиттер.
2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).
3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.
4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно
IК = αIЭ, где α=0,95…0,99 – коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ – IК. Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ, где β=α/(1-α) – коэффициент передачи тока базы, β >>1.
Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.
Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.
Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.
Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.
Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.
Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.
Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.
ТРАНЗИСТОРЫ
В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.
Транзистор в разрезе
На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:
Внешний вид советских транзисторов
Рассмотрим схематическое изображение биполярного транзистора:
Структура биполярных транзисторов
Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.
Транзистор как два диода
Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.
Золото в транзисторах СССР
Приведу ещё несколько фотографий распространённых транзисторов:
Малой мощности
Средней мощности
Большой мощности
В металлическом корпусе
На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:
Фото SMD транзистор
Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:
Схема с общим эмиттером
Схема включения с общим коллектором, это дает нам усиление только по току:
Схема с общим коллектором
И схема включения с общей базой, усиление только по напряжению:
Схема с общей базой
Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.
Пример усилителя по схеме с общим эмиттером
Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:
Схема транзистора в ключевом режиме
Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:
Схематическое изображение фототранзисторов
А так выглядит один из фототранзисторов:
Фототранзистор — фотография
Полевые транзисторы
Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:
Строение полевого транзистора
Привожу первый вариант схематического обозначения полевого транзистора:
Схематическое изображение полевого транзистора
На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.
Изображение на схемах полевых транзисторов с изолированным затвором
Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) — это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:
Схематическое изображение мощного полевого транзистора
Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:
Фото SMD полевой транзистор
Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:
С общим истоком
С общим стоком
С общим затвором
Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.
Однопереходные транзисторы
Существуют так называемые Однопереходные транзисторы, второе, менее распространённое название — Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.
Схематическое изображение однопереходных транзисторов
Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи — AKV.
Форум по радиоэлементам
Форум по обсуждению материала ТРАНЗИСТОРЫ
Проверка биполярного транзистора — Основы электроники
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.
Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
В чем разница между PNP и NPN?
Современные драйверы светодиодов очень гибкие, что позволяет использовать их в широком спектре приложений, от сканеров до автомобилей и авиационного освещения. Многие из этих драйверов также могут быть настроены с использованием нескольких топологий — повышающей, понижающей и понижающей-повышающей — для удовлетворения широкого спектра требований конкретных приложений.
Для низких входных напряжений и высоких напряжений струны подходит топология повышения, тогда как понижающий более подходит для высоких входных напряжений и низких напряжений струны.Понижающая топология используется для широкого диапазона входов, где напряжение может быть ниже или выше светодиодной цепочки.
В этой статье рассматривается процесс выбора подходящей топологии и соответствующих подключений. В целях иллюстрации примеры основаны на драйвере светодиода µModule LTM8042. Этот драйвер поддерживает светодиоды с током до 1 А и коэффициентом диммирования 3000: 1, работает при входном напряжении от 3 до 30 В и имеет частотный диапазон от 250 кГц до 2 МГц.
Boost LED Driver
Наиболее распространенная топология для светодиодного драйвера — это повышающее приложение, которое может использоваться для светодиодной матрицы, питаемой от входной шины 12 В, где V IN F.Подход наддува показан на рис. 1 , а блок-схема — на рис. 2 .
1. Здесь LTM8042 управляет четырьмя светодиодами; V IN от 5,75 до 10,25 В и I OUT = 0,5 A.
2. На блок-схеме LTM8042 показаны соединения в конфигурации повышения напряжения.
Входное напряжение подключено к клемме BSTIN / BKLED–, а катод светодиодной цепочки подключен к GND.Когда транзистор Q включен, в катушке индуктивности L нарастает ток. Когда Q выключается, напряжение на L меняет полярность, и ток катушки индуктивности начинает течь к конденсатору C2 выходного фильтра. Регулировка яркости светодиодов реализована в секции PWM, которая регулирует рабочий цикл и, соответственно, средний ток светодиода (устанавливается резистором RCLR). Конденсатор С1 — фильтр входного напряжения.
Buck LED Driver
Понижающая топология используется для относительно высоких входных напряжений, таких как автомобильные и промышленные шины 24 В. На рисунке 3 показана блок-схема конфигурации для V IN > V F . Входное напряжение подключается к клемме BSTOUT / BKIN, а катод светодиода подключается к клемме BSTIN / BKLED–.
3. На этой блок-схеме LTM8042 показаны соединения в понижающей конфигурации.
Когда транзистор Q включен, ток течет от входа через цепочку светодиодов и индуктивность L на GND. Когда Q выключается, напряжение на L меняет полярность, и диод D смещается в прямом направлении.Это вытягивает катод светодиода ниже уровня входного напряжения, обеспечивая установленное значение тока в цепочке светодиодов. C5 создает выходной фильтр для этой топологии.
Buck-Boost LED Driver
Во многих коммерческих, аккумуляторных и солнечных приложениях входное напряжение варьируется в широком диапазоне. В таких ситуациях оптимальным решением является повышенно-понижающая топология, показанная на рис. 4 . Входное напряжение и светодиодный катод подключаются к клемме BSTIN / BKLED–.
4. Подключения LTM8042 показаны в понижающе-повышающей конфигурации.
Когда транзистор Q включен, в катушке индуктивности L нарастает ток. Когда Q выключается, напряжение на L меняет полярность, смещая в прямом направлении диод D, в то время как напряжение поднимается выше входного уровня. Широтно-импульсный модулятор (ШИМ) поддерживает заданное значение тока через светодиод и C5, а C2 работает как выходной фильтр. Напряжение цепочки светодиодов V F может быть ниже или выше V IN .
Результаты испытаний для трех топологий
Все три топологии были протестированы с использованием демонстрационной схемы DC1511 с LTM8042 — с использованием одной и той же цепочки светодиодов, выходного тока и частоты коммутации во всех случаях. Чтобы убедиться, что рассеиваемая мощность смещения одинакова для всех трех настроек, также был поставлен один и тот же V CC (показан на рисунке 1) . Штырь V CC может быть подключен к V IN в большинстве случаев.
Рисунок 5 показывает полученные кривые эффективности.Все три топологии также были смоделированы в средах LTspice; Файлы моделирования, относящиеся к LTM8042, можно найти в его техническом описании.
5. График показывает эффективность LTM8042 для повышающих, понижающих и понижающих-повышающих конфигураций.
В результате настраиваемые драйверы светодиодов обеспечивают универсальный подход к конструкции светодиодов, обеспечивая эффективную работу в широком диапазоне входных напряжений и обеспечивая ток цепочки светодиодов до 1 А. Поскольку эти драйверы могут быть легко применены как повышающие, понижающие или понижательно-повышающие драйверы, один и тот же драйвер может использоваться для удовлетворения требований различных приложений.
Разница между транзисторами NPN и PNP с таблицей сравнения
Одно из основных различий между транзисторами NPN и PNP заключается в том, что в транзисторе NPN ток течет между коллектором и эмиттером, когда положительное питание подается на базу, тогда как в транзисторе PNP носитель заряда течет от эмиттера к коллектору при отрицательном поставка отдана на базу. Транзисторы NPN и PNP различаются ниже в сравнительной таблице с учетом различных других факторов.
NPN и PNP оба являются биполярными переходными транзисторами. Это устройства управления током, которые в основном используются для переключения и усиления сигнала. В основном, в схеме используется NPN-транзистор, потому что в NPN-транзисторе ток проводимости создается в основном электронами, в то время как в PNP-транзисторе ток проводимости возникает из-за отверстий. Поскольку электроны более подвижны, NPN имеет высокую проводимость.
Буквы PNP и NPN показывают напряжение, необходимое для эмиттера, коллектора и базы переходного транзистора.Транзисторы NPN и PNP, оба изготовлены из разного материала, из-за чего ток в них также отличается. Иногда, когда на эмиттер подается напряжение, электроны пересекают базовый переход и достигают области коллектора. Это происходит потому, что база транзисторов NPN и PNP очень тонкая и слегка легированная.
Содержание: NPN против PNP транзистора
- Сравнительная таблица
- Определение
- Ключевые отличия
Сравнительная таблица
Основа для сравнения | Транзистор НПН | Транзистор |
---|---|---|
Определение | Транзистор, в котором два слоя n-типа разделены одним слоем P-типа | Два блока полупроводников p-типа разделены одним тонким блоком полупроводника n-типа. |
Символ | ||
Полная форма | Отрицательный Положительный и отрицательный | Положительный Отрицательный и положительный |
Направление тока | Коллектор к эмиттеру | Эмиттер к коллектору |
Включение | Когда электроны попадают в базу. | Когда отверстия входят в основание. |
Внутренний ток | Развивается из-за переменного положения электронов. | Возникают из-за различного положения отверстий. |
Внешний ток | Ток возникает из-за потока отверстий. | Ток возникает из-за потока электронов. |
Основной носитель заряда | Электрон | Отверстие |
Время переключения | Быстрее | Медленнее |
Носитель второстепенного заряда | Отверстие | Электрон |
Положительное напряжение | Клемма коллектора | Клемма эмиттера |
Смещенное вперед | Базовое соединение эмиттера | Базовое соединение эмиттера |
Обратно смещенный | Разветвление основания коллектора | Разветвление основания коллектора |
Малый ток | Потоки от эмиттера к базе | База к эмиттеру |
Сигнал заземления | Низкий | Высокий |
Определение транзистора PNP
Транзистор PNP имеет два блока из материала p-типа и один блок из материала n-типа.Он имеет три вывода: эмиттер, базу и коллектор. Эмиттер и коллектор PNP-транзистора изготовлены из материала p-типа, а их основание — из материала n-типа.
Переход эмиттер-база в PNP подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением. Переход эмиттер-база подталкивает основной носитель заряда к базе, тем самым устанавливая ток эмиттера. Отверстие в материале p-типа объединяется с материалом n-типа, следовательно, составляет базовый ток.Оставшееся отверстие проходит через отрицательно смещенную область коллектор-база и собирается коллектором, из-за чего возникает ток коллектора. Таким образом, полный ток эмиттера протекает через цепь коллектора.
Ток эмиттера = ток коллектора + ток базы
Определение транзистора NPN
Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем материала p-типа. Коллектор — это самая толстая область, а база — самая тонкая область NPN-транзистора.Область эмиттер-база транзистора находится под прямым смещением, а область коллекторной базы подключена к обратному смещению. Напряжение обратного смещения значительно меньше по сравнению с обратным смещением.
Переход эмиттер-база находится в прямом смещении, из-за чего большое количество электронов достигает базы. Это развивает ток эмиттера. Электрон в базовой области совмещен с дырками. Но база очень тонкая и слегка легированная, поэтому только маленькие дырки объединяются с электронами и составляют ток базы.Оставшиеся электроны проходят через область базы коллектора и развивают ток коллектора. Весь ток эмиттера протекает через цепь коллектора.
Ток эмиттера = ток коллектора + ток базы
Ключевые различия между транзисторами NPN и PNP
- Транзистор NPN имеет два блока полупроводниковых материалов n-типа и один блок полупроводниковых материалов p-типа, тогда как транзистор PNP имеет один тонкий слой материала p-типа и два толстых слоя материала N-типа.
- Обозначения транзисторов NPN и PNP почти одинаковы, единственное различие между ними — это направление стрелки, которая указывает на эмиттер. В транзисторе NPN острие стрелки движется наружу к базе, а в PNP стрелка движется внутрь.
- В транзисторе NPN ток течет от коллектора к эмиттеру, потому что на базу подается положительное питание, тогда как в транзисторе PNP ток течет от эмиттера к коллектору.
- Транзистор NPN включается, когда электрон входит в базу, в то время как транзистор PNP включается, когда дыры входят в базу.
- Внутренний ток в транзисторе NPN составляет из-за переменного положения электронов, тогда как в транзисторе PNP внутренний ток возникает из-за переменного положения отверстий.
- В транзисторе NPN выходной ток возникает из-за потоков дырок, а в PNP он создается из-за потоков электронов.
- В транзисторе NPN основным носителем заряда является электрон, тогда как в транзисторе PNP основная дырка является основным носителем заряда.
- Неосновным носителем заряда NPN-транзистора является дырка, а в PNP-транзисторе — электроны.
- Время переключения транзистора NPN больше по сравнению с транзистором PNP, поскольку основной носитель заряда транзистора NPN — электрон.
- Переход эмиттер-база как NPN-, так и PNP-транзисторов имеет прямое смещение.
- Примечание: передний базовый переход означает, что клемма p диода подключена к положительной клемме источника питания, а материал n-типа подключен к отрицательной клемме источника питания.
- Коллектор-база транзистора NPN и PNP соединена с обратным смещением.
- Примечание. Обратное смещение означает, что отрицательная область подключена к положительной клемме источника питания, а p-область подключена к положительной клемме источника питания.
- Транзистор NPN включается, когда небольшой ток течет от эмиттера к базе, тогда как для включения транзистора PNP небольшой ток течет от базы к эмиттеру.
- Сигнал заземления транзистора PNP поддерживается низким, тогда как в транзисторе PNP сигнал заземления высокий.
Ключ к действию транзистора — это слаболегированная база между сильно легированным коллектором и эмиттером.
Работа в активном режиме (BJT) | Биполярные переходные транзисторы
Когда транзистор находится в полностью выключенном состоянии (например, разомкнутый переключатель), говорят, что это отсечка . И наоборот, когда он полностью проводящий между эмиттером и коллектором (пропускает через коллектор столько тока, сколько позволяют источник питания коллектора и нагрузка), говорят, что он насыщен . Это два двух режимов работы, исследованных до сих пор при использовании транзистора в качестве переключателя.
Однако биполярные транзисторы не должны ограничиваться этими двумя крайними режимами работы. Как мы узнали в предыдущем разделе, базовый ток «открывает ворота» для ограниченного количества тока через коллектор. Если этот предел для управляемого тока больше нуля, но меньше максимума, разрешенного цепью питания и нагрузки, транзистор будет «дросселировать» ток коллектора в режиме где-то между отсечкой и насыщением. Этот режим работы называется активным режимом.
Отсечка, насыщенность и активный режим
Автомобильная аналогия для работы транзистора выглядит следующим образом:
Режим отключения — — это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться. В режиме отсечки тормоз включен (нулевой базовый ток), предотвращая движение (ток коллектора).
Активный режим — — это автомобиль, движущийся с постоянной контролируемой скоростью (постоянный контролируемый ток коллектора) по указанию водителя.
S aturation — автомобиль, движущийся по крутому склону, который не позволяет ему двигаться так быстро, как желает водитель. Другими словами, «насыщенный» автомобиль — это автомобиль с нажатой педалью акселератора (базовый ток требует большего тока коллектора, чем может обеспечить цепь питания / нагрузки). Давайте настроим схему для моделирования SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы.(Рисунок ниже)
моделирование биполярного транзистора i1 0 1 постоянного тока 20u q1 2 1 0 mod1 вамметр 3 2 постоянного тока 0 v1 3 0 постоянного тока .model mod1 npn .dc v1 0 2 0,05 .plot dc i (вамметр) .конец
Схема для моделирования SPICE «активного режима» и список соединений.
«Q» — это стандартное буквенное обозначение транзистора на принципиальной схеме, точно так же, как «R» обозначает резистор, а «C» — конденсатор. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V1) и управляемый током через источник тока (I1).
Источник тока — это устройство, которое выводит определенную величину тока, генерируя такое же или меньшее напряжение на своих выводах, чтобы обеспечить точное количество тока через него. Источники тока, как известно, трудно найти в природе (в отличие от источников напряжения, которые, напротив, пытаются поддерживать постоянное напряжение, выдавая столько или меньше тока для выполнения этой задачи), но их можно смоделировать с помощью небольшого набора электронных компонентов. . Как мы скоро увидим, сами транзисторы имеют тенденцию имитировать поведение источника тока при постоянном токе в своей способности регулировать ток при фиксированном значении.
В моделировании SPICE мы установим источник тока (I1) на постоянное значение 20 мкА, затем изменим источник напряжения (V1) в диапазоне от 0 до 2 вольт и отслеживаем, сколько тока проходит через него. «Пустышка» (вамметр) на рисунке выше с ее выходом 0 В служит просто для обеспечения SPICE схемным элементом для измерения тока.
A Переменное напряжение коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА в области насыщения.
Постоянный базовый ток 20 мкА устанавливает ограничение тока коллектора в 2 мА, что ровно в 100 раз больше. Обратите внимание, насколько пологая кривая (рисунок выше) для тока коллектора в диапазоне напряжения батареи от 0 до 2 вольт. Единственное исключение из этого невыразительного графика — в самом начале, когда батарея увеличивается с 0 до 0,25 вольт. Здесь ток коллектора быстро увеличивается от 0 ампер до своего предельного значения 2 мА.
Давайте посмотрим, что произойдет, если мы изменим напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт.Мы сохраним базовый ток на уровне 20 мкА. (Рисунок ниже)
моделирование биполярного транзистора i1 0 1 постоянного тока 20u q1 2 1 0 mod1 вамметр 3 2 постоянного тока 0 v1 3 0 постоянного тока .model mod1 npn .dc v1 0 50 2 .plot dc i (вамметр) .конец
Изменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА.
Тот же результат! Ток коллектора на рисунке выше стабильно составляет 2 мА, хотя напряжение аккумулятора (v1) варьируется от 0 до 50 вольт.Из нашего моделирования может показаться, что напряжение между коллектором и эмиттером мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт). Транзистор действует как регулятор тока, пропуская через коллектор ровно 2 мА и не более.
Теперь посмотрим, что произойдет, если мы увеличим управляющий ток (I1) с 20 мкА до 75 мкА, снова изменим напряжение аккумулятора (V1) с 0 до 50 вольт и построим график тока коллектора на рисунке ниже.
моделирование биполярного транзистора i1 0 1 постоянного тока 75u q1 2 1 0 mod1 вамметр 3 2 постоянного тока 0 v1 3 0 постоянного тока .модель mod1 npn .dc v1 0 50 2 i1 15u 75u 15u .plot dc i (вамметр) .конец
Качающееся напряжение коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает постоянный ток коллектора 7,5 мА. Другие кривые генерируются с помощью развертки по току (i1 15u 75u 15u) в операторе анализа постоянного тока (.dc v1 0 50 2 i1 15u 75u 15u).
Неудивительно, что SPICE дает нам похожий график: ровная линия, на этот раз стабильно удерживающаяся на уровне 7,5 мА — ровно в 100 раз больше базового тока — в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт.Похоже, что ток базы является решающим фактором для тока коллектора, напряжение батареи V1 не имеет значения, пока оно выше определенного минимального уровня.
Это соотношение напряжение / ток полностью отличается от того, что мы привыкли видеть на резисторе. С резистором ток линейно увеличивается с увеличением напряжения на нем. Здесь, с транзистором, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько высоко увеличивается напряжение на эмиттере и коллекторе.
Часто бывает полезно наложить несколько графиков ток / напряжение коллектора для разных токов базы на один график, показанный на рисунке ниже. Набор подобных кривых — по одной кривой, построенной для каждого отдельного уровня тока базы — для конкретного транзистора называется характеристическими кривыми транзистора :
.
Зависимость тока коллектора от напряжения коллектор-эмиттер для различных токов базы.
Каждая кривая на графике отражает ток коллектора транзистора, построенный в диапазоне напряжений между коллектором и эмиттером, для заданной величины тока базы.Поскольку транзистор имеет тенденцию действовать как регулятор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию как стандартную меру производительности транзистора. В частности, отношение тока коллектора к току базы известно как соотношение Beta (обозначается греческой буквой β):
Иногда коэффициент β обозначается как «h fe », — это метка, используемая в области математического анализа полупроводников, известной как « гибридные параметры », которая стремится достичь точного прогнозирования характеристик транзистора с помощью подробных уравнений.Переменных гибридных параметров много, но каждая помечена общей буквой «h» и определенным нижним индексом. Переменная «hfe» — это просто еще один (стандартизованный) способ выражения отношения тока коллектора к току базы, и она взаимозаменяема с «β». Коэффициент β безразмерный.
β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Два транзистора одинаковой конструкции редко совпадают в точности из-за физических переменных, влияющих на β.Если конструкция схемы основана на равном соотношении β между несколькими транзисторами, «согласованные наборы» транзисторов могут быть приобретены за дополнительную плату. Однако обычно считается плохой практикой проектирования конструировать схемы с такими зависимостями.
β транзистора не остается стабильным для всех условий эксплуатации . Для реального транзистора коэффициент β может изменяться более чем в 3 раза в пределах его рабочего тока. Например, транзистор с заявленным β, равным 50, может тестироваться с отношениями Ic / Ib от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора и частоты усиленного сигнала, среди других факторов.Для учебных целей достаточно принять постоянное значение β для любого данного транзистора; поймите, что реальная жизнь не так проста!
Иногда для понимания полезно «смоделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.
Модель элементарного диодно-резисторного транзистора.
В этой модели транзистор представляет собой комбинацию диода и реостата (переменного резистора).Ток через диод база-эмиттер контролирует сопротивление реостата коллектор-эмиттер (как показано пунктирной линией, соединяющей два компонента), тем самым управляя током коллектора. Транзистор NPN смоделирован на показанном рисунке, но транзистор PNP будет немного отличаться (только диод база-эмиттер будет перевернут).
Эта модель успешно иллюстрирует основную концепцию транзисторного усиления: как сигнал тока базы может управлять током коллектора.Однако модель неверно передает понятие установленной величины сопротивления коллектор-эмиттер для данной величины базового тока. Если бы это было так, транзистор вообще не регулировал бы ток коллектора , как показывают характеристические кривые. Вместо того, чтобы кривые тока коллектора сглаживались после их кратковременного подъема по мере увеличения напряжения коллектор-эмиттер, ток коллектора был бы прямо пропорционален напряжению коллектор-эмиттер, постоянно возрастая по прямой линии на графике.
Лучшая модель транзистора, часто встречающаяся в более продвинутых учебниках, показана на рисунке ниже.
Модель источника тока транзистора.
Транзистор представляет собой комбинацию диода и источника тока, выход источника тока установлен на кратное (коэффициент β) базовому току. Эта модель гораздо точнее отображает истинные входные / выходные характеристики транзистора: ток базы устанавливает определенную величину тока коллектора , а не определенную величину сопротивления коллектор-эмиттер , как предполагает первая модель.Кроме того, эта модель предпочтительна при выполнении сетевого анализа транзисторных схем, поскольку источник тока является хорошо изученным теоретическим компонентом. К сожалению, использование источника тока для моделирования поведения транзистора по управлению током может ввести в заблуждение: транзистор никоим образом не будет действовать как источник электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, подобный усилителю.
ОБЗОР:
- Транзистор находится в активном режиме , если он работает где-то между полностью включенным (насыщение) и полностью выключенным (отсечка).
- Базовый ток регулирует ток коллектора. Под правилом , регулирующим , мы подразумеваем, что ток коллектора не может быть больше, чем позволяет ток базы.
- Отношение между током коллектора и током базы называется «бета» (β) или «hfe».
- β отношения различны для каждого транзистора, а
- β изменяется для разных условий эксплуатации.
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:
Различия между транзисторами NPN и PNP и их создание
Как p-n-p, так и n-p-n транзисторы являются основными транзисторами, которые подпадают под категорию транзисторов с биполярным переходом.Они используются в различных схемах усиления и схемах модуляции. Наиболее частым из его применений является режим полного включения и выключения, называемый переключателем.
Транзисторы NPN и PNP представляют собой транзисторы с биполярным переходом и являются основным электрическим и электронным компонентом, который используется для создания многих электрических и электронных проектов. В работе этих транзисторов участвуют как электроны, так и дырки. Транзисторы PNP и NPN допускают усиление тока.Эти транзисторы используются как переключатели, усилители или генераторы. Транзисторы с биполярным переходом можно найти в большом количестве в виде частей интегральных схем или в виде дискретных компонентов. В транзисторах PNP основными носителями заряда являются дырки, тогда как в транзисторах NPN электроны являются основными носителями заряда. Но полевые транзисторы имеют только один тип носителя заряда.
В основе формирования этих транзисторов лежат диоды с p-n переходом. Как и в транзисторах n-p-n, n-типы являются в большинстве своем, поэтому они включают избыточное количество электронов в качестве носителей заряда.В p-n-p транзисторах есть два p-типа, в результате чего большинство носителей заряда представляют собой дырки.
Основное различие между транзисторами NPN и PNP заключается в том, что транзистор NPN включается, когда ток течет через базу транзистора. В этом типе транзистора ток течет от коллектора (C) к эмиттеру (E). Транзистор PNP включается, когда на базе транзистора нет тока. В этом транзисторе ток течет от эмиттера (E) к коллектору (C).Таким образом, зная это, транзистор PNP включается низким сигналом (земля), тогда как транзистор NPN включается высоким сигналом (током).
Различия между транзисторами NPN и PNP и их изготовление
Транзистор PNP
Транзистор PNP представляет собой транзистор с биполярным переходом; В транзисторе PNP первая буква P указывает полярность напряжения, необходимого для эмиттера; вторая буква N указывает полярность цоколя. Работа транзистора PNP прямо противоположна работе транзистора NPN.В транзисторах этого типа большинство носителей заряда — дырки. По сути, этот транзистор работает так же, как транзистор NPN. Материалы, которые используются для изготовления выводов эмиттера, базы и коллектора в транзисторе PNP, отличаются от материалов, используемых в транзисторе NPN. Схема смещения транзистора PNP показана на рисунке ниже. Клеммы база-коллектор PNP-транзистора всегда имеют обратное смещение, поэтому для коллектора необходимо использовать отрицательное напряжение. Следовательно, вывод базы PNP-транзистора должен быть отрицательным по отношению к выводу эмиттера, а коллектор должен быть отрицательным, чем база.
Изготовление транзистора PNP
Конфигурация транзистора PNP показана ниже. Характеристики транзисторов PNP и NPN аналогичны, за исключением того, что смещение направления напряжения и тока меняются местами для любой из трех возможных конфигураций, таких как общая база (CB), общий эмиттер (CE) и общий коллектор (CC). .Напряжение между базой и выводом эмиттера VBE отрицательное на выводе базы и положительное на выводе эмиттера, потому что для транзистора PNP вывод базы всегда смещен отрицательно по отношению к эмиттеру.Кроме того, напряжение эмиттера положительно по отношению к коллектору (VCE).
Источники напряжения подключены к транзистору PNP, который показан на рисунке. Эмиттер подключен к Vcc с помощью RL, этот резистор ограничивает максимальный ток, протекающий через устройство, которое подключено к клемме коллектора. Базовое напряжение VB подключено к базовому резистору RB, который смещен отрицательно по отношению к эмиттеру. Чтобы ток базы протекал через PNP-транзистор, клемма базы должна быть более отрицательной, чем клемма эмиттера, примерно на 2,9 мм.0,7 В или устройство Si.
Основное различие между PNP и PN-транзисторами заключается в правильном смещении переходов транзистора; направления тока и полярности напряжения всегда противоположны друг другу.
Основы P-N-P
Транзисторы p-n-p сформированы с n-типом, присутствующим между p-типами. Большинство носителей, ответственных за генерацию тока, в этом транзисторе являются дырками. Рабочая операция аналогична работе n-p-n.Но приложения напряжений или токов с точки зрения полярности различаются.
Транзистор NPN
Транзистор NPN представляет собой транзистор с биполярным переходом. В транзисторе NPN первая буква N указывает на отрицательно заряженный слой материала, а P указывает на положительно заряженный слой. Эти транзисторы имеют положительный слой, который расположен между двумя отрицательными слоями. Транзисторы NPN обычно используются в схемах для переключения, усиления электрических сигналов, которые проходят через них.Эти транзисторы содержат три вывода, а именно базу, коллектор и эмиттер, и эти выводы соединяют транзистор с печатной платой. Когда ток протекает через NPN-транзистор, клемма базы транзистора принимает электрический сигнал, коллектор создает более сильный электрический ток, чем тот, который проходит через базу, а эмиттер передает этот более сильный ток на остальную часть схемы. В этом транзисторе ток течет через вывод коллектора к эмиттеру.
Обычно этот транзистор используется, потому что его очень легко изготовить. Чтобы NPN-транзистор работал должным образом, он должен быть сформирован из полупроводникового материала, который пропускает некоторый электрический ток, но не в максимальном количестве, как у очень проводящих материалов, таких как металл. «Si» — один из наиболее часто используемых полупроводников, а транзисторы NPN — самые простые транзисторы, которые можно сделать из кремния. Применение транзистора NPN находится на печатной плате компьютера. Компьютеры нуждаются в том, чтобы вся их информация была переведена в двоичный код, и этот процесс достигается с помощью множества маленьких переключателей на печатных платах компьютеров.Для этих переключателей можно использовать транзисторы NPN. Мощный электрический сигнал включает переключатель, а его отсутствие выключает.
Изготовление NPN-транзистора
Конструкция NPN-транзистора показана ниже. Напряжение на выводе базы положительное, а на выводе эмиттера — отрицательное из-за транзистора NPN. Вывод базы всегда положительный по отношению к выводу эмиттера, а также напряжение питания коллектора положительно относительно вывода эмиттера.В NPN-транзисторе коллектор подключен к VCC через нагрузочный резистор RL. Этот нагрузочный резистор ограничивает ток, протекающий через максимальный ток базы. В этом транзисторе движение электронов через вывод базы, составляющее действие транзистора. Основная особенность действия транзистора — связь между входными и выходными цепями. Потому что усилительные свойства транзистора проистекают из последующего управления, которое база применяет к коллектору для эмиттерного тока.
Транзистор — это устройство, работающее от тока. Когда транзистор включен, большой ток IC протекает между коллектором и эмиттером внутри транзистора. Однако это происходит только тогда, когда через базовый вывод транзистора протекает небольшой ток смещения Ib. Это биполярный транзистор NPN; ток — это отношение этих двух токов (Ic / Ib), которое называется усилением постоянного тока устройства и обозначается символом «hfe» или в настоящее время бета. Значение бета может достигать 200 для стандартных транзисторов, и именно это соотношение между Ic и Ib делает транзистор полезным усилителем.Когда этот транзистор используется в активной области, то Ib обеспечивает вход, а Ic обеспечивает выход. Бета не имеет единиц, так как это соотношение.
Коэффициент усиления транзистора по току от коллектора до эмиттера называется альфа, то есть Ic / Ie, и он является функцией самого транзистора. Поскольку ток эмиттера Ie является суммой малого тока базы и большого тока коллектора, значение альфа очень близко к единице, а для типичного сигнального транзистора малой мощности это значение находится в диапазоне примерно от 0.950 до 0,999.
Разница между транзисторами NPN и PNP:
Транзисторы с биполярным переходом представляют собой трехконтактные устройства, изготовленные из легированных материалов, часто используемых в приложениях для усиления и переключения. По сути, в каждом BJT есть пара диодов с PN переходом. Когда пара диодов соединяется, образуется сэндвич, который помещает полупроводник между двумя этими типами. Следовательно, есть только два типа биполярных сэндвичей, а именно PNP и NPN.В полупроводниках NPN имеют характерно более высокую подвижность электронов по сравнению с подвижностью дырок. Следовательно, он пропускает большой ток и работает очень быстро. Кроме того, этот транзистор легко сделать из кремния.
- Транзисторы PNP и NPN состоят из разных материалов, и ток в этих транзисторах также отличается.
- В транзисторе NPN ток течет от коллектора (C) к эмиттеру (E), тогда как в транзисторе PNP ток течет от эмиттера к коллектору.
- PNP-транзисторы состоят из двух слоев P-материала с зажатым слоем из N. NPN-транзисторы состоят из двух слоев N-материала и зажаты одним слоем P-материала.
- В транзисторе NPN положительное напряжение подается на вывод коллектора для создания потока тока от коллектора к транзистору PNP положительное напряжение подается на вывод эмиттера для создания потока тока от эмиттера к коллектору.
- Принцип работы NPN-транзистора таков, что когда вы увеличиваете ток на клемме базы, транзистор включается и полностью проводит от коллектора к эмиттеру.Когда вы уменьшаете ток на клемме базы, транзистор включается меньше, и пока ток не станет настолько низким, транзистор больше не будет проводить через коллектор к эмиттеру и выключится.
- Принцип работы PNP-транзистора таков, что когда на базовом выводе транзистора присутствует ток, транзистор закрывается. Когда на клемме базы транзистора PNP нет тока, транзистор включается.
Это все о разнице между транзисторами NPN и PNP, которые используются для создания многих электрических и электронных проектов.Кроме того, любые вопросы, касающиеся этой темы или проектов в области электротехники и электроники, вы можете оставить, оставив комментарий в разделе комментариев ниже.
Сравнение транзисторов N-P-N и P-N-P
1). В этом присутствует большинство n-типов.
1). В нем присутствует большинство материалов p-типа.
2). Большинство концентраций носителей — электроны.
2). Большинство концентраций носителей в транзисторах этого типа — дырочные.
3). В этом случае, если на клеммную базу подается повышенный ток, то транзистор переключается в режим ВКЛ.
3). В этом случае при малых значениях токов транзистор включен. В противном случае при больших значениях токов транзисторы выключены.
4). Символьное представление транзистора n-p-n:
Символ транзистора N-P-N
4). Символьное представление транзистора p-n-p:
Символ транзистора P-N-P
5).В транзисторе n-p-n протекание тока очевидно от коллектора к выводам эмиттера.
5). В p-n-p-транзисторе поток тока можно увидеть от выводов эмиттера к коллектору.
6). В этом транзисторе стрелка указывает.
6). В этом транзисторе стрелка всегда указывает внутрь.
Стрелки на транзисторах n-p-n и p-n-p показывают основные различия между транзисторами. Стрелка в n-p-n направлена в сторону эмиттера, тогда как для p-n-p стрелка направлена в обратном направлении.В обоих случаях стрелка указывает направление потока тока.
Следовательно, конструкция n-p-n и p-n-p проста. Управление будет таким же, но полярности смещения будут разными. Теперь, после обсуждения основ n-p-n и p-n-p, можете ли вы сказать, какой из них предпочтительнее во время амплификации и почему?
Фото:
- Транзистор NPN и PNP от ggpht
- Транзистор PNP от wikimedia
- Создание транзистора PNP с помощью руководств по электронике
Использование транзисторов NPN
Транзисторы предназначены либо для функций как усилители или как переключатели.У транзистора есть три части: база, коллектор и эмиттер. База является управляющим агентом для подачи большого напряжения, коллектор — это источник высокого напряжения, а эмиттер — это выход для транзистора. Хорошая аналогия для объяснения транзисторов как усилителей — это ответвитель. Затвор — это кран, который контролирует поток воды, коллектор — это источник воды, а эмиттер — это выход из крана, из которого выходит вода. Работа в качестве переключателя позволяет транзистору управлять током, проходящим через него, и он может пропускать ток через него (Вкл.) Или нет (Выкл.).
Название NPN-транзисторы основано на способе их создания, то есть путем параллельного размещения двух P-N-переходов. P-N-переход формируется путем соединения полупроводников p-типа и n-типа вместе. Различие между p и n основано на типе зарядов, которые составляют большинство в полупроводнике, положительных или отрицательных. Конфигурация NPN для транзисторов сегодня используется наиболее часто.
Использование в качестве переключателя
Обычно транзисторы NPN используются в качестве переключателей в схемах.В мощных устройствах, таких как двигатели и соленоиды, транзистор NPN может работать в двух режимах: ВКЛ и ВЫКЛ. При этом транзистор обычно работает в режиме насыщения при включении и в режиме отсечки при выключении.
Использование в качестве усилителя
Еще одним распространенным применением NPN-транзисторов является их использование в качестве усилителя, в котором небольшое увеличение входного напряжения вызывает большое изменение выходного напряжения. Транзисторы NPN используются для этой цели почти во всех электронных устройствах телефонов, в которых требуется усиление или воспроизведение звука.
Использование в паре Дарлингтона
Пара Дарлингтона — это обычно используемая конфигурация схемы для усиления слабых сигналов. Пара состоит из двух NPN-транзисторов, расположенных так, что эмиттер первого транзистора питает базу второго транзистора.
Как переключать большие нагрузки с помощью микроконтроллера с помощью транзисторов
Микроконтроллеры
отлично подходят для реализации интеллектуальных функций данного продукта. Эта статья научит вас, как обойти некоторые из их основных ограничений.
Опубликовано Джон Тил
Микроконтроллеры не могут напрямую управлять чем-либо, кроме, может быть, одного светодиода. Это связано с тем, что выходной ток большинства микроконтроллеров может напрямую передавать или потреблять только около 10 мА.
Давайте рассмотрим несколько способов переключения более тяжелых нагрузок на низкую нагрузку с типичного выхода микроконтроллера. Для определения типичных значений компонентов требуется несколько простых математических вычислений, которые будут представлены в легко доступных форматах.Однако такой подход означает, что были приняты некоторые вольности с техническими требованиями.
Одним из простейших подходов к управлению большими нагрузками, работающими от постоянного тока, является переключатель насыщения. Фактический электронный переключающий элемент поставляется в двух вариантах: биполярные переходные транзисторы, или BJT, и MOSFET.
Прежде чем перейти к самому переключателю, давайте определим, что означает переключение нижнего уровня . На рисунке 1 показан этот тип переключения нагрузки.
Рисунок 1 — Реле нагрузки нижней стороны
Переключатель контролирует отрицательную сторону нагрузки.Это означает, что когда переключатель разомкнут, нагрузка по существу плавающая по отношению к минусу источника питания, который обычно является опорным заземлением в большинстве конструкций.
Если этот тип коммутационного устройства приемлем, то переключатель нижнего уровня обычно является самым дешевым способом переключения нагрузки.
Переключатель низкого уровня BJT
BJT может использоваться в качестве переключателя нагрузки и бывает двух видов: NPN и PNP. Для переключения на стороне низкого напряжения используются транзисторы NPN, а для переключения на стороне высокого уровня — PNP.
Прежде чем перейти к реальным методам, давайте определим некоторую номенклатуру, которая используется при работе с NPN-транзисторами.
На рис. 2 показаны соответствующие условные обозначения напряжения и тока. Начиная с тока, I B является базовым током и показан входящим в базу NPN. Те же аргументы применимы для I C и I E , причем I E показан выходящим из транзистора.
Видно, что: I E = I C + I B
Для напряжений V CE — это напряжение между коллектором и эмиттером, и обычно является положительным значением для NPN-транзисторов.Другими словами, для NPN-транзистора напряжение коллектора обычно выше, чем напряжение эмиттера.
Следуя тому же соглашению, V BE — это напряжение между базой и эмиттером. В целом это положительно для NPN.
Рисунок 2 — Напряжение и ток NPN BJT
Ключом к пониманию того, как транзистор может управлять большой нагрузкой, является следующее уравнение:
I C = βI B, , где β — коэффициент усиления по постоянному току, который может составлять от 20 до 300 или более.
Это говорит о том, что ток коллектора равен значению β, умноженному на ток базы. Итак, если β = 100, то ток коллектора будет в 100 раз больше базового тока.
Значение β указано в техническом описании данного транзистора как h FE. Для целей данной статьи они означают одно и то же. Обратите внимание, что это не фиксированное значение для данного транзистора, но несколько зависит от значения тока коллектора и температуры, но это не имеет большого значения для целей данной статьи.
Когда BJT используются в качестве переключателей нагрузки, они используются в двух режимах: Cutoff и Saturation. Рассмотрим рисунок 3 ниже. Как было сказано ранее, I C = βI B. Итак, если I B = 0, то I C также должен быть 0. В этом состоянии транзистор находится в режиме отсечки. Обратите внимание, что, поскольку в транзисторе не течет ток, он не рассеивает мощность; также в этом случае V C совпадает с V CC .
Для следующей части предположим, что V CC = 10 В, R = 10 Ом и β = 100.Посмотрим, что произойдет, если I B = 1 мА. В данном случае I C = 100 мА, поскольку β = 100. Напряжение на резисторе I C x R L , или 1 В. Это означает, что тогда V C должно быть 9 В, поскольку V CC составляет 10 В, а падение напряжения на R L составляет 1 В. Тот же аргумент применим, если I B = 2 мА и т. Д.
А что будет, если I B = 20 мА. По расчетам это означает, что I C = 2000мА, или 2А.Однако этого не может быть. Поскольку V CC = 10 В и R L = 10 Ом, максимальный ток, который может протекать через R L , составляет 1 А.
Другими словами, максимальное значение I C также равно 1A. Это происходит, когда V C = 0, что означает, что транзистор полностью замкнут на землю.
В этом состоянии транзистор находится в режиме насыщения. В этом режиме ток коллектора транзистора является максимальным, что позволяют условия схемы, и увеличение тока базы не приведет к его увеличению.
Итак, уравнение I C = βI B выполняется только до насыщения транзистора. Обратите внимание, что если в только что описанном примере V CC теперь увеличивается, скажем, до 25 В или R L изменяется на 1 Ом, транзистор больше не будет насыщаться. Таким образом, насыщение определяется в зависимости от условий внешней цепи.
Наконец, обратите внимание, что настоящие транзисторы не могут полностью замыкать свои коллекторы и эмиттеры, если они не неисправны.Когда реальный транзистор насыщен, его V CE будет иметь значение V CEsat . Это значение указано в таблице данных транзистора и обычно составляет от 0,2 В для небольшого транзистора до более 1 В для большого.
В CEsat также зависит от тока коллектора и температуры. Эта зависимость обычно представлена в виде набора кривых в таблице данных.
В режиме насыщения транзистор рассеивает некоторую мощность, заданную параметром
.
Рассеиваемая мощность = I C x V CEsat
Однако, поскольку V CEsat обычно довольно низок, рассеиваемая мощность также будет низкой.Таким образом, отсечка и насыщение — это два состояния, при которых транзистор будет рассеивать наименьшую мощность.
Сфокусируясь теперь на базе транзистора, быстрый способ установить I B — это предположить, что V BE составляет 0,7 В. Это значение подходит для большинства транзисторов.
Итак, в данном случае по закону Ома
I B = (V BB — 0,7) / R B
Если необходимо заданное значение I B , то R B можно рассчитать как:
R B = (V BB -0.7) / I B
Для насыщения транзистора необходимо минимальное значение I B , которое вызовет максимальное значение I C , учитывая значение β транзистора и условия схемы.
На практике это значение I B должно быть больше этого минимума примерно на 10–15%, чтобы учесть изменения значения β от устройства к устройству.
Рисунок 3 — Работа транзистора
Управление BJT от микроконтроллера
То, что было только что описано, на самом деле является переключателем NPN BJT нижнего уровня.Если бы V BB был выходным выводом микроконтроллера, то, зная его высокое логическое значение, требуемый ток нагрузки и значение β транзистора, можно легко вычислить значение R B .
Необходимо проверить еще несколько вещей, чтобы убедиться, что:
Расчетное значение I B не превышает допустимый ток возбуждения микроконтроллера.
Ток нагрузки не превышает максимального тока коллектора транзистора.
Рассеиваемая мощность в режиме насыщения не превышает максимальной рассеиваемой мощности транзистора.
Напряжение V CC не превышает максимального значения V CE транзистора.
Для обеспечения надежной работы в приведенный выше пример также должны быть включены некоторые запасы безопасности и снижения номинальных характеристик. Около 20% — это разумно.
Перемещение тяжелых грузов с использованием Darlington
Поскольку ток возбуждения вывода GPIO микроконтроллера редко превышает 10 мА, а минимальное значение β транзистора обычно не превышает примерно 50 для силового транзистора, то максимальный ток, которым можно управлять, составляет около 500 мА.
ПРИМЕЧАНИЕ:
Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Для управления более высокими токами можно использовать схему Дарлингтона. Есть Дарлингтоны, доступные в одном корпусе, или он может быть собран с использованием двух транзисторов, как показано на рисунке 4.
Рисунок 4 — NPN Darlington
В этой конфигурации Q1 обычно представляет собой транзистор малой мощности с высоким коэффициентом усиления, а Q2 — транзистор большой мощности.Если предположить, что резистора R в данный момент нет, то видно, что весь ток эмиттера Q1 течет в базу Q2.
Как указывалось ранее, ток эмиттера — это сумма тока коллектора и тока базы.
Итак, I E = I C + I B
Таким образом, I E = β x I B + I B , или I E = (β + 1) I B
Поскольку β довольно велико, (β + 1) близко к β.
Это означает:
I E ≈ I C
Теперь, поскольку I E из Q1 течет непосредственно в базу Q2, это означает, что I C2 , ток коллектора Q2 определяется как:
I C2 = β1 x β2 x I B1 .
Итак, небольшой входной базовый ток может вызвать большой выходной ток коллектора. Однако следует отметить несколько моментов. Во-первых, V BE этого составного транзистора теперь является суммой значений V BE двух транзисторов.Это необходимо учитывать при расчете номинала базового резистора, как описано ранее.
Что касается резистора R, то он влияет на время выключения Q2. Когда Q2 проводит, в его базу текут заряды. Теперь, когда на входе Q1 становится низкий уровень, Q1 отключается, и заряд, хранящийся в Базе Q2, некуда деваться.
В конечном итоге он исчезнет в результате внутреннего процесса, называемого рекомбинацией носителей, но до тех пор, пока это не произойдет, Q2 останется в проводящем состоянии. Это может длиться от нескольких микросекунд до десятков микросекунд в зависимости от транзистора.
По сути, микроконтроллер отключает свой выход, но после этого нагрузка остается включенной еще некоторое время. R используется для ускорения выключения Q2 путем стравливания сохраненного базового заряда.
Для таких приложений, как ШИМ, рекомендуется использовать этот резистор. Для большинства встроенных приложений подходят значения от 1 кОм до 5 кОм.
R также шунтирует часть базового тока Q2 при нормальной работе. Этот ток равен (V BE2 / R) или приблизительно 0.7 / Р. Чтобы компенсировать этот ток, просто увеличьте базовый ток Q1. Поскольку этот базовый ток x β1 должен быть равен 0,7 / R, из этого следует, что базовый ток в Q1 должен быть увеличен на (0,7 / (β1 x R)).
MOSFET переключатель нижнего уровня
Как и BJT, MOSFET бывает двух основных видов: N-канал и P-канал. N-канальный MOSFET похож на NPN и используется для переключения нижнего уровня. Аналогичным образом, полевой МОП-транзистор с P-каналом похож на PNP BJT и используется для переключения высокого уровня.
N-канальный MOSFET-транзистор относительно легко подключить к выходному выводу GPIO микроконтроллера при соблюдении определенных условий.
На рис. 5 показан этот тип полевого МОП-транзистора вместе с некоторыми из его наиболее важных аспектов, когда это устройство рассматривается как переключатель нижнего уровня.
Рисунок 5 — MOSFET расширения с N-каналом
Когда напряжение подается между затвором и источником, ток начинает течь между стоком и источником, если напряжение выше порогового напряжения, V th , которое указано в его техническом описании.
Выше этого порогового значения, чем выше V GS , тем больше ток стока I D , пока V GS не достигнет V GSMax , что опять же указано в таблице данных.Сравнение I D и V GS определяется набором кривых в таблице данных, и, как и в случае BJT, полевой МОП-транзистор насыщается, когда ток стока является максимальным, что позволяют условия схемы.
Поскольку полевой МОП-транзистор — это устройство, управляемое напряжением, для его включения почти не требуется ток. Итак, GPIO от микроконтроллера может управлять полевым МОП-транзистором, который затем может управлять очень большими токами. Аранжировки Дарлингтона не нужны. Доступны полевые МОП-транзисторы с низким напряжением и , которые полностью усовершенствованы при 5-вольтовом затворе, которые, в свою очередь, могут управлять несколькими усилителями.
Еще одно преимущество MOSFET перед BJT состоит в отсутствии V DS sat. Вместо этого, когда полевой МОП-транзистор является проводящим, соединение сток-исток ведет себя как резистор со значением R DS , которое является функцией V GS и может быть очень низким значением для мощного полевого МОП-транзистора.
Таким образом, рассеиваемая мощность полевого МОП-транзистора, когда он является проводящим или увеличенным, представляет собой просто значение (I D ) 2 , где I D — ток стока, умноженный на R DS , То же, что и мощность, рассеиваемая в резисторе R, пропускающем ток I, определяется выражением P = I 2 R.
Таким образом, во многих случаях мощность, рассеиваемая насыщенным MOSFET, будет меньше, чем мощность эквивалентного BJT. Это особенно актуально, если у меня D достаточно высокий.
Следует отметить, что все N-канальные МОП-транзисторы имеют встроенные диоды-подложки, как показано на рисунке 5. Это заложено в конструкции МОП-транзистора. На практике это означает, что Утечка должна быть более положительной, чем Источник; в противном случае этот диод будет проводить.
Наконец, одна большая проблема с полевыми МОП-транзисторами — это емкость затвор-исток.Он может быть довольно большим для мощного полевого МОП-транзистора — 3 нФ и более не редкость. На практике это означает, что перед тем, как МОП-транзистор сможет начать проводить, эта емкость затвора должна сначала зарядиться. Учитывая, что большинство микроконтроллеров могут подавать ограниченный ток, для зарядки этого конденсатора потребуется время.
Итак, при прямом управлении выходом микроконтроллера MOSFET просто не может переключаться очень быстро. Таким образом, использование полевого МОП-транзистора для быстрой ШИМ, вероятно, не сработает.
В таких ситуациях драйвер MOSFET, такой как TI UCC27511, должен использоваться между выводом GPIO и затвором MOSFET.Это, конечно, увеличивает стоимость и без того более высокой стоимости MOSFET по сравнению с BJT.
Наконец, не забудьте загрузить бесплатный PDF-файл : Полное руководство по разработке нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.
Другой контент, который вам может понравиться:
Транзисторный усилитель с общим эмиттером
»Примечания по электронике
Конфигурация усилителя с общим эмиттером обеспечивает усиление по напряжению и является одной из наиболее широко используемых конфигураций транзисторов для проектирования электронных схем.
Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов
Конфигурации схемы
Общий эмиттер
Общая схема эмиттера
Эмиттер-повторитель
Общая база
См. Также:
Типы транзисторных схем
Схема усилителя на транзисторах с общим эмиттером является одной из основных схем для использования в проектировании электронных схем, предлагая множество преимуществ.
Конфигурация схемы с общим эмиттером используется во многих областях проектирования электронных схем: в качестве усилителя звука, в качестве основного переключателя для логических схем, в качестве аналогового усилителя общего назначения и во многих других приложениях.
Конфигурация схемы с общим эмиттером обеспечивает усиление по напряжению в сочетании с умеренным усилением по току, а также средний входной и средний выходной импеданс. Таким образом, конфигурация с общим эмиттером является хорошей универсальной схемой для использования во многих приложениях.
Также на этом этапе стоит отметить, что усилитель на транзисторах с общим эмиттером инвертирует сигнал на входе. Следовательно, если на вход усилителя с общим эмиттером поступает растущий сигнал, это вызовет падение выходного напряжения.Другими словами, он имеет изменение фазы на 180 ° в цепи.
В зависимости от конструкции самой электронной схемы, общий эмиттер не использует слишком много электронных компонентов, иногда всего два резистора, хотя, если требуется настройка смещения для аналоговых схем, можно использовать четыре резистора и три конденсатора.
Основы транзисторного усилителя с общим эмиттером
Из трех типов конфигурации транзисторов, используемых в проектировании электронных схем, общий эмиттер является наиболее широко используемым из-за его ключевых свойств.
Сигнал усилителя с общим эмиттером подается на базу, а выходной сигнал снимается с коллекторной цепи. Однако, как следует из названия этой схемы, ключевым атрибутом является то, что схема эмиттера является общей как для ввода, так и для вывода.
Конфигурация схемы с общим эмиттером транзистора
Конфигурация с общим эмиттером одинаково применима как к вариантам транзистора NPN, так и к вариантам транзистора PNP. Тем не менее, разновидность NPN более широко используется из-за более широкого использования транзисторов NPN.
Сводка характеристик усилителя на транзисторах с общим эмиттером
При выборе конфигурации транзистора для использования в конструкции электронной схемы необходимо учитывать различные атрибуты трех типов: общий эмиттер, общий коллектор и общую базу, и выбрать наиболее подходящий.
В таблице ниже приведены основные характеристики конфигурации транзистора с общим эмиттером.
Характеристики усилителя на транзисторах с общим эмиттером | |||
---|---|---|---|
Параметр | Характеристики | ||
Коэффициент усиления напряжения | Средний | ||
Прирост тока | Средний | ||
Прирост мощности | Высокая | ||
Соотношение фаз вход / выход | 180 ° | ||
Входное сопротивление | Средний | ||
Выходное сопротивление | Средний |
Из этих характеристик видно, что конфигурация с общим эмиттером обеспечивает хорошие универсальные характеристики.Одним из ключевых факторов является то, что он обеспечивает хороший уровень усиления по напряжению — атрибут, который требуется при проектировании электронных схем для многих приложений.
Схема также относительно проста и требует нескольких электронных компонентов, в зависимости от того, как выполняются требования к конструкции электронной схемы.
Уровни импеданса усилителя с общим эмиттером
Одним из ключевых атрибутов, которые следует учитывать при проектировании любой электронной схемы, являются уровни импеданса.
Входное сопротивление обычно составляет около 1 кОм, хотя оно может значительно варьироваться в зависимости от значений и условий цепи. Низкое входное сопротивление является результатом того факта, что вход применяется через базу и эмиттер, где есть переход, смещенный в прямом направлении,
Также выходной импеданс может быть относительно высоким. Опять же, это значительно варьируется в зависимости от выбранных значений электронных компонентов и допустимых уровней тока. Выходное сопротивление может достигать 10 кОм или, возможно, больше.Однако, если сток позволяет потреблять более высокие уровни тока, выходное сопротивление может быть значительно уменьшено. Уровень сопротивления или импеданса определяется тем фактом, что выходной сигнал снимается с коллектора, где есть обратносмещенный переход.
Коэффициент усиления транзисторного усилителя с общим эмиттером
Еще один важный фактор, который следует учитывать при проектировании электронной схемы, — это достижимый уровень усиления. Можно определить две формы усиления: усиление по току и усиление по напряжению.
Коэффициент усиления по току для схемы усилителя с общим эмиттером обозначается греческим символом β. Это отношение тока коллектора к току базы. Это можно представить как отношение выходного тока к входному. Чтобы получить точное значение коэффициента усиления сигнала, часто используется коэффициент усиления по току для небольших входных изменений тока. Таким образом, коэффициент усиления по току β и изменения входного и выходного тока связаны следующим образом:
Где
β = усиление по току
ΔIc = изменение тока коллектора
ΔIb = изменение базового тока
Чтобы посмотреть на коэффициент усиления по напряжению схемы усилителя с общим эмиттером, необходимо посмотреть на сопротивления или импедансы для входа и выхода.
β = ΔIcΔIb = ΔVcRcΔVbRb
Av = ΔVcΔVb
Следовательно:
Av = β RcRb
Где
Av = усиление напряжения
Rc = выходное сопротивление коллекторной цепи
Rb = входное сопротивление базовой цепи
Соотношение фаз на входе и выходе с общим эмиттером
Транзисторный усилитель с общим эмиттером — единственная конфигурация, которая обеспечивает инверсию на 180 ° между входными и выходными сигналами.
Причину этого можно увидеть из того факта, что по мере увеличения входного напряжения увеличивается ток через базовую цепь.В свою очередь, это увеличивает ток в цепи коллектора, то есть имеет тенденцию включать транзистор. Это приводит к падению напряжения между выводами коллектора и эмиттера.
Таким образом, увеличение напряжения между базой и эмиттером привело к падению напряжения между выводами коллектора и эмиттера, другими словами, фаза двух сигналов была инвертирована.
Практические схемы усилителя с общим эмиттером
При проектировании электронной схемы для различных приложений и для удовлетворения различных требований можно использовать один из множества вариантов схемы транзистора с общим эмиттером.
В то время как основные теоретические схемы, показанные выше, способны описать основную работу усилителя с общим эмиттером в принципе.
Однако, чтобы схема могла работать в реальной системе, необходимо добавить другие элементы, такие как смещение, развязка и т.п. В результате общая схема усилителя с общим эмиттером использует несколько компонентов, чтобы гарантировать, что он может работать требуемым образом.
Усилитель простой логики с общим эмиттером
Первый пример — это простейшая форма схемы с общим эмиттером, в которой используется очень мало электронных компонентов.Обычно он используется для управления нагрузкой с цифрового выхода предыдущего каскада.
Схема базового транзисторного усилителя с общим эмиттером
R1 | R1 ограничивает базовый ток и предотвращает повреждение эмиттерного перехода базы. Он должен быть рассчитан так, чтобы обеспечить достаточный ток коллектора с минимальным усилением тока транзистора, и включать некоторый запас, чтобы гарантировать его правильное включение. | |
R2 | Этот резистор обеспечивает заземление и помогает регулировать скорость переключения транзистора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером. |
При управлении небольшим транзистором общего назначения от логического выхода 5 В типичные значения могут быть 2 кОм для R1 и 22 кОм для R2.
Простой усилитель с общим эмиттером для управления реле
Часто бывает полезно использовать простую схему с общим эмиттером для управления реле.Простая схема, показанная выше, может быть адаптирована для управления реле.
Необходимо учитывать ток, необходимый для переключения и удержания реле, и в базовой цепи должен протекать ток, достаточный для обеспечения протекания необходимого тока в цепи коллектора.
Для многих реле сопротивление резистора R1 может быть около 2 кОм, а R2 — 22 кОм, но они должны быть рассчитаны в конструкции электронной схемы, чтобы обеспечить требуемый ток.
Схема управления реле простого транзистора с общим эмиттером
Следует отметить, что при высоком входном напряжении реле активируется.Это когда коллектор включен, и напряжение коллектора понижено.
Диод включен для подавления обратной ЭДС, индуцированной при отключении тока, протекающего через катушку реле. Важно предотвратить повреждение транзистора.
Схема общего эмиттера с использованием транзистора смещения с одной базой
Схема с общим эмиттером с использованием транзистора смещения с одной базой
R1 | R1 ограничивает базовый ток и предотвращает повреждение эмиттерного перехода базы.Он должен быть рассчитан так, чтобы обеспечить достаточный ток коллектора с минимальным усилением тока транзистора, и включать некоторый запас, чтобы гарантировать его правильное включение. | |
R1 | Этот резистор обеспечивает смещение для транзистора. Его значение следует рассчитать, чтобы получить требуемый ток коллектора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером.Его значение рассчитывается таким образом, чтобы при токе покоя коллектора оно упало наполовину по сравнению с напряжением шины, предполагая, что конструкция электронной схемы используется в качестве линейного усилителя. |
Этот тип схемы с общим эмиттером очень прост, минимизирует количество электронных компонентов и использует один резистор для смещения базы. Он не обеспечивает производительность, требуемую для многих схем, поскольку коэффициент усиления транзистора будет варьироваться от одного устройства к другому, и это изменит работу схемы.
Схема общего эмиттера с использованием транзистора смещения с одной базой (2)
Эта версия эмиттерного повторителя смещения базы с одним резистором предлагает немного большую предсказуемость схемы.
Подключение резистора смещения между коллектором и базой обеспечивает дополнительную стабильность для условий постоянного тока.
Схема с общим эмиттером с использованием транзистора смещения с одной базой между коллектором и базой
Транзисторный усилитель с общим эмиттером со смещением постоянного тока и связью по переменному току
На схеме ниже показана конструкция электронной схемы усилителя с общим эмиттером с резисторами, обеспечивающими необходимое смещение для линейной работы, а также конденсаторы связи и развязки для работы на переменном токе.
Схема базового транзисторного усилителя с общим эмиттером
Внутри схемы имеется ряд компонентов, которые обеспечивают различные функции, позволяющие всей схеме работать требуемым образом:
R1, R2 | Эти резисторы обеспечивают смещение для базы транзистора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером. | |
R4 | Этот резистор в усилителе с общим эмиттером обеспечивает обратную связь по постоянному току, чтобы гарантировать, что условия постоянного тока в цепи поддерживаются. | |
C1, C2 | Эти конденсаторы обеспечивают связь по переменному току между ступенями. Их нужно выбирать так, чтобы они обеспечивали незначительное реактивное сопротивление на рабочих частотах. | |
C3 | Это байпасный конденсатор. Эффект R4 заключается в уменьшении коэффициента усиления схемы. Обход резистора позволяет достичь более высоких уровней усиления переменного тока. | |
Схема, показанная выше, представляет собой базовый усилитель с общим эмиттером, связанный по переменному току.
Схема с общим эмиттером может использоваться в различных формах.