29.06.2024

Потребители 3 категории электроснабжения: Категории электроснабжения потребителей по ПУЭ / en-res.ru

Содержание

Категории электроснабжения потребителей по ПУЭ / en-res.ru

Согласно ПУЭ все потребители электрической энергии условно разделяют на три категории (группы), в зависимости от их важности. В данном случае идет речь о том, насколько надежным должно быть энергоснабжение потребителя с учетом всех возможных факторов. Приведем характеристики каждой из категорий электроснабжения потребителей и соответствующие требования относительно надежности их питания. 

Первая категория электроснабжения потребителей

К первой категории электроснабжения относятся наиболее важные потребители, перерыв в электроснабжении которых может привести к несчастным случаям, крупным авариям, нанесению большого материального ущерба по причине выхода из строя целых комплексов оборудования, взаимосвязанных систем. К таким потребителям относятся:

  • горнодобывающая, химическая промышленность и др. опасные производства;
  • важные объекты здравоохранения (реанимационные отделения, крупные диспансеры, родильные отделения и пр. ) и других государственных учреждений;
  • котельные, насосные станции первой категории, перерыв в электроснабжении которых приводит к выходу из строя городских систем жизнеобеспечения;
  • тяговые подстанции городского электрифицированного транспорта;
  • установки связи, диспетчерские пункты городских систем, серверные помещения;
  • лифты, устройства пожарной сигнализации, противопожарные устройства, охранная сигнализация крупных зданий с большим количеством находящихся в них людей.

Потребители данной категории должны питаться от двух независимых источников питания — двух линий электропередач, питающихся от отдельных силовых трансформаторов. Наиболее опасные потребители могут иметь третий независимый источник питания для большей надежности. Перерыв в электроснабжении потребителей первой категории разрешается только лишь на время автоматического включения резервного источника питания.

В зависимости от мощности потребителя, в качестве резервного источника электроснабжения может выступать линия электрической сети, аккумуляторная батарея либо дизельный генератор.  

ПУЭ определяет независимый источник питания как источник, на котором сохраняется напряжение в послеаварийном режиме в регламентированных пределах при исчезновении его на другом источнике питания. К числу независимых источников питания относятся две секции или системы шин одной или двух электротстанций или подстанций при одновременном соблюдении следующих двух условий:

  • каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания,
  • секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной роботы одной из секций (систем) шин.

Особая группа категории электроснабжения — выделяется из состава электроприемников первой категории, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.  Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.  
В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т.п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Вторая категория электроснабжения потребителей

Ко второй категории снабжения относятся потребители, при отключении питания которых, останавливается работа важных городских систем, на производстве возникает массовый брак продукции, есть риск выхода из строя крупных взаимосвязанных систем, циклов производства.

Помимо предприятий, ко второй категории электроснабжения относятся:

  • детские заведения;
  • медицинские учреждения и аптечные пункты;
  • городские учреждения, учебные заведения, крупные торговые центры, спортивные сооружения, в которых может быть большое скопление людей;
  • все котельные и насосные станции, кроме тех, которые относятся к первой категории.

Вторая категория электроснабжения предусматривает питание потребителей от двух независимых источников. При этом допускается перерыв в электроснабжении на время, в течение которого обслуживающий электротехнический персонал прибудет на объект и выполнит необходимые оперативные переключения.  

Третья категория электроснабжения потребителей

Третья категория электроснабжения потребителей включает в себя всех оставшихся потребителей, которые не вошли в первые две категории. Обычно это небольшие населенные пункты, городские учреждения, системы, перерыв в электроснабжении которых не влечет за собой последствий. Также к данной категории относят многоквартирные жилые дома, частный сектор, дачные и гаражные кооперативы.

Потребители третьей категории получают питание от одного источника питания. Перерыв в электроснабжении потребителей данной категории, как правило, не более суток — на время выполнения аварийно-восстановительных работ.

При разделении потребителей на категории учитывается множество факторов, оцениваются возможные риски, выбираются наиболее надежные и оптимальные варианты. 

Максимальное допустимое число часов отключения в год и сроки восстановления энергоснабжения

Вопросы электрообеспечения, включая надежность электроснабжения, определяются в договоре потребителя с субъектом электроэнергетики. В договоре устанавливают допустимое число часов отключения в год и сроки восстановления электроснабжения (это фактически допустимая продолжительность перерыва питания по ПУЭ).

Для I и II категорий надежности допустимое число часов отключения в год и сроки восстановления энергоснабжения определяются сторонами в зависимости от конкретных параметров схемы электроснабжения, наличия резервных источников питания и особенностей технологического процесса потребителя, но не могут быть более соответствующих величин, предусмотренных для IIIкатегории надежности, для которой допустимое число часов отключения в год составляет 72 ч (но не более 24 ч подряд, включая срок восстановления энергоснабжения).

Что дает разделение потребителей на категории

Разделение потребителей на категории в первую очередь позволяет правильно спроектировать тот или иной участок электросети, связать его с объединенной энергосистемой. Основная цель — построить максимально эффективную сеть, которая с одной стороны должна осуществлять в полной мере потребности в электроснабжение всех потребителей, удовлетворять требованиям по надежности электроснабжения, а с другой стороны быть максимально упрощенной с целью оптимизации средств на обслуживание и ремонт сетей.

В процессе эксплуатации электрических сетей разделение потребителей на категории электроснабжения позволяет сохранить стабильность работы объединенной энергосистемы в случае возникновения дефицита мощности по причине отключения блока электростанции либо серьезной аварии в магистральных сетях. В данном случае работают автоматические устройства, отключающие от сети потребителей третьей категории, а при больших дефицитах мощности — второй категории.

Данные меры позволяют оставить в работе наиболее важных потребителей первой категории и избежать техногенных катастроф в масштабах регионов, гибели людей, аварий на отдельных объектах, материального ущерба. 

В отечественных системах электроснабжения наиболее часто используется принцип горячего резерва: мощность трансформаторов ТП, ГПП (и пропускная способность всей цепи питания к ним) выбирается большей, чем этого требует поддержание нормального режима, для обеспеченна электроснабжения электроприемников I и II категории в послеаварийном режиме, когда одна цепь питания отказывает в результате аварии (или отключается планово).  

Холодный резерв, как правило, не используется (хотя более выгоден по суммарной пропускной способности), ток как предусматривает автоматическое включение под нагрузку элементов сети без предварительных испытании.

По теме

Правила устройства электроустановок (ПУЭ) актуальная версия на 2021 год

Что такое шинопровод. Типы, изоляция, конструкции

О целесообразности внедрения шинопроводных систе. Экономическое обоснование

Преимущества шинопроводных систем перед кабельными разводками

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Россети Центр — Определение категории электроснабжения

В отношении обеспечения надежности электроснабжения электроприемники разделяют на следующие три категории:

Электроприемники I категории — электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству; повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяют особую группу электроприемников, бесперебойная работы которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить необходимой непрерывности технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недо- отпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной BJI, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току BJI. Допускается питание электроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 суток допускается питание электроприемников II категории от одного трансформатора.

Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Электроприемники III категории — все остальные электроприемники, не подходящие под определения I и II категорий.

Степень обеспечения надежности электроснабжения электроприемников жилых и общественных зданий отражена в таблице:

Здания и сооружения

Степень обеспечения надежности электроснабжения

Жилые дома:

противопожарные устройства (пожарные насосы, системы подпора воздуха, дымоудаления, пожарной сигнализации и оповещения о пожаре), лифты, аварийное освещение, огни светового ограждения

I

Комплекс остальных электроприемников:

жилые дома с электроплитами (кроме 1-8-квартирных домов)

II

дома 1-8-квартирные с электроплитами

III

дома св. 5 этажей с плитами на газовом и твердом топливе

II

дома до 5 этажей с плитами на газовом и твердом топливе

III

на участках садоводческих товариществ

III

Общежития общей вместимостью, чел.:

до 50

III

св. 50

II

Отдельно стоящие и встроенные центральные тепловые пункты (ЦТП), индивидуальные тепловые пункты (ИТП) многоквартирных жилых домов

I

Здания учреждений управления, проектных и конструкторских организаций, научно-исследовательских институтов:

электроприемники противопожарных устройств, охранной сигнализации и лифтов

I

Комплекс остальных электроприемников:

здания с количеством работающих св. 2000 чел. независимо от этажности, здания высотой более 16 этажей, а также здания учреждений областного, городского и районного значения с количеством работающих св. 50 чел.

I

здания с количеством работающих св. 50 чел., а также здания областного, городского и районного значения до 50 чел.

II

здания с количеством работающих до 50 чел.

III

Здания лечебно-профилактических учреждений*:

электроприемники операционных и родильных блоков, отделений анестезиологии, реанимации и интенсивной терапии, кабинетов лапароскопии, бронхоскопии и ангиографии, противопожарных устройств и охранной сигнализации, эвакуационного освещения и больничных лифтов

I

комплекс остальных электроприемников

II

Учреждения финансирования, кредитования и государственного страхования:

федерального и республиканского подчинения:

электроприемники противопожарных устройств, охранной сигнализации, лифтов

I

комплекс остальных электроприемников

II

комплекс электроприемников учреждений краевого, областного, городского и районного подчинения

II

Библиотеки и архивы:

электроприемники противопожарных устройств, охранной сигнализации зданий с фондом св. 1000 тыс. ед. хранения

I

комплекс остальных электроприемников

II

комплекс электроприемников зданий с фондом, тыс. ед. хранения:

св. 100 до 1000

II

до 100

III

Учреждения образования, воспитания и подготовки кадров:

электроприемники противопожарных устройств и охранной сигнализации

I

комплекс остальных электроприемников

II

Предприятия торговли**:

электроприемники противопожарных устройств и охранной сигнализации, лифтов универсамов, торговых центров и магазинов

I

комплекс остальных электроприемников

II

Предприятия общественного питания**:

электроприемники противопожарных устройств и охранной сигнализации

I

комплекс остальных электроприемников

II

Предприятия бытового обслуживания:

комплекс электроприемников салонов-парикмахерских с количеством рабочих мест св. 15, ателье и комбинатов бытового обслуживания с количеством рабочих мест св. 50, прачечных и химчисток производительностью св. 500 кг белья в смену, бань с числом мест св. 100

II

то же, парикмахерских с количеством рабочих мест до 15, ателье и комбинатов бытового обслуживания с количеством рабочих мест до 50, прачечных и химчисток производительностью до 500 кг белья в смену, мастерских по ремонту обуви, металлоизделий, часов, фотоателье, бань и саун с числом мест до 100

III

Гостиницы, дома отдыха, пансионаты и турбазы:

электроприемники противопожарных устройств, охранной сигнализации и лифтов

I

комплекс остальных электроприемников

II

Музеи и выставки:

комплекс электроприемников музеев и выставок федерального значения

I

музеи и выставки республиканского, краевого и областного значения:

электроприемники противопожарных устройств, охранной сигнализации

I

комплекс остальных электроприемников

II

комплекс электроприемников музеев и выставок местного значения и краеведческих музеев

III

Конференц-залы и актовые залы, в том числе со стационарными кинопроекционными установками и эстрадами во всех видах общественных зданий, кроме постоянно используемых для проведения платных зрелищных мероприятий

В соответствии с категорией электроприемников зданий, в которые встроены указанные залы

* Для электроприемников ряда медицинских помещений, например операционных, реанимационных (интенсивная терапия), палат для недоношенных детей, может потребоваться третий независимый источник. Необходимость третьего независимого источника определяется заданием на проектирование в зависимости от типа применяемого медицинского оборудования.

** Для временных сооружений, выполняемых в соответствии с 7.12 ПУЭ, а также встроенных помещений площадью до 100 м** — III категория электроснабжения.

Примечания:

1. Схемы питания противопожарных устройств и лифтов, предназначенных для перевозки пожарных подразделений, должны выполняться независимо от их категории надежности в соответствии с требованиями:

  • при наличии в здании электроприемников, требующих первой категории по степени надежности электроснабжения, рекомендуется выполнять питание всего здания от двух независимых источников с устройством АВР независимо от требуемой степени обеспечения надежности электроснабжения других электроприемников.
  • при отсутствии АВР на вводе в здание питание электроприемников первой категории по надежности электроснабжения следует выполнять от самостоятельного щита (панели) с устройством АВР.
  • при наличии на вводе аппаратов защиты и управления этот щит (панель) с устройством АВР следует подключать после аппарата управления и до аппарата защиты.
  • при наличии на вводе автоматического выключателя, выполняющего функции управления и защиты, это подключение должно производиться до автоматического выключателя.
  • панели щита противопожарных устройств должны иметь отличительную окраску (красную).
  • пппараты защиты и управления линий, питающих противопожарные устройства, расположенные на ВРУ (ГРЩ), должны иметь отличительную окраску (красную).

2. В комплекс электроприемников жилых домов входят электроприемники квартир, освещение общедомовых помещений, лифты, хозяйственные насосы и др. В комплекс электроприемников общественных зданий входят все электрические устройства, которыми оборудуется здание или группа помещений.

III Категория электроснабжения может быть повышена по желанию клиента.

В зданиях, относящихся к III категории по надежности электроснабжения, питающихся по одной линии, резервное питание устройств охранной и пожарной сигнализации следует осуществлять от автономных источников.

Аварийной броней электроснабжения является минимальный расход электрической энергии (наименьшая мощность), обеспечивающие безопасное для персонала и окружающей среды состояние предприятия с полностью остановленным технологическим процессом.

Аварийная броня электроснабжения устанавливается для потребителей электрической энергии — юридических лиц, имеющих электроприемники, фактическая схема электроснабжения которых удовлетворяет требованиям, предъявляемым к электроприемникам первой и второй категорий по надежности электроснабжения.

Технологической броней электроснабжения является наименьшая потребляемая мощность и продолжительность времени, необходимые потребителю для безопасного завершения технологического процесса, цикла производства, после чего может быть произведено отключение соответствующих электроприемников.

Технологическая броня электроснабжения устанавливается для потребителей — юридических лиц:

  • использующих в производственном цикле непрерывные технологические процессы, внезапное отключение которых вызывает опасность для жизни людей, окружающей среды и (или) необратимое нарушение технологического процесса;
  • имеющих электроприемники, фактическая схема электроснабжения которых удовлетворяет требованиям, предъявляемым к электроприемникам первой категории по надежности электроснабжения.

Категория электроснабжения — классификация потребителей электроэнергии согласно ПУЭ, как обеспечить нужную категорию электроснабжения

Категория электроснабжения

Рубрика: Статьи   ‡  

Все электропотребители, можно разделить по некоторой условной важности. То есть, надёжность электроснабжения, допустим жилых домов, будет явно, отличатся от насосной пожаротушения, где от наличия электричества зависят множество жизней, либо  производства плавки металла, что в итоге может, обернутся страшной аварией. 

По надёжности электроснабжения и важности электропотребителей, питающихся электроэнергией, были разработаны данные категории. Они определяются при проектировании, на основании нормативной документации (ПУЭ и других действующих нормативов) и тех. части самого проекта. Выделяют три категории электроснабжения: 1-я (очень важные электропотребители), 2-я (просто важные электропотребители) 3-я (все остальные электропотребители).

К первой категории относятся такие виды электропотребителей, которые в результате своего простоя без электричества могут повлечь опасность для жизни людей, безопасности государства, нанести большой материальный ущерб, поломку сложного и дорогого оборудования или нарушения сложного техпроцесса, работы сфер коммунального хозяйства. Проще говоря, всё то повлечет за собой очень серьезные последствия.

Как правило по первой категории электроснабжения запитаны ответственные потребители (противопожарные насосы, аварийное электроосвещение, пожарная и охраная сигнализации и т.д. )

В первую категорию так же входит особая группа электропотребителей, которая должна быть безостановочной в силу возможности возникновения пожаров, взрывов и человеческих смертей. Электропотребители этой категории при нормальной  работе, должны предусматривать два независимых резервируемых источника электропитания, у которых перерыв для возобновления электроснабжения при отключении одного из них, должен быть лишь на время автоматического переключения на второй. Как правило для первой категории предусматриваются две независимые трансформаторные подстанции (ТП) либо ТП и ДГУ (дизель генератор), либо ТП и аккумуляторные батареи, расчитаные на определенное время работы как в режиме ожидания так и в режиме тревога. Автоматическое переключение потребителей первой категории на резервный ввод осуществляется с помощью устройства автоматического ввода резерва (АВР).

Для особой группы первой категории, должен предусматриваться также третий независимый источник, для увеличения общей надёжности. В роли третьего независимого источника для особой группы электропотребителей, могут использоваться различные аппараты бесперебойного электропитания, аккумуляторные батареи, дизель генераторы (ДГУ) и т.д.  с использованием АВР на 3 ввода или двух АВР.

Вторая категория. К ней можно отнести электропотребители, что при внезапном отключении электроэнергии могут последовать массовое возникновение брака или недоотпуска продукции, длительный простой рабочих, оборудования, техпроцесса, общее нарушению обычной жизнедеятельности большого количества городского и сельского населения.

Она должна при нормальной своей работе, обеспечить электроснабжение, так же от двух независимых резервирующих источников электропитания, но допускается некоторое время на переключение (например, время за которое дежурный электрик зайдет в щитовую и переключит рубильник на второй ввод). Для элетропотребителей второй категории при возникновении проблем с электропитанием на одном из источников, допускается время простоя до восстановления электроснабжения, в промежутке, пока дежурныё персонал или выездная бригада не произведёт необходимое переключение и восстановит поступление электроснабжение. Для электроснабжения по второй категории необходимы два независимых источника электропитания, но в отличии от потребителей первой категории, переключение на резервный ввод осуществляется вручную (без устройства ввода резерва АВР).

Большинство электропотребителей проектируемых административных зданий относятся ко второй категории электроснабжения.

Третья категория. Это категория, в которую не вошли электропотребители первой и второй категории. Для неё допускается осуществления электроснабжения от одного источника, притом условии, что на восстановление электропитания после поломки потребуется не более одних суток. Например, для обеспечения электропотребителей третей категории  можно использовать однотрансформаторную КТП. Тут можно узнать больше о проектировании трансформаторных подстанций 10(6)/0,4кВ.

Стоит заметить то, что увеличение важности категории, напрямую влияет на саму стоимость его осуществления, поскольку это влечёт установку большего количества дополнительного оборудования и в итоге общего усложнение всей системы элетропотребителя.

Но с другой стороны на тех объектах, где действительно очень важна надёжность, в силу особых обстоятельств, то такое усложнение и резервирование, играет ключевую роль, во избежание более худших последствий при возникновении перебоя с элетрообеспечением.

Оставить комментарий или два

Пожалуйста, зарегистрируйтесь для комментирования.

Категории надежности электроснабжения (1 ,2 и 3) и дизельные электростанции

Требования к надежности электроснабжения прописаны в п. 1.2.18 ПУЭ 7 (Правила устройства электроустановок в седьмой редакции) и разделяются на три категории в зависимости от важности объекта и технологического процесса. Категория определяется на этапе проектирования электроснабжения объекта — за основу принимается технологическая часть проекта и нормативная документация.

Первая категория надежности электроснабжения потребителей

К первой категории электроснабжения относятся наиболее важные потребители, перерыв в электроснабжении которых может привести к несчастным случаям, крупным авариям, нанесению большого материального ущерба по причине выхода из строя целых комплексов оборудования, взаимосвязанных систем. К таким потребителям относятся:

  • химическая, горнодобывающая промышленности, кусты добывающих скважин нефтегазовых месторождений;
  • литейные цеха, буровые установки;
  • реанимационные отделения, роддома и родильные отделения, фельдшерско-акушерские пункты, крупные диспансеры;
  • котельные или центральные тепловые пункты, насосные станции первой категории, работа которых связана с жизнеобеспечением городских систем, водозаборных станций насосных станций водоснабжения;
  • тяговые подстанции городского электротранспорта, РЖД;
  • устройства связи, вышек сотовой связи и серверные помещения;
  • диспетчерские пункты важных городских систем оповещения;
  • системы пожарной сигнализации и противопожарные устройства;
  • охранная сигнализация объектов с большим количеством людей;
  • системы аварийного освещения и аварийной вентиляции;
  • лифты.

Потребители данной категории должны питаться от двух независимых источников питания — двух линий электропередач, питающихся от отдельных силовых трансформаторов. Важные потребители могут иметь третий независимый источник питания для большей надежности. Перерыв в электроснабжении потребителей первой категории разрешается только лишь на время автоматического включения резервного источника питания.

В качестве резервного источника электроснабжения может выступать линия электрической сети, ИБП или дизельная электростанция.

К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций или подстанций при одновременном соблюдении следующих двух условий:

  • каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания,
  • секции шин не связаны между собой или имеют связь, автоматически отличающуюся при нарушении нормальной роботы одной из секций шин.

Время перерыва электроснабжения минимально и обусловлено временем срабатывания автоматической системой переключения, и не должно превышать норматив 0,5-0,7 сек.

Особая группа категории электроснабжения — выделяется из состава электроприемников первой категории, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.  Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), ИБП  или дизельная электростанция.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

 

Для 1 категории мы рекомендуем использовать 2 сетевых ввода и дизельную электростанцию. Для определения мощности ДЭС, необходимой для резервирования ваших нагрузок, мы готовы бесплатно направить к вам нашего инженера.

Поможем составить проект, поставим ДГУ и проведем пуско-наладочные работы (ПНР) с запуском дизельной электростанции.

Пришлите запрос на [email protected]

   

Выполненные проекты ООО «Техэкспо»:

Вторая категория надежности электроснабжения потребителей

Ко второй категории снабжения относятся потребители, при отключении питания которых, останавливается работа важных городских систем, на производстве возникает массовый брак продукции, есть риск выхода из строя крупных взаимосвязанных систем, циклов производства.

Помимо предприятий, ко второй категории электроснабжения относятся:

  • Детские учреждения, школы и детские сады (как обычных, так и в сельской местности), ясли.
  • Различные медицинские организации, больницы, аптеки и аптечные пункты.
  • Городские учреждения.
  • Крупные торговые комплексы и спортивные сооружения с большим скоплением людей, например, ледового дворца.
  • Объекты в результате отключения электроэнергии могут привести к аварийной ситуации или подвергать жизнь людей. К ним относится уличное освещение, наружное освещение переездов на железной дороге, заградительных огней при выполнении ремонтных работ, освещение опасных участков автомобильных дорог, автостоянок, аэропорта и т.п.
  • Газовые котельные, узлы учета газа, насосные и перекачивающие станции, которые не относятся в первой категории.

Вторая категория электроснабжения предусматривает питание потребителей от двух независимых источников. Отличие от первой заключается в том, что перерыв в подаче электроэнергии допускается по ПУЭ-7 до двух часов. Это время обусловлено работой ремонтной бригады. Она должна оперативно выехать и произвести переключение с одного источника на другой.

Все работы выполняются вручную. Таким образом, время переключения электроэнергии зависит от действия оперативного дежурного или выездной аварийной бригады. В качестве резервного питания применяют дизельные электростанции. Их целесообразно использовать там, где имеется большое количество людей. Например, для детского сада, храма, для школы, театра, гостиницы.

Для 2 категории мы рекомендуем использовать 1 сетевой ввод и дизельную электростанцию.

При этом ДЭС должна находиться в режиме постоянной готовности («горячий резерв»), рекомендуемая степень автоматизации– третья. Для повышения надёжности системы электроснабжения с использованием резервной ДЭС во время переключения на резерв рекомендуем дополнительно использовать источники бесперебойного питания (ИБП) типа online.

Мы поможем бесплатно определить  мощность и составим смету на дизель-генератор с ИБП:

пришлите запрос на выезд нашего инженера  на ваш объект на order@tech-expo. ru

 

Главные параметры при выборе ДГУ>>>

Технические задания на дизель-генераторные установки: скачать примеры >>>

Как выбрать ИБП мощностью от 30 до 400 кВт для потребителей I и II категорий энергоснабжения>>>

Третья категория электроснабжения потребителей

Третья категория электроснабжения потребителей включает в себя всех оставшихся потребителей, которые не вошли в первые две категории. Это населенные пункты, городские учреждения, системы, перерыв в электроснабжении которых не влечет за собой последствий. Также к данной категории относят многоквартирные жилые дома, частный сектор, дачные и гаражные кооперативы. Потребители третьей категории получают питание от одного источника питания. Перерыв в электроснабжении потребителей данной категории, как правило, не более суток — на время выполнения аварийно-восстановительных работ.

Для I и II категорий надежности допустимое число часов отключения в год и сроки восстановления энергоснабжения определяются сторонами в зависимости от конкретных параметров схемы электроснабжения, наличия резервных источников питания и особенностей технологического процесса потребителя, но не могут быть более соответствующих величин, предусмотренных для III категории надежности, для которой допустимое число часов отключения в год составляет 72 ч (но не более 24 ч подряд, включая срок восстановления энергоснабжения).

 

Классификация зданий и сооружений по категориям надежности электроснабжения согласно СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

5.1 Степень обеспечения надежности электроснабжения электроприемников жилых и общественных зданий отражена в таблице:

5.2 В зданиях, относящихся к III категории по надежности электроснабжения, питающихся по одной линии, резервное питание устройств охранной и пожарной сигнализации следует осуществлять от автономных источников.

5.3 Питание силовых электроприемников и освещения рекомендуется осуществлять от общих трансформаторов.

5.4 В общественных зданиях разрешается размещать встроенные и пристроенные трансформаторные подстанции (ТП), в том числе комплектные трансформаторные подстанции (КТП), при условии соблюдения требований ПУЭ, соответствующих санитарных и противопожарных норм, требований настоящего Свода правил.

В жилых зданиях размещение встроенных и пристроенных подстанций разрешается только с использованием сухих или заполненных негорючим экологически безопасным жидким диэлектриком трансформаторов и при условии соблюдения требований санитарных норм по уровням звукового давления, вибрации, воздействию электрических и магнитных полей вне помещений подстанции.

В спальных корпусах различных учреждений, в школьных и других учебных заведениях сооружение встроенных и пристроенных подстанций не допускается.

5.5 Главные распределительные щиты (ГРЩ) при применении встроенных ТП должны размещаться, как правило, в смежном с трансформаторами помещении.

5.6 Для встроенных ТП, КТП и закрытых распределительных устройств (ЗРУ) напряжением до 10 кВ в дополнение к требованиям 4.2 ПУЭ необходимо предусматривать следующее:

не размещать их под помещениями с мокрыми технологическими процессами, под душевыми, ванными и уборными;

выполнять надежную гидроизоляцию над помещениями ТП, КТП и ЗРУ, исключающую возможность проникания влаги в случае аварии систем отопления, водоснабжения и канализации;

полы камер трансформаторов и ЗРУ напряжением до и выше 1000 В со стороны входов должны быть выше полов примыкающих помещений не менее чем на 10 см. Если вход в ТП предусмотрен снаружи здания, отметка пола помещения ТП должна быть выше отметки земли не менее чем на 30 см. При расстоянии от пола подстанции до пола примыкающих помещений или земли более 40 см для входа следует предусматривать ступени;

устраивать дороги для подъезда автотранспорта к месту расположения подстанции.

5.7 Компоновка и размещение ТП должны предусматривать возможность круглосуточного беспрепятственного доступа в нее персонала эксплуатирующей организации.

5.8 На встроенных ТП и КТП следует устанавливать не более двух масляных или заполненных негорючим экологически безопасным жидким диэлектриком трансформаторов мощностью до 1000 кВ·А каждый. Число сухих трансформаторов не ограничивается, а мощность каждого из них св. 1000 кВ·А не рекомендуется.

5.9 Подстанции с масляными трансформаторами, как правило, должны размещаться на первом этаже или в цокольной части здания (выше уровня планировочной отметки земли). Двери камер трансформаторов должны располагаться на одном из фасадов здания.

5.10 Подстанции с сухими трансформаторами допускается размещать в подвалах при условии:

соблюдения требований 5. 9 настоящего Свода правил;

исключения возможности их затопления грунтовыми и паводковыми водами, а также при авариях систем водоснабжения, отопления и канализации;

обеспечения подъема трансформаторов на поверхность земли с помощью передвижных или стационарных механизмов и устройств;

что расстояние между наружными стенами и стенами подстанции должно быть, как правило, не менее 800 мм. Допускается уменьшение этого расстояния до 200 мм, если обеспечивается требуемая вентиляция пространства между стенами.

При наличии технико-экономических обоснований допускается установка подстанций на верхних этажах здания, если обеспечивается возможность транспортировки трансформаторов. В этом случае отделения помещения подстанции от наружных стен не требуется.

5.11 В ТП, как правило, следует устанавливать силовые трансформаторы с глухозаземленной нейтралью со схемами соединения обмоток «звезда-зигзаг» при мощности до 250 кВ·А и «треугольник-звезда» при мощности 400 кВ·А и более.

5.12 Для включения и отключения намагничивающего тока силовых трансформаторов допускается использовать трехполюсные разъединители.

5.13 Место установки устройства АВР (централизованно на вводах в здание или децентрализованно у электроприемников I категории по надежности электроснабжения) выбирается в проекте в зависимости от их взаимного расположения, условий эксплуатации и способов прокладки питающих линий до удаленных электроприемников.

При наличии АВР на стороне низшего напряжения встроенной ТП установка его на ГРЩ, расположенном в смежном с ТП помещении, не требуется.

В случае, когда электроприемники 1-й категории не могут быть запитаны от двух независимых источников, должно быть осуществлено технологическое резервирование, включаемое автоматически.

Как выбрать ДГУ

Часто производители хитрят и мощность указывают в кВА, и притом не номинальную, а резервную (на ней ДГУ может работать не более не более 500 часов в год). Все дизель-генераторные установки имеет два значения мощности: PRP, Prime Power (основная мощность) и LTP, Limited Time Power (резервная мощность, ограниченная по времени). Важно учитывать: ДГУ должна работать в постоянном режиме с нагрузкой не менее 40% и не более 80% своей номинальной мощности. Если ДГУ нужна вам на объектах, где есть насосы, роторы, лебедки – то надо заложить высокие пусковые токи (в 5-7 раз выше потребляемой мощности).

Выберите нужную вам мощность

Крутите ползунок для выбора другой мощности

Подключение по 1, 2 и 3 категории надежности электроснабжения |

  • Главная
  • Подключение по 1, 2 и 3 категории надежности электроснабжения

Компания E-profy предлагает профессиональные услуги по организации технологического присоединения к электрическим сетям по первой, второй и третьей категории надежности электроснабжения электроприемников.

Осуществим:


Бесплатный осмотр объекта


Оценку величины нужной электрической мощности


Оценку нужной категории надежности электроснабжения


Организацию «под ключ» присоединения по первой, второй и третьей категории надежности электроснабжения

Имеем опыт:


Обеспечить вторую категорию — дизелем / газогенератором


Согласовать и получить допуск в Кабельные Сети Ленэнерго и РосТехНадзоре (РТН) для дизельной установки / газогенератора


Создать источник питания второй категории — из объектов электросетевого хозяйства сетевой компании третьей категории надежности электроснабжения

Преимущества присоединения к электросетям с E-profy

Звоните +7 (812) 424-34-62 или закажите обратный звонок:

Информация по категориям надежности электроснабжения

Согласно правилам технологического присоединения к электрическим сетям (ПП РФ №861 от 27. 12.2004) и Правилам устройства электроустановок (ПУЭ), категория надежности электроснабжения электроприемников потребителей определяется в процессе технологического присоединения энергопринимающих устройств к электрическим сетям. При этом потребитель самостоятельно определяется с необходимой категорией надежности:

Категории надежности электроснабжения



Первая (особая) категорияВторая категорияТретья категория
Данная группа не допускает перерыва в электроснабжении, поскольку он может привести к тяжелым последствиям, как то:

  • Угроза жизни и здоровья людей
  • Брак производства
  • Поломка дорогостоящего оборудования
  • Загрязнение окружающей среды
  • и пр.

Для электроснабжения потребителей 1 категории устанавливается АВР, который обеспечивает переключение между двумя вводам в автоматическом режиме (в соответствии с п. 1.2.19 ПУЭ).

Потребители первой категории классифицируются таковыми в соответствии с п. 1.2.18 ПУЭ (пожарная сигнализация, аварийное освещение, противопожарная вентиляция).

Данная группа допускает перерывы в электроснабжении для ручного ввода резервного питания или для выезда ремонтной бригады. Остановка энергоснабжения данной группы может повлечь:

  • Простои рабочих и техники

  • Недовыпуск продукции

  • Остановку электротранспорта

  • и пр.


Группа 2-й категории является самой многочисленной для отраслей промышленности.

В данную группу вошли все остальные электроприемники, которые не попали ни в первую, ни во вторую категории. Данная группа допускает перерыв в электроснабжении на время, необходимое для произведение ремонта (замены) электрооборудования, но не более суток.

Выбор категории надежности электроснабжения: 2 или 3 категория?






Категория надежностиВтораяТретья
Согласования и документы

  • Сдача электроустановки инспектору Ростехнадзора и получение Акта допуска электроустановки в эксплуатацию

  • Согласование проекта электроснабжения в сетевой компании (необходимо в случае присоединения свыше 150 кВт по 3й категории), либо любой мощности по 2й категории энергоснабжения)

  • Сдача электорустановки инспектору сетевой компании (ПАО Ленэнерго и др)

  • Акт допуска Ростехнадзора не требуется до 150 кВт (в случае 150 кВт можно также обойтись уведомлением Ростехнадзора. Свыше 630 — обязательно согласование РТН)
Строительно-монтажные работы

  • Два независимых источника питания

  • Две и более питающих кабельных линии

  • Два счетчика и два перекидных рубильника в ВРУ. Схема «крест»

  • Две распределительных панели в ВРУ

  • Один источник питания

Не допустите ошибок

При выборе категории надежности электроснабжения — принципиально важно правильно определиться с величиной запрашиваемой мощности и категорией надежности электрооборудования.

Ошибки на данном этапе влекут значительные финансовые и временные потери. Изменить категорию надежности возможно не всегда.
Обратитесь к профессионалам!

Обратите внимание

VIII.

Обеспечение надежности снабжения потребителей электрической энергией и ее качества / КонсультантПлюс

VIII. Обеспечение надежности снабжения

потребителей электрической энергией и ее качества

112. Качество электрической энергии обеспечивается совместными действиями субъектов электроэнергетики, обеспечивающих снабжение электрической энергией потребителей, в том числе гарантирующих поставщиков, энергосбытовых организаций, энергоснабжающих организаций, сетевых организаций, системного оператора и иных субъектов оперативно-диспетчерского управления, а также производителей (поставщиков) электрической энергии во исполнение своих обязательств по договорам на оптовом и розничных рынках электрической энергии. Указанные субъекты отвечают перед потребителями за неисполнение или ненадлежащее исполнение обязательств по соответствующим договорам, в том числе за надежность снабжения их электрической энергией и ее качество в соответствии с техническими регламентами и иными обязательными требованиями.

113. В договорах оказания услуг по передаче электрической энергии и энергоснабжения определяется категория надежности снабжения потребителя электрической энергией (далее — категория надежности), обусловливающая содержание обязательств по обеспечению надежности снабжения электрической энергией соответствующего потребителя, в том числе:

допустимое число часов отключения в год, не связанного с неисполнением потребителем обязательств по соответствующим договорам и их расторжением, а также с обстоятельствами непреодолимой силы и иными основаниями, исключающими ответственность гарантирующих поставщиков, энергоснабжающих, энергосбытовых и сетевых организаций и иных субъектов электроэнергетики перед потребителем в соответствии с законодательством Российской Федерации и условиями договоров;

срок восстановления энергоснабжения.

Первой категорией надежности предусматривается необходимость обеспечения беспрерывного режима работы энергопринимающих устройств, перерыв снабжения электрической энергией которых может повлечь угрозу жизни и здоровью людей, угрозу безопасности государства, значительный материальный ущерб.

Условиями второй категории надежности предусматривается необходимость обеспечения надежного функционирования энергопринимающих устройств, перерыв снабжения электрической энергией которых приводит к недопустимым нарушениям технологических процессов производства.

Энергоснабжение потребителей, не отнесенных к первой или второй категориям надежности, осуществляется по третьей категории надежности.

Для первой и второй категорий надежности допустимое число часов отключения в год и сроки восстановления энергоснабжения определяются сторонами в зависимости от конкретных параметров схемы электроснабжения, наличия резервных источников питания и особенностей технологического процесса потребителя, но не могут быть более соответствующих величин, предусмотренных для третьей категории надежности.

Для третьей категории надежности допустимое число часов отключения в год составляет 72 часа, но не более 24 часов подряд, включая срок восстановления энергоснабжения, за исключением случаев, когда для производства ремонта объектов электросетевого хозяйства необходимы более длительные сроки, согласованные с федеральным органом исполнительной власти по государственному энергетическому надзору.

Резервный источник снабжения электрической энергией в случае, если условием договора о первой или второй категории надежности предусмотрено его наличие, устанавливается потребителем и поддерживается в состоянии готовности к использованию при возникновении отключений или введении ограничения потребления электрической энергии. В случае невыполнения потребителем указанного требования резервный источник снабжения электрической энергией устанавливается и обслуживается сетевой организацией за счет соответствующего потребителя, а в случае возникновения отключений подачи электрической энергии вследствие повреждения оборудования, в том числе в результате стихийных бедствий, а также вследствие необходимости отключения подачи электрической энергии с целью устранения угрозы жизни и здоровью людей (далее — внерегламентные отключения) до установки такого резервного источника сетевая организация не несет ответственности за нарушение условия о категории надежности по договору.

114. В случае если договором энергоснабжения или иным договором предусмотрены обязательства гарантирующего поставщика (энергосбытовой организации) урегулировать отношения, связанные с передачей электрической энергии и оперативно-диспетчерским управлением, гарантирующий поставщик (энергосбытовая организация) несет ответственность перед потребителями за неисполнение (ненадлежащее исполнение) соответствующих обязательств по указанному договору, в том числе за действия (бездействие) третьих лиц, на которых было возложено их исполнение.

В случае если энергопринимающие устройства потребителя присоединены к сетям сетевой организации через энергопринимающие устройства (энергетические установки) лиц, не оказывающих услуги по передаче, либо к бесхозяйным объектам электросетевого хозяйства, гарантирующий поставщик (энергосбытовая организация) и (или) сетевая организация несут ответственность перед потребителем за надежность снабжения его электрической энергией и ее качество в пределах границ балансовой принадлежности объектов электросетевого хозяйства сетевой организации. Лицо, владеющее энергопринимающим устройством (энергетической установкой), либо лицо, назначенное уполномоченным органом местного самоуправления для управления бесхозяйными объектами электросетевого хозяйства до перехода к нему права собственности на указанные объекты в установленном законодательством Российской Федерации порядке, отвечает за надежность обеспечения таких потребителей электрической энергией и ее качество в пределах своих границ эксплуатационной ответственности, определенных в соответствующем договоре. В случае если границы эксплуатационной ответственности не определены, указанные лица отвечают за надежность снабжения потребителей электрической энергией и ее качество в пределах своих границ балансовой принадлежности объектов электросетевого хозяйства.

Если потребитель самостоятельно урегулировал отношения, связанные с оперативно-диспетчерским управлением и (или) передачей электрической энергии, с сетевой организацией, гарантирующий поставщик (энергосбытовая организация), обслуживающий этого потребителя, не несет ответственности за ненадлежащее предоставление и качество соответствующих услуг и не участвует в отношениях, связанных с их оплатой.

115. В случаях ограничения режима потребления электрической энергии сверх сроков, определенных категорией надежности снабжения, установленной в соответствующих договорах, нарушения установленного порядка полного и (или) частичного ограничения режима потребления электрической энергии, а также отклонений показателей качества электрической энергии сверх величин, установленных техническими регламентами и иными обязательными требованиями, лица, не исполнившие обязательства, несут предусмотренную законодательством Российской Федерации и договорами ответственность. Ответственность за нарушение таких обязательств перед гражданами-потребителями определяется в том числе в соответствии с жилищным законодательством Российской Федерации.

116. К действиям потребителей, являющимся в соответствии с законодательством Российской Федерации основанием, исключающим ответственность должника или снижающим размер его ответственности, в целях настоящего документа приравниваются действия лиц (в частности, членов семьи потребителя и иных проживающих вместе с ним лиц, работников потребителя), которые в силу родственных, трудовых или иных отношений с потребителем имеют равные права по использованию электрической энергии и (или) исполняют его обязательства по соответствующим договорам.

Потребители с максимальной мощностью не менее 670 кВт (почасовой учет)

С 1 июля 2013 г. в отношении потребителей, максимальная мощность энергопринимающих устройств которых в границах балансовой принадлежности составляет не менее 670 кВт в соответствии с п. 97 «Основных положений функционирования розничных рынков электрической энергии», утв. постановлением Правительства РФ № 442 от 04.05.2012 г. (далее – Положения) выбор ценовой категории осуществляется только между 3-6 ценовой категорией. При этом данные ценовые категории предполагают обязательное наличие почасового учета. Если потребитель не выбрал ценовую категорию (между 3-6), то он автоматически с 1 июля 2013 г. попадает в 3 или 4 ценовую категорию. Таким образом, в отношении потребителей, максимальная мощность которых равна или более 670 кВт ценовая категория выбирается с 1 июля 2013г. без возможности выбора и применения первой и второй ценовых категорий.

Потребители с максимальной мощностью не менее 670 кВт осуществляют выбор ценовой категории самостоятельно посредством уведомления гарантирующего поставщика в течение 1 месяца с даты принятия решения об установлении тарифов на услуги по передаче электрической энергии в соответствующем субъекте Российской Федерации (при этом выбранная ценовая категория применяется для расчетов за электрическую энергию (мощность) с даты введения в действие указанных тарифов на услуги по передаче электрической энергии) и имеют право выбрать:

  • третью ценовую категорию — в случае, если энергопринимающие устройства, в отношении которых приобретается электрическая энергия (мощность), оборудованы приборами учета, позволяющими измерять почасовые объемы потребления электрической энергии, при условии выбора одноставочного варианта тарифа на услуги по передаче электрической энергии;
  • четвертую ценовую категорию — в случае, если энергопринимающие устройства, в отношении которых приобретается электрическая энергия (мощность), оборудованы приборами учета, позволяющими измерять почасовые объемы потребления электрической энергии, при условии выбора двухставочного варианта тарифа на услуги по передаче электрической энергии или осуществления расчетов по двухставочному варианту тарифа на услуги по передаче электрической энергии без выбора варианта тарифа на услуги по передаче электрической энергии;
  • пятую ценовую категорию — в случае, если энергопринимающие устройства, в отношении которых приобретается электрическая энергия (мощность), оборудованы приборами учета, позволяющими измерять почасовые объемы потребления электрической энергии, при условии выбора одноставочного варианта тарифа на услуги по передаче электрической энергии и включения в договор энергоснабжения (купли-продажи (поставки) электрической энергии (мощности)) условия о планировании объемов потребления электрической энергии по часам суток;
  • шестую ценовую категорию — в случае, если энергопринимающие устройства, в отношении которых приобретается электрическая энергия (мощность), оборудованы приборами учета, позволяющими измерять почасовые объемы потребления электрической энергии, при условии выбора двухставочного варианта тарифа на услуги по передаче электрической энергии или осуществления расчетов по двухставочному варианту тарифа на услуги по передаче электрической энергии без выбора варианта тарифа на услуги по передаче электрической энергии, а также при включении в договор энергоснабжения (купли-продажи (поставки) электрической энергии (мощности)) условия о планировании объемов потребления электрической энергии по часам суток.

При этом в случае отсутствия уведомления о выборе ценовой категорий применяется третья ценовая категория (для случая применения одноставочного тарифа на услуги по передаче электрической энергии) или четвертая ценовая категория (для случая применения двухставочного тарифа на услуги по передаче электрической энергии).

Изменение ценовой категории, осуществляется путем направления уведомления гарантирующему поставщику за 10 рабочих дней до начала расчетного периода, с которого предполагается изменить ценовую категорию. При этом изменение уже выбранного на текущий период регулирования (расчетный период регулирования в пределах долгосрочного периода регулирования в соответствии с Основами ценообразования в области регулируемых цен (тарифов) в электроэнергетике (далее –Основы ценообразования) варианта расчета за услуги по передаче электрической энергии не допускается, если иное не предусмотрено Положением, а также Основами ценообразования.

Так как действующим законодательством РФ для потребителей третьей-шестой ценовой категории (с максимальной мощностью не менее 670 кВт) предусмотрена обязательная двухставочная цена (оплата за электрическую энергию и мощность), то данным потребителям необходимо наличие почасового учета.

Также в соответствии с п. 139 Положений для учета электрической энергии потребителям с максимальной мощностью не менее 670 кВт подлежат использованию приборы учета классом точности 0,5S и выше, а также обеспечивающее хранение данных о почасовых объемах потребления электрической энергии за последние 120 дней и более. При этом, в соответствии с п. 143 Положений, если у потребители несколько точек поставки, то все эти точки поставки должны быть оборудованы приборами учета, позволяющими измерять почасовые объемы потребления электроэнергии.

Для получения более подробной информации об изменениях в действующем законодательстве в сфере электроэнергетики, потребитель можно обращаться в отдел розничного рынка ОАО «Мордовская энергосбытовая компания», контактные телефоны: 8(8342) 23-24-45.

Цепи питания

| Практические аналоговые полупроводниковые схемы

Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и импульсный . Четвертый тип схемы источника питания, называемый с регулируемой пульсацией , представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.

Нерегулируемый

Нерегулируемый источник питания — это самый примитивный тип, состоящий из трансформатора , выпрямителя и фильтра нижних частот .Эти источники питания обычно демонстрируют большое количество пульсаций напряжения (то есть быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока. Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.

линейно регулируемый

Линейный регулируемый источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название линейный стабилизатор . (В ретроспективе это очевидно, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение для нагрузки. Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы.Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности минимум от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, генерируя много тепла. Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.

Переключение

Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение).Импульсные источники питания работают по принципу выпрямления входящего напряжения сети переменного тока в постоянное, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого веса. трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует его для конечного выхода. Регулировка напряжения достигается путем изменения «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. Помимо меньшего веса из-за меньшего размера сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество перед двумя предыдущими конструкциями: этот источник питания типа может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в России. мир; они называются «универсальными» источниками питания.Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотных «шумов» переменного тока в линии электропередачи. Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; Такие бюджетные коммутаторы не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности. Дорогие переключатели не имеют пульсаций и имеют почти такой же низкий уровень шума, как и некоторые линейные переключатели; эти переключатели обычно столь же дороги, как и линейные источники питания. Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность. Высокая эффективность, легкий вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.

Регулируемая пульсация

Источник питания с пульсирующим регулированием является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режиме выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высокой и низкой уставкой.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, частота пульсаций напряжения изменяется в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.Цепи стабилизатора пульсаций, как правило, немного проще схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Общие сведения о категориях перенапряжения IEC | CUI Inc

Обеспечение того, чтобы оборудование, подключенное к высоковольтным источникам питания, обладало соответствующей способностью выдерживать перенапряжение в соответствии со спецификациями IEC, жизненно важно для соответствия отраслевым требованиям безопасности.

Повышенное напряжение и безопасность

Переходные процессы перенапряжения на линиях электропередач могут повредить подключенное к ним оборудование, вызывая отказы, которые не только неудобны и дороги, но также могут подвергать опасности пользователей. Чтобы спроектировать электрическое оборудование, способное выдерживать вероятные переходные процессы, чтобы гарантировать надежность и безопасность, инженеры должны быть знакомы с категориями перенапряжения (также известными как категории установки), определенными IEC.

Определены четыре категории перенапряжения:

  • Категория I является самой низкой категорией перенапряжения и применяется к цепям, которые содержат меры по ограничению переходных процессов перенапряжения до низкого уровня.
  • Категория II описывает переходные процессы, которые могут быть применены к оборудованию, питаемому от стационарной установки. Например, в домашних условиях приборы, предназначенные для подключения к розеткам в доме, такие как электроинструменты, телевизоры и т. Д., Должны выдерживать перенапряжение категории II.
  • Категория III применяется к оборудованию внутри стационарной установки, например выключателям на панели плавких предохранителей в быту, или оборудованию, постоянно подключенному к стационарной установке, например, кондиционерам или промышленному оборудованию, жестко подключенному к источнику переменного тока.
  • Категория IV является высшей категорией перенапряжения и применяется к оборудованию, используемому в исходной установке; то есть подключены непосредственно к электросети. Примерами являются распределительные панели, трансформаторы для коммунальных служб и счетчики.

Схема ниже помогает разместить эти категории в контексте.

Рис. 1: Потребительские приложения обычно относятся к категории I – III

В категории IV ожидаются большие переходные процессы напряжения. С другой стороны, переходные процессы, наблюдаемые оборудованием категории III, уменьшаются из-за полного сопротивления проводки и воздействия предохранителей и автоматических выключателей, присутствующих в системе.

В случае категории II, которая применяется к стороне потребителя стационарной установки, переходные напряжения ниже, чем в категории III из-за дополнительного импеданса цепей проводки. Сетевые розетки обычно относятся к источникам категории II благодаря свойствам подавления переходных процессов инфраструктуры распределения электроэнергии в здании. Пределы категории II также применяются к оборудованию, такому как выключатели света, расположенному на расстоянии более 10 метров от источника категории III.

В таблице 1 приведены требования к перенапряжению, которые применяются к оборудованию различных категорий в зависимости от рабочего или номинального напряжения. Обратите внимание, что интерполяция номинального напряжения не допускается. Следовательно, оборудование, которое будет работать при 250 В в приложении категории II, должно быть рассчитано на переходные перенапряжения до 2500 В.

Допустимое переходное напряжение
50 330 500 800
100 500 800 1500
150 800 1500 2500
300 1500 2500 4000
600 2500 4000 6000
1000 4000 6000 8000

Таблица 1: Категории перенапряжения, определенные в IEC

Эти категории перенапряжения упоминаются в различных стандартах безопасности оборудования, включая (но не ограничиваясь) IEC 60664-1, в котором описаны требования к изоляции для оборудования с номинальным напряжением до 1000 В пер. ; IEC 60209-1, стандарт безопасности для преобразователей солнечной энергии; IEC 60204-1, охватывающий безопасность машин; и IEC 61010-1, который охватывает электрическое оборудование для таких целей, как испытательное и измерительное, технологическое и лабораторное оборудование.

Конструкция соответствует стандартам безопасности

Ключевые аспекты конструкции оборудования, которые влияют на способность к перенапряжению, включают номинальное напряжение защитной изоляции, изоляцию, обеспечиваемую электрическими компонентами, такими как трансформаторы и оптические изоляторы, пути утечки и зазоры, а также поперечные сечения кабелей и межсоединений. Разработчики должны обращать на это внимание, чтобы достичь требуемых возможностей, как часть обеспечения общего соответствия применимому стандарту безопасности.

Если оборудование будет спроектировано с использованием стандартного источника питания, важно проверить категорию перенапряжения при выборе подходящего блока питания. Только источник питания категории III можно подключать напрямую к источнику категории III. Однако оборудование, спроектированное с источником питания категории II, может питаться от источника категории III, если соответствующий изолирующий трансформатор подключен между источником и входом источника питания.

Источник питания категории II можно подключать напрямую к источнику категории II, например к сетевой розетке.Вы можете подключить источник питания категории III, если важна высокая надежность или доступность подключенного оборудования. С другой стороны, для подключения оборудования категории I к розетке требуется дополнительная защита. Это может быть изолирующий трансформатор, как и раньше, или источник питания, предназначенный для подавления переходных процессов категории II.

Выбор источника питания

CUI имеет ряд стандартных источников питания для приложений категории II и категории III. Стандартные внутренние источники питания переменного / постоянного тока, такие как серия VGS-100W, предназначены для приложений категории II. Такие серии, как VGS-100D, рассчитаны на более высокие входные перенапряжения для использования в стационарных установках категории III. Обе серии обладают прочными конструктивными особенностями, со встроенной защитой от перенапряжения, короткого замыкания и перегрузки по току, широким диапазоном входного напряжения до 305 В переменного тока и общим сертификатом безопасности IEC / EN / UL 62368. Агрегаты также соответствуют требованиям IEC / EN 61558 для источников питания и трансформаторов и IEC / EN 60335 для бытовых приборов.

Категории:
Безопасность и соответствие

Вам также может понравиться



У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?

Отправьте нам письмо по адресу powerblog @ cui. ком

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ

Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания — обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — на широкий диапазон нагрузок, иногда одновременно, и все это без изменения входного напряжения или других подключенных устройств, влияющих на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все блоки питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного / постоянного тока. Постоянный ток — предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток — это метод, используемый для подачи электроэнергии по линиям электропередачи в дома и предприятия

Следовательно, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего из электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения о переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока — синусоида (см. Рисунок 1) . `

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны может достигать
  • Частота: количество циклов, выполняемых волной в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: определяется как квадратный корень из среднего значения за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью Уравнение (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$

  • Он также может быть определен как эквивалентная мощность постоянного тока, необходимая для достижения такого же теплового эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками на 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, на 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же время, когда другая достигает своего отрицательного пика, тогда первая волна будет под углом 90 °, а вторая волна будет под углом 270 °; это означает, что разность фаз составляет 180 °. Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) — это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электричество необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное напряжение переменного тока выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества сигнала (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционная конструкция линейного источника питания переменного / постоянного тока развивалась с годами, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает миниатюризацию этих источников питания практически невозможной.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка напряжения большой мощности.

В линейном блоке питания переменного / постоянного тока используются линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Блоки питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными блоками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в последовательность высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного / постоянного тока могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока — вот причина, по которой теперь мы можем преобразовывать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который поместится у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы

Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что значительно увеличивает размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку они ведут себя как малые сопротивления. Это обеспечивает эффективных мощных приложений .
Шум Нерегулируемые источники питания могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это можно либо отфильтровать, либо частоту переключения можно сделать чрезвычайно высокой, выше предела человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых несет переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Этот тип источника питания используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузки и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями — возможность добавить нейтральный провод (см. Рисунок 5) .

Соединения

Delta обеспечивают большую надежность, но соединения Y могут обеспечивать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Следовательно, конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверять диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

Действующее значение (AC) Напряжение Пиковое напряжение Частота Регион
230 В 310V 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170V 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в своей национальной сети из-за того, что она была электрифицирована в конце 19 века. В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день в Японии все еще есть две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать намного больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним силовым преобразователем переменного / постоянного тока автомобиля (также называемым бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный внешне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока — преобразовать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем можно использовать для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока — непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, поскольку в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создавать мощные блоки питания переменного / постоянного тока размером с ладонь.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Статьи по теме

Чему о синхронных выпрямителях не говорят в школе — Избранные темы из реальных проектов

MX204 Система питания переменного тока | Руководство по аппаратному обеспечению универсальной платформы маршрутизации MX204

MX204 питается от источника переменного или постоянного тока.
Он поддерживает два модуля питания (PSM), расположенных на задней панели
шасси в слотах 0 и 1.На рисунках 1 и 2 показаны модули PSM MX204. AC или DC
модули питания подключаются непосредственно к основной плате и размещаются
на правой стороне заднего шасси. У каждого блока питания есть ручка,
рычаг выталкивателя и светодиоды состояния. Модули питания подключаются
к плате PSM, которая распределяет различные выходные напряжения
производится модулями питания к компонентам роутера, в зависимости от
на их требования к напряжению. Когда оба модуля питания
присутствуют, они почти поровну делят власть в полностью населенном
система.При выходе из строя первого блока питания в конфигурации с резервированием
или удален, второй блок питания принимает на себя всю электрическую
загружать без перебоев. Один блок питания обеспечивает максимум
конфигурация с полной мощностью, пока маршрутизатор находится в рабочем состоянии.
Второй источник питания может быть установлен для резервирования. Шасси
разработан для поддержки резервирования подачи 1 + 1.

Блок питания с резервированием поддерживает горячую замену и горячую вставку.
Если вы отключите блок питания от маршрутизатора, который использует только один источник питания
питания, затем маршрутизатор отключается.

ВНИМАНИЕ:

Не используйте одновременно модули питания постоянного и переменного тока.
шасси.

Примечание. Маршрутизаторы

, сконфигурированные только с одним источником питания, поставляются.
с заглушкой, установленной над слотом блока питания, который не
заселен.

Модули питания охлаждаются собственным внутренним охлаждением.
система. Вентилятор, установленный в модуле питания, контролирует и поддерживает
температура внутри.

Описание источника питания переменного тока

Каждый источник питания переменного тока весит примерно 2 штуки.2 фунта (1 кг)
и состоит из ручки, рычага выталкивателя, входного патрубка переменного тока,
вентилятор и светодиоды состояния для контроля состояния источника питания. На рисунке 1 показан блок питания переменного тока.

Для каждого входа требуется отдельный источник питания переменного тока и выделенный
автоматический выключатель на объекте заказчика. Мы рекомендуем использовать минимум
20 А (110 В переменного тока) или 16 А (220 В переменного тока) на месте заказчика
автоматический выключатель или в соответствии с местными нормативами.

Предупреждение:

Маршрутизатор представляет собой подключаемое оборудование типа А, установленное в зоне ограниченного доступа.
место расположения. Имеет отдельный зажим защитного заземления (рассчитанный на
10–32 винта) на корпусе в дополнение к заземлению.
штифт шнура питания. Эта отдельная клемма защитного заземления
должен быть постоянно заземлен.

Рисунок 1: Источник питания переменного тока

Описание блока питания постоянного тока

Каждый блок питания постоянного тока весит приблизительно 2,2 фунта (1 кг)
и состоит из ручки, рычага выброса, светодиодов состояния и терминала.
блок, который обеспечивает один вход постоянного тока (–48 В постоянного тока и возврат), который
требуется специальный автоматический выключатель на объекте заказчика.Мы рекомендуем
вы используете специальный автоматический выключатель на 25 А, устанавливаемый заказчиком.
(–48 В постоянного тока) минимум или в соответствии с местными правилами.

На рисунке 2 показан источник питания постоянного тока.

Рисунок 2: Источник питания постоянного тока

Управление источниками питания — принципы, проблемы и детали

Введение

Разработчики источников питания используют гибкие схемы контроля, последовательности и настройки питания для управления своими системами. В этой статье рассказывается, почему и как.

Мониторинг и управление растущим числом шин напряжения питания были жизненно важны для безопасности, экономии, долговечности и правильной работы электронных систем в течение многих лет, особенно для систем, использующих микропроцессоры.Определение того, находится ли шина напряжения выше порогового значения или в пределах рабочего окна, а также включается или выключается это напряжение в правильной последовательности по отношению к другим шинам, имеет решающее значение для эксплуатационной надежности и безопасности.

Существует множество методов для решения различных аспектов этой проблемы. Например, простая схема, использующая прецизионный резистивный делитель, компаратор и эталон, может использоваться для определения того, находится ли напряжение на шине выше или ниже определенного уровня. В генераторах сброса , таких как ADM803, эти элементы объединены с элементом задержки для удержания устройств, таких как микропроцессоры, специализированные ИС (ASIC) и процессоры цифровых сигналов (DSP), в сброс при включении питания . Этот уровень мониторинга подходит для многих приложений.

Там, где необходимо контролировать несколько шин, несколько устройств (или многоканальных компараторов и связанных с ними схем) используются параллельно, но увеличивающиеся возможности требуют мониторинга ИС, которые делают больше, чем простое сравнение пороговых значений.

Например, рассмотрим общее требование для последовательности источников питания: производитель FPGA (программируемой вентильной матрицы) может указать, что напряжение ядра 3,3 В должно подаваться за 20 мс до 5-VI / O (вход / выход ) напряжения, чтобы избежать возможных повреждений при включении устройства.Выполнение таких требований к последовательности может иметь такое же решающее значение для надежности, как и поддержание напряжения питания и температуры устройства в заданных рабочих пределах.

Также резко увеличилось количество шин питания во многих приложениях. Сложные дорогие системы, такие как коммутаторы LAN и базовые станции сотовой связи, обычно имеют линейные карты с 10 или более шинами напряжения; но даже чувствительные к стоимости потребительские системы, такие как плазменные телевизоры, могут иметь до 15 отдельных шин напряжения, многие из которых могут требовать контроля и определения последовательности.

Многие высокопроизводительные ИС теперь требуют нескольких напряжений. Например, раздельное напряжение ядра и ввода / вывода является стандартным для многих устройств. В конце концов, DSP может потребовать до четырех отдельных источников питания на устройство. Во многих случаях множество устройств с несколькими источниками питания могут сосуществовать в одной системе, содержащей FPGA, ASIC, DSP, микропроцессоры и микроконтроллеры (а также аналоговые компоненты).

Многие устройства используют стандартные уровни напряжения (например, 3,3 В), в то время как другим может потребоваться напряжение, зависящее от устройства.Кроме того, может потребоваться независимая установка определенного стандартного уровня напряжения во многих местах. Например, могут потребоваться отдельные аналоговые и цифровые источники питания, такие как 3,3 В ANALOG и 3,3 В DIGITAL . Многократная генерация одного и того же напряжения может потребоваться для повышения эффективности (например, шины памяти, работающие на сотни ампер) или для удовлетворения требований к последовательности (3,3 В A и 3,3 В B необходимы отдельным устройствам в разное время). Все эти факторы способствуют распространению источников напряжения.

Мониторинг и последовательность напряжения могут стать довольно сложными, особенно если система должна быть спроектирована так, чтобы поддерживать последовательность включения питания, последовательность отключения питания и множественные реакции на все возможные неисправности на различных шинах питания в разных точках во время работы. Центральный контроллер управления питанием — лучший способ решить эту проблему.

По мере увеличения напряжения питания возрастает вероятность того, что что-то пойдет не так.Риск увеличивается пропорционально количеству расходных материалов, количеству элементов и сложности системы. Внешние факторы также увеличивают риск. Если, например, основная ASIC не полностью охарактеризована во время первоначального проектирования, разработчик источника питания должен взять на себя обязательство установить пороговые значения для контроля напряжения и временные последовательности, которые могут изменяться по мере разработки спецификаций ASIC. Если требования изменятся, возможно, придется пересмотреть печатную плату — с очевидными последствиями для графика и затрат.Кроме того, спецификации напряжения питания для некоторых устройств могут изменяться в процессе разработки. В таких обстоятельствах способ быстрой регулировки источников питания был бы полезен любому центральному администратору системы электропитания. Фактически, гибкость в отслеживании, последовательности и настройке шин напряжения в таких системах является жизненно важной необходимостью.

Оценка устойчивости выбранной защиты от сбоев и временной последовательности может быть значительной задачей, поэтому устройство, упрощающее этот процесс, ускорит оценку платы и сократит время вывода на рынок.Регистрация неисправностей и оцифрованные данные о напряжении и температуре являются полезными функциями как в полевых условиях, так и на всех этапах проектирования от ранней разработки печатной платы до оценки прототипа.

Базовый мониторинг

На рисунке 1 показан простой метод мониторинга нескольких шин напряжения с использованием компаратора ADCMP354 и эталонной ИС. Для каждой рейки используется индивидуальная схема. Резистивные делители уменьшают напряжение, устанавливая точку срабатывания при пониженном напряжении для каждого источника питания. Все выходы связаны вместе для генерации общего сигнала power-good .

Рис. 1. Обнаружение пониженного напряжения на основе компаратора с общим выходом «power-good» для системы с тремя источниками питания.

Базовая последовательность операций

На рисунке 2 показано, как можно реализовать базовую последовательность операций с дискретными компонентами, используя логические пороги вместо компараторов. Шины 12 В и 5 В были созданы в другом месте. Необходимо ввести временную задержку, чтобы гарантировать правильную работу системы. Это достигается за счет использования комбинации резистор-конденсатор (RC) для медленного увеличения напряжения затвора на n-канальном полевом транзисторе последовательно с источником питания 5 В.Значения RC выбираются таким образом, чтобы обеспечить достаточную временную задержку до того, как полевой транзистор достигнет порогового значения напряжения и начнет включаться. Шины 3,3 В и 1,8 В генерируются регуляторами с малым падением напряжения (LDO) ADP3330 и ADP3333. Время включения этих напряжений также определяется RC-цепочками. Никаких серийных полевых транзисторов не требуется, поскольку RC управляет выводом выключения (/ SD) каждого LDO. Значения RC выбраны для обеспечения достаточных временных задержек ( t 2 , t 3 ) до того, как напряжение на выводах / SD поднимется выше их пороговых значений.

Рисунок 2. Базовая дискретная последовательность для системы с четырьмя источниками питания.

Этот простой и недорогой подход к упорядочиванию источников питания требует небольшой площади на плате и вполне приемлем во многих приложениях. Он подходит для систем, в которых стоимость является основным фактором, требования к последовательности просты, а точность схемы последовательности не является критичной.

Но во многих ситуациях требуется более высокая точность, чем это доступно для цепей запаздывания RC. Кроме того, это простое решение не позволяет устранять неисправности структурированным образом (например,(например, сбой питания 5 В в конечном итоге приведет к выходу из строя других шин).

Секвенирование с помощью ИС

На рис. 3 показано, как микросхемы упорядочивания питания ADM6820 и ADM1086 могут использоваться для точного и надежного упорядочивания шин питания в аналогичной системе. Внутренние компараторы обнаруживают, когда напряжение на шине превышает точно установленный уровень. Выходы утверждаются после программируемых задержек включения, что позволяет регуляторам ADP3309 и ADP3335 в желаемой последовательности. Пороги устанавливаются соотношениями сопротивлений; задержка устанавливается конденсатором.

Рисунок 3. Последовательность работы системы с четырьмя источниками питания с ИС мониторинга.

Доступен широкий спектр ИС для упорядочивания источников питания. Некоторые устройства имеют выходы, которые можно использовать для непосредственного включения силовых модулей, и доступны многочисленные конфигурации выходов. Некоторые из них включают в себя встроенные генераторы напряжения с накачкой заряда . Это особенно полезно для низковольтных систем, которым необходимо упорядочить шины, которые генерируются в восходящем направлении, но не имеют источника высокого напряжения, такого как шина 12 В, для управления затвором полевого транзистора n .Многие из этих устройств также имеют разрешающие контакты, чтобы разрешить внешний сигнал — от кнопочного переключателя или контроллера — для перезапуска последовательности или отключения управляемых направляющих, когда это необходимо.

Интегрированное управление энергосистемой

В некоторых системах так много шин питания, что дискретные подходы, использующие большое количество ИС и устанавливающие временные и пороговые уровни с помощью резисторов и конденсаторов, становятся слишком сложными и дорогостоящими и не могут обеспечить адекватную производительность.

Рассмотрим систему с восемью шинами напряжения, для которой требуется сложная последовательность включения питания. Каждую рейку необходимо контролировать на предмет повреждений при пониженном и повышенном напряжении. В случае неисправности все напряжения могут быть отключены, или может быть инициирована последовательность отключения питания, в зависимости от механизма отказа. Действия должны выполняться в зависимости от состояния сигналов управления, а флаги должны генерироваться в зависимости от состояния источников питания. Реализация схемы такой сложности с дискретными устройствами и простыми ИС может потребовать сотен отдельных компонентов, огромного пространства на плате и значительных совокупных затрат.

В системах с четырьмя или более напряжениями может иметь смысл использовать централизованное устройство для управления источниками питания. Пример этого подхода можно увидеть на рисунке 4.

Рис. 4. Централизованное решение для последовательного управления и мониторинга для системы с восемью источниками питания.

Централизованный мониторинг и последовательность

Семейство ADM106x Super Sequencer продолжает использовать компараторы, но с некоторыми важными отличиями. Для каждого входа выделено два компаратора, поэтому можно реализовать обнаружение пониженного и повышенного напряжения, обеспечивая тем самым оконный мониторинг шин, созданных преобразователями постоянного тока ADP1821 и ADP2105 и LDO ADP1715.Ошибка пониженного напряжения — это нормальное состояние шины перед подачей питания, поэтому эта индикация используется для определения последовательности. Состояние перенапряжения обычно указывает на критическую неисправность — например, короткое замыкание полевого транзистора или катушки индуктивности — и требует немедленных действий.

Системы с большим количеством расходных материалов обычно имеют большую сложность и, следовательно, имеют более жесткие ограничения по точности. Кроме того, установка точных пороговых значений с помощью резисторов становится сложной задачей при более низких напряжениях, таких как 1,0 В и 0,9 В. Хотя допуск в 10% может быть приемлемым для шины 5 В, этот допуск обычно недостаточен для шины 1 В.ADM1066 позволяет устанавливать пороги компаратора входного детектора в пределах 1% наихудшего случая, независимо от напряжения (всего 0,6 В) — и во всем температурном диапазоне устройства. Он добавляет к каждому компаратору внутреннюю фильтрацию сбоев и гистерезис. Его логические входы могут использоваться для запуска последовательности включения, отключения всех шин или выполнения других функций.

Информация из банка компараторов, поступающая в мощный и гибкий ядро ​​сценического станка, может быть использована для различных целей:

Последовательность: Когда выходное напряжение недавно включенного источника питания попадает в окно, может быть запущена временная задержка для включения следующей шины в последовательности включения питания.Возможна сложная последовательность, с несколькими последовательностями включения и выключения, или совершенно разными последовательностями для включения и выключения питания.

Тайм-аут: Если задействованная шина не включается должным образом, можно предпринять соответствующие действия (например, создание прерывания или выключение системы). Чисто аналоговое решение просто зависло бы в этой точке последовательности.

Мониторинг: Если напряжение на какой-либо шине выходит за пределы предустановленного окна, можно предпринять соответствующие действия — в зависимости от неисправной шины, типа возникшей неисправности и текущего режима работы.Системы с более чем пятью источниками питания часто бывают дорогими, поэтому комплексная защита от сбоев имеет решающее значение.

Встроенная подкачка заряда используется для генерации примерно 12 В управления затвором, даже если максимальное доступное напряжение системы составляет всего 3 В, что позволяет выходам напрямую управлять полевыми транзисторами серии n . Дополнительные выходы включают или отключают преобразователи или регуляторы постоянного тока в постоянный, позволяя выходу внутренне подтягиваться к одному из входов или к регулируемому напряжению на плате.Выходы также могут быть заявлены с открытым стоком. Выходы также могут использоваться как сигналы состояния, такие как power good или power-on reset. При необходимости светодиоды состояния могут управляться напрямую с выходов.

Корректировка предложения

В дополнение к мониторингу нескольких шин напряжения и обеспечению решения для сложной последовательности, интегрированные устройства управления питанием, такие как ADM1066, также предоставляют инструменты для временной или постоянной регулировки напряжения отдельных шин.Выходное напряжение преобразователя или регулятора постоянного тока можно изменить, регулируя напряжение на узле подстройки или обратной связи этого устройства. Обычно резистивный делитель между выходом и землей модуля устанавливает номинальное напряжение на выводе подстройки / обратной связи. Это, в свою очередь, устанавливает номинальное выходное напряжение. Простые схемы, включающие переключение дополнительных резисторов или управление переменным сопротивлением в контуре обратной связи, изменят напряжение подстройки / обратной связи и, следовательно, отрегулируют выходное напряжение.

ADM1066 оснащен цифро-аналоговыми преобразователями (ЦАП) для прямого управления узлом подстройки / обратной связи. Для максимальной эффективности эти ЦАП не работают между землей и максимальным напряжением; вместо этого они работают через относительно узкое окно с центром на номинальном уровне подстройки / обратной связи. Величина ослабляющего резистора масштабирует инкрементное изменение на выходе силового модуля с каждым изменением младшего разряда ЦАП. Эта регулировка разомкнутого контура обеспечивает уровни увеличения и уменьшения запаса, эквивалентные тем, которые получаются при цифровом переключении сопротивления в опорной цепи, и будет регулировать выходной сигнал с аналогичной точностью.

ADM1066 также включает в себя 12-разрядный аналого-цифровой преобразователь (АЦП) для измерения напряжения питания, поэтому можно реализовать схему регулировки питания с обратной связью . При заданной настройке выхода ЦАП выходное напряжение силового модуля оцифровывается АЦП и сравнивается с заданным напряжением в программном обеспечении. Затем можно настроить ЦАП для калибровки выходного напряжения как можно ближе к целевому напряжению. Эта схема с обратной связью обеспечивает очень точный метод регулировки подачи.При использовании метода с обратной связью точность внешних резисторов не имеет значения. На рисунке 4 выходное напряжение DC-DC4 регулируется одним из ЦАП на кристалле.

Есть два основных применения схемы регулирования подачи. Первая — это концепция с маржированием источников питания, то есть проверка реакции системы на работу с источниками питания на границах указанного диапазона напряжения питания оборудования. Производители оборудования для передачи данных, телекоммуникаций, сотовой инфраструктуры, серверов и сетей хранения данных должны тщательно тестировать свои системы перед отправкой конечным клиентам.Все источники питания в системе должны работать с определенным допуском (например, ± 5%, ± 10%). Маржа позволяет отрегулировать все расходные материалы на борту до верхнего и нижнего пределов допустимого диапазона с проведением тестов для обеспечения правильной работы. Централизованное устройство управления питанием с возможностью регулировки питания можно использовать для выполнения этого испытания на запас, при этом сводя к минимуму потребность в дополнительных компонентах и ​​площади печатной платы, необходимой для выполнения функции, которая требуется только один раз — во время испытания запаса на испытательном полигоне производителя.

Четыре- угла Испытание, т. Е. Испытание в рабочем диапазоне напряжения и температуры оборудования, часто требуется, поэтому ADM1062 объединяет измерение температуры и обратное считывание в дополнение к схеме запаса источника питания с обратной связью.

Второе применение схемы регулировки подачи — это компенсация колебаний подачи системы в полевых условиях. У таких различий много причин. В краткосрочной перспективе довольно часто напряжения незначительно изменяются при изменении температуры.В долгосрочной перспективе значения некоторых компонентов могут незначительно изменяться в течение срока службы продукта, что может привести к дрейфу напряжения. Цепи АЦП и ЦАП можно активировать периодически (например, каждые 10, 30 или 60 секунд) в сочетании с циклом программной калибровки, чтобы поддерживать напряжение там, где оно должно быть.

Гибкость

ADM1066 имеет встроенную энергонезависимую память, что позволяет его перепрограммировать столько раз, сколько необходимо, в то время как потребности системы в последовательности и мониторинге развиваются в процессе разработки. Это означает, что проектирование оборудования может быть завершено на ранней стадии процесса прототипа, а оптимизация мониторинга и последовательности может выполняться по мере выполнения проекта.

Такие функции, как цифровое измерение температуры и напряжения, упрощают и ускоряют процесс оценки. Инструменты маржирования позволят регулировать шины напряжения во время цикла разработки. Таким образом, в ситуации, когда ключевой ASIC, FPGA или процессор также находятся в разработке, а уровни напряжения питания или требования к последовательности находятся в постоянном изменении по мере поставки новых версий кремния, простую настройку можно выполнить через графический интерфейс программного обеспечения. .Таким образом, устройство управления питанием можно перепрограммировать за несколько минут, чтобы учесть изменения, без необходимости физического изменения компонентов на плате или, что еще хуже, перепроектирования оборудования.

Заключение

Растущее количество шин напряжения и появление последовательности источников питания повысили требования к проектировщикам питания во всех видах устройств и систем — от ноутбуков, телевизионных приставок и автомобильных систем до серверов и хранилищ, сотовой связи. базовые станции и системы Интернет-маршрутизации и коммутации.Также интересны более строгие процедуры тестирования, новые уровни сбора информации и быстрое и простое программирование, особенно в системах среднего и высокого уровня. Для повышения устойчивости и надежности, а также для добавления этих жизненно важных новых функций доступно множество новых интегральных схем управления питанием, которые помогают решать эти проблемы безопасно, эффективно и с минимальной площадью платы, сокращая при этом время вывода на рынок.

Электроснабжение | Офис общественного адвоката штата Мэн

Текущие ставки CEP — Что следует учитывать при выборе поставщика — Защита прав потребителей

Ищете информацию о возобновляемых источниках энергии, таких как Community Solar или Maine Green Power ? Кликните сюда.

До 2000 года ваша электроэнергетическая компания не только вырабатывала электроэнергию, но и доставляла ее вам по полюсам и проводам. В том же году изменения в законе оставили регулируемую коммунальную компанию ответственную за поставку электроэнергии (передачу и распределение), но создали дерегулируемый, конкурентный рынок генерации. В результате бытовые и коммерческие потребители теперь могут покупать электроэнергию у лицензированных конкурентоспособных поставщиков электроэнергии (CEP). Те клиенты, которые предпочитают не покупать электроэнергию, получают стандартное предложение услуг, ежегодно закупаемое от их имени Комиссией по коммунальным предприятиям штата Мэн.Цена стандартного предложения меняется ежегодно 1 января.

Для получения дополнительной информации загрузите Руководство по электричеству, Competitive Electricity Edition — PDF

За последние несколько лет частные и небольшие коммерческие потребители увидели рост конкурентных предложений розничных поставок от различных компаний. Мы предлагаем следующую информацию, чтобы помочь клиентам понять этот рынок и решить, как действовать дальше. В приведенной ниже таблице представлена ​​репрезентативная выборка провайдеров, работающих в штате Мэн.Чтобы получить полный список конкурентоспособных поставщиков, посетите Комиссию по коммунальным предприятиям штата Мэн.

Помните, клиенты, которые не сделают выбор, будут продолжать получать стандартное предложение .

В этой таблице перечислены конкурентоспособные предложения для частных лиц и небольших коммерческих предприятий по состоянию на 1 декабря 2021 , если не указано иное . Цены могут быть изменены без предварительного уведомления, поэтому мы настоятельно рекомендуем вам перейти на веб-сайт или позвонить в компанию для подтверждения перед регистрацией.

Продукты с более высоким процентом электроэнергии, произведенной из возобновляемых источников, помечаются знаком (xx%) после цены, показывающей процент возобновляемой энергии, включенной в продукт.

Конкурентоспособный поставщик электроэнергии Тариф для клиентов CMP (¢ / кВтч) Ставка для клиентов Versant (Bangor Hydro) (¢ / кВтч) Срок действия фиксированной ставки Комиссия за досрочное расторжение Телефон
Стандартное предложение для жилых и малых коммерческих помещений
(PUC)

6. 45

11,816

6,20

11,684

с 01.01 по 31.12.21

1 января — 31 декабря 22

нет данных нет данных

Ambit Energy

Обновлено 02.12.21

16,0

13,25

Зимние каникулы 12

$ 0

877-282-6248

16.25 13,25 Зимние каникулы 24

C.N. Коричневый Электричество

11,45 11,45 12 месяцев — декабрь

$ 100

207-739-6444

11,85 (100%) 11,85 (100%) 12 месяцев GreenChoice — декабрь
10,53 10.53 24 месяца — декабрь
10,93 (100%) 10,93 (100%) 24 месяца GreenChoice — декабрь
9,80 9,80 7 месяцев — март
10,20 (100%) 10,20 (100%) 7 месяцев GreenChoice — март
9,82 9,82 21 месяц — март
10,22 (100%) 10. 22 (100%) 21 месяц GreenChoice — март

Награды за энергию

12,49

12,39

12 месяцев

50 $ за 12 мес.

100 $ за 24 мес.

877-811-7023

11,39 11,29 24 месяца
12.89 (100%) 12,79 (100%) 12 месяцев
11,79 (100%) 11,69 (100%) 24 месяца

Major Energy

13,29 13,49 12 месяцев $ 100 888-625-6760

Мега Энергия

14,3 14,3 12 месяцев $ 50 855-810-6342
13.9 13,9 24 месяца

SmartEnergy

19,8 14,9 6 месяцев $ 0 800-443-4440

Think Energy

16,1 16,2 12 месяцев

$ 45

888-923-3633

15. 7 15,7 18 месяцев
15,5 15,5 24 месяца

XOOM Энергия

11,99 11,29 12 месяцев

110 $ за 12 мес.

888-997-8979

11,99 (50% зеленый) 11,49 (50% зеленый) 12 месяцев
11.49 11,29 24 месяца
13,59 (50% зеленый) 13,09 (50% зеленый) переменная

Все эти организации подали заявку и получили лицензию от MPUC на продажу электроэнергии. PUC действительно контролирует CEP на предмет соблюдения условий лицензии и других применимых законов штата, но CEP не регулируются так, как CMP, Versant и другие коммунальные предприятия.

Эта таблица содержит краткое изложение условий, и предложения могут измениться в любое время; мы настоятельно рекомендуем вам проверить текущую цену и ознакомиться со всеми условиями, прежде чем подписываться на любую услугу.

Наверх

Что следует учитывать при выборе поставщика

Если вы думаете о выборе конкурентоспособного поставщика электроэнергии (CEP) для удовлетворения своих потребностей в электроэнергии, вот шесть вещей, которые вам нужно знать, прежде чем принимать решение.

  1. Стандартная цена предложения. Получение электроэнергии от CEP сэкономит вам деньги только в том случае, если ее цена ниже стандартной цены предложения. Комиссия по коммунальным предприятиям штата Мэн выбирает лучшее предложение, представленное на конкурентном аукционе для Central Maine Power и Emera Maine.Стандартная цена предложения меняется 1 января каждого года, причем об изменении обычно объявляется за шесть недель. В стандартном предложении нет платы за контракт или расторжения, и вы можете переключиться в любое время. Вы можете найти текущую цену Стандартного предложения в таблице выше или на веб-сайте PUC.
  2. Цена, предлагаемая CEP. Это цена, которую вы сравните со стандартным предложением.
  3. Будь то цена фиксированная или переменная. Контракт с фиксированной ценой будет иметь одинаковую стоимость киловатт-часа в течение всего срока действия контракта.Если цена переменная, она может меняться каждый месяц. Хотя переменная ставка может дать экономию сейчас, она может измениться на более высокую цену в будущие месяцы.
  4. Срок действия договора. Если цена фиксирована, узнайте, как долго, чтобы знать, продлится ли этот срок после следующего изменения стандартной цены предложения. Кроме того, спросите, когда закончится контракт, чтобы вы могли сделать пометку, чтобы просмотреть свои варианты до этой даты.
  5. Сбор за расторжение. Некоторые CEP взимают комиссию, если вы переключаетесь на стандартное предложение или на другое CEP до истечения срока действия вашего контракта.Убедитесь, что вы знаете, есть ли у CEP один из этих «выходных» сборов и сколько они будут взимать, прежде чем вы переходите.
  6. Ваши права. CEP контролируются Комиссией по коммунальным предприятиям, и существуют правила для защиты потребителей. CEP должны предоставить вам свои «Условия обслуживания», прежде чем вы сможете стать их клиентом, и вы можете передумать в течение 5 дней после регистрации. CEP также должны уведомить вас об автоматическом продлении или если они переведут вас на переменную цену в конце фиксированного срока.Всегда просите CEP подтвердить, будут ли они связываться с вами по почте или электронной почте. Вы несете ответственность за то, чтобы у CEP была ваша текущая и актуальная контактная информация.

Наверх

Защита прав потребителей

Как указано, в законе штата (Раздел 35-A MRSA § 3203) и в правилах Комиссии (Глава 305) есть положения о защите прав потребителей. К ним относятся следующие:

  • CEP не может прекратить обслуживание без уведомления как минимум за 30 дней.
  • CEP должен предлагать услуги не менее 30 дней.
  • CEP должен подтвердить утвердительный выбор клиента для получения услуг в компании (без «критики»).
  • У клиента есть пять дней на то, чтобы отменить свой первоначальный выбор услуги CEP.
  • CEP не может использовать нечестные или вводящие в заблуждение методы ведения бизнеса.
  • CEP не может разглашать частную информацию о клиенте кому бы то ни было, кроме случаев, когда это разрешено законом или с согласия клиента.
  • Клиент может подать жалобу в Комиссию, если CEP использовал методы «хлопания» для привлечения клиентов.
  • Если CEP отказывается от клиента, или если клиент хочет, чтобы его бросили, и не делает другого выбора, он автоматически вернется к стандартному предложению обслуживания.
  • CEP должен уведомить клиента два раза от 30 до 60 дней до продления контракта.

Орган исполнительной власти

Хотя PUC штата Мэн не может регулировать цены на электроэнергию, предлагаемую конкурирующими поставщиками, он имеет право расследовать вопросы, связанные с услугами, предлагаемыми CEP. В зависимости от оскорбительных действий CEP, Комиссия может отозвать лицензию CEP, издать приказы о прекращении и воздержании, приказать реституцию и наложить административные штрафы.

Свяжитесь с горячей линией поддержки потребителей MPUC по телефону 1-800-452-4699, с понедельника по пятницу с 9:00 до 16:00. если у вас есть проблемы с CEP.

Комиссия по коммунальным предприятиям штата Мэн
Отдел по оказанию помощи потребителям
18 State House Station
Augusta, ME 04333-0018

Что их вызывает и что с этим делать

В современном мире некоторые вещи легко воспринимать как должное.И одна из самых простых вещей, которую можно принять как должное, — это невидимая сила, которая питает практически все в вашем доме: электричество.

Поскольку электричество стало такой неотъемлемой частью повседневной жизни, легко не думать о нем — пока оно не станет недоступным. Внезапное отключение электричества, также известное как отключение электричества, может негативно повлиять на все, от работы до приготовления пищи и возможности видеть в ночное время.

Мировая электросеть является надежной в большинстве населенных пунктов, спроектирована так, чтобы выдерживать физические элементы и человеческие ошибки, которые потенциально могут вывести систему из строя.Хотя это работает большую часть времени, иногда система выходит из строя и отключается питание.

Будьте готовы узнать все, что вам нужно знать о перебоях в подаче электроэнергии, от того, как и где они чаще всего происходят, до того, что вы можете сделать, чтобы помочь смягчить их последствия.

Что такое отключения электроэнергии?

источник

Отключение электроэнергии — это то, что происходит, когда электричество, особенно электрическая сеть или электрическая сеть, недоступно. Есть много разных причин отключения электроэнергии, но все они имеют общую черту: они затрагивают целые области или регионы, а не только один дом.

Почему? Потому что отключение электричества происходит из-за того, что поставщик электроэнергии находится вне дома. Если в доме нет электричества, но остальная часть района получает электричество, вероятно, проблема с выключателем или какая-то другая бытовая проблема.

Что вызывает отключение электроэнергии?

Перебои в подаче электроэнергии могут быть вызваны множеством причин. Однако тремя наиболее распространенными причинами являются естественные причины, человеческий фактор и перегрузка.

По сути, любой перерыв между выработкой электроэнергии и подачей электричества в дома может вызвать отключение электроэнергии.Это может быть связано с неблагоприятными погодными условиями, человеческой ошибкой, отказом оборудования и даже вмешательством животных. Плановое техническое обслуживание также может вызвать отключение электроэнергии, хотя коммунальная компания обычно заранее сообщает об этом домохозяйствам.

Как долго длится отключение электроэнергии?

Большинство отключений электроэнергии длятся недолго, многие заканчиваются через секунды или минуты после начала. Однако иногда простои могут длиться очень долго, даже несколько недель.

Так как некоторые отключения электроэнергии вызваны молнией или сильным ветром, линии электропередач могут быть повреждены и привести к длительным задержкам при восстановлении питания. Продолжительные отключения влияют на целые сообщества и даже могут повлиять на экономику, когда электричество недоступно для больших слоев населения. Например, отключение электроэнергии на северо-востоке в 2003 году оставило без электричества 50 миллионов человек от Нью-Йорка до столицы Канады Оттавы.

Какие бывают типы перебоев в подаче электроэнергии?

источник

В целом, существует четыре основных типа отключений электроэнергии: отключения электроэнергии, отключения электроэнергии, постоянные сбои и длительные отключения электроэнергии.У каждого из них разные причины, и их устраняют по-разному, которые описаны ниже.

Затемнение

Блэкаут — это полная потеря энергии в области. Это наиболее серьезный тип отключения электроэнергии, обычно затрагивающий большое количество людей на иногда невероятно больших территориях. Отключение электроэнергии обычно происходит в результате серьезного повреждения объектов производства электроэнергии (например, повреждения конструкции из-за сильного урагана или удара молнии), и его особенно сложно быстро исправить — вот почему такие отключения могут длиться несколько недель в худшем случае.

Затухание

Отключения питания обычно возникают при падении электрического напряжения или общего падения напряжения в электросети. Термин для этих типов отключений происходит от затемнения, которое происходит с освещением при падении напряжения. Хотя отключения питания не вызывают полной потери мощности, они могут привести к снижению производительности оборудования, а некоторые устройства, такие как фены или электрические печи, могут не работать с пониженным напряжением во время одного из таких отключений.

Постоянная неисправность

Постоянная неисправность — это внезапная потеря мощности, обычно вызванная неисправностью линии питания. С ними просто и легко справиться: как только неисправность устранена или устранена, питание автоматически восстанавливается. Этот тип отключения обычно не затрагивает большие территории, так как он имеет тенденцию отключать линии, идущие дальше от линии электроснабжения, ведущей к домам. В то время как более крупные отключения электроэнергии вызваны проблемами в генерации, это вызвано проблемами в механизме питания, которые обычно легко найти и легко исправить.

Rolling Blackouts

Периодические отключения электроэнергии сильно отличаются от трех других, поскольку они представляют собой плановые отключения электроэнергии. Обычно они реализуются в областях с нестабильными сетями или инфраструктурой, которая не может справиться с населением, которое она обслуживает. Периодические отключения электроэнергии также могут быть вызваны тем, что топлива недостаточно для работы на полную мощность, будь то краткосрочное или долгое время.

Сколько отключений электроэнергии происходит в США в год?

В 2020 г., 1.33 миллиарда часов перебоев в подаче электроэнергии затронули Соединенные Штаты, что на 73% больше, чем в 2019 году. Хотя это число колеблется из года в год, количество людей, пострадавших от этих отключений, заметно увеличивается. Несмотря на то, что количество часов отключения электроэнергии было больше, общее количество отключений составило менее 1% от зарегистрированного количества часов работы клиентов в 2020 году.

Когда наиболее вероятны перебои в подаче электроэнергии?

Сбои в подаче электроэнергии наиболее вероятны во время штормов, особенно сильных погодных явлений, связанных с сильным ветром, палящими температурами или ледяным дождем.Определенные сбои, такие как постоянные отключения электроэнергии и отключения электроэнергии, случаются, когда недостаточно энергии для работы сети. Это может произойти, когда возобновляемые источники энергии используются без резервного источника генерации, когда имеется только прерывистая энергия. Тем не менее, это чаще случается с районами, в которых отсутствует инфраструктура для обслуживания густонаселенных районов.

Могут ли перебои в подаче электроэнергии повлиять на сотовые телефоны?

Сотовые телефоны не подвержены перебоям в подаче электроэнергии, поскольку они работают от батарей.Однако во время отключения электроэнергии вы не сможете зарядить свой мобильный телефон, и любые звонки, которые вы хотите сделать, могут не пройти. Будут ли сотовые телефоны работать на полную мощность во время отключения электроэнергии, зависит от того, затронуты ли вышки сотовой связи отключение электричества.

В некоторых случаях, например, при длительных отключениях электроэнергии, которые затрагивают разные части большого города в разное время, сотовые телефоны будут продолжать работать, потому что вышки сотовой связи находятся в другом районе города и продолжают работать.

Могут ли белки или другие животные на линиях электропередач вызывать перебои в работе?

источник

Штормы, особенно ветровые, являются основной причиной отключения электроэнергии, но есть очень маловероятная причина, которая вызывает гораздо больше отключений электроэнергии, чем вы, вероятно, думаете. Ежегодно в среднем регистрируется более тысячи отключений электроэнергии из-за сбоев электроснабжения, вызванных животными. Фактически, белки несут ответственность за до 30% отключений электроэнергии в некоторых регионах!

Отчеты и отслеживание отключений

Отчеты и отслеживание отключений электроэнергии необходимы для понимания их и того, как они развиваются с течением времени.Он также обеспечивает быстрое восстановление питания в случаях, когда возникают постоянные неисправности. Ниже приведены несколько способов сообщить и проверить отключения электроэнергии в вашем районе.

Как сообщить об отключении электроэнергии?

Отчеты об отключениях электроэнергии просты и понятны. Все, что вам нужно сделать, это найти вашего местного поставщика услуг передачи и распределения (TDSP) и позвонить ему с телефона, который работает во время отключения. Вы также можете позвонить в свой TDSP, если вам нужна помощь в восстановлении электроснабжения вашего дома.

Как вы проверяете отключения электроэнергии в вашем районе?

Чтобы проверить статус отключения и получить расчетное время восстановления электроэнергии, вам нужно найти свой адрес на карте отключения электричества в США и щелкнуть круговой значок отключения. Щелкнув этот значок, вы попадете на экран «Информация об отключении» с информацией о любых отключениях электроэнергии в вашем районе. Здесь вы можете проверить расчетное время восстановления (ERT), а также время, когда было сообщено о сбое.Вы также можете увидеть причину и статус восстановления.

Места и причины отключения электроэнергии

источник

Сбои в подаче электроэнергии происходят по всей территории Соединенных Штатов, хотя, как правило, в одних регионах они случаются чаще, чем в других. Для этого существует множество факторов: плотность населения, подверженность штормам, прочность сети и многое другое. Ниже приведены подробные сведения о том, где и почему чаще всего случаются перебои в подаче электроэнергии в США.

.

Какие районы наиболее подвержены перебоям в подаче электроэнергии?

Районы, наиболее подверженные перебоям в подаче электроэнергии, — это регионы с высокой плотностью населения, способностью выдерживать периоды сильной жары или зимних штормов, а также сеть, поддерживающая большую географическую территорию.Эти регионы должны обслуживать большое количество людей и иметь множество электростанций, что увеличивает вероятность несчастных случаев или человеческих ошибок, которые перекрывают подачу электроэнергии. Более того, если у них нет достаточных мощностей для надежного обслуживания такого населения, это может привести к отключениям или веерным отключениям.

В каких штатах больше всего отключений электроэнергии?

Используя отчет Blackout Tracker, данные собираются ежегодно по всем 50 штатам США для определения отключений электроэнергии всех типов и размеров.Калифорния неизменно лидирует по количеству отключений электроэнергии со значительным отрывом, на втором месте Техас, на третьем — Нью-Йорк. Хотя отключения электроэнергии могут варьироваться из года в год, одни и те же пять штатов занимали лидирующие позиции по отключениям электроэнергии за последние полдесятилетия, и никаких признаков изменений впереди нет.

Что является основной причиной отключения электроэнергии в Соединенных Штатах?

Основной причиной отключения электроэнергии в Соединенных Штатах, несомненно, является ненастная погода.Сюда входят волны тепла, наводнения, ледяной дождь, сильный ветер и другие погодные факторы, которые негативно влияют как на выработку, так и на передачу электроэнергии. Человеческий фактор, сбой инфраструктуры и вмешательство животных — вот наиболее важные причины отключений в США на постоянной основе.

Что является основной причиной отключения электроэнергии в Калифорнии?

Как и в остальной части страны, основной причиной отключения электроэнергии в Калифорнии являются ненастные погодные условия.Однако примерно четверть потерь электроэнергии в Калифорнии не сообщила какой-либо определенной причины их возникновения. Это уникально среди всех регионов, в которых наблюдается значительное количество отключений электроэнергии, поскольку в большинстве остальных регионов страны есть явные причины для отказа.

Сколько отключений электроэнергии происходит в Калифорнии?

В

Калифорния в 2019 году (последний «нормальный» предпандемический год) произошло 25 281 отключение электроэнергии, что на 23% больше, чем в предыдущем году.Это, безусловно, самый высокий показатель среди всех штатов страны, более чем в два раза превышающий количество Техаса, следующего по величине штата.

Где больше всего отключений электроэнергии в Калифорнии?

Большинство отключений электроэнергии в Калифорнии происходит в крупных городах и густонаселенных зонах, включая район залива и коридор между Лос-Анджелесом и Сан-Диего. Отключения также типичны для долины и пустыни, двух областей, которые испытывают частые волны тепла, которые могут вызывать многочисленные отключения электроэнергии в летние месяцы.

Что является основной причиной отключения электроэнергии в Нью-Йорке?

Как и в случае с Калифорнией и остальными Соединенными Штатами, погода является основной причиной отключения электроэнергии в Нью-Йорке. В частности, северо-восточные ветры несут ответственность за большинство отключений, что может стать очень проблематичным зимой. К счастью, по данным Con Edison (Con Ed), средняя продолжительность отключений в Нью-Йорке составляет всего около часа.

Сколько отключений электроэнергии произошло в Нью-Йорке?

В Нью-Йорке обычно происходит более 1700 отключений электроэнергии каждый год, по данным официального U.S. Карта отключения электроэнергии по последнему подсчету. Эти отключения происходят в течение всего года, но чаще всего случаются зимой, когда надвигаются сильные штормы. Иногда сильная летняя жара может вызывать отключение электроэнергии в энергосистеме Нью-Йорка, хотя это случается реже.

Где больше всего отключений электроэнергии в Нью-Йорке?

Отключения электроэнергии, как правило, затрагивают большие районы Нью-Йорка, поскольку сеть взаимосвязана и обслуживает большую часть штата. Однако, учитывая плотность населения Нью-Йорка, особенно Манхэттена, этот централизованный городской район, как правило, испытывает на себе основную тяжесть отключений, когда они происходят.

Увеличиваются ли перебои в подаче электроэнергии?

По мере совершенствования технологий отключения электроэнергии становятся менее частыми и не такими продолжительными, как процент от общего потребления электроэнергии потребителями. Однако по количеству они происходят чаще, чем когда-либо прежде, а иногда они все еще могут длиться несколько дней или даже недель, особенно если случаются стихийные бедствия.

Хотя обычно домовладелец или частное лицо могут сделать не так много, существуют способы подготовиться к отключению электроэнергии — от снабжения дома необходимым оборудованием и расходными материалами до приобретения генератора для аварийного использования.

Если вы столкнулись с отключением электроэнергии, как можно скорее сообщите об этом своему поставщику электроэнергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *