Постоянный электрический ток: определение, механизм, характеристики
Определение 1
Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.
По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.
Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.
Необходимые условия существования электрического тока
Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.
Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.
Определение 2
Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.
Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.
Механизм осуществления постоянного тока
Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).
Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.
Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:
ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.
Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.
Основные характеристики электрического тока
Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.
Электрический ток обладает силой тока.
Определение 3
Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:
I=dqdt (2).
Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:
I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.
По системе СИ основная единица измерения силы тока – Ампер (А).
1 A=1 Кл1 с.
Определение 4
Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.
Значение вектора плотности тока по модулю равно:
j=dIdS’ (4), где dS’ является проекцией элементарной поверхности dS на плоскость, перпендикулярную вектору плотности тока, dI – элементом силы, которая идет через поверхности dS и dS’.
Представление плотности в металле возможно по формуле:
j→=-n0qeυ→ (5), где n0 обозначается концентрацией электронов проводимости, qe=1,6·10-19 Кл – зарядом электрона, υ→ – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то
υ→=10-4 мс.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
Закон сохранения заряда
Рисунок 1
Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S, изображенной на рисунке 1, ограничивающей объем V количество выходящего электричества в единицу времени (1 секунду) из объема V можно определить по формуле ∮sjndS. Такое же количество электричества выражается через заряд -∂q∂t, тогда получаем:
∂q∂t=-∮SjndS (6), где jn считается проекцией вектора плотности на направление нормали к элементу поверхности dS, при этом:
jn=jcos a (7), где a является углом между направлением нормали к dS и вектором плотности тока. Уравнение (6) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S.
Выражение (6) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:
∮SjndS=0 (8).
Пример 1
Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ, который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E. Направление скорости движения вдоль оси цилиндра.
Решение
Основой решения задачи берется определение силы тока в виде:
I=dqdt (1.1).
Из формулы (1.1) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.
Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:
E=σε0 (1.2), где σ является поверхностной плотностью заряда, ε0=8,85·10-12 КлН·м2. Выразим σ из (1.2), тогда:
σ=E·ε0 (1.3).
Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:
dqdS=σ (1.4).
Используя (1.3), (1.4), имеем:
dq=E·e0dS (1.5).
Выражение элемента поверхности цилиндра идет через его параметры:
dS=2π ·Rdh (1.6), где dh является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:
dq=E·ε0·2h·Rdh (1.7).
Произведем подстановку из (1.7) в (1.1):
I=d(E·ε0·2π·Rdh)dt=2πRε0Edhdt (1.8).
Движение цилиндра идет вдоль оси, тогда запишем:
dhdt=υ (1.9).
Получим:
I=2πRε0Eυ.
Ответ: конвективный ток I=2πRε0Eυ.
Пример 2
Изменение тока в проводнике происходит согласно закону I=1+3t. Определить значение заряда, проходящего через поперечное сечение проводника, за время t, изменяющегося от t1=3 с до t2=7 c. Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?
Решение
Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:
I=dqdt (2.1).
Формула (2.1) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t1 до t2 возможно таким образом:
q=∫t1t2Idt (2.2).
Произведем подстановку имеющегося по условию закона в (2.2) для получения:
q=∫t1t2(1+3t)dt=∫t1t2dt+∫t1t23tdt=t2-t1+3·t22t1t2=(t2-t1)+32t22-t12 (2.3).
Вычислим заряд:
q=7-3+32(72-32)=4+32·40=64 (Кл).
Чтобы определить постоянный ток для получения силы используется формула:
Iconst=qt (2.3), где t считается временем, за которое поперечное сечение проводника пройдет заряд q.
Тогда время протекания заряда равняется:
t=t2-t1 (2.4).
Выражение (2.3) примет вид:
Iconst=qt2-t1 (2.5).
Произведем подстановку и вычислим:
Iconst=647-3=644=16 (A).
Ответ: q=64 Кл. Iconst=16 А..
Постоянный электрический ток
на главную
Официальный сайт АНО ДО Центра «Логос», г.Глазов
http://logos-glz.ucoz.net/
ГОТОВИМСЯ К УРОКУ
Кинематика
Динамика
МКТ
Термодинамика
Электростатика
Электрический
ток
Электрический
ток в средах
Магнитное поле
Электромагнитная индукция
Оптика
Методы
познания
постоянный электрический ток немного о физике:
Что называют электрическим током?
Электрический ток —
упорядоченное движение заряженных частиц под действием сил электрического
поля или сторонних сил.
За направление тока выбрано направление движения положительно
заряженных частиц.
Электрический ток называют постоянным,
если сила тока и его направление не меняются с течением времени.
Условия существования постоянного
электрического тока.
Для существования постоянного электрического тока необходимо наличие
свободных заряженных частиц и наличие источника тока. в котором осуществляется
преобразование какого-либо вида энергии в энергию электрического поля.
Источник тока —
устройство, в котором осуществляется преобразование какого-либо вида энергии в
энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны.
Например в аккумуляторах и гальванических элементах сторонние силы возникают
благодаря протеканию химических реакций, в генераторах электростанций они
возникают при движении проводника в магнитном поле, в фотоэлементах — при
действия света на электроны в металлах и полупроводниках.
Электродвижущей силой источника тока
называют отношение работы сторонних сил к величине положительного заряда,
переносимого от отрицательного полюса источника тока к положительному.
Основные понятия.
Сила тока — скалярная физическая
величина, равная отношению заряда, прошедшего через проводник, ко времени, за
которое этот заряд прошел.
где I — сила
тока, q — величина заряда
(количество электричества), t
— время прохождения заряда.
Плотность тока —
векторная физическая величина, равная отношению силы тока к
площади поперечного сечения проводника.
где j —плотность
тока, S —
площадь сечения проводника.
Направление вектора плотности тока совпадает с
направлением движения положительно заряженных частиц.
Напряжение —
скалярная физическая величина, равная отношению полной
работе кулоновских и сторонних сил при перемещении
положительного заряда на участке к значению этого заряда.
где A — полная работа
сторонних и кулоновских сил, q
— электрический заряд.
Электрическое сопротивление
— физическая величина, характеризующая электрические
свойства участка цепи.
где ρ —
удельное сопротивление проводника,
l — длина участка
проводника, S
— площадь поперечного сечения проводника.
Проводимостью
называется величина, обратная сопротивлению
где G —
проводимость.
Законы Ома.
Закон Ома для однородного
участка цепи.
Сила тока в однородном участке цепи прямо пропорциональна
напряжению при постоянном сопротивлении участка и
обратно пропорциональна сопротивлению участка при постоянном
напряжении.
где U — напряжение на
участке, R —
сопротивление участка.
Закон Ома для произвольного
участка цепи, содержащего источник постоянного тока.
где
φ1— φ2
+ ε = U
напряжение на заданном участке цепи, R
— электрическое сопротивление заданного
участка цепи.
Закон Ома для полной цепи.
Сила тока в полной цепи равна отношению электродвижущей
силы источника к сумме сопротивлений внешнего и внутреннего
участка цепи.
где R — электрическое
сопротивление внешнего участка цепи, r
— электрическое сопротивление внутреннего участка цепи.
Короткое замыкание.
Из закона Ома для полной цепи следует, что сила тока в
цепи с заданным источником тока зависит только от
сопротивления внешней цепи R.
Если к полюсам источника тока подсоединить проводник с
сопротивлением R<<
r, то
тогда только ЭДС источника тока и его сопротивление
будут определять значение силы тока в цепи. Такое
значение силы тока будет являться предельным для данного
источника тока и называется током короткого замыкания.
Последовательное и
параллельное
соединение проводников.
Электрическая цепь включает в себя источника тока и
проводники (потребители, резисторы и др), которые могут
соединятся последовательно или параллельно.
При
Во всех
Сопротивление всего участка
Падение напряжения на всем
Напряжения на | При Сила тока в неразветвленной
Величина, обратная
Падение напряжения во всех
Силы тока в проводниках
|
Смешанное соединение
— комбинация параллельного и последовательного
соединений.
Правила Кирхгофа.
Для расчета разветвленных цепей, содержащих неоднородные
участки, используют правила
Кирхгофа. Расчет сложных
цепей состоит в отыскании токов в различных участках цепей.
Узел — точка разветвленной цепи, в которой сходится более
двух проводников.
1 правило Кирхгофа:
алгебраическая сумма сил токов, сходящихся в узле, равна
нулю;
где n — число проводников,
сходящихся в узле, Ii— сила тока в проводнике.
токи, входящие в узел считают положительными, токи,
отходящие из узла — отрицательными.
2 правило Кирхгофа: в
любом произвольно выбранном замкнутом контуре разветвленной
цепи алгебраическая сумма произведений сил токов и
сопротивлений каждого из участков этого контура равна
алгебраической сумме ЭДС в контуре.
Чтобы учесть знаки сил токов и ЭДС выбирается
определенное направление обхода контура(по часовой стрелке
или против нее). Положительными считают токи, направление
которых совпадает с направлением обхода контура,
отрицательными считают токи противоположного
направления. ЭДС источников электрической энергии
считают положительными если они создают токи, направление
которых совпадает с направлением обхода контура, в противном
случае — отрицательными.
Порядок расчета сложной цепи
постоянного тока.
Произвольно
выбирают направление токов во всех участках цепи.Первое правило
Кирхгофа записывают для (m-1)
узла, где m — число узлов в цепи.Выбирают
произвольные замкнутые контуры, и после выбора направления обхода записывают
второе правило Кирхгофа.Система из
составленных уравнений должна быть разрешимой: число уравнений должно
соответствовать количеству неизвестных.
Шунты и добавочные сопротивления.
Шунт —
сопротивление, подключаемое параллельно к амперметру (гальванометру), для
расширения его шкалы при измерении силы тока.
Если
амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в
n раз допустимое значение, то сопротивление,
подключаемого шунта должно удовлетворять следующему условию:
Добавочное сопротивление — сопротивление,
подключаемое последовательно с вольтметром (гальванометром), для
расширения его шкалы при измерении напряжения.
Если
вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в
n раз допустимое значение, то добавочное сопротивление
должно удовлетворять следующему условию:
Постоянный электрический ток. Условия существования тока. Сила тока.
ЭКЗАМЕН по
ФИЗИКЕ за 2 семестр
Электрический
ток
—
это
направленное
движение
свободных,
заряженных
частиц,
под
действием
электрического
поля.
Сила
тока
—
это
заряд
проходящий
через
поперечное
сечение
проводника
за
единицу
времени.
I
=
q
/
t
(
единицы
измерения
А
– Амперы
)
Если
сила
тока
со
временем
не
изменяется,
электрический
ток
называют
постоянным
током.
УСЛОВИЯ:
1.Проводник
(свободные
заряды)
Свободные
заряды
являются
носителями
тока.
2.
Электрическое
поле.
Эл.поле
необходимо
для
того,
чтобы
привести
в
движение
свободные
заряды.
Оба
эти
условия,
являются
необходимыми
для
создания
тока.
Если
не
выполняется
хоть
одно
условие
– тока
в
цепи
не
будет.
Закон Ома для
участка. Основные характеристики тока.
Основные
элементы электрической цепи.
Закон
ОМА
для
участка
цепи.
Участком
цепи
называется
часть,
фрагмент
цепи,
для
которого
не
обязательно
известно
откуда
возникло
напряжение
на
зажимах
.
Основными
характеристиками
тока
и
цепи
являются:
напряжение-
разность
потенциалов
между
концами
проводника(U—
единицы
измерения
В)сопротивление(характеристика
самой
цепи)-величина,
характеризующая
противодействие
проводника
прохождению
по
нему
электрического
тока(R—
единицы
измерения
Ом)сила
тока-заряд
проходящий
через
поперечное
сечение
проводника
за
единицу
времени(I
—
единицы
измерения
А
)
Закон
Ома
для
участка
цепи.
Сила
тока
в
цепи
пропорциональна
напряжению
на
концах
участка
цепи
и
обратно
пропорциональна
сопротивлению
этого
участка.
I=
U/R
Источники тока. Эдс. Законы Ома для участка и для полной цепи. Короткое замыкание.
Источник
тока-это
устройство
в
котором
происходит
разделение
зарядов
за
счет
работы
сторонних
сил,
имеющих
неэлектрическую
природу(например
химические,
механические).
Участком
цепи
называется
часть,
фрагмент
цепи,
для
которого
не
обязательно
известно
откуда
возникло
напряжение
на
зажимах
Закон
Ома
для
участка
цепи.
Сила
тока
в
цепи
пропорциональна
напряжению
на
концах
участка
цепи
и
обратно
пропорциональна
сопротивлению
этого
участка.
I=
U/R
Рассмотрим
простейшую
полную
электрическую
цепь
постоянного тока, она состоит из источника
тока и нагрузки (резистора). Электрическое
сопротивление источника тока называется
внутренним сопротивлением.
Электрическое сопротивление всей цепи
без источника питания называется внешним
сопротивлением цепи. Соответствующие
напряжения называются внутренним и
внешним напряжением в цепи.
Закон
Ома
для
полной
цепи.
I
=
ε
/
(
R
+
r)
Сила
тока
в
электрической
цепи
прямо
пропорциональна
электродвижущей
силе
источника
тока
и
обратно
пропорциональна
сумме
электрических
сопротивлений
внешнего
и
внутреннего
участка
цепи.
При
замыкании
источника
питания
самого
на
себя(
накоротко)
возникает
короткое
замыкание.
При
этом
сила
тока
возрастает
в
несколько
раз.
Iкз
=
ε
/r
Постоянный электрический ток. Направление тока, формула
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.
Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.
Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.
Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.
• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.
• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.
• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.
Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.
• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.
Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.
Направление электрического тока
Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?
Направлением тока принято считать направление движения положительных зарядов.
Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).
Рис. 1. Направление тока
Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.
Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.
Действия электрического тока
Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.
1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.
2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.
3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.
Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.
Постоянный ток наиболее прост для изучения. С него мы и начинаем.
Сила и плотность тока
Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:
(1)
Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.
Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).
В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.
Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:
(2)
где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:
Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.
Скорость направленного движения зарядов
Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.
Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.
Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.
Итак, подчеркнём ещё раз, что мы различаем две скорости.
1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.
2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.
Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.
Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .
Рис. 2. К выводу формулы
Какой заряд пройдёт через поперечное сечение нашего проводника за время ?
С одной стороны, разумеется,
(3)
С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:
Следовательно, их общий заряд будет равен:
(4)
Приравнивая правые части формул (3) и (4) и сокращая на , получим:
(5)
Соответственно, плотность тока оказывается равна:
Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.
Заряд электрона известен: Кл.
Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:
м
Положим мм . Из формулы (5) получим:
м/с.
Это порядка одной десятой миллиметра в секунду.
Стационарное электрическое поле
Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?
Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!
Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.
Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.
Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.
То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.
Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?
Ответ — источник тока, важнейший элемент электрической цепи.
Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).
Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.
В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.
Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.
А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?
Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.
Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.
Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.
А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).
1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.
2. Постоянный электрический ток. Электричество и магнетизм. Физика. Курс лекций
2.1. Плотность тока носителей заряда разных знаков
2.2. ЭДС. Источник тока. Напряжение
2.3. Законы Ома в интегральной форме
2.3.1. Закон Ома в дифференциальной форме
2.4. Закон Джоуля-Ленца
2.5. Законы Кирхгофа
2.6. Эмиссия электронов с поверхности
2.6.1. Работа выхода
2.6.2. Способы выбивания (отрыва) электронов с поверхности
2.6.3. Электрический ток в вакууме
2.7. Заряженная частица в плоском конденсаторе
Электрический ток — направленное движение зарядов.
Направление тока — направление движения «+» зарядов. Так исторически принято, хотя основными носителями заряда в подавляющем большинстве случаев являются электроны, т.е. отрицательно заряженные частицы.
Условия возникновения электрического тока:
1. наличие свободных носителей электрических зарядов. 2. электрическое поле (внешнее).
Характеристики электрического поля:
Сила тока — количество заряда, протекающего по проводнику в единицу времени. Для постоянного тока:
.
Если количество заряда меняется со временем, то:
.
Плотность тока — численно равна величине тока, протекающего через единичную площадку, расположенную перпендикулярно направлению движения заряда.
.
Если сила тока величина скалярная, то плотность тока – вектор, направленный вдоль нормали к поверхности, через которую протекает заряд. Если поперечное сечение проводника, по которому протекает ток, неоднородно, тогда плотность тока в разных частях проводника выражается дифференцированием, т.е. величина силы тока есть поток векторов j, через поперечное сечение проводника (см. т.Гаусса).
— самостоятельного наименования не имеет.
Электропроводность — физическая величина, количественно характеризующая способность тела пропускать электрический ток под действием электрического поля (- электропроводность).
Величина, обратная электропроводности, называется сопротивлением.
.
Сопротивление протеканию тока есть величина, характеризующаяся структурными и химическими особенностями среды, по которой протекает заряд. Структурные особенности — взаимное расположение атомов в проводнике, химическая особенность — разного рода молекулярная связь атомов и молекул вещества.
Эти особенности, как правило табличные, и называются удельным сопротивлением — сопротивлением проводника протеканию электрического тока телом с геометрическим размером ~1м3:
где ρ — удельное сопротивление, — длина, S — площадь поперечного сечения физического тела.
Поскольку сопротивление определяется особенностями строения проводника, то температура окружающей среды, искажающая состояние структуры химических связей атомов вещества, оказывает решающее влияние на это сопротивление. Из общих соображений можно сказать, что повышение температуры повышает сопротивление.
Rt=Ro+(1+a t) где Rо- сопротивление при комнатной температуре, t — температура в градусах Цельсия, α — температурный коэффициент сопротивления.
Изменение температуры на десятки градусов изменяет сопротивление на несколько процентов, на сотни градусов — на десятки процентов. (α ~ 10-3 К-1).
2.1. Плотность тока носителей заряда разных знаков
В общем случае для разных типов носителей заряда: где ρ = n· e, n — удельная концентрация зарядов, e — заряд электрона ( e=1,6·10-19 Кл ), ρ — объемная плотность заряда. — количество заряда в данном проводнике длиной l и поперечным сечением S.
Аналогичное математическое рассмотрение можно провести, как для “+” так и для “-” зарядов. Предполагается, что “+” и “-” заряды при протекании не взаимодействуют друг с другом, тогда общие потоки зарядов движутся навстречу друг другу и результирующий поток равен:
, если . Здесь скорости положительных (+) и отрицательных (-) зарядов, которые, как правило, не одинаковы. Итак, плотность потока зарядов противоположного знака численно равна сумме плотностей потоков отдельных зарядов
2.2. ЭДС. Источник тока. Напряжение
Чтобы в проводнике протекал постоянный электрический ток: 1) подают на один конец заряды, а на другом их снимают; и 2) нужны некоторые силы, чтобы заряд перемещался, т.е. нужны силы неэлектрического происхождения, их называют сторонние силы.
Сторонние силы не должны быть электрическими, а должны быть химическими, ядерными, механическими и т.д. для совершения работы по перемещению заряда по участку цепи. Участок цепи, в который включается источник сторонних сил обозначается двумя перпендикулярными линиями: тонкая длинная — источник «+» зарядов, толстая короткая — источник «-» .
Устройство, в котором возникают сторонние силы, называются источником тока. Если потенциалы φ1, φ2 в точках 1 и 2 создаются так же электрическими силами, тогда полная сила, вынуждающая заряды двигаться, F=Fстор+FK , а работа по перемещению заряда из точки (1) в точку (2) А12=Fr, если ток протекает в цепи постоянный:
А12=Fr=Fстор · r+FK· r =Eстор·qr+Eкул·qr
Введем понятие силовой характеристики сторонних сил, заставляющих заряды q двигаться, такое как, напряженность поля сторонних сил, тогда:
Fстор =Eстор·q
Зная связь между напряженностью и разностью потенциалов, можем записать, что:
Тогда полная работа:
А12=Eстор·qr + (φ1-φ2 )·q.
Разделив это уравнение на величину переносимого заряда q, получим: .
Это напряжение, получаемое на концах участка цепи 1-2, содержащего сторонние силы. Согласно определению силовой характеристики сторонних сил можно записать:
— есть электродвижущая сила источника сторонних сил.
ЭДС (e) — электродвижущая сила источника сторонних сил; тогда выражение напряжения на концах участка цепи, содержащего сторонние силы, численно определяется с “+” , если э.д.с. помогает протеканию тока; и с “-” , если э.д.с. препятствует протеканию тока.
2.3. Законы Ома в интегральной форме
Закон Ома в интегральной форме подразумевает, что рассматривается полный ток, протекающий в цепи и величина тока со временем не меняется. Очевидно, что количество заряда, протекающее по проводнику, обратно пропорционально сопротивлению проводника. Количество заряда протекающее в проводнике, прямо пропорционально напряженности или разности потенциалов, создающих внешнее электрическое поле.
1) — закон Ома для участка цепи, не содержащего э.д.с.
Суммарное сопротивление проводников и элементов цепи без э.д.с. обозначается на схеме.
2) Если участок цепи включает в себя э.д.с, то собственное сопротивление источника тока выделяется и обозначается r.
Тогда закон Ома для участка цепи, содержащей э.д.с., будет иметь вид:
.
3) Если замкнутый участок цепи, содержит э.д.с., тогда φ1 = φ2, и получаем:
— закон Ома для замкнутого участка цепи, содержащего э.д.с.
В целом участок цепи, содержащей множество э.д.с. и разных деталей представлен законом Ома в виде:
.
Если при напряжении на концах участка цепи в 1В по цепи протекает ток в 1А, то говорят, что сопротивление цепи равно одному Ому.
Из закона Ома следует:
.
2.3.1. Закон Ома в дифференциальной форме
Сечение проводника или элементов цепи, как правило, неоднородно, и сопротивляемость в разных участках цепи протеканию тока также различная. Тогда разбивают участки цепи на элементы (дифференцируют) и определяют закон Ома в каждом отдельном участке.
— закон Ома, тогда для каждого участка цепи сечением ∆S и длиной ∆l можно записать закон Ома как: .
Учитывая, что для участка цепи
и , получим .
Это закон Ома в дифференциальной форме. Зная, что удельная электропроводность σ и удельное сопротивление ρ связаны, как:
, где
σ — удельная электропроводность,
ρ — удельная сопротивление,
— закон Ома в дифференциальной форме.
2.4. Закон Джоуля-Ленца
В интегральной форме
Закон Джоуля-Ленца касается закона сохранения энергии; если считать, что система электрической цепи замкнутая, то работа по перемещению заряда в проводнике, если сам проводник не перемещается в пространстве, полностью преобразуется в тепловую энергию Q на участке (1-2).
Учитывая, что q=I· t получаем:
Q=IU· t (1) (2)
(3)
Вид формулы для Q определяется условием задачи по определению выделившегося тепла. Формулы (1), (2), (3) есть закон Джоуля-Ленца в интегральной форме (определение полного тепла, выделившегося в цепи за все время протекания тока).
Тепловая мощность тока.
Для определения количества теплоты, выделившегося в единицу времени, вводят понятие тепловой мощности тока:
.
Единицей мощности тока считают 1Вт=1Дж/1с.
В дифференциальной форме
Если электрическая цепь состоит из элементов различного сопротивления и геометрии, то цепь разбивают на отдельные участки и определяют закон Джоуля-Ленца для каждого участка. Последовательно расписывая
Из закона Ома в дифференциальной форме следует:
, т.к.
Количество тепла, выделяемое в единице объема проводника за единицу времени равно квадрату плотности тока, умноженному на ρ, или квадрату напряженности электрического поля, деленному на ρ. Это закон Джоуля-Ленца в дифференциальной форме:
.
2.5. Законы Кирхгофа
I Закон Кирхгофа — закон токов (для узлов цепей).
В участке электрических цепей очень часто содержатся узлы, в которых сходятся множество элементов, проводящих ток.
Если цепь работающая, то по разным участкам будут протекать различные токи. По закону сохранения заряда, как материального объекта, можно предположить, что количество заряда, приходящего в узел, должно быть численно равно количеству заряда, выходящего из узла:
разделив на t получаем:
, т.е. по определению
Окончательно имеем:
Сумма электрических токов, сходящихся в узле работающих цепей, всегда равна нулю.
II Закон Кирхгофа — закон напряжений (закон замкнутых цепей).
Величина электрического тока в последовательных цепях есть величина постоянная и по закону сохранения заряда , а по закону Ома на каждом участке:
. Сложим левые и правые части уравнений:
.
Окончательно получаем .
В любом замкнутом контуре сумма падений напряжений на всех участках цепи равна алгебраической сумме э.д.с., включенных в цепь.
2.6. Эмиссия (испускание) электронов с поверхности
Так как любое вещество имеет в своем объеме свободные электроны, то любое внешнее электрическое воздействие на вещество может привести к отрыву электронов с поверхности вещества (эмиссия).
Итак, для того, чтобы удалить электрон с поверхности вещества, требуется совершить работу. Принципиально свободные электроны могут испускаться поверхностями любых веществ, где есть граница раздела (воздух-вода, дерево-вакуум).
Но наибольшее количество испускаемых электронов наблюдается у металлов в связи с наибольшим количеством свободных электронов у этого класса веществ. Эмиссия электронов характеризуется работой выхода — минимальной энергией, которую необходимо затратить для удаления электрона с поверхности твердого или жидкого вещества в вакуум.
2.6.1. Работа выхода
Энергетический разрыв между энергиями электронов в атоме и энергиями электронов в свободном состоянии (в кристалле) называется энергией отрыва электрона от атома. Значит энергетическое состояние свободного электрона больше, чем энергия электрона в атоме. Точно также для отрыва свободного электрона с поверхности вещества требуется совершить работу. Значит, энергетическое состояние электрона вне вещества выше, чем энергия электрона в кристалле.
Для чистых веществ работа выхода зависит только от особенностей атома вещества и взаимосвязей атомов между собой.
Для разных веществ Авых не превышает нескольких эВ, например:
Металл | Pt | W | Mo | Fe | Mg | Na |
Авых (эВ) | 5,29 | 4,5 | 4,27 | 4,36 | 3,45 | 2,27 |
2.6.2. Способы выбивания (отрыва) электронов с поверхности
Фотоэлектронная эмиссия — выбивание электронов с поверхности под действием электромагнитного излучения (свет — это часть диапазона электромагнитных волн).
И — источник электромагнитных волн (света).
а) окошко для света закрыто, тока нет, т.е. I=0;
б) окошко для света открыто, ток есть, то есть I≠0, т.к. свет падает на поверхность электрода, выбивает электроны, которые и создают ток между анодом и катодом.
Вторичная электронная эмиссия — испускание электронов с поверхности вещества под действием бомбардировки внешних электронов.
Если энергия внешних электронов достаточна для совершения работы выхода (отрыва) электронов с поверхности, то общий поток электронов между анодом и катодом возрастает.
Это устройство называют электронным умножителем.
Автоэлектронная эмиссия — вырывание электронов с поверхности вещества под действием внешнего электрического поля (холодная эмиссия).
Острие катода является концентратором электрического поля. При повышении напряжения между электродами возникает ситуация, когда энергия электрического поля превышает Авых электрона с поверхности.
Задавая напряжение .
Если — условие автоэлектронной эмиссии.
Термоэлектронная эмиссия — явление вырывания электрона с поверхности вещества под действием тепла. При этом тепло или энергия, подводимая к поверхности вещества, превышает работу выхода Q = I2· Rt Aвых. Это явление используется в работе электронно-лучевых трубок.
2.6.3. Электрический ток в вакууме
Электрод, на который подается “+” потенциал, называется анод, а “-” потенциал — катод. Эти электроды помещены в замкнутую вакуумированную среду, а все устройство называют вакуумным диодом.
Пропуская по катоду регулируемый электрический ток по закону Джоуля-Ленца мы вызываем его нагрев. В результате нагрева с поверхности катода испускаются термоэлектроны. Под действием электрического поля между катодом и анодом электроны летят на анод, цепь замыкается, приборы фиксируют наличие тока.
Анализ зависимости тока от напряжения называется вольтамперной характеристикой. ВАХ вакуумного диода имеет сложный характер насыщения.
Проанализируем характерные точки:
1) При отсутствии напряжения между анодом и катодом, электроны вылетают с катода хаотично и часть электронов может попасть на анод; эта величина тока очень мала, но физически имеет место.
2) При увеличении напряжения между анодом и катодом электроны, вылетающие с катода, вытягиваются электрическим полем к аноду и величина тока возрастает; зависимость тока от напряжения на этом участке происходит по закону Богуславского — Ленгмюра (закон 3/2): .
3) участок называется током насыщения; при дальнейшем увеличении напряжения между анодом и катодом наступает момент, когда все электроны, вылетающие с катода, вытягиваются электрическим полем на анод, и дальнейшее увеличение напряжения не приводит к увеличению тока, т.к. количество электронов, вылетающих с катода, ограничено.
4) для того, чтобы полностью подавить анодный ток, необходимо между электродами подать обратное напряжение, и величина напряжения, при котором анодный ток равен 0, называется Uзап — запирающим напряжением.
Поскольку электроны, вылетающие с поверхности, как правило, обладают кинетической энергией, то по данным точки (4) по закону сохранения энергии можно рассчитать скорость вылета электронов, если запирающее напряжение — несколько вольт:
Это среднее значение скорости электронов, летящих от катода к аноду. Величину тока насыщения вакуумного диода можно изменять, изменив нагрев катода, т.е. T3> T2> T1 и, соответственно, изменяется количество электронов, вылетающих с поверхности, как следствие, изменяется Iнас3> Iнас2> Iнас1 .
Зависимость тока насыщения от температуры — закон Риичардсона-Дэшмана и имеет вид:
2.7. Заряженная частица в плоском конденсаторе
Рассмотрим два случая поведения заряженной частицы в конденсаторе.
а) частица движется перпендикулярно пластинам.
Напишем уравнение для отдельного электрона. По закону сохранения энергии работа по переносу заряда от пластины до пластины:
.
б) частица движется параллельно пластинам.
Также рассмотрим действие поля конденсатора на электрон. По 2-му закону Ньютона сила Кулона вызывает ускорение в направлении, перпендикулярном пластинам, и отклоняет электрон к “+” пластине:
;
Зная, ;
Разложим скорость электрона на две составляющие: параллельную и перпендикулярную пластинам. — параллельна пластинам. Эта скорость не меняется, т.к. вдоль пластин нет силы, действующей на электрон. Перпендикулярная составляющая — , (если электрон влетел в конденсатор параллельно пластинам, ), определится в середине между обкладками как:
.
Тогда путь, пройденный электроном в направлении, перпендикулярном пластинам:
Тогда время пролета электрона в конденсаторе параллельно пластинам:
В результате этого анализа можно сказать, что электрон может выйти из конденсатора, если , а если , то электрон ударится об электрод, т.е. время пролета расстояния меньше времени, затраченного на прохождение пути .
Параметры постоянного электрического тока параметры мощности
Из курса физики известно, что электрический ток представляет собой упорядоченное, т.е. организованное перемещение заряженных частиц, которыми являются электроны в свободном состоянии. Естественно это движение подчиняется определенным законам и характеризуется физическими параметрами.
Электрическое поле и свободные носители зарядов – это те обязательные факторы, которые необходимы для существования электрического тока. Базисными параметрами постоянного (не меняющего своего значения) электрического тока считаются: его сила, сопротивление, напряжение. Все они взаимосвязаны между собой.
Взаимосвязь параметров электрического тока
Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.
Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.
Последовательное соединение элементов электрической сети постоянного тока
Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).
Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.
Параметры электрической цепи. Параллельное соединение элементов
Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.
Параметры цепи при смешанном соединении в электрической цепи
Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения.
Очень полезная картинка, сохраните себе!
Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.
Понятие мощности электрического тока и ее параметры
Прохождение электротока по цепи, по своей сути, представляет собой работу (А) по перемещению свободного заряда от одного потенциала к другому. Чем больше электронов пересекает плоскость сечения электропроводящего элемента за единицу времени, тем выше мощность электрического тока. Общее количество работы можно определить по формуле – А=U∆q=IU∆t=I2R∆t.
Мощность электротока имеет обратно пропорциональную зависимость от отрезка времени за который была осуществлена работа – Р=A/∆t и прямо зависит от разности потенциалов и силы тока – Р=UxI. В том случае, если на участке цепи не осуществляется механическая работа под воздействием электрического тока, энергия тратится только на нагрев токопроводящего элемента. Общее количество выделяемого тепла, в этом варианте, будет равно работе, которую совершает электрической ток. Определить количество теплоты можно применив формулу Q=I2R∆t. Это соответствие было получено опытным путем Джоулем и Ленцем, а закон назван их именем.
Электрический ток, сила, плотность, условия существования. Источник тока. Курсы по физике
Тестирование онлайн
Электрический ток. Основные понятия
Сила, плотность тока
Условия существования тока
Электрический ток — направленное движение заряженных частиц. Направление, в котором движутся положительно заряженные частицы, считается направлением тока. Вещества, в которых возможно движение зарядов, называются проводниками.
В металлах единственными носителями тока являются электроны. Направление тока противоположно направлению движения электронов.
Для существования тока необходимо:
1) наличие свободных заряженных частиц;
2) существование внешнего электрического поля;
3) наличие источника тока — источника сторонних сил.
Характеристики тока
Сила тока — скалярная величина, определяется по формуле
Если ток изменяется, то заряд, прошедший через поперечное сечение проводника, определяется как площадь фигуры, ограниченной зависимостью I(t).
Плотность тока — векторная величина, определяется по формуле
Прибор для измерения силы тока называется амперметром. Включается в сеть последовательно. Собственное сопротивление амперметра должно быть мало, поскольку включение амперметра не должно изменять силу тока в цепи.
В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.
Примерами источника тока могут являться катушка индуктивности, вторичная обмотка трансформатора. Внутреннее сопротивление источника тока стремится к нулю.
Под действием электрического поля, созданного источником тока, свободные заряды движутся в веществе с некоторой средней скоростью — скорость дрейфа.
Электрический ток | Безграничная физика
Аккумулятор
Аккумулятор — это устройство, преобразующее химическую энергию непосредственно в электрическую.
Цели обучения
Опишите функции и определите основные компоненты батареи
Основные выводы
Ключевые моменты
- Аккумулятор накапливает электрический потенциал в результате химической реакции. Когда он подключен к цепи, этот электрический потенциал преобразуется в кинетическую энергию по мере прохождения электронов по цепи.
- Напряжение или разность потенциалов между двумя точками определяется как изменение потенциальной энергии заряда q, перемещенного из точки 1 в точку 2, деленное на заряд.
- Напряжение батареи является синонимом ее электродвижущей силы или ЭДС. Эта сила отвечает за прохождение заряда через цепь, известную как электрический ток.
Ключевые термины
- аккумулятор : Устройство, вырабатывающее электричество в результате химической реакции между двумя веществами.
- ток : временная скорость протекания электрического заряда.
- напряжение : величина электростатического потенциала между двумя точками в пространстве.
Символ батареи на принципиальной схеме : Это символ батареи на принципиальной схеме. Он возник как схематический рисунок батареи самого раннего типа — гальванической батареи. Обратите внимание на положительный катод и отрицательный анод. Эта ориентация важна при рисовании принципиальных схем, чтобы изобразить правильный поток электронов.
Аккумулятор — это устройство, преобразующее химическую энергию непосредственно в электрическую. Он состоит из ряда гальванических элементов, последовательно соединенных проводящим электролитом, содержащим анионы и катионы. Одна полуячейка включает электролит и анод или отрицательный электрод; другая полуячейка включает электролит и катод или положительный электрод. В окислительно-восстановительной реакции, которая приводит в действие аккумулятор, катионы восстанавливаются (добавляются электроны) на катоде, а анионы окисляются (электроны удаляются) на аноде.Электроды не касаются друг друга, но электрически связаны электролитом. В некоторых элементах используются два полуэлемента с разными электролитами. Разделитель между полуячейками позволяет ионам течь, но предотвращает смешивание электролитов.
Каждая полуячейка имеет электродвижущую силу (или ЭДС), определяемую ее способностью передавать электрический ток изнутри во внешнюю часть ячейки. Чистая ЭДС клетки — это разность между ЭДС ее полуэлементов или разность восстановительных потенциалов полуреакций.
Электрическая движущая сила на выводах элемента известна как напряжение на выводах (разность) и измеряется в вольтах. Когда батарея подключена к цепи, электроны от анода проходят через цепь к катоду по прямой цепи. Напряжение батареи является синонимом ее электродвижущей силы или ЭДС. Эта сила отвечает за прохождение заряда через цепь, известную как электрический ток.
Аккумулятор накапливает электрический потенциал в результате химической реакции.Когда он подключен к цепи, этот электрический потенциал преобразуется в кинетическую энергию по мере прохождения электронов по цепи. Электрический потенциал определяется как потенциальная энергия на единицу заряда ( q ). Напряжение или разность потенциалов между двумя точками определяется как изменение потенциальной энергии заряда q , перемещенного из точки 1 в точку 2, деленное на заряд. В перестроенном виде это математическое соотношение можно описать как:
[латекс] \ Delta \ text {PE} = \ text {q} \ Delta \ text {V} [/ latex]
Напряжение — это не то же самое, что энергия.Напряжение — это энергия на единицу заряда. Таким образом, аккумулятор мотоцикла и автомобильный аккумулятор могут иметь одинаковое напряжение (точнее, одинаковую разность потенциалов между клеммами аккумулятора), но при этом один хранит гораздо больше энергии, чем другой. Автомобильный аккумулятор может заряжаться больше, чем аккумулятор мотоцикла, хотя оба аккумулятора 12 В.
Идеальные и настоящие батареи : Краткое введение в идеальные и настоящие батареи для студентов, изучающих электрические схемы.
Измерения тока и напряжения в цепях
Электрический ток прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению в цепи.
Цели обучения
Опишите взаимосвязь между электрическим током, напряжением и сопротивлением в цепи
Основные выводы
Ключевые моменты
- Простая схема состоит из источника напряжения и резистора.
- Ома дает соотношение между током I , напряжением В и сопротивлением R в простой цепи: I = В / R .
- Единицей измерения скорости электрического заряда в системе СИ является ампер, который равен заряду, протекающему через некоторую поверхность со скоростью один кулон в секунду.
Закон
Ключевые термины
- электрический ток : движение заряда по цепи
- Ом : в Международной системе единиц производная единица электрического сопротивления; электрическое сопротивление устройства, на котором разность потенциалов в один вольт вызывает ток в один ампер; символ: Ω
- ампер : единица электрического тока; стандартная базовая единица в Международной системе единиц.Аббревиатура: amp. Символ: A.
Чтобы понять, как измерять ток и напряжение в цепи, вы также должны иметь общее представление о том, как работает схема и как связаны ее электрические измерения.
Что такое напряжение? : Это видео помогает получить концептуальное представление о напряжении.
Электрическая цепь — это тип сети с замкнутым контуром, который обеспечивает обратный путь для тока. Простая схема состоит из источника напряжения и резистора и схематически может быть представлена как на рис.
Простая схема : Простая электрическая цепь, состоящая из источника напряжения и резистора
Согласно закону Ома, электрический ток I , или движение заряда, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R . Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток.Сопротивление обратно пропорционально току. Следовательно, закон Ома можно записать следующим образом:
[латекс] \ text {I} = \ text {V} / \ text {R} [/ latex]
, где I — ток через проводник в амперах, В, — разность потенциалов, измеренная на проводнике в вольтах, а R — сопротивление проводника в омах (Ом). Более конкретно, закон Ома гласит, что R в этом отношении является постоянным, не зависящим от тока.Используя это уравнение, мы можем рассчитать ток, напряжение или сопротивление в данной цепи.
Например, если у нас есть батарея на 1,5 В, которая была подключена по замкнутой цепи к лампочке с сопротивлением 5 Ом, какой ток течет по цепи? Чтобы решить эту проблему, мы просто подставим указанные значения в закон Ома: I = 1,5 В / 5 Ом; I = 0,3 ампера. Зная ток и сопротивление, мы можем изменить уравнение закона Ома и найти напряжение В :
[латекс] \ text {V} = \ text {IR} [/ латекс]
Вид под микроскопом: скорость дрейфа
Скорость дрейфа — это средняя скорость, которую достигает частица под действием электрического поля.
Цели обучения
Свяжите скорость дрейфа со скоростью свободных зарядов в проводниках
Основные выводы
Ключевые моменты
- В проводниках есть электрическое поле, которое заставляет электроны дрейфовать в направлении, противоположном полю. Скорость дрейфа — это средняя скорость этих свободных зарядов.
- Выражение для связи между током и скоростью дрейфа можно получить, рассмотрев количество свободных зарядов в отрезке провода.
- I = qnAv связывает скорость дрейфа с током, где I — ток через провод с площадью поперечного сечения A , изготовленный из материала с плотностью свободного заряда n . Каждый из носителей тока имеет заряд q и движется со скоростью дрейфа величиной v .
Ключевые термины
- скорость дрейфа : средняя скорость свободных зарядов в проводнике.
Скорость дрейфа
Известно, что электрические сигналы движутся очень быстро.Телефонные разговоры по проводам проходят на большие расстояния без заметных задержек. Свет загорается при нажатии переключателя. Большинство электрических сигналов, переносимых токами, передаются со скоростью порядка 10 8 м / с, что составляет значительную часть скорости света. Интересно, что отдельные заряды, составляющие ток, в среднем движутся намного медленнее, обычно дрейфуя со скоростью порядка 10 -4 м / с.
Высокая скорость электрических сигналов является результатом того факта, что сила между зарядами быстро действует на расстоянии.Таким образом, когда бесплатный заряд вводится в провод, входящий заряд выталкивает другие заряды впереди себя, которые, в свою очередь, проталкивают заряды дальше по линии. Возникающая в результате электрическая ударная волна движется по системе почти со скоростью света. Если быть точным, этот быстро движущийся сигнал или ударная волна представляет собой быстро распространяющееся изменение электрического поля.
Электроны, движущиеся через проводник : Когда заряженные частицы вытесняются в этот объем проводника, такое же количество быстро вынуждено покинуть его.Отталкивание между одноименными зарядами затрудняет увеличение количества зарядов в объеме. Таким образом, как только один заряд входит, другой почти сразу уходит, быстро передавая сигнал вперед.
Скорость дрейфа
Хорошие проводники имеют большое количество бесплатных зарядов. В металлах свободными зарядами являются свободные электроны. Расстояние, на которое может перемещаться отдельный электрон между столкновениями с атомами или другими электронами, довольно мало. Таким образом, пути электронов кажутся почти случайными, как движение атомов в газе.Однако в проводнике есть электрическое поле, которое заставляет электроны дрейфовать в указанном направлении (противоположном полю, поскольку они отрицательны). Скорость дрейфа v d — это средняя скорость свободных зарядов после приложения поля. Скорость дрейфа довольно мала, так как свободных зарядов очень много. Имея оценку плотности свободных электронов в проводнике (количество электронов в единице объема), можно вычислить скорость дрейфа для заданного тока.Чем больше плотность, тем ниже скорость, необходимая для данного тока.
Скорость дрейфа : Свободные электроны, движущиеся в проводнике, совершают множество столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных зарядов называется дрейфовой скоростью и направлена в направлении, противоположном электрическому полю электронов. Столкновения обычно передают энергию проводнику, требуя постоянного подвода энергии для поддержания постоянного тока.
Можно получить выражение для связи между током и скоростью дрейфа, учитывая количество свободных зарядов в отрезке провода. Количество бесплатных зарядов на единицу объема обозначается символом n и зависит от материала. Ax — это объем сегмента, поэтому количество бесплатных зарядов в нем составляет nAx . Заряд ΔQ в этом сегменте, таким образом, равен qnAx , где q — это сумма заряда на каждом носителе.(Напомним, что для электронов q составляет 1,60 × 10−19C.) Ток — это заряд, перемещаемый за единицу времени. Таким образом, если все первоначальные заряды покидают этот сегмент за время t, ток равен:
[латекс] \ text {I} = \ Delta \ text {Q} / \ Delta \ text {t} = \ text {qnAx} / \ Delta \ text {t} [/ latex]
Примечательно, что x / Δt — это величина скорости дрейфа v d , поскольку заряды перемещаются на среднее расстояние x за время t. Перестановка терминов дает: I = qnAv d , где I — ток через провод с площадью поперечного сечения A , изготовленный из материала с плотностью свободного заряда n .Каждый из носителей тока имеет заряды q и движется со скоростью дрейфа величиной v d .
Плотность тока — это электрический ток на единицу площади поперечного сечения. Он имеет единицы ампер на квадратный метр.
Электрическое обучение | BrightRidge
Что такое электричество?
Электричество — это форма энергии, которая производит тепло и свет. Электричество также может называться «электрической энергией».”
Где начинается электричество?
Электричество начинается с атома. Атомы состоят из протонов, нейтронов и электронов. Электричество создается, когда внешняя сила заставляет электроны перемещаться от атома к атому. Поток электронов называется «электрическим током».
Что заставляет электроны двигаться?
Напряжение — это «внешняя сила», которая заставляет электроны двигаться. Напряжение — это потенциальная энергия. Потенциальная энергия обладает способностью выполнять работу.Пример потенциальной энергии — топор, который держат над деревом. Если топор упадет на кусок дерева, оно расколется. Обратите внимание на слово «если». Потенциальная энергия работает ТОЛЬКО, если это разрешено.
Что такое напряжение?
Напряжение — это «внешняя сила», которая заставляет электроны двигаться. Напряжение — это потенциальная энергия. Некоторые характеристики напряжения:
- Напряжение не видно и не слышно.
- Напряжение — это толчок или сила.
- Voltage само по себе ничего не делает.
- Voltage может работать.
- Напряжение появляется между двумя точками.
- Напряжение всегда есть.
Какие два вида электричества?
Статическое электричество возникает при дисбалансе положительно и отрицательно заряженных атомов. Затем электроны прыгают от атома к атому, высвобождая энергию. Два примера статического электричества: молния и трение ногами о ковер, а затем прикосновение к дверной ручке.
Текущее электричество — это постоянный поток электронов. Существует два вида текущего электричества: постоянный ток (DC) и переменный ток (AC). При постоянном токе электроны движутся в одном направлении. Батареи вырабатывают постоянный ток. В переменном токе электроны текут в обоих направлениях. Электростанции вырабатывают переменный ток. Переменный ток (AC) — это тип электроэнергии, которую BrightRidge передает вам для использования.
Что такое проводники и изоляторы?
Проводники — это все, через что легко проходит электричество.Примеры электрических проводников — медь, алюминий и вода.
Изоляторы — это материалы, которые не пропускают электричество. Некоторые примеры изоляторов — резина, стекло и пластик.
Текущее электричество — Science World
Цели
Опишите компоненты, необходимые для замыкания электрической цепи.
Продемонстрируйте различные способы завершения цепи (параллельной или последовательной).
Определите, как электричество используется в бытовых приборах.
Опишите взаимосвязь между электроном и текущим электричеством.
Материалы
Фон
Электричество используется для работы вашего мобильного телефона, силовых поездов и кораблей, для работы вашего холодильника и двигателей в таких машинах, как кухонные комбайны.Электрическая энергия должна быть заменена на другие формы энергии, такие как тепловая, световая или механическая, чтобы быть полезной.
Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами. Атом обычно имеет одинаковое количество протонов (которые имеют положительный заряд) и электронов (которые имеют отрицательный заряд). Иногда электроны можно отодвинуть от своих атомов.
Электрический ток — это движение электронов по проводу.Электрический ток измеряется в ампер, (ампер) и относится к количеству зарядов, которые перемещаются по проводу за секунду.
Для протекания тока цепь должна быть замкнута; Другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.
Параллельная цепь (вверху)
Цепь серии (внизу)
Напряжение иногда называют электрическим потенциалом и измеряется в вольт .Напряжение между двумя точками в цепи — это полная энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.
Сопротивление измеряется в Ом и относится к силам, которые препятствуют протеканию электронного тока в проводе. Мы можем использовать сопротивление в своих интересах, преобразовывая электрическую энергию, потерянную в резисторе, в тепловую энергию (например, в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит).Если мы хотим, чтобы ток протекал напрямую из одной точки в другую, мы должны использовать провод с минимально возможным сопротивлением.
Аккуратная аналогия, помогающая понять эти тер мс: система водопроводных труб.
- Напряжение эквивалентно давлению воды, которая выталкивает воду в трубу
- Ток эквивалентен расходу воды
- Сопротивление похоже на ширину трубы — чем тоньше труба, тем выше сопротивление и тем труднее проходит вода.
В этой серии заданий учащиеся будут экспериментировать с проводами, батареями и переключателями, чтобы создать свои собственные электрические цепи, одновременно изучая напряжение, ток и сопротивление.
Интересный факт!
Вы можете заметить, что символы для некоторых единиц СИ (Международная система единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, к которым вы привыкли. используя (м, кг).При названии единицы в честь человека принято использовать заглавную букву. В этих случаях подразделения были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица измерения сопротивления также была названа в честь человека (Георг Симон Ома), но использует символ Ω, который представляет греческую букву омега. Эти правила важно соблюдать, поскольку строчные и прописные буквы могут означать разные единицы измерения, такие как тонна (т) и тесла (Т). Единственным исключением является то, что для литров допустимо использовать L, поскольку букву «l» часто путают с цифрой «1»!
Словарь
амперметр : прибор для измерения электрического тока в цепи; единица измерения — амперы или амперы (А).
цепь : Путь для прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче проходить через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электрических устройств; измеряется в амперах или амперах (A).
электрохимическая реакция : реакция, которая чаще всего включает перенос электронов между двумя веществами, вызванный или сопровождаемый электрическим током.
электрод : проводник, по которому ток входит или выходит из объекта или вещества.
электрон : субатомная частица с отрицательным электрическим зарядом.
изолятор : Вещество, состоящее из атомов, которые очень плотно удерживают электроны, что не позволяет электронам легко проходить сквозь них.
параллельная цепь : Тип схемы, которая позволяет току течь по параллельным путям. Электрический ток распределяется между разными путями.Если лампочки подключены в параллельную цепь, и одна из лампочек удалена, ток все равно будет течь, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, которые удерживают электроны с силой между проводником и изолятором.
последовательная цепь : Схема, в которой все компоненты соединены по одному пути, так что один и тот же ток течет через все компоненты. Если вынуть одну из лампочек, цепь разорвется, и ни одна из других лампочек не будет работать.
напряжение : Разность потенциалов между двумя точками в цепи, например положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно наличие напряжения без тока (например, если цепь неполная и электроны не могут течь), но невозможно иметь ток без напряжения. Он измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками в цепи.
Прочие ресурсы
г. до н.э. Hydro | Power Smart для школ
г. до н.э. Hydro | Изучение простых схем
г. до н.э. Hydro | Изучение последовательных и параллельных цепей
г. до н.э. Hydro | Электробезопасность
Как работает материал | Как работают светодиоды
Для покупки елочных мини-лампочек: Home Depot, Canadian Tire
Для приобретения небольших учебных лампочек (номиналом не более 2 вольт каждая): Boreal Science
Электрический ток
Единица электрического заряда — кулон (сокращенно C).Обычная материя состоит из атомов, которые имеют положительно заряженные ядра и окружающие их отрицательно заряженные электроны. Заряд квантуется как кратное заряду электрона или протона:
Влияние зарядов характеризуется силами между ними (закон Кулона) и создаваемым ими электрическим полем и напряжением. Один кулон заряда — это заряд, который будет проходить через лампочку мощностью 120 ватт (120 вольт переменного тока) за одну секунду. Два заряда одного кулона
каждый, разделенный метром, будет отталкивать друг друга с силой около миллиона тонн!
Скорость прохождения электрического заряда называется электрическим током и измеряется в амперах.
Представляя одно из фундаментальных свойств материи, возможно, уместно указать, что мы используем упрощенные наброски и конструкции, чтобы представить
концепции, и в этой истории неизбежно гораздо больше. Не имеет значения
следует прикрепить к кружкам, представляющим протон и электрон, в
чувство
подразумевая относительный размер, или даже что они являются твердой сферой
объекты,
хотя это полезная первая конструкция. Самое важное
начальная идея,
электрически, состоит в том, что они обладают свойством, называемым «заряд», который
тоже самое
размер, но противоположные по полярности для протона и электрона.В
протон имеет
1836 раз больше массы электрона, но точно такого же размера
стоимость только
скорее положительный, чем отрицательный. Даже термины «положительный» и
«отрицательные»
произвольные, но хорошо укоренившиеся исторические ярлыки. Жизненноважный
значение
в том, что протон и электрон будут сильно притягивать друг друга.
другое — исторический архетип клише «противоположности притягиваются».
Два
протоны или два электрона сильно отталкиваются друг от друга. Однажды ты
имеют
установил эти основные представления об электричестве, «как заряды
отталкивать и
в отличие от обвинений привлекают «, то у вас есть основание для
электричество и можно строить оттуда.
Из точной электрической нейтральности объемного вещества, а также из подробных микроскопических экспериментов мы знаем, что протон и электрон имеют одинаковую величину заряда. Все заряды, наблюдаемые в природе, кратны этим фундаментальным зарядам. Хотя стандартная модель протона изображает его состоящим из дробно заряженных частиц, называемых кварками, эти дробные заряды не наблюдаются изолированно — всегда в комбинациях, которые производят +/- заряд электрона.
Изолированный одиночный заряд можно назвать «электрическим монополем». Равные положительный и отрицательный заряды, помещенные близко друг к другу, составляют электрический диполь. Два противоположно направленных диполя, расположенных близко друг к другу, называются электрическим квадруполем. Вы можете продолжить этот процесс для любого количества полюсов, но здесь упоминаются диполи и квадруполи, потому что они находят важное применение в физических явлениях.
Одна из фундаментальных симметрий природы — сохранение электрического заряда.Ни один из известных физических процессов не приводит к чистому изменению электрического заряда.
|
Что такое электрический ток? — Определение, единицы и типы — Видео и стенограмма урока
Постоянный и переменный ток
Сегодня широко используются два разных типа тока.Это постоянный ток, сокращенно DC, и переменный ток, сокращенно AC. В постоянного тока электроны текут в одном направлении. Батареи создают постоянный ток, потому что электроны всегда текут с «отрицательной» стороны на «положительную».
Переменный ток , сокращенно AC, толкает электроны вперед и назад, изменяя направление потока несколько раз в секунду.В Соединенных Штатах ток меняет направление со скоростью 60 герц, или 60 раз за одну секунду. Генераторы, используемые на электростанциях для производства электроэнергии для вашего дома, предназначены для выработки переменного тока. Вы, вероятно, никогда не замечали, что свет в вашем доме на самом деле мерцает при изменении направления тока, потому что это происходит слишком быстро, чтобы наши глаза могли его обнаружить.
Итак, зачем нам два типа тока и какой из них лучше? Что ж, это хороший вопрос, и тот факт, что мы все еще используем оба типа тока, должен сказать вам, что они оба служат определенной цели.Еще в 19 веке считалось, что для эффективной передачи энергии на большие расстояния между электростанцией и домом ее необходимо передавать при очень высоком напряжении. Проблема заключалась в том, что подавать в дом действительно высокое напряжение было чрезвычайно опасно для людей, живущих в нем.
Решением этой проблемы было снижение напряжения прямо за пределами дома перед подачей его внутрь. С технологией, существовавшей в то время, было намного проще снизить напряжение переменного тока, чем постоянного, поэтому переменный ток выиграл как предпочтительный тип тока.По сей день мы все еще используем переменный ток для передачи электроэнергии на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.
Итак, зачем нам вообще DC? Что ж, в первую очередь, важно понимать, что в настоящее время у нас нет никакого способа хранить электрическую энергию. «Но постойте!» — скажете вы. «А что насчет батарей? Разве они не хранят электрическую энергию? На самом деле, батареи преобразуют электрическую энергию и хранят ее в виде химической энергии. Как мы упоминали ранее, батареи создают только постоянный ток и, в свою очередь, могут заряжаться только постоянным током.Это означает, что переменный ток необходимо сначала преобразовать в постоянный, прежде чем его можно будет использовать с батареей. Пока не будет изобретена батарея переменного тока, постоянный ток всегда будет необходим.
За последние несколько десятилетий постоянный ток стал более важным из-за широкого использования электроники. Все наши высокотехнологичные игрушки, такие как компьютеры и сотовые телефоны, содержат детали, которые работают только от постоянного тока. Это означает, что даже несмотря на то, что многие из наших гаджетов подключаются к розетке переменного тока, мощность преобразуется в постоянный ток внутри устройства перед его использованием.
Единицы тока
Единицы измерения тока — ампер , но это слово часто сокращают до «ампер». Вероятно, самое распространенное место, где можно увидеть что-то с номинальным током, — это коробка автоматического выключателя в вашем доме. Цифры на переключателях показывают, сколько ампер тока может пройти через прерыватель, прежде чем он отключится для защиты проводов. Это подводит нас к важному моменту. Ток измеряется количеством электрического заряда, который проходит через заданную точку, например автоматический выключатель, за период времени в одну секунду.Поскольку электрический заряд измеряется в кулонах, а время — в секундах, истинной единицей измерения тока является кулон в секунду. Но разве не проще сказать «амперы»? К счастью для нас, один ампер определяется как один кулон в секунду, так что технически это одно и то же.
Итоги урока
Подведем итоги тому, что мы узнали. Проводники содержат много свободных электронов, которые обычно перемещаются от атома к атому в случайных направлениях. Когда к проводнику прикладывается напряжение, все свободные электроны текут в одном направлении, которое называется током.В то время как электрическая энергия передается через проводник почти со скоростью света, отдельные электроны движутся гораздо медленнее.
Существует два вида электрического тока: постоянный и переменный. В постоянном токе, сокращенно DC, электроны движутся в одном направлении. Этот тип тока создается, когда электроны движутся по цепи, чтобы перейти от «отрицательного» конца к «положительному» концу батареи. Постоянный ток имеет важные применения в хранении энергии и для питания многих наших электронных устройств.
В переменном токе, сокращенно AC, электроны меняют направление несколько раз в секунду. Этот тип тока создается генераторами на электростанции, потому что он лучше всего подходит для передачи электроэнергии на большие расстояния. Наконец, единицей измерения тока является ампер, который определяется как один кулон заряда, проходящий через заданную точку за одну секунду.
Результаты обучения
После этого урока вы сможете:
- Обобщить, как электроны движутся в токе
- Различия между переменным и постоянным током
- Определить текущую единицу
Проведение электрического тока в человеческом теле и через него: обзор
Эпластика.2009; 9: e44.
Опубликовано в Интернете 12 октября 2009 г.
, PhD, MD, FACEP a и, MS, PhD, DSc b
Raymond M. Fish
a Исследовательская лаборатория биоакустики и кафедра хирургии Университета Иллинойс, Урбана-Шампейн,
Лесли А. Геддес
b Школа биомедицинской инженерии Уэлдона, Университет Пердью, Вирджиния Лафайет, штат Индиана
a Исследовательская лаборатория биоакустики и отделение хирургии, Иллинойсский университет в
-Шампани
b Школа биомедицинской инженерии Велдона, Университет Пердью, W Lafayette, Ind
Это статья открытого доступа, в которой авторы сохраняют авторские права на работу.Статья распространяется по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.
Эта статья цитируется в других статьях в PMC.
Abstract
Цель: Цель данной статьи — объяснить, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Методы: Эта междисциплинарная тема объясняется путем первого обзора электрических и патофизиологических принципов.Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Также обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен расслабления, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током. После обзора основных принципов обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий.Темы, связанные с ожогами высоким напряжением, включают замыкания на землю, градиент потенциала земли, ступенчатый и контактный потенциалы, дуги и молнии. Результат: Практикующий врач будет лучше понимать электрические механизмы повреждения и их ожидаемые клинические эффекты. Выводы: Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему происходят конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.
В этой статье объясняется, каким образом электрический ток проходит через человеческое тело и как это влияет на характер травм. Эта междисциплинарная тема объясняется в части A путем сначала обзора электрических и патофизиологических принципов, а затем в части B путем рассмотрения конкретных типов несчастных случаев. Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен отпускания, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током.После обзора основных принципов в части B обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий. К темам, связанным с высоковольтными ожогами, относятся замыкания на землю, градиент потенциала земли, ступенчатые потенциалы и потенциалы прикосновения, дуги и молнии. . Понимание того, как электрический ток достигает и проходит через тело, может помочь понять, как и почему происходят определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.
ЧАСТЬ A: ОСНОВЫ ЭЛЕКТРИЧЕСТВА И КАК ЭТО ВЗАИМОДЕЙСТВУЕТ С ТЕЛОМ ЧЕЛОВЕКА
Поражение электрическим током определяется как внезапная резкая реакция на электрический ток, протекающий через любую часть тела человека. Удар электрическим током — смерть от поражения электрическим током. Первичное поражение электрическим током — повреждение тканей, вызванное прямым воздействием электрического тока или напряжения. Вторичные травмы, такие как падения, являются обычным явлением. Если не указано иное, эта статья относится к токам и напряжениям 60 (или 50) Гц переменного тока (среднеквадратичное значение). Кроме того, под сопротивлением мы на самом деле подразумеваем величину импеданса. Высокое напряжение относится к среднеквадратичному значению переменного тока 600 В или более.
Очень малое количество электрического тока приводит к серьезным физиологическим эффектам.
Ток означает количество электричества (электронов или ионов), протекающего в секунду.Ток измеряется в амперах или миллиамперах (1 мА = 1/1000 ампера). Количество электрического тока, протекающего через тело, определяет различные эффекты поражения электрическим током. Как указано в таблице, различные величины тока вызывают определенные эффекты. Большинство эффектов, связанных с током, возникает в результате нагревания тканей и стимуляции мышц и нервов. Стимуляция нервов и мышц может привести к проблемам, начиная от падения из-за отдачи от боли до остановки дыхания или сердца. Чтобы вызвать физиологические эффекты, требуется относительно небольшой ток.Как показано в таблице, для отключения автоматического выключателя на 20 А требуется в тысячу раз больше тока, чем для остановки дыхания.
Таблица 1
Расчетное влияние переменного тока 60 Гц *
1 мА | Едва заметное |
16 мА | Максимальный ток, который средний человек может схватить и «отпустить» | 20 мА | Паралич дыхательных мышц |
100 мА | Порог фибрилляции желудочков |
2 A | Остановка сердца и повреждение внутренних органов |
15/20 Общий предохранитель размыкает цепь † | |
Сопротивление кожи защищает тело от электричества
Тело имеет сопротивление току.Более 99% сопротивления тела прохождению электрического тока приходится на кожу. Сопротивление измеряется в Ом. Мозолистая, сухая рука может иметь сопротивление более 100000 Ом из-за толстого внешнего слоя мертвых клеток в роговом слое. Внутреннее сопротивление тела составляет около 300 Ом по отношению к влажным, относительно соленым тканям под кожей. Сопротивление кожи можно эффективно обойти, если есть повреждение кожи от высокого напряжения, порез, глубокое истирание или погружение в воду (таблица). Кожа действует как электрическое устройство, такое как конденсатор, в том смысле, что пропускает больший ток, если напряжение быстро меняется.Быстро меняющееся напряжение будет приложено к ладони и пальцам руки, если он держит металлический инструмент, который внезапно касается источника напряжения. Этот тип контакта даст намного большую амплитуду тока в теле, чем это могло бы произойти в противном случае. 2
Таблица 2
Способы значительного снижения защитного сопротивления кожи
• | Существенные физические повреждения кожи: порезы, ссадины, ожоги |
• | Разрыв кожи при 500 В или более |
• | Быстрое приложение напряжения к участку кожи |
• | Погружение в воду |
Напряжение
Напряжение можно рассматривать как силу, проталкивающую электрический ток через тело .В зависимости от сопротивления будет течь определенный ток при любом заданном напряжении. Это ток определяет физиологические эффекты . Тем не менее, напряжение действительно влияет на результат поражения электрическим током несколькими способами, как описано ниже.
Разрыв кожи
При напряжении 500 В или более высокое сопротивление внешнего слоя кожи выходит из строя. 3 Это значительно снижает сопротивление тела току. В результате увеличивается сила тока, протекающего при любом заданном напряжении.Области разрыва кожи иногда представляют собой раны размером с булавочную головку, которые можно легко не заметить. Они часто являются признаком того, что в тело может проникнуть большой ток. Можно ожидать, что этот ток приведет к повреждению глубоких тканей мышц, нервов и других структур. Это одна из причин, по которой при высоковольтных повреждениях часто возникают серьезные повреждения глубоких тканей, а не ожоги кожи.
Электропорация
Электропорация (повреждение клеточной мембраны) происходит из-за приложения большого напряжения к длине ткани.Это могло произойти при 20 000 В из рук в руки. Электропорация также может происходить при напряжении 120 В, когда конец шнура питания находится во рту ребенка. В этой ситуации напряжение невелико, но вольт на дюйм ткани такое же, как и в случае, когда высокое напряжение прикладывается от руки к руке или с головы до ног. В результате электропорации даже кратковременный контакт может привести к серьезным травмам мышц и других тканей. Электропорация — еще одна причина возникновения глубоких повреждений тканей.
Нагрев
При прочих равных, тепловая энергия, передаваемая тканям, пропорциональна квадрату напряжения (увеличение напряжения в 10 раз увеличивает тепловую энергию в 100 раз).
Переменный и постоянный ток
Мембраны возбудимых тканей (например, нервных и мышечных клеток) будут передавать ток в клетки наиболее эффективно при изменении приложенного напряжения. Кожа в чем-то похожа тем, что пропускает больше тока при изменении напряжения. Следовательно, при переменном токе происходит непрерывное изменение напряжения с 60 циклами изменения напряжения в секунду. При использовании переменного тока, если уровень тока достаточно высок, будет ощущение удара электрическим током, пока сохраняется контакт.Если есть достаточный ток, клетки скелетных мышц будут стимулироваться настолько быстро, насколько они могут ответить. Эта скорость меньше 60 раз в секунду. Это вызовет тетаническое сокращение мышц, что приведет к потере произвольного контроля над мышечными движениями. Клетки сердечной мышцы будут получать 60 стимуляций в секунду. Если амплитуда тока достаточная, произойдет фибрилляция желудочков. Сердце наиболее чувствительно к такой стимуляции в «уязвимый период» сердечного цикла, который происходит во время большей части зубца T.
Напротив, при постоянном токе ощущение шока возникает только тогда, когда цепь замкнута или разорвана, если только напряжение не относительно высокое. 4 Даже если амплитуда тока велика, это может не произойти в уязвимый период сердечного цикла. При переменном токе длительность разряда более 1 сердечного цикла определенно даст стимуляцию в уязвимый период.
Как связаны ток, напряжение и сопротивление
Закон Ома выглядит следующим образом:
На рисунке показаны источник напряжения и резистор.Например, сопротивление 1000 Ом, подключенное к источнику электроэнергии на 120 В, будет иметь значение
. Напряжение вызывает протекание тока ( I ) через заданное сопротивление. Несколько круговой путь тока называется цепью.
Путь (пути) тока
Электроэнергия течет из (как минимум) одной точки в другую. Часто это происходит от одной клеммы к другой клемме источника напряжения. Соединение между выводами источника напряжения часто называют «нагрузкой».«Нагрузкой может быть что угодно, проводящее электричество, например лампочка, резистор или человек. Это показано на рисунке.
Чтобы проиллюстрировать некоторые важные моменты, эту схемную модель можно применить к автомобилю. Например, отрицательная клемма автомобильного аккумулятора подключена («заземлена») к металлическому шасси автомобиля. Положительный вывод подключается к красному кабелю, состоящему из отдельных проводов, идущих к стартеру, фарам, кондиционеру и другим устройствам. Электрический ток проходит по множеству параллельных путей: радио, стартер, свет и многие другие пути тока.Ток в каждом пути зависит от сопротивления каждого устройства. Отсоединение положительного или отрицательного полюса батареи остановит прохождение тока, хотя другое соединение не повреждено.
Применение модели к человеческому телу
На примере автомобиля легче понять, как протекает ток в человеческом теле. Человек, получивший удар электрическим током, будет иметь (как минимум) 2 точки контакта с источником напряжения, одна из которых может быть заземлением. Если или разъединены, ток не будет течь.Аналогия также объясняет, как ток может проходить по множеству параллельных путей, например, через нервы, мышцы и кости предплечья. Сила тока в каждом автомобильном приборе или типе ткани зависит от сопротивления каждого компонента.
Рисунок развивает модель еще дальше. Он показывает аккумулятор и фары на велосипеде. Ржавые контакты на положительной и отрицательной клеммах аккумуляторной батареи. Общее сопротивление, через которое должен протекать ток, равно сопротивлению двух ржавых контактов в дополнение к сопротивлению фар. Чем больше сопротивление, тем меньше ток. . Ржавое соединение аналогично сопротивлению кожи, а фара аналогична внутреннему сопротивлению кузова. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи .
Ржавые контакты добавляют сопротивление току. Фары аналогичны внутреннему сопротивлению кузова, а ржавые соединения аналогичны сопротивлению кожи. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи.
На рисунке изображен человек, подключенный к источнику напряжения. Есть соединения с левой рукой и левой ногой. «Общее сопротивление тела» человека складывается из очень низкого (приблизительно 300 Ом) внутреннего сопротивления тела плюс 2 сопротивления при контакте с кожей. Сопротивление контакта с кожей обычно составляет от 1000 до 100000 Ом, в зависимости от площади контакта, влажности, состояния кожи и других факторов. Таким образом, кожа обеспечивает большую часть защиты тела от электрического тока.
Схема человека, подключенного к источнику напряжения.
Высоковольтный контакт
Высоковольтные (≥600 В) контакты иногда кажутся парадоксальными. Птица удобно сидит на высоковольтной линии электропередачи. Но человек в рабочих ботинках, стоящий рядом с грузовиком, погибает при прикосновении к стороне грузовика, потому что приподнятое навесное оборудование грузовика касалось линии электропередачи. Высокое напряжение разрушает электрические изоляторы, включая краску, кожу и большую часть обуви и перчаток. Специальная обувь, перчатки и инструменты считаются защитными при определенных уровнях напряжения.Эти элементы необходимо периодически проверять на наличие (иногда точного размера) разрывов изоляции. Изоляция может оказаться неэффективной, если на поверхности предмета есть влага или загрязнения.
Как отмечалось выше, для протекания тока требуются 2 или более контактных точек, находящихся под разным напряжением. Многие электрические системы подключены («заземлены») к земле. Опорные конструкции часто бывают металлическими, а также физически находятся в земле.
Рабочий был электрически подключен к линии электропередачи через металлические части своего грузовика.Высокое напряжение (7200 В) было достаточно высоким, чтобы пройти через краску на грузовике и его обуви. Птица не находилась достаточно близко к земле или чему-либо еще, чтобы замкнуть цепь на землю. Есть птицы с большим размахом крыльев, которые действительно получают удар током, когда перекрывают разрыв между проводами и конструкциями, находящимися под разным напряжением.
ЧАСТЬ B: ВИДЫ ЭЛЕКТРИЧЕСКОГО КОНТАКТА
Шаговый и контактный потенциалы
Земля (земля) под нашими ногами обычно находится под напряжением 0 В.Линии электропередач и радиоантенны заземляют путем соединения их с металлическими стержнями, вбитыми в землю. Если человек идет босиком по земле с расставленными ногами, между двумя ступнями должно быть напряжение 0 В. Это нормальное состояние нарушается, если проводник высоковольтной линии электропередачи достигает земли или если молния ударяет по земле.
Напряжение от воздушных линий электропередачи может достигать земли несколькими способами. Линия может порваться или отсоединиться от своих изолированных опор и вступить в контакт с самой землей или с конструкциями, которые сами связаны с землей.Опорные провода (растяжки) могут отсоединяться от своих соединений у земли и становиться под напряжением при контакте с линией электропередачи. В этом случае растяжка под напряжением находится под высоким напряжением. Если растяжка контактирует с землей, напряжение на земле в точке контакта и вокруг нее больше не равно 0 В.
Когда провод под напряжением контактирует с землей напрямую или через проводник, это называется замыканием на землю. Уменьшение напряжения на расстоянии от точки контакта с землей объекта, находящегося под напряжением, называется градиентом потенциала земли .Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли.
На рисунке показана типичная кривая распределения градиента напряжения. Этот график показывает, что напряжение уменьшается с увеличением расстояния от заземляющего объекта. Слева от заземленного, находящегося под напряжением объекта есть разница напряжений между двумя ногами человека, называемая ступенчатым потенциалом. Справа есть разница в напряжении между рукой человека и двумя ногами, называемая потенциалом прикосновения.Также существует ступенчатый потенциал между двумя ногами человека справа. (Рисунок и этот раздел являются модификациями части правил OSHA [Standards-29 CFR].)
Ступенчатые и сенсорные потенциалы. Фактические цифры могут варьироваться в зависимости от типа почвы и влажности, а также других факторов.
Мгновенное горение, нагрев электрическим током или и то, и другое.
Дуги высокого напряжения связаны с прохождением электричества по воздуху. В некоторых случаях дуга не касается человека. В этой ситуации от тепла дуги могут возникнуть серьезные ожоги (мгновенный ожог).Также возможны ожоги от горящей одежды и других веществ. Ожоги также могут быть вызваны прикосновением к предметам, которые термически горячие, но не находятся под напряжением.
Дуги высокой энергии могут вызывать взрывные ударные волны. 5 Сила тупой травмы может привести к уколу человека, разрыву барабанных перепонок и ушибу внутренних органов.
Если дуга или проводник под напряжением контактирует с человеком и через него проходит электричество, может возникнуть травма из-за электрического тока, протекающего через тело, в дополнение к механизмам повреждения, упомянутым выше.
Клинически важно определить, повлекло ли высоковольтное повреждение электрический ток, протекающий через тело. Ток, протекающий через тело из-за высокого напряжения, может привести к возникновению условий, за которыми необходимо следить с течением времени. Эти состояния включают миоглобинурию, коагулопатию и компартмент-синдромы. Несколько клинических и связанных с электрическим контактом проблем могут помочь определить, протекал ли ток через тело. Во-первых, для протекания электрического тока через тело требуется как минимум 2 точки контакта.При высоком напряжении это обычно ожоги на всю толщину. Они могут быть размером с булавочную головку, а иногда их может быть несколько из-за искрения. Если проводник, например кусок проволоки, соприкоснулся с кожей, это может привести к ожогу из-за формы соприкасающегося предмета.
Напротив, вспышка при отсутствии тока через тело имеет тенденцию быть диффузным и относительно однородным. Мгновенные ожоги на , иногда на меньше полной толщины, тогда как ожоги от высоковольтных контактов будут на всю толщину.
Так называемые входные и выходные раны
Часто бывает всего 2 контактных ожога, которые обычно называют входными и выходными ранами.Эти термины относятся к тому факту, что электрический ток исходит от источника напряжения, входит в тело в одной точке, проходит через тело в другую точку контакта, где он выходит из тела и возвращается к источнику напряжения (или земле). Эта терминология несколько сбивает с толку, если учесть, что переменный ток меняет направление много раз в секунду. Терминология также может вводить в заблуждение, потому что она напоминает пулевые ранения, которые иногда имеют небольшие входные и более крупные выходные ранения. При поражении электрическим током размер раны будет зависеть от таких факторов, как размер и форма проводника, геометрия пораженной части тела и влажность.Аналогия с огнестрельными ранениями также вводит в заблуждение, поскольку не всегда имеется выходное ранение от пули, потому что пуля остается застрявшей в человеке. Таким образом, 2 отдельных ожога третьей степени предполагают протекание тока через тело. Диффузный ожог неполной толщины не предполагает протекания тока через тело.
Помимо особенностей, связанных с контактом, существуют клинические признаки, которые могут помочь определить, был ли ток через глубокие ткани. Например, можно ожидать, что высоковольтный контакт с рукой, связанный с током, протекающим в руку, будет вызывать твердость и нежность предплечья.При пассивных и активных движениях пальцев может возникнуть боль, а в руке может возникнуть сенсорная недостаточность.
Молния
Молния обычно сверкает над поверхностью тела, что приводит к удивительно небольшим повреждениям у некоторых людей. Влажная кожа и очень короткие электрические импульсы побуждают электрический ток проходить по поверхности тела. Тем не менее, молния иногда травмирует людей из-за протекания тока в теле, тупой механической силы, эффекта взрыва, который может разорвать барабанные перепонки и ушибить внутренние органы, а также интенсивный свет, который может привести к катаракте.
Контакт с проводниками
Низкое напряжение (
<600 В)
Влияние ударов низкого напряжения указано в таблице. Приведенные текущие уровни зависят от конкретного пути тока, продолжительности контакта, веса, роста и телосложения человека (особенно мускулатуры и костных структур) и других факторов. Эффекты, которые возникают в каждом конкретном случае, сильно зависят от нескольких факторов, связанных с тем, как осуществляется контакт с источником электричества. Эти факторы включают в себя путь тока, влажность, отсутствие возможности отпустить и размер областей контакта.
Путь тока
Если путь тока проходит через грудную клетку, непрерывные тетанические сокращения мышц грудной стенки могут привести к остановке дыхания. Dalziel, 6 , который проводил измерения на людях, сообщает, что токи, превышающие 18 мА, стимулируют грудные мышцы, так что дыхание останавливается во время шока.
Другой эффект, который возникает при трансторакальном пути тока, — это фибрилляция желудочков. Трансторакальные пути тока включают руку в руку, руку к ноге и от передней части груди до задней части груди.Эксперименты на животных показали, что порог фибрилляции желудочков обратно пропорционален квадратному корню из продолжительности тока.
Феномен отпускания при низком (
<600 В) контакте
Фактором, который имеет большое значение для травм, полученных при низковольтном разряде, является неспособность отпустить. Сила тока в руке, которая заставляет руку непроизвольно сжимать руку, называется отпускающим током. 7 Если, например, пальцы человека обхватить большой кабель или ручку пылесоса под напряжением, большинство взрослых сможет отпустить его с током менее 6 мА.При 22 мА более 99% взрослых не смогут отпустить. Боль, связанная с отпусканием тока, настолько сильна, что молодые мотивированные добровольцы могли терпеть ее всего несколько секунд. 7 При прохождении тока в предплечье стимулируются мышцы сгибания и разгибания. Однако сгибательные мышцы сильнее, и человек не может добровольно расслабиться. Практически во всех случаях неспособности отпускать руки используется переменный ток. Переменный ток многократно стимулирует нервы и мышцы, что приводит к тетаническому (устойчивому) сокращению, которое длится до тех пор, пока продолжается контакт.Если это приводит к тому, что субъект ужесточает хватку за проводник, результатом является продолжение электрического тока через человека и снижение контактного сопротивления. 8
При контакте с переменным током возникает ощущение поражения электрическим током. Напротив, с постоянным током возникает только ощущение шока, когда цепь замкнута или разорвана. Пока контакт поддерживается, ощущения шока не возникает. Ниже 300 мА постоянного тока (среднеквадратичное значение) явление отпускания отсутствует, потому что рука не зажата непроизвольно.Когда ток проходит через руку, возникает ощущение тепла. Замыкание или разрыв цепи приводит к болезненным неприятным ударам. При токе более 300 мА отпускание может быть невозможно. 4 Порог фибрилляции желудочков для разряда постоянного тока длительностью более 2 секунд составляет 150 мА по сравнению с 50 мА для разряда 60 Гц; для разрядов короче 0,2 секунды порог такой же, как и для разрядов 60 Гц, то есть примерно 500 мА. 4
Мощность обогрева также увеличивается, когда человек не может отпустить.Это связано с тем, что плотный захват увеличивает площадь кожи, эффективно контактирующую с проводниками. Кроме того, со временем между кожей и проводниками накапливается высокопроводящий пот. Оба эти фактора снижают контактное сопротивление, что увеличивает протекающий ток. Кроме того, нагревание сильнее, потому что продолжительность контакта часто составляет несколько минут по сравнению с долей секунды, необходимой для того, чтобы отказаться от болезненного раздражителя.
Неспособность отпустить приводит к увеличению тока в течение более длительного периода времени.Это увеличит повреждение из-за нагрева мышц и нервов. Также будет усиление боли и частота остановки дыхания и сердца. Также может быть вывих плеча с травмой связок и сухожилий, а также переломы костей в области плеч.
Явление отпускания для высокого (> 600 В) контакта
Несколько разных результатов могут произойти, когда человек схватится за провод, подающий из рук в руки напряжение 10 кВ переменного тока. Такой контакт занимает более 0,5 секунды, прежде чем большая часть клеток дистального отдела предплечья подвергнется тепловому повреждению.Однако в течение 10–100 миллисекунд мышцы на пути тока сильно сократятся. Человека можно стимулировать, чтобы он сильнее сжимал провод, создавая более сильный механический контакт. Или человека может оттолкнуть от контакта. Какое из этих событий произойдет, зависит от положения руки относительно проводника. Большинство очевидцев сообщают, что жертвы отталкиваются от проводника, возможно, из-за общих мышечных сокращений. В таких случаях время контакта оценивается примерно в 100 миллисекунд или меньше. 9 (стр. 57)
Контакт с погружением: утопление электрическим током
Клинические проблемы
Утопление или близкое к утоплению может быть результатом попадания электричества в воду. Состояния, требующие лечения почти утопления, вызванного электричеством, в основном такие же, как и условия, связанные с неэлектрическим утоплением. Эти состояния включают повышение миоглобина, которое может привести к почечной недостаточности (обнаруживаемой по повышению креатинкиназы [КФК] и анализу мочи), респираторному дистресс-синдрому взрослых, гипотермии, гипоксии, электролитным нарушениям и аритмиям, которые включают желудочковую тахикардию и фибрилляцию желудочков.Считается, что уровни креатинкиназы и миоглобина в неэлектрических случаях утопления связаны с жестокой борьбой, а также иногда с длительной гипоксией и электролитным дисбалансом. Электричество в воде может стимулировать мышцы достаточно сильно, чтобы вызвать у человека сильную мышечную боль во время и после того, как он или она почти утонул. Это еще больше увеличит уровни КФК и миоглобина по сравнению с теми, которые могут возникнуть в результате неэлектрического воздействия на стол, близкий к утоплению. Уровень креатинкиназы иногда повышается в течение дня или более под влиянием проводимого лечения, продолжающейся гипоксии или гипотонии и других состояний, которые могут повлиять на продолжающийся некроз тканей.
Таблица 3
Почему погружение в воду при очень низких напряжениях может быть фатальным
1 | Погружение очень эффективно увлажняет кожу и значительно снижает ее сопротивление на единицу площади |
2 | Площадь контакта большой процент площади всей поверхности тела |
3 | Электрический ток также может попадать в организм через слизистые оболочки, такие как рот и горло |
4 | Человеческое тело очень чувствительно к электричеству.Очень небольшое количество тока может вызвать потерю способности плавать, остановку дыхания и остановку сердца. |
Воздействие электрического тока
Многие определения воздействия электрического тока на людей были сделаны Далзилом. 10 Для любого данного эффекта, такого как столбнячные сокращения мышц, существует диапазон текущих уровней, которые вызывают эффект в зависимости от индивидуальных особенностей субъектов. Например, ток, необходимый для возникновения тетанических сокращений мышц предплечья («отпускающий» ток), может составлять от 6 до 24 мА (среднеквадратичное значение переменного тока 60 Гц) в зависимости от пациента.Следовательно, текущие уровни, перечисленные в публикациях, могут быть максимальными, средними или минимальными уровнями, в зависимости от обсуждаемых вопросов. С точки зрения безопасности часто подходят значения, близкие к минимальным.
Как указано в таблице, Dalziel 7 обнаружил, что ток 10 мА может вызвать тетанические сокращения мышц и, следовательно, потерю мышечного контроля. Кроме того, Smoot and Bentel 12 обнаружили, что 10 мА тока было достаточно, чтобы вызвать потерю мышечного контроля в воде. Они проводили измерения в соленой воде и не сообщали о приложенных напряжениях.
Таблица 4
Механизмы смерти при утоплении электрическим током
Механизм | Необходимый ток, мА | Необходимое напряжение, В переменного тока |
---|---|---|
Электрическая стимуляция сердца1, вызывающая фибрилляцию желудочков | 100501 | 30 |
Тетаническое сокращение (эффективное паралич) мышц дыхания | 20 | 6 |
Потеря мышечного контроля конечностей: 16 мА для среднего человека 1 | 16 4 | .8 |
Потеря мышечного контроля конечностей: всего 10 мА для наиболее чувствительных женщин 7 , 11 | 10 | 3 |
Общее сопротивление тела в воде
Общее с учетом мер безопасности сопротивление тела от руки к ноге в воде считается равным 300 Ом. 13 — 15 Smoot 11 , 16 измерил общее сопротивление тела 400 Ом с погружением.Во многом это связано с внутренним сопротивлением тела. Таким образом, погружение устраняет большую часть сопротивления кожи.
Соленая вода обладает высокой проводимостью по сравнению с человеческим телом, поэтому поражение электрическим током в соленой воде относительно редко. Это связано с тем, что большая часть электрического тока проходит по внешней стороне тела.
Если есть разница напряжений, например, между одной рукой и другой, то через тело будет протекать электрический ток. Сила тока равна напряжению, деленному на общее сопротивление тела.
Какое напряжение в воде может быть смертельным?
В таблице указаны величины тока, необходимые для возникновения фибрилляции желудочков и других фатальных состояний. Общее сопротивление тела в воде составляет 300 Ом. Таким образом, известны необходимый ток и сопротивление, которое он должен испытывать. Таким образом, можно рассчитать необходимое напряжение. Для фибрилляции желудочков расчет выглядит следующим образом:
Требуемое напряжение = Ток × Сопротивление
Для возникновения фибрилляции желудочков необходимое напряжение составляет:
Напряжение = 100 мА × 300 Ом = 30 В
Рисунки для других механизмов смерти указаны в табл.
Электрический контакт, связанный с водой, часто происходит двумя способами. Эти механизмы могут происходить в ваннах, бассейнах и озерах. Первый механизм контакта заключается в том, что человек в воде выходит из воды и контактирует с токопроводящим объектом под напряжением. Например, человек чувствует себя хорошо, сидя в ванне. Сопротивление контакта его руки с объектом под напряжением за пределами ванны может быть достаточно высоким, чтобы защитить его или ее, особенно если его или ее рука не мокрая и площадь контакта небольшая.
Второй механизм контакта включает человека в воде, находящегося в электрическом поле из-за проводника под напряжением, который находится в воде. Например, электрический нагреватель, подключенный к тёплому проводу розетки 120 В переменного тока, падает в воду. Заземленный слив находится близко к плечам человека, а обогреватель — у его или ее ног. Это дает разницу напряжений 120 В переменного тока от плеч до ступней. При общем сопротивлении тела 300 Ом протекает 360 мА, что более чем в 3 раза превышает величину, необходимую для фибрилляции желудочков.
В озерах, прудах и других водоемах источник электроэнергии может генерировать ток в воде. Местоположение напряжений в воде можно измерить. В воде могут присутствовать напряжения из-за того, что корпус лодки, подключенной к береговому источнику питания, находится под напряжением. В воде также могут присутствовать напряжения из-за находящихся под напряжением проводников в воде, которые пропускают электрический ток в воду.
Может существовать электрический градиент (или поле), аналогичный описанной выше ситуации для ступенчатого и касательного потенциалов.Ситуацию сложнее проанализировать в воде, потому что человек в воде принимает разные позы и ориентации в трех измерениях (вверх, вниз и в стороны — север, юг, восток и запад). Трансторакальное напряжение и напряжение на конечностях будут меняться по мере движения человека в зависимости от ориентации (направления) электрического поля.
Измерения потери контроля над мышцами в воде
Измерения, аналогичные измерениям Smoot and Bentel 12 , были выполнены с одобрения институционального наблюдательного совета Университета Иллинойса в Урбана-Шампейн.Металлические пластины помещали внутрь резиновых контейнеров. Металлические пластины были плоскими на дне контейнеров. Сверху на каждую металлическую пластину помещали резиновый коврик с отверстиями. (Изолированный) заземляющий провод источника питания был подключен к одной пластине, а напряжение переменного тока 60 Гц от источника питания было подключено к другой пластине. Испытуемый стоял, опираясь на каждый резиновый коврик по одной ноге, как показано на рисунке. Таким образом, субъект контактировал с электрическим током в основном через воду, контактирующую с ногами через отверстия, а также через воду, контактирующую с ногами выше.Эта траектория потока между ногами имитировала ситуации рукопашного боя и рукопожатия, которые могут возникнуть у пловцов в воде. Эта установка сводила к минимуму ток через грудную клетку. В исследовании участвовал всего 1 субъект.
Установка для измерения напряжения и тока в воде.
Свежая (не соленая) вода с проводимостью 320 мкм / см наполняла каждое ведро до уровня около бедра. Было обнаружено, что электрически индуцированные сокращения мышц сильно меняются положением ног в воде.
Первоначальные испытания показали, что при 3,05 В (среднеквадратичное значение переменного тока 60 Гц) между пластинами протекал ток 8,65 мА, что приводило к непроизвольному сгибанию колена на 90 °. Это сгибание нельзя было преодолеть произвольным усилием. Колено можно было произвольно сгибать дальше, но оно не выпрямлялось больше, чем на 90 °. Непроизвольное резкое сгибание произошло, когда нога была поднята (сгибанием бедра) так, чтобы бедро было горизонтальным, а колено находилось на уровне воды. Это похоже на ситуацию во время плавания.Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра (путем разгибания бедра в нейтральное положение) и нога становится вертикальной. Общее сопротивление корпуса рассчитывается следующим образом:
При 4,05 В протекает ток 12,6 мА. Колено было согнуто на 135 °, то есть пятка находилась рядом с ягодицами. Это нельзя было преодолеть добровольными усилиями. Опять же, это произошло, когда нога была поднята так, чтобы колено находилось на уровне воды, аналогично ситуации, когда кто-то плывет.Меньшее нарушение мышечного контроля было отмечено в других положениях ног. Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра и нога становится вертикальной. Сопротивление составит 4,05 В / 12,6 мА = 332 Ом.
Текущие уровни, измеренные в этих экспериментах, согласуются с уровнями, о которых сообщают Dalziel, 7 Smoot, 11 и NIOSH, 1 , как указано в таблицах и. Общее сопротивление системы (вода плюс предмет) близко к 300 Ом, что часто упоминается в литературе.
ЗАКЛЮЧЕНИЕ
Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему произошли определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.
Благодарности
Авторы благодарят Энди Фиша за иллюстрации.
СПИСОК ЛИТЕРАТУРЫ
1. Национальный институт охраны труда.Смерть рабочих от удара током. Публикация NIOSH № 98-131. 2009 г. Доступно по адресу: http://www.cdc.gov/niosh/docs/98-131/overview.html. Проверено 20 марта. [Google Scholar] 2. Рыба Р. М., Геддес Л. А.. Электрофизиология всплесков тока подключения. Cardiovasc Eng. 2008. 8 (4): 219–24. [PubMed] [Google Scholar] 3. Гримнес С. Диэлектрический пробой кожи человека in vivo. Med Biol Eng Comp. 1983; 21: 379–81. [PubMed] [Google Scholar] 4. Бернштейн Т. Расследование предполагаемых случаев поражения электрическим током и возгораний, вызванных внутренним напряжением.IEEE Ind Appl. 1989. 25 (4): 664–8. [Google Scholar] 5. Капелли-Шеллпфеффер М, Ли RC, Тонер М, Диллер КР. Документ представлен на конференции IEEE PCIC. Филадельфия, Пенсильвания: 1996. Взаимосвязь между параметрами электротравмы и травмы. 23–25 сентября. [Google Scholar] 6. Далзил CF. Опасность поражения электрическим током. IEEE Spectr. 1972; 9 (2): 41–50. [Google Scholar] 7. Далзил CF. Воздействие электрического шока на человека. ИРЭ Транс Мед Электрон. 1956: 44–62. PGME-5. [Google Scholar] 8. Рыба РМ. Феномен отпускания. В: Рыба Р.М., Геддес Л.А., редакторы.Электрическая травма: медицинские и биоинженерные аспекты. Тусон, Аризона: Издательство юристов и судей; 2009. глава 2. [Google Scholar] 9. Ли Р. К., Кравальо Э. Г., Берк Дж. Ф., редакторы. Электрическая травма. Кембридж, Англия: Издательство Кембриджского университета; 1992. [Google Scholar] 10. Далзил Чарльз Ф., Ли В. Р. Переоценка смертельных электрических токов. IEEE Trans Indus Gen Appl. 1968; ИГА-4 (5): 467–476. D.O.I.10.1109 / TIGA.1968.4180929. [Google Scholar] 11. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна.IEEE Trans Power Apparat Sys. 1964. 83 (9): 945–964. [Google Scholar] 12. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна. Нью-Йорк. При поддержке Underwriter’s Laboratories Inc. Доклад представлен на: Зимнем совещании по энергетике IEEE; Февраль 1964 г .; Нью-Йорк (раздел на страницах 4 и 5) [Google Scholar] 13. ВМС США. Серия тренингов по электричеству и электронике для ВМФ. Модуль 1 — Введение в материю, энергию и постоянный ток. Иногородний учебный курс. Пенсакола, штат Флорида: Центр профессионального развития и технологий военно-морского образования и обучения; 1998 г.С. 3–108. Доступно по адресу: www.hnsa.org/doc/neets/mod01.pdf. По состоянию на 26 марта 2009 г. [Google Scholar] 14. Управление военно-морского флота, канцелярия начальника военно-морских операций. Руководство по программе безопасности и гигиены труда ВМС США для сил на плаву. Том III. Вашингтон, округ Колумбия: военно-морское ведомство, канцелярия начальника военно-морских операций; 2007. С. D5–9. Доступно по адресу: http // doni.daps.dla.mil / Directive / 05000% 20General% 20Management% 20Security% 20and% 20Safety% 20Services / 05-100% 20Safety% 20and% 20Occupational% 20Health% 20Services / 5100.19E% 20-% 20Volume% 20III.pdf. [Google Scholar] 15. Национальный центр испытаний и исследований в области электроэнергетики. Паразитные напряжения — проблемы, анализ и смягчение последствий [окончательный вариант] Форест-Парк, штат Джорджия: Национальный центр испытаний и исследований в области электроэнергетики; 2001.