26.11.2024

Примеры электропроводности металлов: Приведите примеры металлов с высокими и низкими значениями тепло- и электропроводности.

Содержание

Электропроводность и теплопроводность металлов — Справочник химика 21





    Металлы образуются из атомов электроположительных элементов. В сплавах определенные места в решетке могут быть заняты либо атомами отдельного компонента, либо различными видами атомов. Высокая электропроводность и теплопроводность металлов обусловлены движением свободных электронов через пространственную решетку. [c.583]








    Электропроводность и теплопроводность металлов [c.218]

    Электропроводность и теплопроводность металлов объясняются подвижностью электронов неполностью заполненных зон, обусловленной тем, что в этих зонах к уровням, занятым электронами, вплотную примыкают свободные уровни, на которые могут переходить (возбуждаться) электроны. [c.91]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]








    Табл. 2 показывает также, что электропроводность и теплопроводность металлов не слишком сильно (не более, чем в 2,5 раза) меняются при плавлении. Подобные же результаты были получены [9] для Fe, Со и Ni, у которых отношения Ятв/иж составляют соответственно 1,07, 1,11 и 1,14. Мало изменяются при плавлении и магнитные восприимчивости N1 и Со (9]. [c.14]

    Чрезвычайно высокие по сравнению с другими типами кристаллов значения электропроводности и теплопроводности металлов указывают на высокую подвижность и большую свободу электронов в их пространственной структуре. С точки зрения строения атомов типич- [c.79]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла.[c.361]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль.[c.167]

    Закон зависимости плотности тока термоэлектронной эмиссии от температуры теоретически установил и экспериментально проверил Ричардсон [148]. Он дал два теоретических вывода этой зависимости. Первый вывод основан на представлениях электронной теории металлов, созданной для объяснения явлений электропроводности и теплопроводности металлов, контактной разности потенциалов, эффекта Холла и т. д. Согласно этой теории, в металлах, кроме электронов, крепко связанных с атомами, [c.77]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование [c.206]

    Из высокой электропроводности и теплопроводности металлов можно сделать заключение, что, но крайней мере, часть электронов имеет возможность свободно перемещаться но кристаллу и уже под действием слабого электрического поля пли небольшого градиента (перепада) температуры лю кет бразовывяп ся п. анравлеипый поток электроно (Друде, 1902 г.). Согласно теорпп Друде, строение металлов можно представить себе как совокупность положительно. аряже .иых попов (атомных остовов кристаллической структуры), между которыми свободно перемещаются электроны, подчиняющиеся газовым законам ( элект-ронный газ ). [c.197]

    В кристаллах металлов в узлах находятся положительные ионы металлов, а в междоузлиях — электронный газ, способный к передвижению по решетке под действием разности потенциалов или разности температур. Это обусловливает большую электропроводность и теплопроводность металлов. Большинство чистых металлов обладает высокой пластичностью. Это объясняется отсутствием направленности металлической связи, поскольку в узлах решетки находятся ионы одного знака. Как уже говорилось, чистые металлы-элементы кристаллизуются лишь в трех структурах с плотнейшей упаковкой частиц гексагональной (КЧ = 12), гранецентрированной кубической (КЧ = 12), объемноцентрирован-ной кубической (8 ближайших соседей на расстоянии и 6 — на расстоянии 1,15го).[c.293]

    Металлы — вещества с сильно делокализованными электро-намп. Делокализация обусловлена тем, что количество низких по энергии орбиталей у металлов значительно больше числа имеющихся валентных электронов. Высокие электропроводность и теплопроводность металлов и нх блеск объясняются высокой подвижностью электронов на делокализованных орбиталях, а большая пластичность — наличием в их структуре плоскостей скольжения и минимальной направленностью металлических связей. [c.119]

    Задолго до развития теории квантов в XIX в. была разработана теория свободных электронов в металлах. Эта теория исходила из представления, что в металлическом кристалле валентные электроны атомов могут почти свободно, т. е. почти не взаимодействуя с атомными остатками, передвигаться по кристаллическо11 решетке. В э.тектрическом поле эти электроны, названные электронами проводимости, переносят ток, в отличие от валентных электронов атомных остатков. На примерах особенно одновалентных металлов (натрий, Атедь и др. ) с помощью этой теории выведены некоторые основные законы физики, например закон Ома, закон Видемана—Франпа (о прямой пропорциональности между электропроводностью и теплопроводностью металла) и др. [c.263]


Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

Автор: Серков Павел

  • 1.  Проводники: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.
  • 2.  Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
  • 3.  Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода
  • 4.  Органические полусинтетические диэлектрики.
  • 5.  Синтетические диэлектрики на базе фенолформальдегидных смол.
  • 6.  Пластики. История использования пластиков.
  • 7.  Изоляционные ленты и трубки

Проводники

Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т. д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».

Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.

Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных чистых металлов:

МеталлУдельное сопротивление Ом*мм2
Серебро0,0159
Медь0,0157
Золото0,023
Алюминий0,0244
Иридий0,0474
Вольфрам0,053
Молибден0,054
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,192
Титан0,417
Висмут1,2

Видим лидеров нашего списка: Ag, Cu, Au, Al.

Серебро

Ag — Серебро. Драгоценный металл. {Понятие «драгоценный металл» означает в том числе особые условия по работе с металлом, устанавливаемые законодательством.}Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы массово делать из него провода. На 5% лучшая электропроводность по сравнению смедью, при разнице в цене почти в 100 раз.

Примеры применения

В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скин-эффекта в большей части течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие высокочастотного волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.

Волновод для СВЧ излучения, покрытый изнутри слоем серебра.

В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, вклад этой малой добавки серебра в стоимость всего изделия незначителен. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу по отделению контактов в кучку для последующего аффинажа.

 

Согласно документации производителя контакты содержат серебро и кадмий.

Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.

В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.

Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).

Компонент электропроводящих клеев и красок. Электропроводящие чернила часто содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких чернил.

Недостатки

Несмотря на то, что серебро благородный металл, оно окисляется в среде с содержанием серы:

4Ag,+,2H2S,+,O2,->,2Ag2S,+,2H2O

Образуется темный налет — «патина». Также источником серы может служить резина, поэтому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.

Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.

Медь

Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.

Примеры применения

Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно чистейшая медь.

Гибкие многожильные провода различного сечения.

Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.

Теплоотводы. Медь не только на 56\% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.

Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди,он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор сразвитым оребрением уже охлаждает сам стержень.

При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.

Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.

Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.

Интересные факты о меди

Алюминий

Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь как проводник везде, если бы не пара его противных свойств, но об этом в недостатках.

Чистый алюминий, как и чистое железо, в технике практически не применяется. Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия: (Даны марки сплавов согласно номенклатуре Американской Алюминиевой Ассоциации (АА), Первая цифра — серия марок сплава, в зависимости от того, какой легирующей добавки больше, остальные цифры обычно не соотносятся с концентрацией и необходимо обращение к справочнику. )

  • 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.
  • 1050 и 1060. Чистый алюминий 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.
  • 6061 и 6082. Сплавы: 6061: Si 0,6%, Mg 1,0%, Cu 0,28%, 6082: Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.
  • 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошие шансы оказаться им.
  • 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.
  • 44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.
  • 7075. 2,1–2,9% Mg, 5,1–6,1% Zn, 1,2–1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не предназначен для сварки. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывается отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).

Относительно невысокая температура плавления (660°С у чистого, меньше 600°С у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.

Примеры применения

Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ниже. (Правила устройства электроустановок, 7-е издание, п. 7.1.34). Также алюминий не используется как проводник в ответственных применениях.

Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения, пригодные для укладки в грунт. В частности, кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту для защиты нижележащей изоляции от повреждений, к примеру, лопатой при раскопке.

Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у микросхем, процессоров.

Различные алюминиевые радиаторы.

 

Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин: это корпуса жёстких дисков, бытовых приборов, редукторов и т. д. Анодированный алюминий (алюминий, у которого электрохимическим путем окисная

пленка на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная пленка (Al2O3 — из того же вещества состоят драгоценные

камни рубины и сапфиры) достаточно твёрдая и износостойкая, но, к сожалению, алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.

Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон завернутый в фольгу потеряет сеть — он будет заэкранирован.

Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% (значения примерные, точное значение зависит от длины волны и типа покрытия) падающего света (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.

Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.

Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется

в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.

Микропровод. Тончайшей проволокой из алюминия подключают кристаллы микросхемы к выводам корпуса. Также может использоваться медная и золотая проволока.

Недостатки

Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой

разницей в электроотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда)

начинает протекать гальваническая коррозия с разрушением алюминия.

Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.

Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется и сохранит новую форму — это называется «пластическая деформация». Если сжать его

не так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо затянутая клемма с алюминиевым проводом спустя 5–10–20 лет постепенно ослабнет и будет болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ запрещает тонкий алюминиевый провод для разводки электроэнергии по конечным потребителям в зданиях. (См п. 7.1.34 ПУЭ 7 издания) В промышленности не сложно обеспечить регламент — так называемая «протяжка» щитка, когда электрик периодически (1–2 раза в год) проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.

Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.

Интересные факты об алюминии

Еще раз важное замечание. Алюминиевые и медные проводники напрямую соединять нельзя!
Для соединения проводников из меди и алюминия используйте промежуточный металл,
например, стальную клемму.

Источники

В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся на продажах металлов.

Железо

Fe — железо. Основной конструкционный материал в промышленности используется также и в электротехнике. Плохая, по сравнению с медью, электропроводность компенсируется очень низкой ценой. И, что важнее в России, меньшей привлекательностью для охотников за металлом, заземление из толстой ржавой трубы простоит без охраны дольше красивой медной шины.

В технике железо применяется почти исключительно в виде сплавов с углеродом — чугуна и сталей. Свойства сталей разных марок весьма различны: от мягких до твердых инструментальных.

Примеры применения

Метизы. Винты, шайбы, гайки из стали изготавливаются огромными количествами на специально разработанном для этого оборудовании. Метизы из других металлов встречаются очень редко и значительно дороже. Поэтому, в большинстве случаев, медный наконечник медного провода будет притянут к медной же шине стальным болтом (или омеднённым). Также важным является высокая прочность стали, медный болт не затянуть с усилием стального. Обратите внимание на цифры на головке болта: они обозначают его прочность. Чем больше число, тем сильнее можно затягивать болт.

Клеммные колодки, соединители. Соединители типа «орех» содержат стальные пластинки с защитным покрытием от коррозии. Также, применение стали необходимо для предотвращения гальванической коррозии при соединении медных и алюминиевых проводов.

Соединитель «орех». Внутри пластиковой оболочки комплект стальных пластин с винтами, позволяет сделать ответвление от жилы кабеля не разрезая саму жилу. Также позволяет перейти от алюминиевой жилы на медную.

Контуры заземления. Требования электробезопасности обязывают предусматривать заземление. Часто, в промышленных условиях, заземляющую шину изготавливают из стального проката, закрепленного по периметру стены. Плохая электропроводность стали компенсируется большим сечением проводника. Во многих случаях правила безопасности и стандарты предписывают делать детали заземления именно из стали по соображениям механической прочности.

Стальная полоса, огибающая колонну — шина заземления.

Широко используются магнитные свойства стали — из стальных пластин собирают сердечники трансформаторов, дросселей.

Недостатки

Коррозия. Железо ржавеет, при этом плотность ржавчины ниже плотности исходного железа, из-за этого конструкция распухает. Поэтому железо покрывают защитными покрытиями — оцинковка, лужение, хромирование, окраска и т.д. Разные марки стали подвержены коррозии в разной степени, причем по закону подлости сильнее всего ржавеют именно те, которые легче всего обрабатываются на станках.

Золото

Au — Золото. Самый бестолковый драгоценный металл. Имеет меньше всего применений в технике из всех драгоценных металлов, но является символом богатства. На удивление дороже платины (2017 г.), что лишено здравого смысла и является лишь результатом спекуляций.

Примеры применения

Покрытия контактов. Благодаря тому, что золото на воздухе не окисляется, контакты покрывают очень тонким слоем золота. В силу мягкости золота покрытие не подходит для контактов много работающих на истирание, в таких случаях подбирают более твердые покрытия (например родиевые), или легируют золото.

Золотое покрытие на различных электронных компонентах: покрытие на контактах платы для установки в слот, покрытие на контактах мембранных кнопок мобильного телефона, покрытие на штырьках процессора.

Защита от коррозии. В некоторых ответственных применениях используется золотое покрытие для защиты проводников от коррозии (в основном — военка). Когда-то покрытие золотом являлось единственным способом защитить детали электроники от коррозии в условиях джунглей, поэтому у многих старых радиодеталей позолочены даже корпуса. А сейчас обычно просто заливают плату компаундом в «кирпич».

Интересные факты о золоте

Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий,

медь — красноватая и в сплавах золотистая, осмий имеет голубой отлив).

Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см3} у золота, 19,25 г/см3), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Некоторые теории заговора утверждают, что возможно это одна из причин, почему США никому не дают проверить подлинность их золотого

запаса. И, возможно, поэтому они отдали Германии их золото не сразу.

Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).

Бестолковость золота требует пояснений. Представим добычу благородных металлов в 2016 году.

Из всей добытой платины 64% потребила промышленность. (Здесь и далее цифры примерные, усредненные по нескольким источникам).

Из всего добытого серебра 68% потребила промышленность.

Из всего добытого палладия 96% потребила промышленность.

Из всего добытого золота всего 10% потребила промышленность. Остальное ушло на украшения и на слитки в сейфах.

Никель

Ni — Никель. Замечательный металл, но в электронной технике основное применение в виде покрытий, как в чистом виде, так и в паре с хромом.

Примеры применения

Покрытие контактов. Наносится на медь, пластик для надежного контакта и для декоративных целей. Жадные китайцы иногда вообще делают контакты из пластмассы, покрывая сверху слоем никеля и хрома, внешне выглядит нормальным, даже как то работает, но ни о какой надежности речи не идет.

Различные разъемы, покрытые никелем для надежного контакта.

У разъема справа для экономии металла сердцевина штыря сделана полой с заливкой пластиком. Латунная никелированная трубочка, из которой сделан штырь, не самый худший вариант.

Тоководы у ламп. Сплав Платинит (46% Ni, 0,15% C, остальное — Fe) не содержит платины, но имеет очень близкое к платине значение линейного

температурного расширения (и близкое к стеклу), что позволяет делать из него надежные электроды, проходящие через стекло. Для аналогичных целей используют сплав Ковар (29% Ni, 17% Co, 54% Fe). Такие электроды при изменении температуры не вызывают растрескивания стекла и потерю герметичности. Место сплавления стекла с этими сплавами имеет красноватый оттенок что ошибочно воспринимается за медь.

Промежуточные защитные слои. Для защиты от коррозии, взаимной диффузии металлов при создании покрытий, могут формироваться промежуточные слои из никеля. Например при покрытии меди слоем золота, если не предусмотрен разделительный слой из никеля, золотое покрытие со временем из-за диффузии растворится в меди и потеряет целостность. Жала современных паяльников защищены слоем никеля, так как жало из голой меди медленно растворяется в олове, теряя форму.

Вольфрам

W — Вольфрам. Тугоплавкий металл, температура плавления 3422°С, что определяет основное его использование — нити накала и электроды.

Примеры применения

Нити накала. В лампах накаливания, в галогеновых лампах спираль изготовлена из вольфрама, нагревается электрическим током до белого каления, при этом сохраняя свою форму. Также катоды в радиолампах изготавливаются из вольфрама, но раскаливаются не до таких высоких температур, как осветительные лампы, специальное покрытие на катоде позволяет протекать термоэлектронной эмиссии при невысоких температурах.

Нить накаливания этой галогеновой лампы изготовлена из вольфрама. Галоген, обычно пары иода, химически связывает испаряющийся с нити вольфрам и возвращает его на нить, что позволяет повысить температуру накала спирали и уменьшить габарит лампы без страха, что вольфрам постепенно осядет на стенках колбы.

Мощная лампа накаливания от проектора. Даже тугоплавкий вольфрам со временем испаряется и оседает на стенках колбы в виде темного налета. Данного недостатка лишены галогеновые лампы.

Электроды дуговых ламп и сварочные электроды. В ксеноновых дуговых лампах, ртутных дуговых лампах, электроды должны выдерживать температуру электрической

дуги, при этом не расплавляясь и не изменяя своей формы, что под силу только вольфраму. Также электроды для сварки неплавящимся электродом изготовлены из вольфрама (TIG сварка).

Аноды рентгеновских трубок. Поток электронов от катода в рентгеновской трубке, разогнанный высоким напряжением тормозится бомбардируя анод, очень сильно нагревая его, поэтому такие аноды, особенно если они не имеют водяного охлаждения, зачастую изготавливаются из вольфрама. Однако в физических лабораториях часто применяют и аноды из меди или кобальта в связи с особенностями спектра рентгеновского излучения от таких анодов.

Источники

Вольфрам — не очень пластичный материал, поэтому спиральку из лампы накаливания

вряд ли удастся выпрямить и использовать по своему разумению. Если вдруг понадобится

вольфрамовый стержень — вам пригодится любой магазин по сварочному делу, электрод для

TIG-горелки без содержания лантана и других присадок. Проволоку для нитей накала самодельной

техники нетрудно купить на eBay.

  • Цветовая маркировка электродов:
  • Зеленый — чистый вольфрам.
  • Красный, оранжевый — вольфрам + торий. Радиоактивно! Не шлифовать, не резать — пыль опасна!
  • Голубой — вольфрам + сложная смесь.
  • Черный, желтый, синий — вольфрам + лантан.
  • Серый — вольфрам + церий.
  • Белый — вольфрам + цирконий.

Ртуть

Hg — Ртуть. При комнатной температуре — блестящий, собирающийся в шарики жидкий металл. По экологическим соображениям использование ртути сокращается, но она широко использовалась в старых приборах, поэтому заслуживает упоминания.

Как и большинство металлов, ртуть образует сплавы. Но ртуть, будучи жидкой при комнатной температуре, способна сплавляться с металлами без дополнительного нагревания, растворять их. Растворенный в ртути металл, сплав металла с ртутью называется «амальгама».

Примеры применения

Жидкий контакт в датчиках положения, ртутных электроконтактных термометрах.

Различные ртутные приборы. Слева — мощный ртутный переключатель, замыкающий/размыкающий цепь при наклоне. Ниже на чёрных платках — аналогичные китайские ртутные переключатели — датчики положения из детского набора с Arduino. Сверху — колба ртутного электроконтактного термометра. В стекло вплавлены проволочки так, что при температуре 70°С столбик ртути в капилляре замыкает цепь (температура указана на корпусе).

В термометрах. Низкая температура замерзания, высокая температура кипения и большой коэффициент теплового расширения делают ртуть одним из самых удобных веществ для лабораторных и медицинских термометров. В бытовых термометрах ртуть уже очень давно не используется.

В манометрах и барометрах. Ртуть тяжелая, поэтому для уравновешивания атмосферного давления достаточно 70–80 см высоты столбика ртути. Хотя ртутные барометры в основном вышли из употребления, единицы измерения давления «миллиметр ртутного столба», а в вакуумной технике — «микрон ртутного столба» и «торр» (округленный вариант мм. рт. ст.) используются и по сей день. Нормальным атмосферным давлением считается 760 мм. рт. ст.

В нормальных элементах. Батарейка (Попытка запитать от такой батарейки самоделку обернется провалом — батарейка имеет большое внутреннее сопротивление (порядка единиц кОм) и не предназначена отдавать токи больше сотых долей микроампера, да и то с перерывами. ) с электродами из жидкой ртути, в которой растворены сульфаты ртути и кадмия, имеет ЭДС, известную и стабильную до единиц микровольт (теоретически 1,018636 В при 20°С). Такие элементы до сих пор используются в метрологии в качестве опорных источников напряжения, хотя и вытесняются полупроводниковыми схемами. Сосуд с ртутью в нормальном элементе запаян, однако он стеклянный, и ртути в нем много. Поэтому будьте осторожны, если найдете где-нибудь круглую железную банку с бакелитовой крышкой, клеммами и надписью «нормальный элемент» на бакелите. Внутри у нее — стеклянная колба с весьма опасными веществами.

Элемент нормальный насыщенный, НЭ-65, класс точности 0,005. Внешний вид корпуса нормальных элементов может различаться. Справа — содержимое корпуса, видна ртуть в нижней части колб. Такие элементы должны утилизироваться специализированной организацией.

Фото внутренностей Нормального Элемента

В диффузионных вакуумных насосах. Струя ртутного пара, выходящая из сопла с большой скоростью, захватывает молекулы воздуха и вытягивает их из откачиваемого объема. Затем ртутный пар конденсируется за счет охлаждения жидким азотом и используется снова. Насосы такого типа когда-то использовались для откачки радиоламп. Сейчас вместо ртути используются нетоксичные и не требующие жидкого азота силиконовые масла, но в некоторых лабораториях до сих пор можно найти старые ртутные системы.

Пары ртути — рабочий газ люминесцентных ламп. Несмотря на то, что люминесцентная лампа должна содержать небольшое количество ртути, в некоторых лампах ртути добавлено от души, и видно, как в колбе перекатывается шарик ртути. Пары ртути при возбуждении их электрическим током излучают яркий свет, преимущественно в синей и ультрафиолетовой области. Помимо них в спектре ртути есть яркие желтый и зеленый дублеты, по наличию которых ртутную лампу легко отличить от любой другой, посмотрев на нее через призму или отражение в компакт-диске. Специальная ртутная лампа в лабораториях используется как источник зеленого света с известной длиной волны.

В мощных тиратронах и ртутных выпрямителях. Используется так же, как и в ртутных лампах. Мощные ртутные вентили широко использовались для питания локомотивов на железных дорогах и в других подобных задачах до появления полупроводниковых приборов.

Как растворитель для металлов при выделении золота и платины из сырья амальгамацией и в производстве зеркал. Ртуть выпаривается, металл остается. Иногда этот процесс неправильно называют «аффинаж», путая его с совершенно другим способом очистки драгметаллов.

В ртутных счетчиках времени наработки. В старой технике ртутный капиллярный кулономер использовался как счетчик часов, которые проработал прибор. Гениальная по простоте и надёжности конструкция.

Ртутный счетчик времени наработки от осцилографа. В углу показан крупным планом разрыв столбика ртути в капилляре каплей электролита. Ртуть под действием тока растворяется на одном конце капли и восстанавливается на другом, в результате этот разрыв движется по капилляру на расстояние, пропорциональное пропущенному через капилляр количеству электричества. Благодарю Александра @Talion_amur за предоставленный образец.

В амальгамных зубных пломбах. Встречаются и по сей день, особенно в США.

Токсичность

Все изделия, содержащие ртуть, должны утилизироваться специализированной службой. Недопустимо выбрасывать их с бытовым мусором во избежание скопления ртути на свалке.

Все разливы ртути должны быть собраны, а поверхности демеркуризованы. Ртуть хорошо испаряется при комнатной температуре, поэтому закатившийся в щель шарик ртути долгое время будет отравлять воздух.

Демеркуризация:

Если у вас разбилось изделие с ртутью, то предпринимайте следующие действия:

1. Откройте форточки и обеспечьте проветривание.

2. Вызовите специализированную службу демеркуризации в вашем городе. Профессионалы не только грамотно уберут ртуть, но также и произведут замеры концентрации паров ртути в помещении.

Если вдруг в вашем городе не оказалось службы демеркуризации, вы находитесь вдали от цивилизации то процесс демеркуризации придется продолжить самостоятельно.

3. Соберите видимые шарики ртути в герметичную тару. Их удобно собирать вместе при помощи двух хорошо обрезанных листов бумаги, сливая шарики в подготовленную тару. Мельчайшие шарики ртути из щелей можно вытянуть при помощи спиринцовки, или щетки из металла, которые смачивает ртуть (например медь). Разумеется после использования такой «инструмент» окажется загрязнен ртутью и подлежит утилизации.

Затем при помощи химических средств оставшаяся, не видимая глазу ртуть переводится в нелетучие, но по прежнему ядовитые соли, которые спокойно можно удалить с поверхности моющими средствами. Для этого используются 0,2% водный раствор перманганата натрия («марганцовка») подкисленный добавлением 0,5% соляной кислоты или 20% раствор хлорного железа (того, которым платы травят). Вопреки указаниям в старых книгах, засыпание места разлива порошком серы не эффективно.

4. Тщательно промыть обработанные площади водой с моющим средством.

5. Всю собранную ртуть и загрязненные предметы герметично упаковать и сдать в специализированную организацию.

Что однозначно не стоит делать при разливе ртути:

1. Паниковать и спешить. Иногда, при небольших авариях больше вреда наносит паника и спешка, чем сама авария. Вспоминается байка, записанная Ю.А.Золотовым:

Однажды, когда профессор МГУ Алексей Николаевич Кост вел практикум по органической

химии, у одного из студентов разбилась колба с эфиром и его пары вспыхнули.

Началась паника, кто-то прибежал с углекислотным огнетушителем и с трудом погасил

пожар. Все это время Кост совершенно невозмутимо сидел за своим столом и с

кем-то разговаривал. Потом, когда все успокоились, подошел к месту происшествия и приказал:

— Спички!

Ему дали коробок, он чиркнул спичкой и бросил ее в еще не просохшую эфирную

лужу. Огонь вспыхнул вновь, все оторопели. А Кост, не суетясь, взял противопожарное

одеяло, ловко накрыл им пламя и изрек:

— Гореть надо умеючи!

2. Пытаться собрать ртуть пылесосом, пылесос только в турборежиме раздробит и испарит шарики ртути, в итоге все помещение и сам пылесос окажутся загрязнены ртутью. Аналогично не стоит использовать для сбора ртути веники, щетки — они только раскидывают и дробят шарики ртути.

3. Сливать ртуть в раковину или унитаз. Ртуть значительно тяжелее воды, поэтому навсегда осядет в первом попавшемся изгибе трубы — в гидрозатворе или колене.

Пара слов о токсикологии ртути.

Некоторые в детстве играли шариками ртути, и «с ними ничего не было». Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.

Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, дажепроглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют. Порча здоровья от контакта со ртутью в течение нескольких дней может быть необратима.

Растворимые соединения ртути намного опаснее, и именно они образуются, когда ртуть так или иначе попадает в организм человека, животных или в растений. Рекорд по токсичности принадлежит диметилртути — это ужасно токсичное из известных человечеству веществ, настолько токсичное, что при первой возможности ищут менее опасную альтернативу если предстоит работа с ней. Капля диметилртути способна убить человека сквозь резиновые перчатки, причем первые симптомы отравления могут появиться только на следующий день.

Если вы выкинув ртуть подальше от дома думаете, что проблема устранена — то вы серьезно ошибаетесь. Ртуть — яд кумулятивный, способный к накоплению в живых организмах

и передаче дальше по пищевой цепочке. Примером отравления человека ртутью является болезнь Минамата. Ртуть из выброшенной люминесцентной лампы отравит если не вас, то ваших потомков.

Дополнительные сведения

Если вы нашли где-нибудь ртуть, не пытайтесь ее продать. Ртуть и ее соли считаются сильнодействующими ядовитыми веществами (ст. 234 УК РФ). На содержащие ртуть приборы заводского производства, соответствующие официальным стандартам, запрет не распространяется. Найденную ртуть и неисправные ртутьсодержащие приборы, следует сдавать на переработку в специализированные службы в вашем городе. Единственный широко доступный источник ртути (если вдруг понадобится в научной работе) — медицинские термометры.

Таблица электропроводности металлов в порядке возрастания

Электрические свойства металлов характеризуются электропроводностью и обратным ей свойством – электрическим сопротивлением. Хорошая электропроводность и, значит, низкое электрическое сопротивление у серебра, меди, алюминия. Именно поэтому медь и алюминий в основном используются как материал для проводов.

Самая маленькая величина электрического сопротивления из технических металлов у медм (1,67 10 -4 Ом • м). У алюминия оно в 1,6 раз больше, а у железа в 5,8 раза больше.

Все металлы довольно неплохо проводят электрический ток.

Достаточно хорошей электропроводностью обладает и натрий, в экспериментальной аппаратуре были попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря небольшому удельному весу натрия, с равным сопротивлением натриевые «провода» получаются намного легче медных и немного легче алюминиевых.

Электрические свойства металлов. (при 20 °C).

Постоянная Холла R,

ность носителей тока b,

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S можно рассчитать по формуле (причем предполагается, что площадь и форма поперечного сечения не изменяются по длине проводника). Значит, для ρ выполняется .

В связи с тем, что существует два типа электрических сопротивлений –

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Алюминий2,69–0,3312,3
Вольфрам5,5+1,120
Золото2,2–0,732
Медь1,67–0,5332
Молибден6,0+1,830
Олово12,8–0,0220,17
Платина10,5–1,2712
Серебро1,6–0,956
Цинк5,92+1,0417,5
Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025. 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095. 0,1
0,1
0,103. 0,137
0,12
0,22
0,42
0,43. 0,51
0,5
0,6
0,94
1,05. 1,4
1,15. 1,35
1,2
1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Металлα
Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного – 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами – как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Натрий

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

СТРАНИЦЫ

Рубрики

  • Импульсные источники питания (6)
  • Немного теории (21)
  • Практические примеры (17)
  • Светодиоды и светильники (4)
  • Справочные материалы (7)
  • Электромонтажные работы (4)
электрическая проводимость

Электрическое сопротивление

Вещество (металл) из которого сделан проводник влияет на прохождение через него электрического тока и характеризуется с помощью такого понятия, как электрическое сопротивление.Электрическое сопротивление зависит от размеров проводника, его материала, температуры:

  • -чем длиннее провод, тем чаще движущиеся свободные электроны (носители тока) будут сталкиваться на своем пути с атомами и молекулами вещества — сопротивление проводника возрастaет;
  • — чем больше поперечное сечение проводника, тем свободным электронам становится просторнее, число столкновений уменьшается — электрическое сопротивление проводника уменьшается.

Вывод: чем длиннее проводник и меньше его сечение, тем больше его сопротивление и наоборот – чем провод короче и толще, тем сопротивление его меньше , а проводимость (способность пропускать эл. ток) его лучше.

Упрощенно, зависимость сопротивления проводника от температуры можно представить так: электроны, движущиеся вдоль проводника, сталкиваются с атомами и молекулами самого проводника и передают им свою энергию. В результате проводник нагревается, тепловое, беспорядочное движение атомов и молекул увеличивается. Это еще больше тормозит основной поток электронов вдоль проводника. Этим объясняется увеличение сопротивления проводника прохождению электрического тока при нагреве.

При нагреве или охлаждении проводников — металлов, сопротивление их соответственно увеличивается или уменьшается, из расчета 0,4 % на каждый 1 градус. Это свойство металлов используется при изготовлении датчиков температуры.

Полупроводники и электролиты имеют противоположное свойство, чем проводники — с увеличением температуры нагрева их сопротивление уменьшается.

За единицу измерения электрического сопротивления принят 1 Ом (в честь ученого Г.Ома). Сопротивлению в 1 Ом равен участок электрической цепи, по которому проходит ток в 1 Ампер при падении на нем напряжения в 1 Вольт,

Иногда пользуются величиной обратной электрическому сопротивлению. Это электрическая проводимость, обозначается буквой g или G – Сименс (в честь ученого Э.Сименса).

Электрической проводимостью называется способность вещества пропускать через себя электрический ток. Чем больше сопротивление R проводника, тем меньше его проводимость G и наоборот. 1 Ом = 1 Сим

1Сим = 1000мСим,
1Сим = 1000000мкСим.

Когда необходимо посчитать общее сопротивление последовательно соединенных проводников, то удобнее оперировать с Омами. если вычисляется общее сопротивление параллельно соединенных проводников, удобней считать в Симах, а потом преобразовать в Омы.

Наибольшей проводимостью обладают металлы: серебро, медь, алюминий и др., а также растворы солей, кислот и др.
Наименьшая проводимость (наибольшее сопротивление) у изоляторов: слюда, стекло, асбест, керамика и т.д.

Чтобы удобнее проводить расчеты электрического сопротивления проводников, изготовленных из различных металлов, ввели понятие удельного сопротивления проводника.
Сопротивление проводника длиной 1 метр, сечением 1 мм. кв. при температуре + 20 градусов, это будет удельное сопротивление проводника «p» .

Удельные сопротивления проводников некоторых металлов приведены в таблице.

Из таблицы видно: из металлов, наилучшей проводимостью обладает серебро. Но оно очень дорого и в качестве проводников используется в исключительных случаях.

Медь и алюминий — наиболее распространенные материалы в электротехнике. Из них изготавливаются провода и кабели, электрические шины и пр. Вольфрам, константан, манганин используются в различных нагревательных приборах, при изготовлении проволочных резисторов.

Используя провода и кабели в электроустановках, необходимо учитывать их сечение, чтобы предотвратить их нагрев и, как правило, порчу изоляции, а также уменьшить падение напряжения и потерю мощности при передаче электрической энергии от источника до потребителя.

Ниже приведена таблица допустимых величин тока в проводнике в зависимости от его диаметра (сечения в мм.кв.), а так же сопротивление 1 метра провода, изготовленного из разных материалов.

Примеры расчето внекоторых электрических цепей можно посмотреть здесь.

ЖИДКИЕ МЕТАЛЛЫ • Большая российская энциклопедия

ЖИ́ДКИЕ МЕТА́ЛЛЫ, не­про­зрач­ные жид­ко­сти, об­ла­даю­щие боль­ши­ми зна­че­ни­ями те­п­ло­про­вод­но­сти и элек­тро­про­водно­сти ($σ$ ⩾ 5·105 Ом–1м–1), а так­же др. свой­ст­ва­ми, ха­рак­тер­ны­ми для твёр­дых ме­тал­лов. K Ж. м. от­но­сят­ся рас­пла­вы ме­тал­лов, спла­вов ме­тал­лов, а так­же ря­да ин­тер­ме­тал­лич. со­еди­не­ний. Не­ко­то­рые по­лу­ме­тал­лы и по­лу­про­вод­ни­ки в жид­ком со­стоя­нии пре­вра­ща­ют­ся в ти­пич­ные ме­тал­лы: од­ни (напр., $\ce {Ge, Si, GaSb}$) – сра­зу по­сле плав­ле­ния, дру­гие (напр., $\ce{PbTe, PbSe, ZnSb}$) – при на­грева­нии вы­ше темп-ры плав­ле­ния $T_{пл}$. Не­ко­то­рые не­ме­тал­лы ($\ce{P, C, B}$) ста­новят­ся Ж. м. при вы­со­ких дав­ле­ни­ях. При ат­мо­сфер­ном дав­ле­нии и ком­нат­ной темп-ре Ж. м. яв­ля­ет­ся толь­ко ртуть ($T_{пл}$ = –38,8 °C).

Ж. м. по та­ким свой­ст­вам, как вяз­кость, по­верх­но­ст­ное на­тя­же­ние и спо­соб­ность к диф­фу­зии, сход­ны с др. жид­ко­стя­ми, но в то же вре­мя рез­ко от­ли­ча­ют­ся от них зна­чи­тель­но бо́ль­ши­ми те­п­ло­про­вод­но­стью, элек­тро­про­вод­но­стью, спо­соб­но­стью от­ра­жать элек­тро­маг­нит­ные вол­ны, а так­же мень­шей сжи­мае­мо­стью. По этим свой­ст­вам Ж. м. близ­ки к твёр­дым ме­тал­лам. Как и в твёр­дых ме­тал­лах, но­си­те­ли за­ря­да в Ж. м. – элек­тро­ны. Для чис­тых ме­тал­лов элек­тро­про­вод­ность при плав­ле­нии умень­ша­ет­ся при­мер­но вдвое и при даль­ней­шем на­гре­ва­нии убы­ва­ет ли­ней­но с рос­том темп-ры. Ис­клю­че­ние со­став­ля­ют жид­кие $\ce{Fe, Co, Ni}$. Тер­мо­эдс скач­ко­об­раз­но ме­ня­ет­ся при плав­ле­нии, для мно­гих Ж. м. она яв­ля­ет­ся ли­ней­ной функ­ци­ей темп-ры. По­сто­ян­ная Хол­ла (cм. Хол­ла эф­фект) для Ж. м. от­ри­ца­те­ль­на и близ­ка к зна­че­ни­ям, пред­ска­зы­вае­мым мо­де­лью сво­бод­ных элек­тро­нов (см. Дру­де тео­рия). При плав­ле­нии ме­тал­лов те­п­ло­про­вод­ность из­ме­ня­ет­ся ана­ло­гич­но элек­тро­про­вод­но­сти. Бóльшую часть те­п­ло­во­го по­то­ка в Ж. м. пе­ре­но­сят сво­бод­ные элек­тро­ны, а ре­шё­точ­ная (фо­нон­ная) те­п­ло­про­вод­ность ма­ла. Ко­ли­че­ст­вен­ная оцен­ка элек­тро- и те­п­ло­про­вод­но­сти Ж. м. за­труд­не­на, т. к. тео­рия ки­не­тич. элек­трон­ных про­цес­сов в жид­ко­стях име­ет ка­че­ст­вен­ный ха­рак­тер и ещё не за­вер­ше­на.

В не­ко­то­рых Ж. м. зна­чи­тель­ная те­п­ло­про­вод­ность со­че­та­ет­ся с вы­со­кой теп­ло­ём­ко­стью, что по­зво­ля­ет ис­поль­зо­вать их в теп­ло­тех­ни­ке в ка­че­ст­ве те­п­ло­но­си­те­лей. Напр., жид­кие $\ce {Na}$ и $\ce K$ и их спла­вы при­ме­ня­ют­ся для от­во­да те­п­ло­ты в ядер­ных ре­ак­то­рах; $\ce{Ga}$ и спла­вы $\ce{Ga–In}$ об­ла­да­ют дос­та­точ­но низ­ки­ми Тпл и при­ме­ня­ют­ся в ка­че­ст­ве ва­ку­ум­ных за­тво­ров при по­лу­че­нии вы­со­ко­го ва­куу­ма.

Создан способ производства сверхпрочных металлов без ущерба их электропроводности

Все металлы обладают дефектами структуры, которые в конечном итоге сказываются на их прочности – чем больше дефектов в металле, тем он более мягкий или ломкий. Для решения этой проблемы ученые создают новые металлические сплавы. Такой подход позволяет получать более прочные металлические соединения, но в то же время приводит к потере показателя их электропроводности. А это в свою очередь ограничивает возможности использования новых сплавов в различных задачах. Последнее открытие американских ученых предлагает решение этого вопроса. Об открытии сообщается в статье, опубликованной журналом Nature Materials.

Кусочек нового серебряного сплава в руках соавтора исследования Фредерика Сансоза

Электропроводность – свойство материала проводить электрический ток. Имеет очень важное значение при производстве различной электроники.

Авторами открытия стали исследователи из Вермонтского университета, которые разработали механизм производства новых сплавов, позволяющий делать металлы намного прочнее, но в то же время сохранять их электропроводность.

Как создать прочный и электропроводящий металл

Решение проблемы оказалось на удивление довольно простым. Для примера ученые на наноуровне смешали следовое (другими словами, очень незначительное) количество меди с серебром и в результате смогли получить самый прочный серебряный сплав — он на 42 процента прочнее любого серебряного сплава из существующих сегодня. Но и это не самое главное. Главное заключается в том, что став прочнее, серебро при этом не потеряло своего свойства электропроводности. Напомним, что серебро само по себе обладает самым высоким показателем электропроводности среди металлов.

Модель атомной структуры зерен (частиц) серебра с вкраплениями меди (отмечены зеленым), которая заполняет дефекты металла

Благодаря новому методу производства ученым удалось преодолеть так называемый теоретический предел Холла-Петча, который сохранялся в течение последних 70 лет. Его еще называют законом Холла-Петча. Согласно этому пределу, чем меньше становятся зерна (частицы) металла, тем прочнее становится структура вещества. Однако существует некоторое ограничение. Когда зерна металла становятся слишком маленькими – размером несколько нанометров – границы этих зерен становятся нестабильными, начинаются двигаться и деформироваться, что приводит к тому, что металл снова «размягчается».

Также интересно: Ученые открыли металл для создания электроники будущего

Ученые смогли преодолеть этот предел, создав то, что они называют «нанокристаллическим нанотонированным металлом». Так как атомы меди по размерам несколько меньше атомов серебра, то они способны проникать в дефекты структуры на границах зерен серебра. Это предотвращает дефекты его структуры от движения, делая металл прочнее. В то же время частицы меди не создают проблем для движения электронов через серебро, позволяя металлу сохранять его электропроводность.

Это новый класс материалов и мы только начинаем понимать, как они работают, — комментирует Фредерик Сансоз.

По словам исследователей, новый подход в производстве сплавов может применяться не только для серебра, но и для других металлов. Что же касается сферы использования, то новый метод может однажды эффективно применяться, например, при производстве более эффективных солнечных панелей, более легких фюзеляжей для самолетов и даже при строительстве более надежных ядерных электростанций. Думается, это не единственные варианты использования. Если среди наших читателей имеются свои идеи, изложить их можно в нашем Telegram-чате.

Применение Электропроводность — Энциклопедия по машиностроению XXL







Моделирование нелинейных задач может быть осуществлено также с помощью метода, предложенного в работе [111], который для комбинированных моделей достаточно подробно изложен в [114]. Не излагая основ этого метода, так как об этом говорилось в предыдущей главе, отметим, лишь, что при его использовании на комбинированных моделях необходимо учитывать не только переход от термических сопротивлений к электрическим, но и переход от эквивалентной сеточной модели к комбинированной, выражающийся в учете объема элемента моделируемого тела и удельного сопротивления примененной электропроводной бумаги при расчете масштаба гпц и значений дискретных сопротивлений.  [c.51]










При сборке бумажных деталей моделей на электропроводном клее получался большой разброс точек. Поскольку в рассматриваемых задачах требуемая точность значительно выше, чем это принято в ЭГДА, пришлось отказаться от применения электропроводных клеев, неизбежно вносящих неконтролируемые неоднородности в исследуемые поля. Для уменьшения влияния местных неоднородностей, свойственных бумаге, модели собирались из нескольких слоев, различно ориентированных относительно направления полос исходного материала. Однако главной причиной неоднородности оставалось применение клея.  [c.66]

Применять алюминий как конструкционный материал нз-за низкой прочности совершенно нецелесообразно, однако некоторые его свойства — высокая пластичность, коррозионная стойкость и электропроводность — позволяют весьма эффективно его использовать.1 Таким образом имеются три направления применения технического алюминия  [c.566]

Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой  [c.245]

Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]

Чистые металлы, как правило, не отвечают необходимым требованиям, предъявляемым к материалам для деталей современных машин. Поэтому наибольшее применение в технике получили не чистые металлы, а их сплавы. Однако наряду с увеличением количества сплавов и усложнением их состава для атомной, электронной и других отраслей новой техники особое значение приобретают металлы высокой чистоты. Сплавы по сравнению с металлами отличаются более высокой прочностью. Но они обладают меньшими пластичностью, электропроводностью и другими физическими свойствами.  [c.29]










Большинство высоколегированных сталей хорошо свариваются контактной сваркой. Низкая тепло- и электропроводность аустенитных сталей вызывает необходимость применения более жестких режимов, чем для низколегированных сталей. Повышенная прочность сталей требует увеличения усилия сжатия электродов при сварке. Сварные соединения, выполненные на оптимальном режиме, имеют высокие прочностные характеристики.  [c.128]

Контактную точечную и шовную сварку применяют для соединения листов и профильного проката преимущественно из деформируемых сплавов. Контактную стыковую сварку выполняют преимущественно методом оплавления. Так как алюминий и его сплавы отличаются высокой тепло- и электропроводностью, то необходимо при электроконтактной сварке, особенно точечной, применение больших токов и мощных машин, для повышения эффективности нагрева целесообразно сваривать при малой длительности импульсов тока.  [c.135]

Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]

Практические применения радиационной химии можно подразделить на оборонительные и наступательные . На первом этапе развития ядерной промышленности в основном велись работы оборонительного плана по радиационно-химической защите материалов в реакторах и вообще в условиях высокой радиоактивности (в частности, в космосе). При сильном облучении металлы становятся склонными к коррозии, хрупкости, смазочные масла портятся, в изоляторах увеличивается электропроводность и т. д. Была проведена большая работа по изысканию материалов, стойких по отношению к облучению.. Так, было найдено, что из металлов в условиях облучения хорошо сохраняют свои антикоррозийные и механические свойства цирконий и его сплавы. Хорошей радиационной стойкостью обладают и некоторые полимерные материалы, например, полистирол, для которого малы выходы как сшивания, так и деструкции (радиационно-стабильные (обычно ароматические, см. п. 3) группы, не только сами устойчивы по отношению к излучению, но могут защищать от разрушения и другие полимерные молекулы, отсасывая от них энергию (так называемая защита типа губки). Применяется также защита типа жертвы . В этом случае защищающие молекулы, например, могут захватывать образующийся в радиационно-химическом процессе атомарный водород, препятствуя последнему реагировать с другими молекулами.  [c.665]

Создавая электропроводящие модели пространственного вида (с применением иногда электропроводных жидкостей), мы можем решать по методу ЭГДА и пространственные задачи впрочем решение таких пространственных задач иногда оказывается сопряженным со значительными трудностями (чисто технического характера).  [c.598]

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк (р = 10 — — 10 ом-см) однако материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов, Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает, т. е. полупроводники в большинстве случаев обладают отрицательным температурным коэффициентом электросопротивления примеси уменьшают электропроводность металлов, но увеличивают проводимость полупроводниковых материалов. Полупроводники обладают фотопроводимостью, т. е. при действии излучений у них возникают дополнительные свободные носители заряда. В приборной технике полупроводники нашли широкое применение, поскольку они могут служить выпрямительными элементами, генерировать огромные термо-э. д. с., усиливать ток, позволяют увеличить ресурс и надежность электронных устройств, уменьшить размеры и вес приборов, а также сократить потребление электрической энергии.  [c.279]

Область применения технического алюминия АД и АД1. Элементы конструкций и детали, не несущие нагрузки и требующие применения иатериала с высокими пластическими свойствами, хорошей свариваемостью, высоким сопротивлением коррозии или высокой тепло- и электропроводностью.  [c.13]

Наиболее важные технические применения полупроводников основаны на создании в одном куске материала контактирующих областей с различными типами электропроводимости р — п-пере-ходов), с одним типом электропроводности, но различной величины  [c.250]

Покрытия золотом, несмотря на высокую стоимость металла, имеют широкое применение благодаря химической стойкости, электропроводности и декоративности Золочение применяется в приборостроении и радиоэлектронике, а также в ювелирном и часовом деле.  [c.85]

На рис. 3-31 показана модель угла стены здания, состоящей из двух слоев раз ной толщины, характеризующихся разными коэффициентами теплопроводности. Электрическая модель также должна иметь разную толщину слоев и разную их электропроводность. Если, например, теплопроводность внутреннего слоя меньше, чем внешнего, то тогда его электрическое сопротивление соответственно увеличивается за счет отверстий, сделанных в этом слое, или за счет применения электропроводящих листов с большим удельным электрическим сопротивлением. Отсутствие контактного сопротивления между слоями воспроизводится плотным их соединением. Постоянство электрических свойств проводящего листа обеспечивается применением соответствующих материалов.  [c.120]

Глубина слоя грязной воды, застаивающейся на дне трюмов, обычно так мала, что защита при помощи типовых протекторов (анодов) невозможна. Попытки применения очень плоских протекторов, закрепленных на чисто прошлифованной поверхности дна при помощи электропроводного клея, показали, что такой способ недостаточно надежен. Лучшие результаты дает протекторная проволока из алюминиевых или цинковых сплавов со стальным сердечником. Такие протекторы из проволоки диаметром 6—10 мм укладывают в виде длинных петель непосредственно на дно трюма, выводят вверх через расположенные над ними конструктивные элементы и припаивают.  [c.370]

Точечная контактная сварка грунтованных листов толщиной 1 мм не вызывает технических затруднений. Применением электропроводных грунтовок достигнуто улучшение стойкости сварных соединений против коррозии как при точечной контактной, так и при электодуговой сварке стыковых и угловых соединений (на листах толщиной более 2 мм).  [c.90]

Электрохниикомехавическая доводка. Для электрохимикомеханической доводки твердосплавных инструментов находят применение электропроводные абразивные и алмазные круги.  [c.260]

В США выпущено больше десяти моделей различных станков под названием для электролитического шлифования . Там же продолжают работы по созданию специального оборудования для электро-химико-меха-нической обработки турбинных лопаток, формообразования полостей штампов, нарезания пазов и сверления заготовок из высоколегированных сплавов. Лаборатории крупных фирм ( Дженерал Электрик , Энокат , Риан Аэронавтик и др.) заняты разработкой оборудования с применением электропроводных алмазных кругов с целью ускорения процессов обработки и экономии алмазов. Заслуживает внимания применение станков с источниками постоянного тока силой до 100 000 а, что позволяет достигнуть производительности 5000 мм 1мин.  [c.12]

Однако применение фосфора для целей раскисления следует ограничивать, так как он также дает легкоплавкпе эвтектики. Раскислитель, участвуя в металлургическом процессе сварки, не только раскисляет металл, но одновременно и легирует его, что может снизить его коррозионную стойкость и электропроводность.  [c.344]

Сварку ведут электродами диаметром 4—6 мм короткой дугой без поперечных колебаний на постоянном токе обратной полярности. Сила сварочного тока I = (50 60) d . Сварка нокрытымп электродами позволяет получить швы с хорошими прочностными свойствами, но ввиду применения раскислителей нроисходяш,ее легирование металла шва ухудшает его теплофизическне и элект-рпческие свойства (электропроводность шва составляет 20—25% электропроводности основного металла).  [c.349]

Существует большое разнообразие конструкционных клеев, отличающихся физико-механическими свойствами и технологией их применения. Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизованы, и эпоксидные клеи с наполнителем и без наполнителя. При необходимости повышенной теплостойкости (до 1000 С) применяют элемеи-тоорганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.  [c.26]

В качестве примера применения теории линейной реакции рассмотрим ее приложение к изучению процессов электропроводности и э.аектрической поляризации, т. е. реакции системы на внешнее электрическое поле S (i).  [c.179]

Цикл энергетической установки с МГД-генератором. Ранее отмечалось, что применение МГД-генераторов наиболее целесообразно (если опыт подтвердит эффективность использования МГД-геиераторов вообще) в качестве головного звена обычной энергетической (в частности, паросиловой) установки. Это сопряжено с тем, что рабочие температуры в газовом (или, как говорят еще, плазменном) МГД-генераторе составляют 2000″ С н более. При температурах ниже этой величины электропроводность газа слишком низка для осуществления процесса.  [c.612]

Одновременно с переходом П — АФ в происходит переход металл — полупроводник. При Т Т электропроводность меняется на девять-десять порядков. Описание электронной структуры и обзор магнитных свойств VgOa см. в книге Бугаев А. А., За харченя Б. М., Чудновскнй Ф. А. Фазовый переход металл — полупроводник и его применение. Л. Наука, 1979.  [c.655]

Ионизирующие излучения, проходя через газ, делают его электропроводным. На этом свойстве основана работа нейтрализаторов статического электричества. Эти нейтрализаторы позволили решить давние наболевшие проблемы текстильной промышленности, связанные с электризацией нитей трением. Электризация нередко приводила к самовозгоранию. Особенно сильно электризуются многие синтетические волокна. Наэлектризованные нити плохо скручиваются, прилипают к разным частям машин. Никакими доядер-ными средствами решить эту задачу не удавалось. Установка же нейтрализаторов, главной частью которых является а-активный плутоний 94Ри , либо р-активные тритий или прометий (Ti/j = 2,6 лет), позволила обеспечить непрерывную разрядку статических зарядов через ионизированный воздух без изменения технологии процессов. Применение нейтрализаторов не только устранило пожарную опасность, но и привело к заметному увеличению производительности различных машин (ткацких, чесальных и др.) в текстильном производстве на 3—30%. В настоящее время нейтрализаторы статического электричества составляют 13% всех поставок радиационной техники. Они широко используются в текстильной, полиграфической и других отраслях промышленности.  [c.682]

В 1975 г. было обнаружено, что пленки аморфного кремния, получаемые разложением газообразного силана 31Н4, обладают удивительными для аморфных материалов свойствами. Главное, свойствами этих пленок можно эффективно управлять легированием получать материалы п- и р-типов электропроводности и изменять ее значение до миллионов раз. Таким образом, появились широкие возможности применения аморфного кремния. Почему же происходят такие заметные изменения свойств материала и чем они определяются  [c.13]

Наиболее важной областью применения серебра являются серебряные припои. Припои должны обладать низкой температурой плавления, жидкотекучестью п достаточной прочностью. В электротехнике предъявляется еще дополнительное условие — высокая электропроводность. Припои серебро—медь—цинк—кадмнй с точкой плавления около 630° С, обладающие значительной прочностью и пластичностью, применяются для пайки железных и цветных металлов с точкой плавления выше 700° С.  [c.441]

Как известно, драгоценные металлы обладают рядом важных специфических свойств (высокой химической стойкостью, электропроводностью, отражательной способностью, нзеюсостойкостью и др.), что приводит к широкому применению этих металлов в радиотехнической, приборостроительной, электронной и других отраслях промышленности. Кроме того, благородные металлы обладают прекрасными защитно-декоративными свойствами, что способствует большому спросу на них в ювелирной, часовой и медицинской промышленности. Электролитическое осаждение этих металлов позволяет резко сократить их потребление по сравнению с использованием деталей, целиком изготовленных из драгоценных металлов. Значение электролитического осаждения их возрастает в связи с уменьшающимися мировыми запасами драгоценных металлов.  [c.3]

Описано изменение свойств огнеупорных материалов при воздействии электрических полей. Изложена методика излзависимость электропроводности от структуры и химического состава огнеупоров. Рассмотрено электролитическое разложение огнеупоров и указано применение их в технике в качестве электроизоляционных и проводящих материалов.  [c.37]

Карбидами называют соединения углерода с другими элементами. Широкое применение имеет карбид кремния Si —карборунд—ио-ликристаллический полупроводник. Карборунд получают в электрических печах при температуре 2000° С из смеси двуокиси кремния SiOa и угля. Кристаллы карборунда гексагональной структуры в чистом виде бесцветны, но благодаря примесям технический материал имеет светло-серую или зеленоватую окраску. При нормальных условиях энергия запрещенной зоны = 2,86 эв. Характер электропроводности определяется составом примесей или отклонением от стехио-метрического состава Si . Электронная проводимость получается при избытке Si, а также при наличии примесей из V группы — фосфора, мышьяка, сурьмы, висмута или азота. Дырочная проводимость достигается при избытке С и наличии примесей элементов II группы (Са, Mg) и III группы (А1, In, Ga, В). При введении примесей изменяется также окраска карборунда. Подвижность носителей низкая гг = = 100 см 1в-сек. Up = 20 см /в-сек. Порошкообразный карборунд применяют для изготовления нагревателей электрических печей с температурой до 1500° С. Кроме того, из него изготовляют нелинейные объемные резисторы — варисторы, в которых значение R падает с ростом приложенного напряжения (рис. 14.2). Нелинейность таких резисторов резко вырастает при одновременном введении небольших примесей алюминия (IM группа) и азота (V группа), вблизи точки перехода  [c.188]

Жидкие кристаллы весьма чувствительны (десятые доли градуса) к тe пepaтype н при этом меняют свою окраску. Подбирая различные по составу вещества, можно получить индикаторы в пределах температуры —20-f-+250 С. Они также сильно реагируют иа изменения напряженности электрического и магнитного полей, изменяя при этом свою прозрачность и другие оптические характеристики, что используется в технике. Анизотропия электропроводности жидких кристаллов связана с анизотропией их вязкости, определяющейся закономерностями в расположении молекул. Большое число световых эффектов, таких, как поворот плоскости поляризации луча, двойное лучепреломление, спектральное изменение поглощения и отражения световая память , делает их интересными и для применения в оптике. Жидкие кристаллы реагируют также и на пары различных химических веществ. При использовании жидких кристаллов в качестве световых индикаторов следует помнить, что они  [c.139]

Эффективность катодной защиты любого сооружения определяется качеством электрической изоляции и зависит от входного его сопротивления. Поэтому при осуществлении катодной защиты необходимо изолировать защищаемое сооружение от всякого рода заземленных объектов. Требованиями СНиПа П-37-76 Газоснабжение. Внутренние и наружные устройства определено применение изолирующих фланцев на газопроводах при вводе их к потребителям, где возможен электрический контакт с заземленными конструкциями. Это мероприятие позволяет снизить защитный ток установки в два-три раза. Эффективен изолирующий фланец и на тепловодонроводах, что подтверждается испытаниями электропроводности воды в лабораторных условиях.  [c.34]

Все приемы измерений оказываются неосуществимыми, если уравнение (3.8) нельзя применить при малых значениях постоянной времени Тм. Так, в некоторых редких случаях при чистом песчаном грунте наблюдалось, что ток может а вызвать электрическую поляризацию — песка, что существенно искажает результат измерения потенциала без применения зонда 2]. Потенциал при этом получается ощутимо сдвинутым в отрицательную сторону. Могут быть измерены нереальные потенциалы выключения по медносульфатному электроду u/ uso. =—1.7 В и еще более отрицательные. Такой эффект поляризации грунта не наблюдается, если в нем присутствуют растворенные соли или если увеличивается его электропроводность.  [c.91]

Это значение может оказаться ощутимо меньщим. На рис. 7.2 оно соответствует ординате точки пересечения прямой сопротивления с углом наклона о (штриховой линии) с кривой J(Ut), заметно сдвинутой влево по сравнению с показанной кривой. Максимальная плотность тока является важным показателем при расчете защиты с применением протекторов согласно формуле (7.14) она зависит в основном от геометрии протектора и от электропроводности среды.  [c.179]

Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насандобыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5.  [c.182]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Из протекторов может быть применен практически только магний, поскольку он имеет высокое движущее напряжение (см. раздел 7). При удельных сопротивлениях грунта рудельным электросопротивлением и со сравнительно высокой электропроводностью в непосредственной близости от трубопровода, например в вечной мерзлоте или скальном грунте, могут быть уложены также ленточные и проволочные анодные заземлители (см. раздел 7.7.5) рядом с защищаемым трубопроводом [16]. Протекторы находят применение при малой плотности защитного тока и низком удельном электросопротивлении грунта, но главным образом при отсутствии электрических сетей на территории. Ввиду малой токоотдачи отдельных протекторов практически никакого влияния на посторонние объекты не наблюдается.  [c.252]

В качестве примера на рис. 20.5 показано применение внутренней катодной защиты резервуара из углеродистой стали с покрытием каменноугольный пек — эпоксидная смола, имеющего жестко закрепленную крышу и предназначенного для хранения частично обессоленной котловой питательной воды с температурой 60 °С (электропроводность к=100 мкСм-см ). Резервуар после 10 лет эксплуатации без катодной защиты имел поражения язвенной коррозией глубиной до 2,5 м. Поскольку по условиям эксплуатации уровень воды в резервуаре колеблется, были применены две независимо работающие системы защиты. В области дна был установлен кольцевой анод, закрепленный на пластмассовых поддерживающих стержнях (штырях), подключенный к защитной установке с регулированием потенциала. Боковые стены были защищены тремя анодами, установленными в резервуаре вертикально и подключенными к защитным установкам с постоянной настройкой (нерегулируемым).  [c.383]


Химические и физические свойства металлов

Металлы отличаются друг от друга различными параметрами. Принято выделять физические и химические свойства металла.

Физические свойства определяют внешние характеристики металла. К ним относят: вес, цвет, электропроводность. Также физические свойства характеризуют то, насколько металл проводит тепло, какая у него плотность и пластичность.

Химические свойства связаны с реакцией металлов на определенные воздействия. Например, насколько сильно металл подвержен коррозиям, как он окисляется и способен ли растворяться в жидкостях.

Рассмотрим более подробно характеристики каждого из свойств.

  • Цвет. Это характеристика, которая отображает оттенки металлов – серебристый, белый, стальной, желтый. Интересно то, что металлы не пропускают через себя свет. Они его отражают. Большая часть известных металлов имеет серебристо-белые оттенки. По цвету металлы подразделяются на черные и цветные.
  • Способность плавиться. Одно из главных и основных свойств металлов. Характеризует реакцию металла на повышения и понижение температуры. Плавкость показывает, как быстро металл из твердого состояния, может превратиться в жидкое и наоборот. И какие температуры при этому нужны. Температуру при плавлении разных металлов часто меняют с определенными интервалами. Иногда, чтобы расплавить металл, нужно постепенно повышать температуру. Если это сделать сразу, качество изделия из этого металла может быть на низком уровне. Знание характеристик плавкости того или иного металла позволяет применять сплавы для создания специальных матриц, которые защищают различные приборы от возгорания.
  • Электропроводность показывает, насколько металл способен пропускать и переносить электричество. Все металлы, по сравнению с другими материалами, отличаются огромной электропроводностью. Кстати, чем больше температура воздействия на металл, тем меньше он проводит через себя электричество. Сплавы из разных металлов характеризуются меньшей электропроводностью.
  • Магнитные характеристики. Магнитностью обладают небольшое количество металлов – железо, николь, кобальт. Но при повышении температуры и эти металлы теряют свойство магнитности. На магнитные характеристики особое внимание уделяется во время создания машин и приборов связи.
  • Теплопроводимость – способность металлов проводите тепло.
  • Вес – он измеряется в граммах, расчет идет по одному кубическому сантиметру. Металлы подразделяются на тяжелые и легкие. Самый маленький удельный вес у магния, самый большой у вольфрама. В машиностроении данная характеристика металла является очень важным элементом.

Кстати, ртуть это единственный жидкий металл. Все остальные металлы относятся к твердым. Исключения составляют сплавы разным металлов.

Знание физических свойств металлов, позволяет применять их по назначению, выбирать способы обработки и прогнозировать сроки службы.

Рассмотрим подробнее химические свойства металлов.

Химические свойства зависят от того, как располагаются атомы. Тип кристаллической решетки также влияет на химию металла. Все металлы с легкостью отдают электроны.

Устойчивость к коррозиям. Коррозия – это изменение (разрушение) металлов в ходе какого-то воздействия. Воздействие может быть физическим, химическим. Всем известны пример коррозии – появление ржавчины на металлах. Стойкость к разрушению является очень важной характеристикой при выборе металла. Благородные металлы практически не подвергаются коррозии (например, золото, платина). Цветные металлы в меньшей степени подвержены разрушению. Больше всего поддаются коррозийным изменениям черные металлы. Для того, чтобы достичь высокой стойкости к разрушению, часто используют специальные покрытия и определяют, какой металл лучше подойдет для поставленной цели.

Способность к окислению. Данная характеристика отображает, как металл взаимодействует с кислородом с применением различных окислителей.

Способность к растворению. Есть группы металлов, которое при определенных условиях хорошо растворяются. Из них можно получить твердый раствор. Для растворения применяют различные кислоты. Также существует анодное растворение. Для этих целей применяется раствор электролита.

Ниже в Таблице 1 рассмотрены все физические показатели трех металлов.











 

Физические свойства металла

Алюминий

Железо

Медь

1

 Состояние

твердый

твердый

твердая

2

Цвет (оттенок)

серебристо-белый

серый

с красным оттенком

3

Пластичность

высоко-пластичный

пластичный

самый пластичный

4

Твердость

<2,5

Диапазон от 2,5 до 5

< 2,5

5

Блеск

блестит

блестит на свежем срезе

блестит, если потереть

6

t плавления

Легкоплавкий (660)

Тугоплавкий (1540)

Средний (1080)

7

Плотность

Легкий (2,7)

Тяжелый (7,7)

Тяжелый (9)

8

Теплопроводность

+

+

+

9

Электропроводность

+

+

+

Таблица 1. Сравнение физических свойств разных металлов.

(Условные обозначения: + «хорошая»)

Из данной таблицы видно, что сравниваемые металлы по одним свойствам одинаковые или очень схожи, а по другим явно отличаются друг от друга. Одни металлы можно отличить друг от друга по внешнему виду (цвет, блеск, состояние). А другие свои отличия проявляют в процессе воздействия на них (повышение/понижение температуры, физическое воздействие). Все эти свойства позволяют выбрать тот металл, который соответствует необходимым требованиям в производстве различных металлических изделий.

Рассмотрим химические свойства данных металлов.

  1. Алюминий – активный металл. При попадании на открытый воздух на поверхности появляется пленка оксида. Коррозия алюминия случается в очень редких случаях. Относится к металлам не подверженным к разрушению. Он хорошо взаимодействует с кислородом, галогенами, серой (при повышении температуры), с углеродом (при повышении температуры). Ртуть способна разрушить поверхность алюминия. Алюминий применяется как покрытие на изделиях с целью защиты от окисления во время нагревания.
  2. Железо – относится к металлам средней активности. При обычной температуре не взаимодействует с кислородом и водой. Но если воздух влажный, то железо очень быстро подвергается коррозии. На поверхности появляется ржавчина и темные пятна. С различными металлами железо легко образует сплавы. Взаимодействует с галогенами, серой, кислотами.
  3. Медь – при попадании на воздух сверху покрывается пленкой карбоната. Он предотвращает дальнейшее окисление почвы. При повышении температуры способна вступать в реакцию с простыми и сложными веществами.

Все металлы обладают определенными свойствами и характеристиками. Знание этих свойств необходимо для правильного применения металлов. Не все металлы одинаково реагируют на внешние условия, физическое воздействие, температуру. Физические и химические свойства относятся к самым главным характеристикам металлов.

Для исследования свойств металлов в наше время применяют различные методы. Проводят следующие виды анализа: химический, спектральный, механический, технологический. Это самые часто используемые методы, которые позволяют оценить качество изделия, и получить информацию о происхождении металла и его основные параметры.

 

 

06.09.2019

Электропроводность металлов

Электропроводность в металлах — это результат движения электрически заряженных частиц. Атомы металлических элементов характеризуются наличием валентных электронов, которые представляют собой электроны во внешней оболочке атома, которые могут свободно перемещаться. Именно эти «свободные электроны» позволяют металлам проводить электрический ток.

Поскольку валентные электроны могут свободно перемещаться, они могут перемещаться через решетку, которая формирует физическую структуру металла.Под действием электрического поля свободные электроны движутся сквозь металл так же, как бильярдные шары, ударяясь друг о друга, передавая электрический заряд во время движения.

Передача энергии

Передача энергии наиболее сильна, когда сопротивление мало. На бильярдном столе это происходит, когда шар ударяется о другой шар, передавая большую часть своей энергии следующему шару. Если один шар ударяет несколько других шаров, каждый из них будет нести лишь часть энергии.

Точно так же самые эффективные проводники электричества — это металлы, которые имеют единственный валентный электрон, который может свободно перемещаться и вызывает сильную реакцию отталкивания в других электронах. Это относится к наиболее проводящим металлам, таким как серебро, золото и медь. Каждый из них имеет один валентный электрон, который движется с небольшим сопротивлением и вызывает сильную реакцию отталкивания.

Полупроводниковые металлы (или металлоиды) имеют большее количество валентных электронов (обычно четыре или более).Таким образом, хотя они могут проводить электричество, они неэффективны в этой задаче. Однако при нагревании или добавлении других элементов полупроводники, такие как кремний и германий, могут стать чрезвычайно эффективными проводниками электричества.

Электропроводность металла

Электропроводность в металлах должна соответствовать закону Ома, который гласит, что ток прямо пропорционален электрическому полю, приложенному к металлу. Закон, названный в честь немецкого физика Георга Ома, появился в 1827 году в опубликованной статье, в которой излагалось, как измеряются ток и напряжение в электрических цепях.Ключевой переменной при применении закона Ома является удельное сопротивление металла.

Сопротивление противоположно электрической проводимости, оценивая, насколько сильно металл противодействует прохождению электрического тока. Обычно это значение измеряется на противоположных гранях куба материала длиной один метр и описывается как омметр (Ом · м). Удельное сопротивление часто обозначают греческой буквой ро (ρ).

С другой стороны, электропроводность обычно измеряется в сименсах на метр (См -1 ) и обозначается греческой буквой сигма (σ).Один сименс равен одному ому, обратному величине.

Электропроводность, удельное сопротивление металлов

Материал

Удельное сопротивление

p (Ом • м) при 20 ° C

Электропроводность

σ (См / м) при 20 ° C

Серебро 1,59×10 -8 6,30×10 7
Медь 1.68×10 -8 5.98×10 7
Отожженная медь 1.72×10 -8 5.80×10 7
Золото 2.44×10 -8 4.52×10 7
Алюминий 2,82×10 -8 3,5×10 7
Кальций 3,36×10 -8 2.82×10 7
Бериллий 4.00×10 -8 2.500×10 7
Родий 4,49×10 -8 2,23×10 7
Магний 4.66×10 -8 2,15×10 7
Молибден 5.225×10 -8 1.914×10 7
Иридий 5,289×10 -8 1.891×10 7
Вольфрам 5.49×10 -8 1.82×10 7
цинк 5.945×10 -8 1.682×10 7
Кобальт 6.25×10 -8 1.60×10 7
Кадмий 6,84×10 -8 1,46 7
Никель (электролитический) 6,84×10 -8 1,46×10 7
Рутений 7.595×10 -8 1,31×10 7
Литий 8,54×10 -8 1,17×10 7
Утюг 9,58×10 -8 1.04×10 7
Платина 1.06×10 -7 9,44×10 6
Палладий 1.08×10 -7 9,28×10 6
Олово 1.15х10 -7 8,7×10 6
Селен 1,197×10 -7 8,35×10 6
Тантал 1,24×10 -7 8.06×10 6
Ниобий 1,31×10 -7 7,66×10 6
Сталь (литая) 1.61×10 -7 6,21×10 6
Хром 1.96×10 -7 5.10×10 6
Свинец 2.05×10 -7 4,87×10 6
Ванадий 2.61×10 -7 3.83×10 6
Уран 2,87×10 -7 3,48×10 6
Сурьма * 3.92×10 -7 2,55×10 6
Цирконий 4.105×10 -7 2.44×10 6
Титан 5.56×10 -7 1,798×10 6
Меркурий 9,58×10 -7 1.044×10 6
Германий * 4,6х10 -1 2,17
Кремний * 6.40×10 2 1,56×10 -3

* Примечание. Удельное сопротивление полупроводников (металлоидов) сильно зависит от наличия примесей в материале.

Что такое электропроводность?

Электропроводность — это мера величины электрического тока, который может переносить материал, или его способности проводить ток. Электропроводность также известна как удельная проводимость. Электропроводность — это внутреннее свойство материала.

Единицы электропроводности

Электропроводность обозначается символом σ и имеет единицы СИ — сименс на метр (См / м). В электротехнике используется греческая буква κ.Иногда греческая буква γ обозначает проводимость. В воде проводимость часто указывается как удельная проводимость, которая является мерой по сравнению с проводимостью чистой воды при 25 ° C.

Взаимосвязь между проводимостью и удельным сопротивлением

Электропроводность (σ) обратна удельному электрическому сопротивлению (ρ):

σ = 1 / ρ

где удельное сопротивление для материала с однородным поперечным сечением равно:

ρ = RA / л

где R — электрическое сопротивление, A — площадь поперечного сечения, l — длина материала.

Электропроводность металлического проводника постепенно увеличивается с понижением температуры.Ниже критической температуры сопротивление в сверхпроводниках падает до нуля, так что электрический ток может протекать через петлю из сверхпроводящего провода без приложенной мощности.

Во многих материалах проводимость осуществляется зонными электронами или дырками. В электролитах движутся целые ионы, неся свой чистый электрический заряд. В растворах электролитов концентрация ионных частиц является ключевым фактором проводимости материала.

Материалы с хорошей и плохой электропроводностью

Металлы и плазма являются примерами материалов с высокой электропроводностью.Элемент, который является лучшим проводником электричества, — это металл — серебро. Электрические изоляторы, такие как стекло и чистая вода, обладают плохой электропроводностью. Большинство неметаллов в таблице Менделеева плохо проводят электричество и тепло. По проводимости полупроводники занимают промежуточное положение между диэлектриком и проводником.

Примеры отличных проводников включают:

  • Серебро
  • Медь
  • Золото
  • Алюминий
  • Цинк
  • Никель
  • Латунь

Примеры плохих электрических проводников включают:

  • Резина
  • Стекло
  • Пластик
  • Сухое дерево
  • Алмаз
  • Воздух

Чистая вода (не соленая вода, которая является проводящей)

Что такое проводимость металлов?

Электропроводность металла — это мера способности материала передавать тепло или электричество (или звук).Обратной величиной проводимости является сопротивление или способность уменьшать их поток.

Понимание тенденции материала к поведению может быть решающим фактором при выборе этого материала для конкретного применения. Очевидно, что некоторые материалы выбраны потому, что они легко проводят электричество (например, проволока) или тепло (например, ребра или трубы в радиаторе или теплообменнике). Для других применений (например, для изоляции) выбираются материалы, потому что они не обладают хорошей проводимостью.

Чистые металлы обычно обеспечивают лучшую проводимость. В большинстве металлов наличие примесей ограничивает поток электронов. Таким образом, по сравнению с чистыми металлами элементы, которые добавляются в качестве легирующих агентов, могут считаться «примесями». Таким образом, сплавы обладают меньшей электропроводностью, чем чистый металл. Если требуются другие свойства, обеспечиваемые легированием (например, для дополнительной твердости или прочности), важно выбрать легирующие добавки, которые не оказывают значительного влияния на проводимость, если это также важно.

Металлы проводят электричество, позволяя свободным электронам перемещаться между атомами. Эти электроны не связаны ни с одним атомом, ни с ковалентной связью. Поскольку одинаковые заряды отталкиваются друг от друга, движение одного свободного электрона внутри решетки вытесняет электроны в следующем атоме, и процесс повторяется — двигаясь в направлении тока к положительно заряженному концу.

Теплопроводность аналогична электрической в ​​том, что возбуждение атомов в одной секции приводит к возбуждению и вибрации соседних атомов.Это движение или кинетическая энергия — как если бы вы потирали руки друг о друга, чтобы согреться — позволяет теплу проходить через металл. Сплавы, которые представляют собой комбинацию различных металлических элементов, обычно имеют более низкий уровень теплопроводности, чем чистые металлы. Атомы разного размера или атомного веса будут колебаться с разной скоростью, что изменит характер теплопроводности. Чем меньше передача энергии между атомами, тем меньше проводимость.

Чистое серебро и медь обеспечивают самую высокую теплопроводность, а алюминий — меньше.Нержавеющие стали обладают низкой теплопроводностью. Некоторые материалы, в том числе медь, легко проводят как тепло, так и электричество. В то время как другие, например стекло, проводят тепло, но не проводят электричество.

Как мы уже отмечали ранее, выбор металла для любого применения, вероятно, требует компромиссов. Например, подумайте о выборе металла в посуде. В то время как алюминий является достойным проводником тепла, медь проводит лучше и обеспечит более быстрое и равномерное приготовление пищи — если вы ищете эту быструю еду.Но медь намного дороже. Вот почему вся посуда, кроме самой высокой, изготавливается из алюминия или алюминия с покрытием или оболочкой (алюминий реагирует на соленые и кислые продукты), а не из более дорогой меди. Еще один вариант — медь с покрытием из нержавеющей стали.

Как и в большинстве подобных случаев, ближайший к вам металлург может помочь принять экономически эффективное решение по выбору сплава — по проводимости или почти по любым другим желаемым характеристикам.

Электропроводность — Металлы — Электроны, температура, ток и ионы

В настоящее время известно, что металлы — это в основном элементы, характеризующиеся атомами, у которых на внешней орбитальной оболочке очень мало электронов с соответствующими значениями энергии.Самая высокая проводимость наблюдается у металлов, где только один электрон занимает состояние в этой оболочке. Серебро, , медь, и золото являются примерами металлов с высокой проводимостью. Металлы находятся в основном в левой части периодической таблицы , из элементов и в переходных столбцах. Электроны, вносящие вклад в их проводимость, также являются электронами, которые определяют их химическую валентность при образовании соединений. Некоторые металлические проводники представляют собой сплавы двух или более металлических элементов, таких как , сталь , латунь, бронза и олово.

Кусок металла — это блок металлических атомов. В отдельных атомах валентные электроны слабо связаны со своими ядрами. В блоке при комнатной температуре и температуре эти электроны обладают достаточной кинетической энергией, чтобы позволить им уйти от своего первоначального местоположения. Однако этой энергии недостаточно для полного удаления их из блока из-за потенциальной энергии поверхности, самого внешнего слоя атомов. Таким образом, в своих узлах атомы ионизируются, то есть остаются с чистым положительным зарядом, и их называют ионными остовами.В целом, металл электрически нейтрален, поскольку заряды электронов и ионных остовов равны и противоположны. Электроны проводимости связаны не с ядрами, а с блоком в целом.

Эти электроны движутся облаком через пространства, разделяющие ионные ядра. Их движение случайное, имеет некоторое сходство с молекулами газа, особенно с рассеянием, но природа рассеяния иная. Электроны не подчиняются классическим газовым законам; их движение необходимо детально проанализировать квантово-механически.Однако большую часть информации о проводимости можно понять классически.

Конкретный образец металла может иметь удобную правильную форму, такую ​​как цилиндр (проволока) или призма (стержень). Когда батарея подключается к концам провода, электрохимическая энергия батареи передает разность потенциалов или напряжение между концами. Эта разность электрических потенциалов аналогична холму в гравитационной системе. Заряженные частицы затем будут двигаться в направлении, аналогичном спуску.В металле доступные электроны будут двигаться к положительному полюсу или аноду батареи. Когда они достигают анода, батарея впрыскивает электроны в провод в равном количестве, тем самым сохраняя электрическую нейтральность провода. Эта циркуляция заряженных частиц называется током, а замкнутый путь — цепью. Батарея действует как электрический аналог насоса. Исходя из аналогии с гравитацией, в которой объекты могут падать и приземляться, транспортировка заряженных частиц требует замкнутой цепи.

Ток определяется как перенос заряда:

, где I — ток, q — заряд, а t — раз . Таким образом, q / t — это скорость переноса заряда по проводу. В металле, пока его температура остается постоянной, ток прямо пропорционален напряжению. Эта прямая пропорция в математических терминах называется линейной, потому что ее можно описать простым линейным алгебраическим уравнением:

В этом уравнении V — это напряжение, а G — константа пропорциональности, известная как проводимость, которая не зависит от V и остается постоянной при постоянной температуре.Это уравнение является одной из форм закона Ома, принципа, применимого только к материалам, в которых электрическая проводимость линейна. В свою очередь, такие материалы называют омиками.

Более известная форма закона Ома:

, где R равно 1 / G и называется сопротивлением.

Концептуально идея сопротивления прохождению тока предшествовала идее переноса заряда в историческом развитии.

Сравнение разности электрических потенциалов с холмом в гравитационных системах приводит к идее градиента или наклона.Скорость изменения напряжения по длине провода, измеренная относительно любого конца, называется электрическим полем:

Поле E прямо пропорционально V и обратно пропорционально L в линейном или омическом проводнике. Это поле такое же, как электростатическое поле, определенное в статье по электростатике. Знак минус связан с необходимостью отрицательного градиента для обозначения «спуска». Электрическое поле в этом описании концептуально аналогично гравитационному полю у поверхности Земли.

Экспериментальные измерения тока и напряжения в металлических проводах разных размеров при постоянной температуре показывают, что сопротивление увеличивается прямо пропорционально длине и обратно пропорционально площади поперечного сечения. Эти вариации позволяют рассматривать сам металл отдельно от размеров образца. Использование константы пропорциональности для свойства материала дает соотношение:

, где ρ называется удельным сопротивлением металла. При обращении этого уравнения на первое место ставится проводимость, а не сопротивление:

, где σ — проводимость, , обратная величине (1 / ρ) удельного сопротивления.

Этот анализ может быть расширен заменой эквивалентных выражений:

Представляем концепцию тока , плотность , или ток, протекающий на единицу площади поперечного сечения:

дает выражение, свободное от всех внешних измерений, необходимых для его фактического расчета:

Это уравнение называется полевой формой закона Ома и является первым из двух физических определений проводимости, а не математическим.

Природу проводимости металлов можно изучить более глубоко, рассматривая электроны в объеме металла.Такой подход называют микроскопическим, в отличие от макроскопических свойств металлического образца. Под воздействием внутреннего электрического поля в материале электронное облако подвергнется чистому дрейфу к аноду батареи. Этот дрейф очень медленный по сравнению со случайными тепловыми движениями отдельных электронов. Облако можно охарактеризовать концентрацией электронов, определяемой как общее количество на единицу объема :

, где n — концентрация, N — общее количество, а U — объем металла (U используется здесь для объема, а не для V, который как алгебраический символ зарезервирован для напряжения).Тогда общий дрейфующий заряд составляет:

.

где e — заряд каждого электрона.

N слишком велико для перечисления; однако, если в качестве первого приближения каждый атом рассматривается как вкладывающий в облако один валентный электрон, количество атомов можно оценить по объему образца, плотности металла и атомной массе . Вычисленное таким образом значение n не совсем точно даже для одновалентного металла, но согласуется по порядку величины.(Поправки являются квантово-механическими по своей природе; металлы с более высокой валентностью и сплавы требуют более сложных квантовых поправок.) Средняя скорость дрейфа облака — это отношение длины провода к среднему времени, необходимому для электрона. пройти эту длину. Алгебраические замены, аналогичные показанным ранее, покажут, что плотность тока пропорциональна скорости дрейфа:

Скорость дрейфа накладывается на тепловое движение электронов.Эта комбинация движений, при которой электроны отскакивают от металла, приводит к микроскопическому описанию электрического сопротивления, которое включает в себя идею ограничения движения вперед. Предел выражается термином мобильность:

, так что подвижность, отношение скорости дрейфа к электрическому полю, конечна и характерна для конкретного металла.

Объединение этих двух последних уравнений дает второе физическое определение проводимости:

Движение электронов между колеблющимися ионными ядрами может быть проанализировано с помощью второго закона Ньютона, который гласит, что суммарная сила , приложенная к массе, создает ускорение :

Ускорение, в свою очередь, увеличивает скорость.Если бы не было сопротивления движению электрона в пространстве между ионными сердечниками, подключение батареи через концы провода привело бы к увеличению тока со временем пропорционально такой увеличивающейся скорости. Эксперимент показывает, что ток постоянный, так что нет чистого ускорения.

Тем не менее, батарея создает в проводе электрическое поле, которое, в свою очередь, создает электрическую силу на каждый электрон:

Таким образом, должна быть равная и противоположная сила, связанная с поведением ионных остовов.Аналогия здесь — действие молекул воздуха на объект, падающий в атмосферу, например каплю дождя. Эта жидкость трения создает силу, пропорциональную скорости, которая достигает предельного значения, когда сила трения становится равной весу. Это установившееся состояние, для которого результирующая сила составляет ноль , соответствует дрейфовой скорости электронов в проводнике. Подобно тому, как капля дождя быстро достигает постоянной скорости падения, электроны в металле гораздо быстрее достигают постоянной скорости дрейфа, проявляющейся в постоянном токе.

До сих пор это обсуждение требовало поддержания постоянной температуры. Для металлов экспериментальные измерения показывают, что проводимость уменьшается с увеличением температуры. Исследование показывает, что для металла с фиксированными n и e именно уменьшение подвижности объясняет это снижение проводимости. Было обнаружено, что для умеренного повышения температуры экспериментальная вариация соответствует линейной зависимости:

Здесь нижний индекс «0» относится к начальным значениям, а a называется температурным коэффициентом удельного сопротивления.Установлено, что этот коэффициент изменяется при больших изменениях температуры.

Чтобы изучить взаимосвязь между температурой и подвижностью электронов в металле, необходимо учитывать поведение ионных остовов. Ионные остова расположены в трехмерной кристаллической решетке . В большинстве обычных металлов структура кубическая, и транспортные функции не сильно зависят от направления. Затем металл можно рассматривать как изотропный, то есть не зависящий от направления, и все вышеприведенные уравнения применимы так, как написано.Для анизотропных материалов ориентационная зависимость переноса в кристаллах приводит к семействам уравнений с наборами коэффициентов направленности, заменяющими используемые здесь простые константы.

Температура связана с колебательной кинетической энергией ионных остовов, движущихся относительно их положений равновесия. Их можно сравнить с массами, соединенными между собой пружинами в трех измерениях, причем их связи действуют как пружины. Электроны, пытающиеся перемещаться между ними, будут случайным образом отклоняться или рассеиваться этими колебаниями решетки, которые квантуются.Колебательные кванты называются фононами по аналогии с фотонами. Расширенная теория проводимости основана на анализе рассеяния электронов на фононах.

С увеличением колебательной энергии при повышении температуры увеличивается рассеяние, так что дрейфовое движение подвергается большему срыву. Таким образом, поддержание заданного тока потребует более сильного поля при более высокой температуре.

Если бы ионные остова определенного металла были идентичны и неподвижны в точках своего точного равновесия в узлах решетки, электронное облако могло бы дрейфовать между ними без сопротивления, то есть без сопротивления.Таким образом, можно выделить три фактора сопротивления: (а) колебания решетки, (б) смещение ионного остова из узлов решетки и (в) химические примеси, которые являются неправильными ионными остовами. Коэффициенты (a) и (b) зависят от температуры, и посторонние атомы вносят свой вклад как в тепловые движения, так и в их неправильность. Кроме того, места, где отсутствуют ионы, или вакансии также являются неправильными и вносят свой вклад в рассеяние. Смещения, вакансии и примеси классифицируются как дефекты решетки.

Прямое распространение теплового поведения вниз к абсолютному нулю температуры предполагает, что сопротивление должно монотонно падать до нуля.Этого не происходит, потому что дефекты решетки остаются неправильными и колебательная энергия не падает до нулевой квантовой механики, которая составляет остаточную нулевую энергию. Однако во многих металлах и многих других веществах при температурах, приближающихся к нулю, наблюдается совершенно новое явление — внезапное падение сопротивления до нуля. Это называется сверхпроводимостью.

Что такое электропроводность? — Matmatch

Электропроводность — это показатель того, насколько легко материал позволяет электрическому току проходить через него. И наоборот, удельное электрическое сопротивление измеряет, насколько сильно материал сопротивляется прохождению электрического тока. Эти два свойства полностью противоположны друг другу. Электропроводность обозначается греческой буквой σ , а удельное электрическое сопротивление обозначается греческой буквой ρ .

Материалы часто выбираются или выбрасываются для применения из-за их электропроводности, когда прохождение электрического тока имеет решающее значение для функциональности их применения.Металлы обычно являются лучшими проводниками электричества, а полимеры — наименее проводниками электричества. Серебро — лучший проводник электричества, но оно редко используется для этой функции из-за его редкости и, как следствие, непомерно высокой стоимости.

Из этой статьи вы узнаете о:

  • Какая электрическая проводимость равна
  • Измерение электропроводности
  • Применения электропроводности
  • Материалы и применение будущего

Сечение подземного электрического кабеля.

Что такое электропроводность?

Хорошие проводники электричества также часто являются хорошими проводниками тепла, что проявляется в большинстве металлов. Температура материала не так просто влияет на его проводимость. Для материалов, известных как проводники, повышение температуры обычно снижает их проводимость и наоборот. Но для изоляторов все обстоит наоборот: повышение температуры на увеличивает их проводимость.Это соотношение между температурой и электропроводностью полезно при создании сверхпроводников. Сверхпроводник — это материал, который почти идеально проводит электричество, практически не имея никакого сопротивления. Пока что всем известным сверхпроводникам требуются чрезвычайно низкие температуры (до -234 o C) для проявления этого свойства.

Электропроводность материала определяется по формуле

`\ sigma = \ frac {1} {\ rho}`

Где ρ — удельное сопротивление материала.

Удельное сопротивление измеряется в Ом · метрах (Ом · м), а проводимость измеряется в Сименсах на метр (См / м) , что является обратной величиной единицы удельного сопротивления. Электропроводность или удельное сопротивление материала — это неизменное свойство, которое не меняется в зависимости от размера или формы материала.

Электропроводность материала зависит от температуры, но может также меняться в зависимости от приложенного магнитного поля. До сих пор мы предполагали, что все материалы однородны и изотропны; однородный означает, что свойства материала одинаковы независимо от того, откуда взят образец, а изотропный означает, что эти свойства имеют одинаковую ценность независимо от того, в каком направлении они измеряются.Однако это не всегда так, особенно для полупроводников, которые представляют собой особые материалы, демонстрирующие разную проводимость в разных направлениях. Кроме того, проводимость и сопротивление не следует ошибочно принимать за проводимость или удельное сопротивление соответственно. Хотя они связаны, это не одно и то же и не взаимозаменяемы. Электропроводность и сопротивление изменяются в зависимости от размера рассматриваемого материала, а проводимость и удельное сопротивление — нет. .

Таблица 1. Удельное сопротивление и проводимость обычных материалов при 20 ° C [1]

Материал

Удельное сопротивление ρ (Ом.м) при 20 ° C

Электропроводность σ (См / м) при 20 ° C

Серебро

1,59 × 10 −8

6,30 × 10 7

Медь

1.68 × 10 −8

5,96 × 10 7

Золото

2,44 × 10 −8

4,10 × 10 7

Алюминий

2,82 × 10 −8

3,5 × 10 7

Кальций

3,36 × 10 −8

2.98 × 10 7

Вольфрам

5,60 × 10 −8

1,79 × 10 7

Цинк

5,90 × 10 −8

1,69 × 10 7

Никель

6,99 × 10 −8

1,43 × 10 7

Литий

9.28 × 10 −8

1,08 × 10 7

Утюг

1,0 × 10 −7

1,00 × 10 7

Платина

1,06 × 10 −7

9,43 × 10 6

Олово

1,09 × 10 −7

9.17 × 10 6

Углеродистая сталь

-1010

1,43 × 10 −7

Свинец

2,2 × 10 −7

4,55 × 10 6

Титан

4,20 × 10 −7

2,38 × 10 6

Константан

4.9 × 10 −7

2,04 × 10 6

Нержавеющая сталь

6,9 × 10 −7

1,45 × 10 6

Меркурий

9,8 × 10 −7

1,02 × 10 6

Углерод (аморфный)

5 × 10 −4 — 8 × 10 −4

1.25 — 2 × 10 3

Карбон (алмаз)

1 × 10 12

~ 10 −13

Кремний

6,40 × 10 2

1,56 × 10 −3

Стекло

10 × 10 10 — 10 × 10 14

10 −11 -10 −15

Твердая резина

1 × 10 13

10 −14

тефлон

10 × 10 22 — 10 × 10 24

10 −25 — 10 −23

Измерение электропроводности

Двух- и четырехточечные методы — два наиболее распространенных метода измерения электропроводности [2].

Двухточечная техника

Этот метод включает пропускание тока (через источник напряжения) через образец (прямоугольный стержень) материала. Этот ток подается через два медных узла, которые прикреплены к обоим концам шины (отсюда и название двухточечной техники). Измеряется сила тока, протекающего через стержень, и, поскольку напряжение уже известно, сопротивление рассчитывается по формуле ниже

.

`R = \ frac {V} {I}`

Где R = сопротивление в Ом, В = напряжение в вольтах и ​​ I = ток в амперах.

Электропроводность стержня можно рассчитать как

`\ sigma = \ frac {l} {Rwh}`

Где σ, — проводимость в См / м, R — измеренное сопротивление в Ом, а w , h и l — ширина, высота и длина стержня образца соответственно.

Четырехточечная техника

Двухточечный метод изначально подвержен ошибкам, поскольку измерительное оборудование эффективно обладает свойствами, которые также измеряются одновременно с тестовым образцом.Это означает, что измеренная проводимость материала обычно ниже, чем она есть на самом деле. {1}} {Vwh}`

Где σ — проводимость, измеренная в См / м, I — ток, измеренный амперметром в амперах, В, — напряжение, измеренное вольтметром в вольтах, l 1 — длина между две точки, в которых измеряется напряжение, w и h — это ширина и высота полосы выборки, соответственно.

Приложения и материалы

Электропроводность находит применение в различных отраслях промышленности, от передачи энергии до электроники. Вот несколько примеров общих применений принципа проводимости [3].

  • Воздушные линии электропередачи, которые используются для передачи электроэнергии, обычно изготавливаются из алюминия, поскольку он очень хорошо проводит электричество. Точно так же большинство изоляторов изготовлено из полимера с очень низкой проводимостью, чтобы защитить людей от поражения электрическим током.
  • Чтобы избежать электростатического разряда (ESD), электропроводящие пластмассы и композиты предназначены для рассеивания статического электричества. Это важно в электронике, где пластмассы используются для изготовления корпусов и других приложений, где электростатический разряд может вызвать воспламенение горючего газа или жидкости.
  • Электропроводность может использоваться датчиком для определения границы раздела двух жидкостей, если они имеют значительную разницу в проводимости. Это может быть полезно при химической переработке и производстве продуктов питания и напитков.
  • При опреснении морской воды используется электропроводность, чтобы контролировать, насколько хорошо растворенные ионные твердые частицы были удалены из воды, и таким образом дает представление о полноте процесса очистки.

Будущие материалы и приложения

Редкость определенных материалов, стоимость их производства и другие факторы означают, что не всегда всегда выбирается лучший материал для определенного применения с точки зрения электропроводности.Серебро, известное как лучший металлический проводник, идеально подошло бы для применения в интегральных схемах, поскольку оно инертно. Золото, хотя и менее проводящее, будет лучше, чем серебро, когда важна защита от излучения. Алмаз, наименее проводящий материал, о котором мы говорили до сих пор, может быть единственным вариантом при высоком давлении. Наконец, сверхпроводники — почти идеальные материалы, но для их функционирования требуется температура, близкая к абсолютному нулю. Квантовые суперкомпьютеры проектируются таким образом, чтобы потребовались сверхпроводники, поскольку их расчеты полагаются на точное количество разрядов электронов, чтобы работать с их скоростью и точностью [4].

Линии электропередачи требуют комбинации материалов, обладающих свойствами как электропроводности, так и удельного электрического сопротивления.

[1] A. Helmenstine, «Таблица электрического сопротивления и проводимости», [онлайн] Доступно по адресу: https://sciencenotes.org/table-of-electrical-resistivity-and-conductivity/, 2019.

[2] Хини, Майкл Б. «Электропроводность и удельное сопротивление». Электрические измерения, обработка сигналов и дисплеи .Эд. Джон Г. Вебстер. CRC Press, 2003.

[3] «Теория и применение проводимости», Emerson Process Management [Онлайн] Доступно по адресу: https://www.emerson.com/documents/automation/application-data-sheet-theory-application-of-conductivity -rosemount-en-68442.pdf

[4] Дж. Маглионе, «Исследование области проводимости», [онлайн] Доступно по адресу: https://ysjournal.com/exploring-the-realm-of-conductivity/

Какие металлы проводят электричество? (Обновление видео) | Металлические супермаркеты

Что такое электропроводность?

Электропроводность — это измеренная величина генерируемого тока на поверхности металлической цели.Проще говоря, это то, насколько легко электрический ток может проходить через металл.

Какие металлы проводят электричество?

Хотя все металлы могут проводить электричество, некоторые металлы используются чаще из-за их высокой проводимости. Самый распространенный пример — медь. Он обладает высокой проводимостью, поэтому со времен телеграфа его используют в электропроводке. Однако латунь, которая содержит медь, гораздо менее проводящая, потому что она состоит из дополнительных материалов, которые снижают ее проводимость, что делает ее непригодной для электрических целей.

Вы можете быть удивлены, узнав, что медь даже не является самым проводящим металлом, несмотря на то, что она используется во многих обычных приложениях (и тот факт, что она используется в качестве измерительной линейки для оценки проводимости металлов). Другое распространенное заблуждение — чистое золото — лучший проводник электричества. Хотя золото действительно имеет относительно высокий рейтинг проводимости, на самом деле оно менее проводимо, чем медь.

Какой металл лучше всего проводит электричество?

Ответ: Чистое серебро.Проблема с серебром в том, что оно может потускнеть. Эта проблема может вызвать проблемы в приложениях, где важен скин-эффект, например, с токами высокой частоты. Кроме того, он дороже меди, и небольшое увеличение проводимости не стоит дополнительных затрат.

Итак, если все металлы проводят электричество, как они все ранжируются? Взгляните на этот график:

Материал IACS (Международный стандарт на отожженную медь)
Рейтинг Металл% Проводимость *
1 Серебро (Чистое) 105%
2 Медь 100%
3 Золото (чистое) 70%
4 Алюминий 61%
5 Латунь 28%
6 Цинк 27%
7 Никель 22%
8 Железо (чистое) 17%
9 Олово 15%
10 Фосфорная бронза 15%
11 Сталь (включая нержавеющую сталь) 3-15%
12 Свинец (чистый) 7%
13 Никель-алюминий бронза 7%

* Значения проводимости выражены в единицах измерения относительно меди.100% рейтинг не означает отсутствие сопротивления.

Как видите, разница в электропроводности значительно зависит от металла. Как уже упоминалось, латунь имеет очень низкий рейтинг проводимости, несмотря на то, что она содержит медь, поэтому очень важно, чтобы не делались предположения об электропроводности материала. Всегда проводите как можно больше исследований!

Для чего используется медь?

Поскольку медь является отличным проводником электричества, она чаще всего используется в электрических целях.Многие распространенные применения также зависят от одного или нескольких полезных свойств, таких как тот факт, что он является хорошим проводником тепла или имеет низкую реакционную способность (реакция с водой и кислотами).

Некоторые из распространенных применений меди включают:

Штыри в вилке на 13 А — Используется, потому что это электрический проводник с низкой реактивностью и высокой прочностью.

Водопроводные трубы — Используется, потому что они пластичные (мягкие), но в то же время жесткие и прочные. Он также обладает дополнительными антибактериальными свойствами и имеет низкую реактивность.

Основание кастрюли — Используется, потому что это хороший теплопроводник с низкой реактивностью и высокой прочности.

Электрические кабели — Используются, потому что они являются хорошими электрическими проводниками, пластичными и прочными. Это включает проводку для электроники, такой как телевизионное оборудование и аксессуары.

Микропроцессоры — Аналогичны электрическим кабелям; используется, потому что это хороший электрический проводник и пластичный.

Обновление видео

Нет времени читать блог?

Посмотрите видеоблог ниже, чтобы узнать, какие металлы лучше всего проводят электричество.

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании. Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и листы. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

Какие металлы являются хорошими проводниками электричества?

Электрические проводники содержат подвижные электрически заряженные частицы, называемые в металлах «электронами». Когда электрический заряд применяется к металлу в определенных точках, электроны перемещаются и пропускают электричество.Материалы с высокой подвижностью электронов являются хорошими проводниками, а материалы с низкой подвижностью электронов не являются хорошими проводниками, их называют «изоляторами».

TL; DR (слишком долго; не читал)

Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Хотя серебро и золото оба эффективны, они слишком дороги для обычного использования. Индивидуальные свойства делают каждый из них идеальным для конкретных целей.

Наиболее распространены медь и серебро

Серебро — лучший проводник электричества, поскольку оно содержит большее количество подвижных атомов (свободных электронов).Чтобы материал был хорошим проводником, электричество, прошедшее через него, должно перемещать электроны; чем больше в металле свободных электронов, тем выше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специального оборудования, такого как спутники или печатные платы. Медь менее проводящая, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовой технике. Большинство проводов имеют медное покрытие, а сердечники электромагнитов обычно оборачиваются медной проволокой.Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала.

Алюминий работает хорошо, но имеет риски

Алюминий, если сравнивать его по удельному весу, на самом деле более проводящий, чем медь, и стоит меньше. Алюминиевый материал используется в бытовых изделиях или в электропроводке, но это не обычный выбор, поскольку он имеет несколько конструктивных недостатков. Например, алюминий имеет тенденцию образовывать электрически стойкую оксидную поверхность в электрических соединениях, что может вызвать перегрев соединения.Вместо этого алюминий используется для высоковольтных линий электропередачи (таких как воздушные телефонные кабели), которые могут быть заключены в сталь для дополнительной защиты.

Золото эффективно, но дорого

Золото является хорошим проводником электричества и не тускнеет, как другие металлы, при контакте с воздухом — например, сталь или медь могут окисляться (корродировать) при длительном контакте с кислородом. Золото особенно дорогое и используется только для определенных материалов, таких как компоненты печатных плат или небольшие электрические соединители.Некоторые материалы могут быть покрыты золотом в качестве электрического проводника или использовать небольшое количество золота, которое затем покрывается другим материалом, чтобы снизить производственные затраты.

Сталь и латунные сплавы имеют особые области применения

Сталь представляет собой сплав железа, который также является проводником, и является негибким металлом, который очень агрессивен при контакте с воздухом. Его сложно отливать, и он не используется в небольших изделиях или машинах; вместо этого сталь используется для ограждения других проводников или для больших конструкций.Латунь, которая также является сплавом, представляет собой прочный металл, который позволяет легко сгибать и формовать различные детали для небольших машин. Он менее коррозионный, чем сталь, немного более проводящий, дешевле в приобретении и сохраняет ценность после использования, в то время как стальной сплав ценен только при первой покупке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *