Уравнение токов трансформатора. Формула. Потери холостого хода трансформатора формула


8.2. Определение потерь холостого хода трансформатора

Режим работы трансформатора при питании одной из его обмоток от источника с переменным напряжением при разомкнутых других обмотках называется режимом холостого хода. Потери, возникающие в трансформаторе в режиме холостого хода при номинальном синусоидальном напряжении на первичной обмотке и номинальной частоте, называются потерями холостого хода.

Потери холостого хода трансформатора Рх слагаются из магнитных потерь, т.е. потерь в активном материале (стали магнитной системы, потерь в стальных элементах конструкции остова трансформатора, вызванных частичным ответвлением главного магнитного потока, основных потерь в первичной обмотке, вызванных током холостого хода, и диэлектрических потерь в изоляции.

Диэлектрические потери в изоляции могут играть заметную роль только в трансформаторах, работающих при повышенной частоте, а в силовых трансформаторах, рассчитанных на частоту 50 Гц, даже при классах напряжения 500 и 750 кВ, обычно малы и могут не учитываться. Также не учитываются в силовых трансформаторах основные потери в первичной обмотке, составляющие обычно менее 1 % потерь холостого хода. Потери в элементах конструкции трансформатора при холостом ходе относительно невелики и учитываются вместе с другими добавочными потерями.

Магнитные потери - потери в активной стали магнитной системы - составляют основную часть потерь холостого хода и могут быть разделены на потери от гистерезиса и вихревых токов. Для современной холоднокатаной электротехнической стали с толщиной 0,35 и 0,30 мм первые из них составляют до 25-35 и вторые до 75-65 % полных потерь.

В практике при частоте 50 Гц обычно определяют магнитные потери, не разделяя их, и пользуются экспериментально установленной зависимостью между индукцией и удельными потерями в стали. Поскольку при заданной частоте и равномерном распределении индукции потери в единице массы стали однозначно определяются индукцией, эту зависимость выражают в форме потерь в единице массы стали р, Вт/кг, при заданной индукции. Данные экспериментального исследования стали сводятся в таблицы или изображаются кривой удельных потерь p=f(B). Удельные, а также общие потери в стали изменяются с изменением индукции В и частоты f. При необходимости проведения приближенных пересчетов потерь с изменением частоты или индукции можно пользоваться приближенной формулой

(8.27)

где для холоднокатаной стали n=l,25; m = 2 при B=1,0÷1,5 Тл и m=3 при B=1,5÷1,8 Тл. Для горячекатаной стали n = l,3; m=2 при В=1,0÷1,5 Тл.

Следует помнить, что качество электротехнической стали различного происхождения может быть различным. Поэтому при расчете всегда следует пользоваться таблицами или кривыми, относящимися к фактически применяемой стали.

Удельные потери в холоднокатаной стали марок 3404, 3405, М6Х и М4Х приведены в табл 8.10. При использовании стали марки 3406 толщиной 0,27 мм можно пользоваться данными для стали марки М4Х толщиной 0,28 мм в этой таблице, а также табл. 8.11, 8.13 и 8.14.

Магнитная индукция в стержнях и ярмах плоской шихтованной магнитной системы определяется для рассчитанного напряжения витка обмотки и окончательно установленных значений активных сечений стержня Пс и ярма Пя,

(8.28)

(8.29)

Потери холостого хода трансформатора, плоская шихтованная магнитная система которого собрана из пластин, определяются ее конструкцией, массой стали отдельных участков системы, индукцией на каждом из этих участков, качеством стали, толщиной пластин и технологией изготовления и обработки пластин.

Потери холостого хода в магнитной системе, собранной из пластин горячекатаной стали,

(8.30)

где pc и ря - удельные потери в 1 кг стали стержня и ярма, зависящие от индукций Вc и Вя, марки и толщины листов стали, приведенные для стали марок 1512 и 1513 по ГОСТ 21427-83 в табл. 8.9; kд - коэффициент, учитывающий добавочные потери, возникающие вследствие неравномерности распределения индукции механических воздействий на сталь при заготовке пластин и сборке остова, потери в крепежных деталях и др.

Диаметр стержня d, м

До 0,2

0,2-0,3

0,3-0,5

Более 0,5

Ярмо прямоугольного

сечения kд

1,0-1,01

1,02-1,05

1,05-1,10

1,10-1,15

Ярмо ступенчатого

сечения кд

1,0

1,0-1,02

1,03-1,05

1,05-1,07

При расчете потерь в плоской шихтованной магнитной системе, собранной из пластин холоднокатаной текстурованной анизотропной стали, необходимо учитывать свойства самой стали и конструктивных и технологических факторов.

 Таблица 8.9. Удельные потери в стали р и в зоне шихтованного стыка рз для горячекатаной стали марок 1512 и 1513 и холоднокатаной стали марок 3411, 3412 и

3413 толщиной 0,35 мм при различных индукциях и f=50 Гц

В, Тл

Горячекатаная сталь

Холоднокатаная сталь

р, Вт/кг

р, Вт/кг

рз, Вт/м2

1512

1513

3411

3412

3413

3411,3412,3413

0,60

0,515

0,450

-

-

-

-

0,70

0,605

0,524

-

-

-

-

0,80

0,76

0,656

-

-

-

-

0,90

0,962

0,836

0,662

0,582

0.503

-

1,00

1,20

1,05

0,80

0,70

0,60

80

1,10

1,46

1,29

0,95

0,825

0,71

120

1,20

1,76

1,56

1,12

0,97

0,83

175

1,30

2,09

1,85

1,31

1,13

0,97

250

1,40

2,45

2,17

1,52

1.29

1,13

350

1,45

2,63

2,34

1,64

1,40

1,22

425

1,50

2,80

2,50

1,75

1,50

1,30

500

1,60

-

-

2,07

1,79

1,55

650

1,65

-

-

2,29

2,00

1,73

725

1,70

-

-

2,50

2,20

1,90

800

1,80

-

-

3,00

2,72

2,00

850

1,90

-

-

3,95

3,58

3,15

860

 Примечание. Добавочные потери в зоне шихтованного стыка для горячекатаной стали не учитываются.

К конструктивным факторам следует отнести: форму стыков пластин в углах системы, форму поперечного сечения ярма, способ прессовки стержней и ярм. Из технологических факторов наибольшее влияние на потери в магнитной системе оказывают: резка рулонов стали на пластины, удаление заусенцев, образующихся при резке, отжиг пластин, покрытие их лаком, прессовка магнитной системы при сборке и перешихтовка верхнего ярма при установке обмоток.

Удельные потери в 1 кг стали при частоте 50 Гц и индукции от 0,2 до 2,0 Тл для современных марок холоднокатаной анизотропной стали по ГОСТ 21427-83 приведены в табл. 8.10 и частично в табл. 8.9. Следует учитывать, что эти данные справедливы для того случая, когда направление вектора индукции магнитного поля совпадает с направлением прокатки стали. При отклонении магнитного потока от направления прокатки следует считаться с увеличением удельных потерь, зависящим от угла α между этими направлениями. Степень увеличения потерь при индукции 0,5-1,5 Тл при разных углах для одной из марок холоднокатаной стали показана на рис. 2.14, а. С изменением угла изменяются только потери от гистерезиса. Потери от вихревых токов не зависят от этого угла. Поэтому в стали толщиной 0,35 мм, для которой потери от гистерезиса составляют меньшую часть общих потерь, общие потери с изменением угла α изменяются в меньшей степени, чем в стали толщиной 0,30 и 0,28 мм.

Пластины для стержней и ярм вырезаются так, чтобы продольная ось пластины была параллельной боковой кромке полосы рулона, т. е. совпадала с направлением прокатки стали. При этом в стержнях и большей части ярм направление вектора индукции магнитного поля будет совпадать с направлением прокатки (рис. 8.8, б).

Таблица 8.10. Удельные потери в стали р и в зоне шихтованного стыка рз для холоднокатаной стали марок 3404 и 3405 по ГОСТ 21427-83 и для стали иностранного производства марок М6Х и М4Х толщиной 0,35, 0,30 и 0,28 мм при различных индукциях и f=50 Гц

р, Вт/кг

рз, Вт/м2

В, Тл

3404, 0,35мм

3404,

0,30мм

3405,

0,30мм

М4Х,

0,28мм

Одна пластина

Две пластины

0,20

0,028

0,025

0,023

0,018

25

30

0,40

0,093

0,090

0,085

0,069

50

70

0,60

0,190

0,185

0,130

0,145

100

125

0,80

0,320

0,300

0,280

0,245

170

215

1,00

0,475

0,450

0,425

0,370

265

345

1,20

0,675

0,635

0,610

0,535

375

515

1,22

0,697

0,659

0,631

0,555

387

536

1,24

0,719

0,683

0,652

0,575

399

557

1,26

0,741

0,707

0,673

0,595

411

578

1,28

0,763

0,731

0,694

0,615

423

589

1,30

0,785

0,755

0,715

0,635

435

620

1,32

0,814

0,779

0,739

0,658

448

642

1,34

0,843

0.803

0,763

0,681

461

664

1,36

0,872

0,827

0,787

0,704

474

686

1,38

0,901

0,851

0,811

0,727

497

708

1,40

0,930

0,875

0,835

0,750

500

730

1,42

0,964

0,906

0,860

0,778

514

754

1,44

0,998

0,937

0,869

0,806

526

778

1,46

1,032

0,968

0,916

0,834

542

802

1,48

1,066

0,999

0,943

0,862

556

826

1,50

1,100

1,030

0,970

0,890

570

850

1,52

1,134

1,070

1,004

0,926

585

878

1,54

1,168

1,110

1,038

0,962

600

906

1.56

1,207

1,150

1.074

1,000

615

934

1,58

1,251

1,190

1,112

1,040

630

962

1,60

1,295

1,230

1,150

1,080

645

990

1,62

1,353

1,278

1,194

1,132

661

1017

1,64

1,411

1,326

1,238

1,184

677

1044

1,66

1,472

1,380

1,288

1,244

695

1071

1,68

1,536

1,440

1,344

1,312

709

1098

1,70

1,600

1,500

1,400

1,380

725

1125

1,72

1,672

1,560

1,460

1,472

741

1155

1,74

1,744

1,620

1,520

1,564

757

1185

1,76

1,824

1,692

1,588

1,660

773

1215

1,78

1,912

1,776

1,664

1,760

789

1245

1,80

2,000

1,860

1,740

1,860

805

1275

1,82

2,090

1,950

1,815

1,950

822

1305

1,84

2,180

2,040

1,890

2,040

839

1335

1,86

2,270

2,130

1,970

2,130

856

1365

1,88

2,360

2,220

2,060

2,220

873

1395

1,90

2,450

2,300

2,150

2,400

890

1425

1,95

2,700

2,530

2,390

2,530

930

1500

2,00

3,000

2,820

2,630

2,820

970

1580

Примечание: 1.Удельные потери для стали марки 3405 толщиной 0,35мм принимать по графе для стали 3404 толщиной 0,30мм.

2.Удельные потери для стали М6Х толщиной 0,35мм принимать по графе для стали 3404 той же толщины.

3.В двух последних графах приведены удельные потери рз, Вт/м2, в зоне шихтового стыка при шихтовке слоями в одну и две пластины одинаковые для всех марок.

При сборке магнитной системы из пластин прямоугольной формы с прямыми стыками по рис. 8.8, а, б в углах магнитной системы, т. е. в частях ярм, заштрихованных на этом рисунке, угол α между вектором магнитной индукции и направлением прокатки будет изменяться от 0 до 900. Общее увеличение удельных потерь по всему объему заштрихованных частей в углах магнитной системы можно оценить коэффициентом kп,y, зависящим от формы стыка, марки стали, толщины пластин и индукции. При косых стыках по рис. 8.8, в в углах магнитной системы также возникают добавочные потери, меньшие, чем при прямых стыках. В этом случае зона несовпадения направления индукционных линий с направлением прокатки ограничивается меньшим объемом стали, прилегающей к стыку пластин. Для диапазона индукции 0,9-1,9 Тл коэффициент kп,y для прямых и косых стыков может быть принят по табл. 8.11.

 Таблица 8.11. Коэффициент kп,y, учитывающий увеличение потерь в углах магнитной системы, для стали разных марок при косом и прямом стыках для диапазона индукций В=0,9÷1,7 Тл при f=50Гц.

Стык

kп,y

3412,

0,35мм

3413,

0,35мм

3404,

0,35мм

3404,0,30мм;

3405, 0,35мм

3405,

0,30мм

М6Х,

0,35мм

М4Х,

0,28мм

Косой

k'п,y

1,15

1,22

1,32

1,35

1,36

1,29

1,40

Прямой

k''п,y

1,60

1,78

1,96

2,02

2,08

1,87

2,20

 Примечание: 1.При индукции В=1,8 Тл коэффициент, полученный из таблицы, умножить при косом стыке на 0,96, при прямом на 0,93; при В=1,9 Тл – на 0,85 и 0,67 соответственно.

2.При комбинированном стыке на среднем стержне по рис. 2.17,в принимать kп,y= (k'п,y+ k''п,y)/2

Непосредственно в зоне стыка в шихтованной магнитной системе происходит увеличение индукции и часть индукционных линий из одной пластины в другую переходит перпендикулярно поверхности пластин (рис. 8.9). Вследствие этого непосредственно в зоне стыка возникают добавочные потери, которые определяются по общей поверхности стыка (зазора) и удельным потерям на 1 м2 поверхности.

Рис. 8.8.Части магнитной системы, в которых возникают увеличенные

studfiles.net

11 Потери холостого хода трансформатора

Режим работы трансформатора при питании одной из его обмоток от источника переменного напряжения при разомкнутой второй обмотке называется режимом холостого хода. Потери, возникающие в трансформаторе в режиме холостого хода при номинальном напряжении на первичной обмотке и номинальной частоте, называются потерями холостого хода. Основную часть потерь холостого хода составляют магнитные потери - потери в активной стали магнитной системы, которые могут бить разделены на потери от гистерезиса и вихревых токов.

В трансформаторах трехстержневой конструкции с взаимным расположением стержней и ярм плоская трехфазная шихтованная магнитная система собирается (шихтуется) из пластин холоднокатаной анизотропной стали с прессовкой стержней расклиниванием с внутренней обмоткой или бандажами, а ярм - ярмовыми балками или балками с полубандажами. Варианты плана шихтовки магнитной системы приведены на рисунке 10.

Рисунок 15- План шихтовки магнитной системы косые стыки в шести углах.

Выбираем сталь 3404 отожженую 0,3мм.

где и- удельные потери в 1 кг стали стержня и ярма, зависящие от

индукции и, марки и толщины стали,=1,074=1,038;

- удельные потери в зоне шихтованного стыка;

и - коэффициенты, учитывающие влияние технологических факторов на

потери холостого хода, =1,05,=1;

- коэффициент увеличения потерь в углах магнитопровода, =1,35;

- коэффициент увеличения потерь, зависящий от формы ярма, =1;

, - коэффициенты, учитывающие влияние прессовки стержня и

перешихтовку верхнего ярма на увеличение потерь, =1,03,

- число стыков различной формы;

- площади зазора для прямых и косых стыков,

Удельные по6тери ,идля значений индукции от 1,3 до 1,8 Тл приведены в таблице 5 [2]. Для определения величиныинеобходимо рассчитать реальные значения индукции в стержнеи ярме:

Тл

Тл,

где - напряжение одного нитка после уточнения числа витков обмотки НН

и - активные сечения стержня и ярма.

Общее увеличение удельных потерь по всему объему заштрихованных частей во всех углах магнитной системы определяется коэффициентом

Для диапазона индукции 0,9 - 1,9 Тл коэффициент , для прямых и косых стыков может быть принят по таблице 6 [2].

Величина удельных потерь Рз для холоднокатаной стали приведена в таблице 5 [2]. Индукция для определения Рз при прямых стыках принимается равной индукции в стержне для стыков, перпендикулярных оси стержня, и индукции в ярме для стыков, перпендикулярных оси ярма для косых стыков следует принимать:

Тл,

где - индукция в стержне.

Площадь зазора (стыка) принимается для прямых стыков равной активному сечению стержняили ярма для косых стыков:

Форма сечения ярма может влиять на распределение индукции по сечению ярма и стержня. Если число ступеней в сечении ярма равно или отличается на одну- две ступени от числа ступеней в сечении, то распределение индукции в ярме и стержне можно считать равномерным и принять коэффициент увеличения потерь, зависящий от формы ярма, = 1,0.

Для прессовки стержней и ярм при сборке остова трансформатора используются различные конструктивные детали. Способ прессовки может быть выбран в соответствии с рекомендациями таблицы 7 [2] в зависимости от мощности трансформатора.

Некоторые технологические факторы также оказывают влияние на потери холостого хода. Продольная резка полосы рулона стали на ленты и поперечная резка ленты на пластины приводят к возникновению внутренних механических напряжений в пластинах и увеличению удельных потерь в стали.

Это увеличение может быть учтено введением коэффициента который для отожженной стали марки 3404 принимаем равной 1,05.

При нарезке пластин из полосы рулона на линии среза образуются заусенцы. Удаление этих заусенцев при помощи ножей приводит к повышению удельных потерь, которое может быть учтено коэффициентом для отожженных пластин.

Перешихтовка верхнего ярма остова при установке обмоток приводит к увеличению потерь, учитываемому коэффициентом .При мощности трансформатора до 250 Ква= 1,01.

Погрешность: -49%

Согласно ГОСТу о сумме потерь короткого замыкания и холостого хода , их сумма не должна превышать 5 % от суммарной номинальной мощности короткого замыкания и холостого хода.

+= 600+130=730 Вт

+=+77,6=719,51 Вт

Погрешность: 1,5%

Поэтому принимаем мощность короткого замыкания =Вт

studfiles.net

Уравнение токов трансформатора. Формула.

Уравнение токов:

,

где Ix – ток холостого хода трансформатора.

18. Чем отличается приведенный трансформатор от реального?Приведенный трансформатор отличается следующим: 1) число витков вторичной обмотки его равно числу витков первичной обмотки реального трансформатора; 2) активные, реактивные и полная мощности, а также потери вторичных обмоток приведенного и реального трансформаторов соответственно равны. 3) коэффициентом трансформации

k=El/E2=wl/w2=1

Так как число витков приведенной вторичной обмотки равно числу витков первичной, то индуктируемые потоком взаимоиндукции электродвижущие силы обеих обмоток равны, т. е.

Необходимо, чтобы приведенная обмотка была эквивалентна действительной вторичной обмотке. Поэтому потери должны сохраниться:

В приведенной обмотке должны сохраниться те же соотношения между активными и индуктивными падениями напряжений, которые существуют в действительной обмотке. Отсюда получим выражение для индуктивного сопротивления приведенной обмотки

Угол сдвига фаз между ЭДС и магнитным потоком. Число.

сдвиг фаз между E и Ф м = равен 90°

Что определяет намагничивающий ток?

величина намагничивающего тока и его форма в значительной степени определяются магнитными свойствами магнитопровода трансформатора, которые зависят от величины индукции в стали. При увеличении насыщения магнитопровода намагничивающий ток резко возрастает.

Намагничивающий ток-является главной составляющей тока Х.Х. Этот ток является Реактивным Iр .

Угол сдвига фаз между намагничивающим током и магнитным потоком. Число.

Намагничивающий ток , т.е. реактивная составляющая Iр, совпадает по фазе с магнитным потоком в сердечнике

сдвиг фаз между составляющими . активной Iа и Iр равен 90°.

Форма намагничивающего тока трансформатора в режиме насыщения. График.

Рис. 2.3. Построение кривой намагничивающего

тока трансформатора

Если магнитопровод трансформатора не насыщен, то намагничивающий ток −синусоидальный, если магнитопровод насыщен, то ток несинусоидальный. Но в любом случае намагничивающий ток совпадает по фазе с магнитным потоком . Внасыщенном трансформаторе ток определяется по кривой намагничивания представленной на рис.2.3 в первом квадранте.

Чем определяется активная составляющая тока холостого хода?

Активная составляющая тока холостого хода идет на покрытие потерь мощности

(14.4)

Активная составляющая тока холостого хода I0а = I0cosφ0 зависит от потерь холостого хода . Практически I0Ic. Активная составляющая Icа, как указывалось, определяется потерями .

Таким образом, активная составляющая тока холостого хода

,

где , и ток холостого хода

.

Чем отличаются постоянные потери в трансформаторе от переменных?

В работающем трансформаторевсегда имеются как магнитные, так и электрические потери. Магнитные потери в трансформаторе слагаются из потерь на вихревые токи и гистерезис:

Величина этих потерь зависит от напряжения U1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В2. Они не зависят от нагрузки, то есть являются постоянными.

Электрические потери в обмотках, наоборот, переменные, то есть:

где ркн — соответствует потерям при коротком замыкании трансформатора.

Что делают, чтобы уменьшить потери на вихревые токи?

Для уменьшения потерь на вихревые токи

  1. магнитопроводы трансформаторов и других электромагнитных устройств изготавливают не из сплошных масс, а из отдельных пластин, изолированных друг от друга.
  2. магнитопроводы составляют из листов высоколегированной стали, удельное электрическое сопротивление которой значительно больше, чем обычной стали.

Таким образом, потери на вихревые токи зависят от материала магнитопровода, толщины стальных пластин и изоляции между ними. Кроме того, потери на вихревые токи пропорциональны квадратам частоты и магнитной индукции.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.