Полевые транзисторы. Характеристики. Основные типы.| Elektrolife
MOSFET — (Metal–Oxide–Semiconductor Field-Effect Transistor) использует изолятор обычно SiO2 между затвором и каналом.
JFET — полевой транзисторе с управляющим p-n переходом
MESFET — (Metal–Semiconductor Field-Effect Transistor) разновидность p-n перехода JFET с барьером Schottky; используются с GaAs и др. III-V полупроводниками.
ISFET — ion-sensitive field-effect transistor – ионно-чувствительный полевой транзистор.
ChemFET — chemical field-effect transistor — МОСФЕТ транзисторы, заряд на затворе которых определяется химическими процессами.
EOSFET — electrolyte-oxide-semiconductor field effect transistor вместо металла в качестве затвора используется электролит.
CNTFET — Carbon nanotube field-effect transistor — полевой транзистор с углеродными нанотрубками.
DEPFET – полевой транзистор с полностью обедненной подложкой, используются как сенсоры, усилители и ячейки памяти одновременно. Может быть использован как датчик фотонов.
DGMOSFET — с двумя затворами.
DNAFET — специальный FET используемый как биосенсор, с затвором из 1-й ДНК молекулы чтобы определять соответствующую нить ДНК.
FREDFET — (Fast Reverse or Fast Recovery Epitaxial Diode FET) специальный полевой транзистор, разработанный для обеспечения сверхбыстрого закрытия встроенного диода (is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode)
HEMT — (high electron mobility transistor) или HFET(heterostructure FET) полевой транзистор с высокой подвижностью зарядов, гетероструктурные (шестигранные) FET. Изолятор затвора формируется из полностью обедненного материала с большой шириной запрещенной зоны.
HIGFET — (heterostructure insulated gate field effect transisitor), гетероструктурные MISFET используются в основном в исследовательских целях.
MODFET — (Modulation-Doped Field Effect Transistor) использует квантовую структуру, сформированную градиентным легированием активной области.
NOMFET – (Nanoparticle Organic Memory Field-Effect Transistor) — память на основе органических наночастиц.
OFET – (Organic Field-Effect Transistor) — канал из органического полупроводника.
GNRFET – (Field-Effect Transistor that uses a graphene nanoribbon for its channel). С каналом из графеновой пленки.
VFET – (Vertical Field-Effect Transistor), вертикальный полевой транзистор, полевой транзистор с вертикальной структурой, полевой транзистор с вертикальным каналом.
VeSFET — (Vertical-Slit Field-Effect Transistor) is a square-shaped junction-less FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the slit… полевой транзистор квадратной формы, без перехода с близким расположением истока и стока на противоположных углах. Два других входа, занимающие другие углы — затворы, которые контролируют переход.
TFET — (Tunnel Field-Effect Transistor) — основан на эффекте тунеллирования … из полосы в полосу.
IGBT — (insulated-gate bipolar transistor) устройство для контроля мощности. Представляет из себя гибрид полевого транзистора с проводящим каналом, как у биполярного транзистора. Обычно используются для напряжений 200-3000V сток-исток. Мощные MOSFETs обычно используются до 200 V.
Транзистор полевой
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.
исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.
сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.
затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.
Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».
Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.
Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.
В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.
Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления. Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных «полевиков», которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).
Схема включения MOSFET
Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.
Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.
Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).
Рис. 3. Классическая схема включения MOSFET в ключевом режиме.
МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).
МОП транзисторы, используемые в цифровой электронике, делятся на два типа.
- Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
- Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.
Полевой МОП транзистор – устройство и принцип работы
МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.
Устройство и основные характеристики МОП-транзисторов
Практически все типы MOSFET имеют три вывода:
· Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.
· Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.
· Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.
Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.
Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:
· управляющее напряжение;
· в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;
· в закрытом состоянии – максимально допустимое напряжение прямого типа.
Отличие униполярных транзисторов от биполярных
МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.
Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.
Типы МОП-транзисторов
Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:
· Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.
· Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.
Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:
· Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.
· Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.
В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.
Принцип работы:
· Между затвором и истоком прикладывается плюсовое напряжение к затвору.
· Между металлическим выводом затвора и подложкой появляется электрическое поле.
· Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
· В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
· Между выводами стока и истока появляется «мост», проводящий электрический ток.
Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.
Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.
Преимущества и недостатки МОП-транзисторов
Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:
· возможность мгновенного переключения;
· отсутствие вторичного пробоя;
· хорошая эффективность работы при низких напряжениях;
· стабильность при температурных колебаниях;
· низкий уровень шума при работе;
· большой коэффициент усиления сигнала;
· экономичность в плане энергопотребления;
· меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.
Применение этих приборов ограничивают следующие недостатки:
· Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.
· Появление нестабильности работы при напряжении перегрузки.
· Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.
Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
ПОЛЕВЫЕ ТРАНЗИСТОРЫ
ПОЛЕВЫЕ ТРАНЗИСТОРЫ
Полевой
транзистор – это полупроводниковый преобразовательный прибор, в котором ток, текущий
через канал, управляется электрическим полем, возникающим при приложении
напряжения между затвором и истоком. Предназначен для усиления мощности электромагнитных колебаний.
Полевые
транзисторы применяются в усилительных каскадах с большим входным
сопротивлением, ключевых и логических устройствах, при изготовлении микросхем.
Принцип действия полевых
транзисторов снован на использовании носителей
заряда только одного знака (электронов или дырок). Управление током, осуществляется изменением проводимости канала, через который
протекает ток транзистора под воздействием электрического поля. Поэтому эти
транзисторы называют полевыми.
По способу
создания канала различают полевые транзисторы с затвором в виде управляющего
р-n- перехода и с
изолированным затвором (МДП — или МОП — транзисторы): встроенным каналом и
индуцированным каналом.
В зависимости от
проводимости канала полевые транзисторы делятся на полевые транзисторы с
каналом р- типа и полевые транзисторы с
каналом n-
типа. Канал р- типа обладает дырочной проводимостью, а n- типа – электронной.
Полевой
транзистор с управляющим р-n- переходом – это полевой транзистор,
затвор которого отделен в электрическом отношении от канала р-n-переходом, смещенным в обратном
направлении.
Устройство полевого транзистора с управляющим р-n-переходом (каналом n- типа)
Условное обозначение полевого транзистора с р-n-переходом и каналом n- типа (а), каналом р- типа (б)
Каналом полевого
транзистора называют область в полупроводнике, в которой ток основных носителей
заряда регулируется изменением ее поперечного сечения. Электрод, через который в канал входят носители заряда, называют
истоком. Электрод, через который из канала уходят основные носители заряда — сток. Электрод, для регулирования поперечного сечения канала
за счет управляющего напряжения — затвор.
Управляющее
(входное) напряжение подается между затвором и истоком. Напряжение Uзи является
обратным для обоих р-n-
переходов. Ширина р-n- переходов, а, следовательно,
эффективная площадь поперечного сечения канала, его сопротивление и ток в канале
зависят от этого напряжения. С его ростом расширяются р-n- переходы, уменьшается площадь сечения
токопроводящего канала, увеличивается его сопротивление, а, следовательно,
уменьшается ток в канале. Следовательно, если между истоком и стоком включить
источник напряжения Uси, то силой тока
стока Iс, протекающего
через канал, можно управлять путем изменения сопротивления (сечения) канала с
помощью напряжения, подаваемого на затвор. На этом принципе и основана работа
полевого транзистора с управляющим р-n- переходом.
При напряжении
Uзи = 0 сечение
канала наибольшее, его сопротивление наименьшее и ток Iс получается
наибольшим. Ток стока Iс нач при Uзи = 0 называют
начальным током стока. Напряжение Uзи, при котором
канал полностью перекрывается, а ток стока Iс становится весьма
малым (десятые доли микроампер), называют напряжением отсечки Uзи отс.
Статические характеристики полевого
транзистора с управляющим р-n-
переходом
Стоковые
(выходные) характеристики полевого транзистора с р-n- переходом и каналом n- типа, отражают зависимость тока стока от напряжения Uси при
фиксированном напряжении Uзи: Ic = f(Uси) при Uзи = const.
Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа: а
– стоковые; б – стокозатворная
Особенностью
полевого транзистора является то, что на проводимость канала оказывает влияние и управляющее
напряжение Uзи, и
напряжение Uси. При Uси = 0 выходной ток
Iс = 0. При Uси >
0 (Uзи = 0) через канал
протекает ток Ic,
в результате создается падение напряжения, возрастающее в направлении
стока. Суммарное падение напряжения участка исток-сток равно Uси. Повышение
напряжения Uси вызывает
увеличение падения напряжения в канале и уменьшение его сечения, а
следовательно, уменьшение проводимости канала. При некотором напряжении Uси происходит
сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление
канала становится высоким. Такое напряжение Uси называют напряжением насыщения Uси нас. При подаче на
затвор обратного напряжения Uзи происходит
дополнительное сужение канала, и его перекрытие наступает при меньшем значении
напряжения Uси нас. В рабочем
режиме используются пологие участки выходных характеристик.
Полевые транзисторы с изолированным
затвором
У полевого
транзистора с изолированным затвором (МДП — транзистор), затвор отделен в электрическом отношении от канала слоем
диэлектрика. МДП —
транзисторы в
качестве диэлектрика используют оксид кремния SiO2. Другое название таких
транзисторов – МОП — транзисторы ( металл-окисел-полупроводник).
Принцип действия
МДП — транзисторов основан на изменении проводимости поверхностного
слоя полупроводника под воздействием поперечного
электрического поля. Поверхностный слой, является
токопроводящим каналом этих транзисторов. МДП — транзисторы выполняют двух типов
– со встроенным каналом и с индуцированным каналом.
Конструкция МДП — транзистора со встроенным каналом n-типа. В
исходной пластинке кремния р- типа с относительно высоким удельным
сопротивлением, с помощью диффузионной технологии
созданы две легированные области с противоположным типом
электропроводности – n.
На эти области нанесены металлические электроды – исток и сток. Между истоком и
стоком имеется поверхностный канал с электропроводностью n- типа. Поверхность
кристалла полупроводника между истоком и стоком покрыта тонким слоем диэлектрика. На этот слой нанесен металлический электрод –
затвор. Наличие слоя диэлектрика позволяет подавать
на затвор управляющее напряжение обеих полярностей.
При подаче на
затвор положительного напряжения,создающимся электрическим полем дырки из канала будут выталкиваться в подложку, а электроны
— из подложки в канал. Канал обогащается – электронами, и его проводимость увеличивается при возрастании ток стока . Это называется режим обогащения.
При подаче на
затвор отрицательного напряжения, относительно истока, в канале создается
электрическое поле, под влиянием которого электроны выталкиваются из канала в
подложку, а дырки втягиваются из подложки в канал. Канал обедняется основными
носителями заряда, проводимость уменьшается, а ток стока уменьшается. Такой
режим транзистора называют режимом обеднения.
В таких
транзисторах при Uзи = 0, если
приложить напряжение между стоком и истоком (Uси >
0), протекает ток стока Iс нач, называемый
начальным и, представляющий собой поток электронов.
Канал
проводимости тока не создается, а образуется
благодаря притоку электронов из полупроводниковой пластины, при
приложения к затвору напряжения положительной полярности относительно истока.
При отсутствии этого напряжения канала нету, и между истоком и стоком n-типа расположен только
кристалл р- типа, а на одном из р-n- переходов получается обратное
напряжение. В этом состоянии сопротивление между истоком и стоком велико,
и транзистор заперт. Но при подаче на затвор положительное напряжение, под влиянием поля затвора электроны будут перемещаться из областей истока и
стока и из р- области к затвору. Когда напряжение
затвора превысит пороговое значение Uзи пор, в
поверхностном слое концентрация электронов превысит концентрацию дырок, и произойдет инверсия типа электропроводности, индуцируется
токопроводящий канал n-типа, соединяющий области истока и
стока. Транзистор начинает проводить ток. Чем больше положительное напряжение
затвора, тем больше проводимость канала и ток стока. Транзистор с
индуцированным каналом может работать только в режиме обогащения.
Условное обозначение МДП — транзисторов:
а − со
встроенным каналом n-
типа;
б − со
встроенным каналом р- типа;
в − с выводом от
подложки;
г − с
индуцированным каналом n- типа;
д − с
индуцированным каналом р- типа;
е − с выводом от
подложки.
Статические характеристики полевых МДП —
транзисторов.
При Uзи = 0 через прибор
протекает ток, определяемый исходной проводимостью канала. В случае приложения к
затвору напряжения Uзи <
0 поле затвора оказывает отталкивающее действие на электроны – носители заряда в
канале, что приводит к уменьшению их концентрации в канале и проводимости
канала. Вследствие этого стоковые характеристики при Uзи <
0 располагаются ниже кривой, соответствующей Uзи = 0.
При подаче на
затвор напряжения Uзи >
0 поле затвора притягивает электроны в канал из полупроводниковой пластины р- типа. Концентрация носителей заряда в канале увеличивается,
проводимость канала возрастает, ток стока Iс увеличивается.
Стоковые характеристики при Uзи >
0 располагаются выше исходной кривой при Uзи = 0.
Отличие стоковых
характеристик заключается в том, что управление током транзистора осуществляется
напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Ic = 0 при
Uси = 0, в то время
как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно
истока.
Параметры МДП —
транзисторов аналогичны параметрам полевых транзисторов с р-n- переходом. По
входному сопротивлению МДП — транзисторы имеют лучшие показатели, чем
транзисторы с р-n- переходом.
схемы включения
Полевой
транзистор можно включать с общим истоком-а (ОИ),
общим стоком-в (ОС) и общим затвором-б (ОЗ).
Чаще
всего применяется схема с ОИ.
Каскад с общим истоком дает очень большое усиление тока и мощности. Схема с ОЗ
аналогична схеме с ОБ. Она не дает усиления тока, и поэтому усиление мощности в
ней меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным
сопротивлением, в связи с чем имеет ограниченное применение.
усилительный каскад на
полевых транзисторах
Схема усилителя, выполненного по схеме с ОИ.
Транзистор в режиме покоя обеспечивается постоянным током стока Iсп и
соответствующим ему напряжением
сток-исток Uсип. Этот режим
обеспечивается напряжением смещения на затворе полевого транзистора Uзип. Это напряжение
возникает на резисторе Rи при прохождении
тока Iсп (URи = Iсп Rи) и прикладывается
к затвору благодаря гальванической связи через резистор R3. Резистор Rи, кроме
обеспечения напряжения смещения затвора, используется также для температурной
стабилизации режима работы усилителя по постоянному току, стабилизируя Iсп. Чтобы на
резисторе Rи не выделялась
переменная составляющая напряжения, его шунтируют конденсатором Си. Этим и
обеспечивают постоянство коэффициента усиления каскада.
Справочники радиодеталей
Полевые транзисторы. Виды и устройство. Применение и особенности
Полевые транзисторы являются полупроводниковыми приборами. Особенностью их является то, что ток выхода управляется электрическим полем и напряжением одной полярности. Регулирующий сигнал поступает на затвор и осуществляет регулировку проводимости перехода транзистора. Этим они отличаются от биполярных транзисторов, в которых сигнал возможен с разной полярностью. Другим отличительным свойством полевого транзистора является образование электрического тока основными носителями одной полярности.
Разновидности
Существует множество разных видов полевых транзисторов, действующих со своими особенностями.
- Тип проводимости. От нее зависит полюсность напряжения управления.
- Структура: диффузионные, сплавные, МДП, с барьером Шоттки.
- Количество электродов: бывают транзисторы с 3-мя или 4-мя электродами. В варианте с 4-мя электродами подложка является отдельной частью, что дает возможность управлять прохождением тока по переходу.
- Материал изготовления: наиболее популярными стали приборы на основе германия, кремния. В маркировке транзистора буква означает материал полупроводника. В транзисторах, производимых для военной техники, материал маркируется цифрами.
- Тип применения: обозначается в справочниках, на маркировке не указан. На практике известно пять групп применения «полевиков»: в усилителях низкой и высокой частоты, в качестве электронных ключей, модуляторов, усилителей постоянного тока.
- Интервал рабочих параметров: набор данных, при которых полевики могут работать.
- Особенности устройства: унитроны, гридисторы, алкатроны. Все приборы имеют свои отличительные данные.
- Количество элементов конструкции: комплементарные, сдвоенные и т. д.
Кроме основной классификации «полевиков», имеется специальная классификация, имеющая принцип действия:
- Полевые транзисторы с р-n переходом, который осуществляет управление.
- Полевые транзисторы с барьером Шоттки.
- «Полевики» с изолированным затвором, которые делятся:
— с индукционным переходом;
— со встроенным переходом.
В научной литературе предлагается вспомогательная классификация. Там говорится, что полупроводник на основе барьера Шоттки необходимо выделить в отдельный класс, так как это отдельная структура. В один и тот же транзистор может входить сразу оксид и диэлектрик, как в транзисторе КП 305. Такие методы применяют для образования новых свойств полупроводника, либо для снижения их стоимости.
На схемах полевики имеют обозначения выводов: G – затвор, D – сток, S – исток. Подложку транзистора называют «substrate».
Конструктивные особенности
Электрод управления полевым транзистором в электронике получил название затвора. Его переход выполняют из полупроводника с любым видом проводимости. Полярность напряжения управления может быть с любым знаком. Электрическое поле определенной полярности выделяет свободные электроны до того момента, пока на переходе не закончатся свободные электроны. Это достигается воздействием электрического поля на полупроводник, после чего величина тока приближается к нулю. В этом заключается действие полевого транзистора.
Электрический ток проходит от истока к стоку. Разберем отличия этих двух выводов транзистора. Направление движения электронов не имеет значения. Полевые транзисторы обладают свойством обратимости. В радиотехнике полевые транзисторы нашли свою популярность, так как они не образуют шумов по причине униполярности носителей заряда.
Главной особенностью полевых транзисторов является значительная величина сопротивления входа. Это особенно заметно по переменному току. Эта ситуация получается по причине управления по обратному переходу Шоттки с определенным смещением, или по емкости конденсатора возле затвора.
Материалом подложки выступает нелегированный полупроводник. Для «полевиков» с переходом Шоттки вместо подложки закладывают арсенид галлия, который в чистом виде является хорошим изолятором.
К нему предъявляются требования:
- Отсутствие отрицательных факторов в соединении с переходом, стоком и истоком: гистерезис свойств, паразитное управление, чувствительность к свету.
- Устойчивость к температуре во время изготовления: невосприимчивость к эпитаксии, отжигу. Отсутствие различных примесей в активных слоях.
- Минимальное количество примесей.
- Качественная структура кристаллической решетки с наименьшим количеством дефектов.
На практике оказывается трудным создание структурного слоя со сложным составом, отвечающим необходимым условиям. Поэтому дополнительным требованием является возможность медленного наращивания подложки до необходимых размеров.
Полевые транзисторы с р-n переходом
В такой конструкции тип проводимости затвора имеет отличия от проводимости перехода. Практически применяются различные доработки. Затвор может быть изготовлен из нескольких областей. В итоге наименьшим напряжением можно осуществлять управление прохождением тока, что повышает коэффициент усиления.
В разных схемах применяется обратный вид перехода со смещением. Чем больше смещение, тем меньше ширина перехода для прохождения тока. При определенной величине напряжения транзистор закрывается. Применение прямого смещения не рекомендуется, так как мощная цепь управления может оказать влияние на затвор. Во время открытого перехода проходит значительный ток, или повышенное напряжение. Работа в нормальном режиме создается путем правильного выбора полюсов и других свойств источника питания, а также подбором точки работы транзистора.
Во многих случаях специально применяют непосредственные токи затвора. Такой режим могут применять и транзисторы, у которых подложка образует переход вида р-n. Заряд от истока разделяется на сток и затвор. Существует область с большим коэффициентом усиления тока. Этот режим управляется затвором. Однако, при возрастании тока эти параметры резко падают.
Подобное подключение применяется в схеме частотного затворного детектора. Он применяет свойства выпрямления перехода канала и затвора. В таком случае прямое смещение равно нулю. Транзистор также управляется затворным током. В цепи стока образуется большое усиление сигнала. Напряжение для затвора изменяется по закону входа и является запирающим для затвора.
Напряжение в стоковой цепи имеет элементы:
- Постоянная величина. Не применяется.
- Сигнал несущей частоты. Отводится на заземление с применением фильтров.
- Сигнал с модулирующей частотой. Подвергается обработке для получения из него информации.
В качестве недостатка затворного детектора целесообразно выделить значительный коэффициент искажений. Результаты для него отрицательные для сильных и слабых сигналов. Немного лучший итог показывает фазовый детектор, выполненный на транзисторе с двумя затворами. Опорный сигнал подается на один их электродов управления, а информационный сигнал, усиленный «полевиком», появляется на стоке.
Несмотря на значительные искажения, этот эффект имеет свое назначение. В избирательных усилителях, которые пропускают определенную дозу некоторого спектра частот. Гармонические колебания фильтруются и не влияют на качество действия схемы.
Транзисторы МеП, что означает – металл-полупроводник, с переходом Шоттки практически не отличаются от транзисторов с р-n переходом. Так как переход МеП имеет особые свойства, эти транзисторы могут функционировать на повышенной частоте. А также, структура МеП простая в изготовлении. Характеристики по частоте зависят от времени заряда затворного элемента.
МДП-транзисторы
База элементов полупроводников постоянно расширяется. Каждая новая разработка изменяет электронные системы. На их базе появляются новые приборы и устройства. МДП-транзистор действует путем изменения проводимости полупроводникового слоя с помощью электрического поля. От этого и появилось название – полевой.
Обозначение МДП расшифровывается как металл-диэлектрик-полупроводник. Это дает характеристику состава прибора. Затвор изолирован от истока и стока тонким диэлектриком. МДП транзистор современного вида имеет размер затвора 0,6 мкм, через который может протекать только электромагнитное поле. Оно оказывает влияние на состояние полупроводника.
При возникновении нужного потенциала на затворе возникает электромагнитное поле, которое оказывает влияние на сопротивление участка стока-истока.
Достоинствами такого применения прибора является:
- Повышенное сопротивление входа прибора. Это свойство актуально для применения в цепях со слабым током.
- Небольшая емкость участка сток-исток дает возможность применять МДП-транзистор в устройствах высокой частоты. При передаче сигнала искажений не наблюдается.
- Прогресс в новых технологиях производства полупроводников привел к разработке транзисторов IGBT, которые включают в себя положительные моменты биполярных и полевых приборов. Силовые модули на их основе широко применяются в приборах плавного запуска и преобразователях частоты.
При разработке таких элементов нужно учесть, что МДП-транзисторы имеют большую чувствительность к повышенному напряжению и статическому электричеству. Транзистор может сгореть при касании к его выводам управления. Следовательно, при их установке необходимо применять специальное заземление.
Такие полевые транзисторы обладают многими уникальными свойствами (например, управление электрическим полем), поэтому они популярны в составе электронной аппаратуры. Также следует отметить, что технологии изготовления транзисторов постоянно обновляется.
Похожие темы:
Мощные полевые транзисторы-принцип работы, применение
Существует два главных основополагающих типа полевых (униполярных, управляемых напряжением) транзисторов, являющихся активными полупроводниковыми элементами, обладающими высокой мощностью – это n-канальные иp-канальные.
Первые из них применяются более часто и отличаются наибольшим диапазоном токов и напряжений. Кроме этих моделей производятся полевые транзисторы, управляемые сигналом логического уровня, они обладают ограничением по току и защелкой по напряжению.
Определение полевого транзистора
Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.
Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.
Параметры, характеризующие полевой транзистор
- Ширина канала – расстояние между p-n-переходами W.
- Напряжение отсечки — напряжение на затворе при исчезновении каналов.
- Напряжение насыщения – с него начинается формирование пологой части ВАХ.
- Стоко-затворная ВАХ (вольт-амперная характеристика).
Рис. №1. Стоко-затворная ВАХ n-канального транзистора с
Ic= Icmax (I – Uзи / U0)2 , здесь Icmax стока.
- Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.
- Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.
- Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.
- Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.
- Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.
- Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.
Проводимость транзистора
Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.
Отличие полевых униполярных транзисторов от биполярных заключается в наличии значительно высокого значения величины входного сопротивления. Потребление электроэнергии полевыми транзисторами отличается значительной экономией.
Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.
Структура полевого транзистора
Основополагающий принцип работы, на котором осуществляется действие полевого транзистора с использованием управляющего p-n-перехода основывается на изменении проводимости канала, которая возможна благодаря изменению поперечного сечения. Сток и исток включают напряжение полярности, при котором главные носители заряда (ими являются электроны в канале n-типа) движутся от истока к стоку. В свою очередь, между затвором и истоком включается отрицательное напряжение, управляющее запиранием p – n–переходом.
Рис. №2. Структуры (а) полевых транзисторов с управляющим p—n-перехода и (б) структура транзистора с изолированным затвором.
При большем значении напряжения расширяется запирающий активный слой и канал становится уже. С уменьшением поперечного размера канала происходит увеличение сопротивления и уменьшение величины тока между стоком и истоком. Это действие позволяет управлять протеканием тока. При невысоком значении напряжения затвор — исток происходит перекрытие канала запирающим слоем, что снижает проводимость канала. Ширина канала варьируется от нулевого значения до отрицательных величин, иначе говоря, p-n-переходы затвора сдвигаются в обратном направлении, сопротивление увеличивается.
Напряжение на затворе после исчезновения канала и смыкании p-n-перехода, определяется, как напряжение отсечки U0– это величина считается одной из основополагающих для всех разновидностей полевых транзисторов.
Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.
Сфера использования полевых транзисторов
Полевой транзистор является устройством, рассчитанным на большую мощность, характерным в конструкции регуляторов, конвертеров, драйверов, электродвигателей, реле и мощных биполярных транзисторов. Они применяются в конструкции зарядных устройств, автоэлектроники, устройствах управления температурным режимом, широкополосных и малошумящих усилителях в схемах зарядочувствительных предусилителей и прочее. Для полевых транзисторов характерно наличие высокого входного сопротивления. Управление полевым транзистором производится непосредственно от микросхемы, без применения добавочных усиливающих каскадов.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Похожее
Mosfet транзисторы принцип работы
Что такое МОП-транзистор, принцип работы, типы, на схеме, преимущества недостатки
МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами.
Что такое МОП-транзистор
Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.
В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.
Принцип работы МОП-транзистора (MOSFET)
Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку. Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.
Типы МОП-транзистора (MOSFET)
На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.
- Режим насыщения
- Режим истощения
Режим насыщения
В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.
Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.
Классификация режима насыщения МОП- транзисторов
Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- N-канальный тип насыщения MOSFET
- P-канальный тип насыщения MOSFET
N-канальный тип насыщения MOSFET
- Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
- N-канал имеет электроны в качестве основных носителей.
- Подаваемое напряжение затвора положительно для включения устройства.
- Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
- Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
- Сопротивление дренажу низкое по сравнению с P-типом.
P-канальный тип насыщения MOSFET
- Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
- P-канал имеет отверстия в качестве основных носителей.
- Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
- Подаваемое напряжение затвора является отрицательным для включения устройства.
- Водостойкость выше по сравнению с N-типом.
Режим истощения
В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.
Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.
Классификация режима истощения МОП-транзисторов
Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- Тип истощения канала N МОП-транзистор
- Тип истощения канала P МОП-транзистор
Тип истощения канала N МОП-транзистор
- Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Применяемое напряжение на затворе отрицательное.
- Канал обеднен свободными электронами.
Тип канала истощения канала MOSFET
- Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Поданное напряжение затвора положительное.
- Канал обеднен свободными отверстиями.
Символ на схеме разных типов МОП-транзистора (MOSFET)
Символы различных типов МОП-транзисторов изображены ниже.
Применение МОП-транзистора
- Усилители MOSFET широко используются в радиочастотных приложениях.
- Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
- Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
- Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.
Преимущества МОП-транзистора
- МОП-транзисторы обеспечивают большую эффективность при работе при более низких напряжениях.
- Отсутствие тока затвора приводит к высокому входному импедансу и высокой скорости переключения.
- Они работают при меньшей мощности и не потребляют ток.
Базовая структура MOSFET транзистора
Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.
При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.
Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.
Режим истощения МОП-транзистора
Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.
Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.
Другими словами, для режима истощения п-канального МОП-транзистора:
- Положительное напряжение на стоке означает большее количество электронов и тока.
- Отрицательное напряжение означает меньше электронов и ток.
Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.
N-канальный МОП-транзистор в режиме истощения
Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.
Режим усиления МОП-транзистора
Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.
Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.
Особенности режима усиления
Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:
- Положительный сигнал транзистор переводит в проводящий режим.
- Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.
Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:
- Положительный сигнал переводит транзистор «Выкл».
- Отрицательный включает транзистор в режим «Вкл».
Режим усиления N-канального МОП-транзистора
В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.
Транзистор полевой
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.
исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.
сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.
затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.
Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».
Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.
Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.
В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.
Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления. Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных «полевиков», которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).
Схема включения MOSFET
Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.
Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.
Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).
Рис. 3. Классическая схема включения MOSFET в ключевом режиме.
МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).
МОП транзисторы, используемые в цифровой электронике, делятся на два типа.
- Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
- Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Полевой транзистор »Электроника
Полевой транзистор, полевой транзистор, представляет собой трехконтактное активное устройство, которое использует электрическое поле для управления током и имеет высокий входной импеданс, который используется во многих схемах.
FET, полевой транзистор, руководство включает:
FET основы
Характеристики полевого транзистора
JFET
МОП-транзистор
МОП-транзистор с двойным затвором
Силовой MOSFET
MESFET / GaAs полевой транзистор
HEMT & PHEMT
Технология FinFET
Полевой транзистор, FET, является ключевым электронным компонентом, используемым во многих областях электронной промышленности.
Полевой транзистор, используемый во многих схемах, состоящих из дискретных электронных компонентов, в областях от ВЧ-технологий до управления мощностью и электронного переключения до общего усиления.
Однако в основном полевые транзисторы используются в интегральных схемах. В этом приложении схемы на полевых транзисторах потребляют гораздо меньше энергии, чем ИС, использующие технологию биполярных транзисторов. Это позволяет работать очень крупным интегральным схемам. Если бы использовалась биполярная технология, потребляемая мощность была бы на несколько порядков выше, а генерируемая мощность была бы слишком большой, чтобы рассеиваться на интегральной схеме.
Помимо использования в интегральных схемах, дискретные версии полевых транзисторов доступны как в виде выводных электронных компонентов, так и в качестве устройств для поверхностного монтажа.
Типовые полевые транзисторы
Полевые транзисторы, история полевых транзисторов
До того, как первые полевые транзисторы были представлены на рынке электронных компонентов, эта концепция была известна в течение ряда лет. Было много трудностей в реализации этого типа устройства и в том, чтобы заставить его работать.
Некоторые из первых концепций полевого транзистора были изложены в статье Лилиенфилда в 1926 году и в другой статье Хайля в 1935 году.
Следующие основы были заложены в 1940-х годах в Bell Laboratories, где была создана группа по исследованию полупроводников. Эта группа исследовала ряд областей, относящихся к полупроводникам и полупроводниковой технологии, одним из которых было устройство, которое могло бы модулировать ток, протекающий в полупроводниковом канале, путем размещения электрического поля рядом с ним.
Во время этих ранних экспериментов исследователи не смогли воплотить идею в жизнь, превратив свои идеи в другую идею и в конечном итоге изобрели другую форму компонента полупроводниковой электроники: биполярный транзистор.
После этого большая часть исследований в области полупроводников была сосредоточена на улучшении биполярного транзистора, а идея полевого транзистора некоторое время не была полностью исследована. Сейчас полевые транзисторы очень широко используются, обеспечивая основной активный элемент во многих интегральных схемах.Без этих электронных компонентов технология электроники сильно отличалась бы от нынешней.
Полевой транзистор — основы
Концепция полевого транзистора основана на концепции, согласно которой заряд на соседнем объекте может притягивать заряды в полупроводниковом канале. По сути, он работает с использованием эффекта электрического поля — отсюда и название.
Полевой транзистор состоит из полупроводникового канала с электродами на обоих концах, называемых стоком и истоком.
Управляющий электрод, называемый затвором, помещается в непосредственной близости от канала, так что его электрический заряд может влиять на канал.
Таким образом, затвор полевого транзистора контролирует поток носителей (электронов или дырок), текущий от истока к стоку. Это достигается за счет управления размером и формой проводящего канала.
Полупроводниковый канал, по которому протекает ток, может быть P-типа или N-типа. Это дает начало двум типам или категориям полевых транзисторов, известных как полевые транзисторы с P-каналом и N-каналом.
Кроме этого, есть еще две категории. Увеличение напряжения на затворе может либо истощить, либо увеличить количество носителей заряда, доступных в канале. В результате есть полевые транзисторы в режиме улучшения и полевые транзисторы в режиме истощения.
Обозначение схемы соединения на полевом транзисторе
Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокое входное сопротивление, обычно много МОм. Это может быть явным преимуществом перед биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.
Переходный полевой транзистор, JFET работает ниже насыщения
Цепи на полевых транзисторах
Полевые транзисторы широко используются во всех схемах, от схем с дискретными электронными компонентами до интегральных схем.
Примечание по конструкции схемы полевого транзистора:
Полевые транзисторы могут использоваться во многих типах схем, хотя три основные конфигурации — это общий исток, общий сток (истоковый повторитель) и общий затвор.Сама схема довольно проста и может быть реализована довольно легко.
Подробнее о Схема схем полевого транзистора
Поскольку полевой транзистор представляет собой устройство, работающее от напряжения, а не токовое устройство, такое как биполярный транзистор, это означает, что некоторые аспекты схемы сильно отличаются: в частности, устройства смещения. Однако проектировать электронную схему с полевыми транзисторами относительно просто — она немного отличается от схемы с биполярными транзисторами.
Используя полевые транзисторы, можно спроектировать такие схемы, как усилители напряжения, буферы или повторители тока, генераторы, фильтры и многое другое, а схемы очень похожи на схемы для биполярных транзисторов и даже термоэмиссионных клапанов / вакуумных ламп. Интересно, что клапаны / лампы также являются устройствами, работающими от напряжения, и поэтому их схемы очень похожи, даже с точки зрения устройства смещения.
Типы полевых транзисторов
Есть много способов определить различные типы доступных полевых транзисторов.Различные типы означают, что при проектировании электронной схемы необходимо выбрать правильный электронный компонент для схемы. Правильно подобрав устройство, можно получить наилучшие характеристики для данной схемы.
Полевые транзисторы
можно разделить на несколько категорий, но некоторые из основных типов полевых транзисторов можно рассмотреть на древовидной диаграмме ниже.
Типы полевых транзисторов
На рынке существует много различных типов полевых транзисторов, для которых существуют разные названия.Некоторые из основных категорий отложены ниже.
Junction FET, JFET: Junction FET, или JFET, использует диодный переход с обратным смещением для обеспечения соединения затвора. Структура состоит из полупроводникового канала, который может быть N-типа или P-типа. Затем на канале изготавливается полупроводниковый диод таким образом, чтобы напряжение на диоде влияло на канал полевого транзистора.
При работе он имеет обратное смещение, а это означает, что он эффективно изолирован от канала — только обратный ток диода может течь между ними.JFET — это самый базовый тип полевого транзистора, который был разработан впервые. Однако он по-прежнему обеспечивает отличный сервис во многих областях электроники.
Полевой транзистор с изолированным затвором / полевой транзистор на основе оксида металла и кремния МОП-транзистор: В МОП-транзисторе используется изолированный слой между затвором и каналом. Обычно это формируется из слоя оксида полупроводника.
Название IGFET относится к любому типу полевого транзистора с изолированным затвором.Наиболее распространенной формой IGFET является кремниевый МОП-транзистор — Metal Oxide Silicon FET. Здесь затвор сделан из слоя металла, нанесенного на оксид кремния, который, в свою очередь, находится на канале кремния. МОП-транзисторы широко используются во многих областях электроники, особенно в интегральных схемах.
Ключевым фактором IGFET / MOSFET является чрезвычайно высокий импеданс затвора, который могут обеспечить эти полевые транзисторы. Тем не менее, будет соответствующая емкость, и это уменьшит входной импеданс при повышении частоты.
МОП-транзистор с двумя затворами: Это специализированная форма МОП-транзистора, в котором два затвора расположены последовательно вдоль канала. Это позволяет значительно улучшить производительность, особенно на ВЧ, по сравнению с устройствами с одним затвором.
Второй затвор полевого МОП-транзистора обеспечивает дополнительную изоляцию между входом и выходом, и в дополнение к этому его можно использовать в таких приложениях, как смешивание / умножение.
MESFET: Кремниевый полевой транзистор MEtal обычно изготавливается из арсенида галлия и часто называется полевым транзистором на основе GaAs. Часто GaAsFET используются в ВЧ-приложениях, где они могут обеспечить низкий уровень шума с высоким коэффициентом усиления. Одним из недостатков технологии GaAsFET является очень маленькая структура затвора, что делает ее очень чувствительной к повреждению статическим электричеством. При обращении с этими устройствами необходимо соблюдать особую осторожность.
HEMT / PHEMT: Транзистор с высокой подвижностью электронов и псевдоморфный транзистор с высокой подвижностью электронов являются развитием основной концепции полевого транзистора, но разработаны для обеспечения работы на очень высоких частотах. Несмотря на свою дороговизну, они позволяют достичь очень высоких частот и высокого уровня производительности.
FinFET: Технология FinFET теперь используется в интегральных схемах, чтобы обеспечить более высокий уровень интеграции за счет меньших размеров элементов.Поскольку требуются более высокие уровни плотности и становится все труднее реализовать все более мелкие размеры элементов, технология FinFET используется все более широко.
VMOS: Стандарт VMOS для вертикальной MOS. Это тип полевого транзистора, который использует вертикальный ток для улучшения коммутационных и токонесущих характеристик. Полевые транзисторы VMOS широко используются в энергетических приложениях.
Хотя в литературе можно встретить несколько других типов полевых транзисторов, часто эти типы являются торговыми названиями для конкретной технологии и являются вариантами некоторых типов полевых транзисторов, перечисленных выше.
Характеристики полевого транзистора
Помимо выбора конкретного типа полевого транзистора для данной схемы, также необходимо понимать различные спецификации. Таким образом можно гарантировать, что полевой транзистор будет работать с требуемыми рабочими параметрами.
Спецификации полевого транзистора
включают все, от максимально допустимых напряжений и токов до уровней емкости и крутизны. Все они играют роль в определении того, подходит ли какой-либо конкретный полевой транзистор для данной схемы или приложения.
Технология полевых транзисторов может использоваться в ряде областей, где биполярные транзисторы не так подходят: каждое из этих полупроводниковых устройств имеет свои преимущества и недостатки и может использоваться с большим эффектом во многих схемах. Полевой транзистор имеет очень высокий входной импеданс и является устройством, управляемым напряжением, что позволяет использовать его во многих областях.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
.
PPT — Полевые транзисторы (FET) PowerPoint Presentation, скачать бесплатно
Полевые транзисторы (FET) EBB424E Школа инженерии материалов и минеральных ресурсов доктора Сабара Д. Хутагалунга, Университет Сайнс Малайзия
Полевой транзистор (FET) • В 1945 году у Шокли возникла идея сделать твердотельное устройство из полупроводников. • Он рассуждал, что сильное электрическое поле может вызвать ток электричества в расположенном поблизости полупроводнике.• Он пытался построить один, но это не сработало. • Три года спустя компания Brattain & Bardeen построила первый рабочий транзистор, германиевый точечный транзистор, который был разработан как переходной (сэндвич) транзистор. • В 1960 году ученый из Белла Джон Аталла разработал новую конструкцию, основанную на оригинальных теориях Шокли о полевом эффекте. • К концу 1960-х производители перешли с интегральных схем переходного типа на полевые устройства.
Полевой транзистор (FET) • Полевые устройства — это устройства, в которых ток регулируется действием электронного поля, а не инжекцией носителей.• Полевые транзисторы названы так потому, что слабый электрический сигнал, проходящий через один электрод, создает электрическое поле через остальную часть транзистора. • Полевой транзистор был известен как «униполярный» транзистор. • Термин относится к тому факту, что ток переносится носителями одной полярности (большинства), тогда как в обычных биполярных транзисторах используются носители обеих полярностей (большинства и меньшинства).
Полевой транзистор (FET) Семейство полевых транзисторов можно разделить на: • Соединительный полевой транзистор • MOSFET в режиме истощения • MOSFET в режиме расширения
Junction FETs (JFETs) • JFETs состоит из кусок полупроводникового материала с высоким удельным сопротивлением (обычно Si), который составляет канал для основного потока носителей.• Проводящий полупроводниковый канал между двумя омическими контактами — исток и сток
JFETs (JFETs) • Величина этого тока регулируется напряжением, приложенным к затвору, который имеет обратное смещение. • Принципиальное различие между устройствами JFET и BJT: когда соединение JFET смещено в обратном направлении, ток затвора практически равен нулю, тогда как базовый ток BJT всегда имеет некоторое значение больше нуля.
Junction FETs • JFET — это устройство с высоким входным сопротивлением, а BJT — сравнительно низким.• Если канал легирован донорной примесью, образуется материал n-типа, и ток в канале будет состоять из электронов. • Если канал легирован акцепторной примесью, образуется материал p-типа и ток в канале будет состоять из дырок. • Устройства с N-каналом имеют большую проводимость, чем типы с p-каналом, поскольку электроны имеют более высокую подвижность, чем дырки; таким образом, n-канальные полевые транзисторы примерно в два раза эффективнее проводников по сравнению с их аналогами с p-каналом.
Базовая структура JFET • Помимо канала, JFET содержит два омических контакта: исток и сток.• JFET будет одинаково хорошо проводить ток в любом направлении, а выводы истока и стока обычно взаимозаменяемы.
N-канальный JFET • Этот транзистор сделан путем формирования канала из материала N-типа в подложке P-типа. • Затем к устройству подключаются три провода. • По одному на каждом конце канала. • Один подключен к субстрату. • В некотором смысле устройство немного похоже на диод с PN-переходом, за исключением того, что к стороне N-типа подключены два провода.
Как работает JFET • Затвор подключен к источнику. • Поскольку pn переход имеет обратное смещение, через затвор будет течь небольшой ток. • Установленный градиент потенциала сформирует слой обеднения, в котором почти все электроны, присутствующие в канале n-типа, будут унесены. • Наиболее истощенная часть находится в высоком поле между G и D, а наименее истощенная область — между G и S.
Как работает JFET • Поскольку поток тока по каналу от (+ ve) сток к (-ve) источнику на самом деле является потоком свободных электронов от S к D в Si n-типа, величина этого тока будет падать по мере того, как большее количество Si истощается от свободных электронов.• Существует ограничение на ток стока (ID), который увеличенный VDS может пропускать через канал. • Этот ограничивающий ток известен как IDSS (ток стока в источник, когда затвор закорочен на источник).
Выходные характеристики n-канального полевого транзистора с затвором , замкнутым накоротко на исток. • Первоначальный рост ID связан с наращиванием слоя истощения по мере увеличения VDS. • Кривая приближается к уровню ограничения тока IDSS, когда ID начинает отсекаться.• Физический смысл этого термина приводит к одному определению напряжения отсечки, VP, которое представляет собой значение VDS, при котором протекает максимальный поток IDSS.
При постоянном напряжении затвор-исток 1 В всегда присутствует 1 В на стенке канала на стороне истока. • Напряжение сток-исток 1 В означает, что на стене на конце стока будет 2 В. (Сток составляет «вверх» 1 В от потенциала истока, а затвор — на 1 В «вниз», следовательно, общая разница составляет 2 В.) • Более высокая разница напряжений на конце стока означает, что электронный канал на этом конце сжимается немного сильнее.
Когда напряжение сток-исток увеличивается до 10 В, напряжение на стенках канала на конце стока увеличивается до 11 В, но остается всего 1 В на конце истока. • Поле через стены возле конца слива теперь намного больше, чем у истока. • В результате канал возле дренажа сильно сдавлен.
Увеличение напряжения исток-сток до 20 В сжимает этот конец канала еще больше.• Когда мы увеличиваем это напряжение, мы увеличиваем электрическое поле, которое перемещает электроны вдоль открытой части канала. • Однако также сдавливает канал около конца слива. • Это уменьшение ширины открытого канала затрудняет прохождение электронов. • В результате ток сток-исток имеет тенденцию оставаться постоянным при увеличении напряжения сток-исток.
Увеличение VDS увеличивает ширину истощающих слоев, которые проникают больше в канал и, следовательно, приводят к большему сужению канала в сторону стока.• Следовательно, сопротивление n-канального RAB увеличивается с увеличением VDS. • Ток стока: IDS = VDS / RAB • ID по сравнению с VDS демонстрирует сублинейное поведение, см. Рисунок для VDS <5V. • Напряжение отсечки, VP - это величина обратного смещения, необходимого на p + n переходе, чтобы они просто соприкасались на конце стока. • Поскольку фактическое напряжение смещения на p + n-переходе на конце стока составляет VGD, отсечка происходит всякий раз, когда: VGD = -VP.
За VDS = VP имеется короткий канал отсечки длиной , po.• По мере увеличения VDS большая часть дополнительного напряжения просто падает на po, поскольку эта область обеднена носителями и, следовательно, имеет высокое сопротивление. • Падение напряжения на длине канала, Lch остается VP. • После отсечки ID = VP / RAP (VDS> VP).
Что происходит, когда отрицательное напряжение, согласно VGS = -2 В, прикладывается к затвору относительно источника (при VDS = 0). • Переход p + n теперь смещен в обратном направлении с самого начала, канал уже, а сопротивление канала больше, чем в случае VGS = 0.
Ток стока, который течет при использовании небольшого VDS (рис. b), теперь меньше, чем в случае VGS = 0. • Подать VDS = 3 В для отсечения канала (рис. C). • Когда VDS = 3V, VGD через p + n-переход на конце стока составляет -5В, что составляет –VP, поэтому канал становится отсеченным. • Помимо отсечки, ID почти насыщен, как и в случае VGS = 0. • Отсечение происходит при VDS = VDS (sat), VDS (sat) = VP + VGS, где VGS — –ve напряжение (уменьшение VP). • Для VDS> VDS (sat) ID становится почти насыщенным при значении IDS.
За пределами пинча, с –ve VGS, IDS равно • Где RAP (VGS) — эффективное сопротивление проводящего n-канала от A до P, которое зависит от толщины канала и, следовательно, от VGS. • Когда VGS = -VP = -5V с VDS = 0, два слоя истощения соприкасаются по всей длине канала, и весь канал закрывается. • Канал отключен.
Между IDS и VGS существует удобная взаимосвязь. • За пределами отсечки • Где IDSS — это ток стока, когда VGS = 0, а VGS (выкл.) Определяется как –VP, то есть напряжение затвор-исток, которое просто отсекает канал.• Напряжение отсечки VP здесь является положительной величиной, потому что оно было введено через VDS (sat). • VGS (выкл.) Отрицательный, -VP.
ВАХ
ВАХ
JFET: ВАХ
Кривая крутизны • Построение кривой крутизны для JFET • Процесс построения кривой JFET точка, соответствующая значению VGS (выкл.).• Постройте точку, соответствующую значению IDSS. • Выберите 3 или более значений VGS от 0 В до VGS (выкл.). Для значения VGS определите соответствующее значение ID из • Постройте точку из (3) и соедините все нанесенные точки гладкой кривой.
Цепи смещения JFET
Пример: Постройте линию смещения постоянного тока для схемы смещения драйверов
.