26.11.2024

Принцип действия импульсного блока питания: Схема работы импульсного стабилизатора: стабилизация повышенного вольтажа

Содержание

Принцип работы блока питания

Принцип работы блока питания

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора в комплекте с импульсным трансформатором выдает напряжение на выходной выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

Схемотехника блоков питания персональных компьютеров. Часть 1.

Принцип работы импульсного блока питания

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки  на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

  • Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

  • Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

  • Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

  • Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

  • Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: «No comment «.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 («230/115»). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110…127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. ..230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180…220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов «моста» (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Далее

Главная &raquo Мастерская &raquo Текущая страница

 

Импульсный блок питания — Страница 2 — Меандр — занимательная электроника

Подбор силовых ключей для блока питания

Теперь о том, чем будет управлять ШИМ-контроллер К1156ЕУ2 или TL494 или любая другая ИМС. В качестве силовых ключей будем использовать MOSFET транзисторы, как наиболее эффективные. Что касается биполярных, то их существенными недостатками являются повышенное остаточное напряжение на коллекторе в режиме насыщения, большая мощность управления по базовой цепи и большое время рассасывания. Все это приводит к значительному снижению КПД ключей. А IGBT или биполярные транзисторы с изолированным затвором слишком дороги и не особо распространены. Значит выбор падает на MOSFET.

Давайте определим границы подбора МОП-транзисторов. По условию нам нужен импульсный блок питания мощностью 600 ватт от электросети 220 вольт. Это значит, что после выпрямительных диодов и фильтрующего конденсатора 220 вольт переменного тока преобразуются в 300…310 вольт постоянного. Это при номинальном напряжении 220 В. Но в электросети может быть и 175 и 250 вольт. Сила тока в цепи номинально будет равна I=P/U или I=600 Вт/300(310) В=1,94…2 ампера.

Будущий импульсный преобразователь будет двухтактного типа, т.к. однотактные хорошо зарекомендовали себя на мощностях до 100 ватт. Схему включения силового каскада двухтактного импульсного блока питания выбираем из трех существующих. Это, как было сказано, мостовая (full-bridge), полумостовая (half-bridge) или со средней точкой (push-pull). Последняя схема наиболее эффективна с напряжением на входе до 100 вольт и мощностью до 500 ватт. В принципе можно использовать и пуш-пульную схему включения, но не будем повторяться, т.к. она как раз и является темой диспута в статье “Схема преобразователя мощностью 1000 ВА”. Полумостовая и мостовая схемы эффективно используются при более высоком напряжении на входе (а у нас 310 В) и с мощностями до 1 кВт в первом и выше 1 кВт во втором случае. Нам подходит полумостовая схема включения силового каскада.

Частоту переключения силовых транзисторов возьмем порядка 60 кГц. Из-за возможного дрейфа частоты она может повыситься до 65 кГц. Можно, конечно, увеличить частоту до 100 кГц, а то и больше. Однако многие магнитные материалы, применяемые в качестве сердечников импульсных трансформаторов, не способны работать на таких частотах. К тому же при повышении частоты нам понадобятся высокочастотные выпрямительные мощные диоды. А они не дешевы и для многих труднодоступны. К тому же, после двухполупериодного выпрямителя частота повышается в два раза. Так что ограничимся частотой в 60 кГц, как наиболее оптимальной.

Теперь определим амплитуду номинального напряжения на первичной обмотке импульсного трансформатора с учетом падения напряжения на переходе транзисторов. U=310/2 – u, где u – падение напряжения на переходе MOSFET. Поскольку транзисторы мы ещё не выбрали, то возьмем в среднем u=0,7 В. Отсюда U=(310/2)-0,7=154,3 В. Минимальная амплитуда при падении напряжения в сети до 175 вольт составит не более 123 В, а максимальная при повышении до 250 В – не менее 176 В. Для выбора МДП транзисторов исходим из максимально допустимой силы тока (600/123=4,8 А) и напряжения (176 В). По расчетам нам нужен MOSFET с напряжением сток-исток от 200 вольт и максимально допустимой силой тока через переход не ниже 6 ампер. Данным условиям отвечают, например, IRF630, 2SK1117, 2SK1917, IRF740, IRFP460, IRF830 и пр. Здесь опять же исходим из доступности и стоимости. Для нашего примера возьмем IRFP460. Силовые ключи подобрали.

Диоды выпрямительного моста на входе импульсного блока питания подбираем с учетом обратного напряжения от 400 вольт и силу тока от 2 ампер (600/(175 В*2 шт.)=1,71 А) при мостовой схеме. Берем диодный мост типа KBU810. Схема сетевого выпрямителя будет выглядеть следующим образом:

Резисторы R1 и R2 являются балластными и использованы для разряда высоковольтных конденсаторов в целях безопасности.

Расчет и намотка импульсного трансформатора

Теперь произведем расчет импульсного трансформатора.

Расчет трансформатора является наиболее сложной, важной и «тонкой» частью всего расчета импульсного блока питания. Для этого эффективнее всего воспользоваться компьютерными программами, самые популярные из которых можно скачать на нашем радиолюбительском сайте.

Итак, мы имеем в качестве исходных данных размах напряжений питания 247…355 В (при девиации напряжения сети 175…250 В), мощность не менее 600 ватт, эффективная индукция магнитопровода от 0,1 до 0,2 Тл, эффективная магнитная проницаемость магнитопровода при использовании в качестве сердечника ферритовое кольцо марки М2500НМС1 К65х40х9 составляет 1800…2000. Выше приведено действительное напряжение электросети для расчета импульсного трансформатора в программе Design tools pulse transformers 4.0.0.0 и ей подобных (см. статьи). Однако, как я советовал, программы лучше применять сразу все комплексно. Соответственно, в некоторых нужно указывать напряжение непосредственно на первичной обмотке импульсного трансформатора. Чуть выше мы приводили схему сетевого выпрямителя для питания импульсного блока. Как видите, там сетевое напряжение с помощью делителя преобразуется в двуполярное +/-154,3 В. Указано номинальное напряжение при сетевом в 220 В. Соответственно, при девиации напряжения сети 175…250 В на первичной обмотке оно будет колебаться в пределах не 247…355 вольт (такое после выпрямительных диодов и фильтрующих конденсаторов), а 247/2-0,7…355/2-0,7, т.е. 122,8…176,8 вольт. Будьте внимательны!

Думаем, что с помощью программ не составит особого труда определить основные характеристики необходимого импульсного трансформатора. Для взятого нами кольца К65х40х9 мы имеем следующее. КПД около 98%; число вит

Импульсные источники питания принцип работы для чайников

Импульсные источники питания — общие принципы, преимущества и недостатки

Сегодня уже трудно в каком-нибудь бытовом приборе или блоке питания обнаружить трансформатор на железе. В 90-е годы они начали быстро уходить в прошлое, уступая место импульсным преобразователям или импульсным источникам питания (сокращенно ИИП).

Импульсные источники питания превосходят трансформаторные по габаритам, качеству получаемого постоянного напряжения, они имеют широкие возможности регулировки выходного напряжения и тока, а также традиционно оснащены защитой от перегрузки по выходному току. И хотя считается, что импульсные блоки питания являются основными поставщиками помех в бытовую сеть, тем не менее широкое их распространение вспять уже точно не повернуть.

Трансформаторный источник питания:

Импульсный источник питания:

Своей повсеместной распространенностью импульсные блоки питания обязаны полупроводниковым ключам — полевым транзисторам и диодам Шоттки. Именно полевой транзистор, работающий совместно с дросселем или трансформатором, является сердцем любого современного импульсного источника питания: в инверторах, сварочных аппаратах, источниках бесперебойного питания, во встроенных блоках питания телевизоров, мониторов и т. д. — нынче практически везде используются только импульсные схемы преобразования напряжения.

Общий принцип функционирования импульсного преобразователя основан на законе электромагнитной индукции, и в этом он сходен с любым трансформатором. Разница лишь в том, что на обычный сетевой трансформатор переменное напряжение с частотой сети 50 Гц подается сразу на первичную обмотку и преобразуется непосредственно, (после чего, если нужно, выпрямляется) а в импульсном блоке питания сетевое напряжение сначала выпрямляется и превращается в постоянное, и уже после — преобразуется в импульсное, с тем чтобы далее быть повышенным либо пониженным при помощи специальной высокочастотной (по сравнению с сетевыми 50 герцами) схемы.

Схема импульсного источника питания включает в себя несколько главных составных частей: сетевой выпрямитель, ключ (или ключи), трансформатор (или дроссель), выходной выпрямитель, блок управления, а также блок стабилизации и защиты. Выпрямитель, ключ и трансформатор (дроссель) — основа силовой части схемы ИИП, в то время как электронные блоки (включая ШИМ-контроллер) относятся к так называемому драйверу.

Итак, сетевое напряжение подается через выпрямитель на конденсатор сетевого фильтра, где таким образом получается постоянное напряжение, максимум которого составляет от 305 до 340 вольт, в зависимости от текущего среднего значения напряжения в сети (от 215 до 240 вольт).

Выпрямленное напряжение подается на первичную обмотку трансформатора (дросселя) в форме импульсов, частота следования которых определяется обычно схемой управления ключом, а длительность — средним током питаемой нагрузки.

Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.

Различие между трансформатором и дросселем: в дросселе фазы накопления энергии от источника сердечником и отдачи энергии из сердечника через обмотку — в нагрузку, разделены во времени, а в трансформаторе это происходит одновременно.

Дроссель применяется в преобразователях без гальванической развязки топологий: повышающий — boost, понижающий — buck, а также в преобразователях с гальванической развязкой топологии обратноходовый — flyback. Трансформатор применяется в преобразователях с гальванической развязкой следующих топологий: мост — full-bridge, полумост — half-bridge, двухтактный — push-pull, прямоходовой — forward.

Ключ может быть одиночным (обратноходовый преобразователь, прямоходовый преобразователь, повышающий или понижающий преобразователь без гальванической развязки) или же силовая часть может включать в себя несколько ключей (полумост, мост, двухтактный).

Схема управления ключом (ключами) получает с выхода источника сигнал обратной связи по напряжению или по напряжению и току нагрузки, в соответствии с величиной этого сигнала автоматически осуществляется регулировка ширины (скважности) импульса, управляющего длительностью проводящего состояния ключа.

Выход источника устроен следующим образом. Со вторичной обмотки трансформатора или дросселя, либо с единственной обмотки дросселя (если речь идет о преобразователе без гальванической развязки), импульсное напряжение подается через диоды Шоттки двухполупериодного выпрямителя — на конденсатор фильтра.

Здесь же находится делитель напряжения с которого берется сигнал обратной связи по напряжению, а также может присутствовать датчик тока. К конденсатору фильтра, через дополнительный выходной НЧ-фильтр или напрямую, присоединяется нагрузка.

Что такое импульсный блок питания и где применяется

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, — инверторы.

Что это такое?

Инвертор — это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему — широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Импульсные блоки питания. Виды и работа. Особенности и применение

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

Ремонт импульсных блоков питания своими руками

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

  1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

  • Если нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
  • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

  • Если полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
  • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
  • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Как работает импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения.

Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств.

Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В.

Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию.

Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм.

Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц.

Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток.

Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;
    Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Источник: https://www.asutpp.ru/impulsnyj-blok-pitaniya.html

Ремонт импульсных блоков питания своими руками

instrument.guru > Электроника > Ремонт импульсных блоков питания своими руками

Оглавление:

  • Общие принципы работы импульсных блоков питания
  • Рабочий инструмент для проверки импульсных блоков питания
  • Основные неисправности и методы проверки импульсных блоков питания
  • Самостоятельная и качественная пайка
  • Основные этапы ремонта импульсных блоков питания
  • Неисправности импульсных блоков питания на 12 вольт

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально.

Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта.

Но если вы стали обладателем разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания.

Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы.

Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы.

Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок.

А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме.

В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения.

Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних.

В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта.

К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник.

Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы.

Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

  1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

  • Если нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
  • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

  • Если полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
  • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
  • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Источник: https://instrument.guru/elektronika/remont-impulsnyh-blokov-pitaniya-svoimi-rukami.html

Что такое импульсный блок питания и где применяется

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора.

Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока.

То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты.

Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием.

Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами.

При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения.

А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям.

Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров.

Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Источник: https://odinelectric.ru/equipment/chto-takoe-impulsnyj-blok-pitaniya-i-gde-primenyaetsya

Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты.

В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением.

Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц.

Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания.

Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы.

Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор.

Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.

Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Блок питания из энергосберегающих ламп

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей.

Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью.

Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы.

В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства.

Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д.

Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

Блок питания для шуруповерта 12в своими руками

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники.

Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться.

ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Источник: https://amperof.ru/elektropribory/impulsnyj-blok-pitaniya.html

Импульсные блоки питания

ПРИНЦИП РАБОТЫ ПРИМЕНЕНИЕ

Блок питания — это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.

Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.

Типовая схема традиционного источника электропитания состоит из следующих элементов:

  • силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
  • конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
  • стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.

Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.

Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.

Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.

Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.

Как работает импульсный блок питания

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало.

Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET. Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

Применение импульсных блоков

Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

  • все виды компьютерной техники;
  • телевизионная и звуковоспроизводящая аппаратура;
  • пылесосы, стиральные машины, кухонная техника;
  • источники бесперебойного электроснабжения различного назначения;
  • системы видеонаблюдения, комплексы охранной сигнализации.

Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

  *  *  *

© 2014-2019 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник: https://video-praktik.ru/blok_pitanija_impulsnyj.html

о волшебных розетках, “чудо-фильтрах”, и “вреде” импульсных блоков питания / Блог компании Pult.ru / Хабр

Итак, в очередном обзоре аудиорелигиозных предрассудков коснемся темы питания усилителей. Классическая догма аудиорелигии гласит, что блоки питания усилителей способны сделать звук ужасным или, напротив, значительно его улучшить. Аналогичным влиянием на звук, по мнению уверовавших в аудиобогов, обладают сетевые фильтры и розетки, которые также способны подавать в усилитель более “чистое” электричество, тем самым значительно улучшать верность воспроизведения. Под катом обзор наиболее распространенных филофонистических представлений о блоках питания усилителей, аудиофильских розетках и сетевых фильтрах.

Напоминаю, что в этом юмористическом цикле мы иронично обозреваем некоторые абсурдные аудиопредрассудки и алогичные решения для аудиофильских устройств. Мы ничего не разоблачаем и никого не учим, оставляя людям право заблуждаться. Для рассмотрения значимых вопросов верности воспроизведения у нас есть другой цикл -«Аудиофилькина грамота».

Sonus lumine veritatis

Основным фактором, который должен заботить аудиофила в блоке питания устройства, по мнению адептов “чистого электричества”, является принципиальная схема устройства. Аргументация зиждется на следующих тезисах: еретические импульсные блоки питают усилители неправильным, загрязненным электричеством, из плохих китайских розеток и не одухотворенных священной стоимостью сетевых фильтров. Также иногда звучит максима: «Настоящий звук» не получить без бесперебойника. Импульсники, плохие розетки и китайские фильтры совершенно чудовищно портят звук жуткими помехами и искажениями, которые приносит то самое “грязное” электричество из не аудиофильской электрической сети общего пользования.

Блоки питания

Аргументация на форумах и в специфических постах самая разнообразная, от имеющих место (на самом деле в некоторых бюджетных устройствах) высокочастотных помех от плохо спроектированных импульсных БП, которые приписываются поголовно всем БП этого типа, до совершенно сюрреалистических, паранаучных, эзотерико-метафизических аргументов о “неправильном” поведении электронов в “неправильных” проводниках и значимой роли “синусоидального” питания для верности воспроизведения усилителя.

Если свести все филофонистические претензии к импульсным БП, можно вывести следующее правило:

“Ужасные импульсные блоки питания, построенные на безбожных кремниевых микросхемах, насыщают сигнал вредными искажениями и генерируют шумы, которые портят полезный сигнал”.

К такой аргументации обычно добавляют ссылки на многочисленные упоминания о том, что импульсные блоки способны быть генераторами наводок, а также обязательное упоминание о том, что в бюджетных устройствах и устройствах среднего класса заметить разницу невозможно, но вот в приснопамятном хайэнде, там-то обязательно вылезет боком вся электрическая “грязь”.

И можно даже сказать, что последний тезис не лишен смысла, так как хай энд нередко занимаются малоизвестные компании с полуграмотными инженерами, которые иногда просто не способны создать хорошо работающий импульсный блок питания, от чего и возникают схемотехнические мифы. Значительно проще оборудовать очередной ламповый однотактный шедевр без ООС, и с КПД 0,001%, огромным трансформатором питания, размером с пол усилителя, а иногда и в две трети и огромной массой за счет трансформатора и радиатора охлаждения. Ведь в сознании аудиофилов инженеры любимой компании — полубоги их пантеона, а соответственно, они априори не могут предлагать малоэффективное и нелогичное решение. Позиция крайне удобная и позволяет ежегодно продавать тонны меди.

Розетки и фильтры

Любую проблему верности воспроизведения, согласно постулатам аудиорелигии, можно также спихнуть на проблемы местной электрики. Для этого электричество в сетях общего пользования объявляется грязным и недостаточно аудиофильским, способным вносить помехи в сигнал. Для того, чтобы эти помехи не появлялись, рекомендуется обязательно применять именно аудиофильские сетевые фильтры и розетки, а в идеале специальные источники бесперебойного питания, как вы, наверно, уже догадались, аудиофильские. Стоимость последних может в 10, а иногда в сто раз превышать не аудиофильские. Совершенно естественно, что разницу в звучании можно заметить исключительно при использовании аппаратуры высокого класса и не менее высокой стоимости.

Относительно бесперебойных источников питания с аккумулятором высокой ёмкости, следует отметить, что они действительно используются профессионалами в студиях, так как внезапные проблемы с сетью в студии при записи ответственного трека могут принести ей немалые убытки, от чего стараются застраховаться, используя бесперебойник. Фильтры (даже самые недорогие и примитивные) действительно способны предотвратить некоторые помехи, связанные с сетью. Интересно, что в не аудиофильской схемотехнике чаще стремятся устранить сетевые помехи, которые может вызывать сам усилитель, а не наоборот.

Почему аудиофилы действительно слышат разницу?

Интереснее всего то, что адепты божественного звука действительно слышат разницу при замене розеток, сетевых фильтров, импульсных блоков на классические трансформаторные. И дело тут совсем не в физике звука. Органом, отвечающим за восприятие, в том числе той информации, которую мы слышим, является мозг. Любое восприятие в той или иной степени субъективно, а это значит, что на него способны повлиять, в числе прочего, и заблуждения слушателя.

Таким образом, зная, что система подключена к сети при помощи контактов из чистого родия, через сетевой фильтр стоимостью от 500 до 1000 USD, а усилитель питается от классического трансформаторного БП, возникает убежденность в том, что звук станет лучше. Это идеальная почва для возникновения стойкой когнитивной иллюзии. Я не раз убеждался, что иллюзии такого плана для тех, кто их испытывает, значительно реальнее самой правдивой действительности, так как в основе лежит не только искреннее заблуждение, но и две, а то и три тысячи долларов, потраченных на приобретение иллюзорного результата.

Сухой остаток

Тип блока питания, стоимость фильтра и даже розетки действительно существенно влияют на звук, в том случае если в такое влияние верит тот, кто их купил. Неправильно спроектированный блок питания может существенно испортить звук, это касается как импульсных, так и трансформаторных. Трансоформаторные блоки огромные, тяжелые и очень быстро нагреваются. Для предотвращения маловероятных сетевых помех достаточно самого обычного сетевого фильтра. Бесперебойник имеет смысл использовать в студии, дома от него не много пользы и на качество звука он никак не влияет.

Также в тему рекомендую следующие


Реклама

В нашем каталоге представлен широкий ассортимент разнообразной электроники: наушников, усилителей, акустических систем, телевизоров и других устройств, мы также не обошли стороной приверженцев божественного звука. У нас можно приобрести розетки, сетевые фильтры и другие устройства, которые позиционируются производителями, как специально предназначенные для аудиофильской аппаратуры.
Импульсный источник питания

с общими топологиями

Для приложений малой мощности, таких как бортовые источники питания, часто используется линейный источник питания из-за его простоты и низкой стоимости. Однако, когда возникает необходимость в конструкциях с высокой плотностью мощности, линейный источник питания просто исчезает с изображения. Это потому, что линейный источник питания очень менее эффективен. Поставляется импульсный блок питания. Импульсный источник питания исправил недостаток линейного источника питания с точки зрения эффективности и высокой удельной мощности.Однако это сложнее и может стоить дорого. Я не совсем говорю, что импульсный источник питания по умолчанию дороже, чем линейный источник питания, это зависит от обстоятельств. В приложениях с низким энергопотреблением, таких как бортовая сеть, да и коммутационное решение стоит дорого. Однако для применения с высокой мощностью, например, 500 Вт, стоимость трансформатора 50/60 Гц может быть выше, чем стоимость импульсного источника питания.

Блок-схема линейного источника питания переменного тока

Типичный линейный источник питания ACDC имеет понижающий трансформатор, выпрямитель, фильтр и регулятор.Понижающий трансформатор 50/60 Гц является громоздким и дорогим для приложений с большой мощностью. Требуется понижающий трансформатор рядом с линией переменного тока, потому что диапазон напряжения линейных регуляторов обычно ниже 50 В. Секция выпрямителя преобразует переменный ток в пульсирующий постоянный ток. Секция фильтра приводила пульсирующий выход постоянного тока выпрямителя к форме волны с низким уровнем пульсаций. Регулятор сделает последнюю работу по точной настройке формы волны, чтобы она стала прямой.

Линейный регулятор поддерживает уровень выходного напряжения, поглощая разницу между входным и выходным напряжениями.Например, на приведенной выше диаграмме отфильтрованное напряжение, которое вводится в регулятор, составляет 17 В, а выходное напряжение регулятора поддерживается на уровне 12 В, это означает, что на регуляторе будет измерено падение напряжения 5 В. Это падение напряжения, умноженное на ток нагрузки, представляет собой рассеиваемую мощность линейного регулятора. Таким образом, большая разница между входом и выходом означает огромные потери для регулятора.

Линейный DCDC Блок-схема источника питания

Схема линейного источника питания постоянного тока постоянного тока проста и понятна.Он будет состоять только из входных и выходных конденсаторов и самого регулятора.

Как работает импульсный источник питания?

Сердце и душа импульсных блоков питания — это импульсные преобразователи. Существует несколько типов импульсных преобразователей, которые можно использовать в зависимости от области применения. Некоторые из них мы обсудим позже.

Импульсный преобразователь работает либо в режиме насыщения, либо в режиме отключения полупроводникового переключателя. В режиме насыщения в идеале имеется нулевое сопротивление, что приводит к нулевым потерям мощности.Когда переключатель отключен, в идеале возникает бесконечное сопротивление, приводящее к нулевому току, а затем снова к нулевым потерям мощности. Переключатель в переключающем преобразователе модулируется ШИМ-сигналом и управляется специальной ИС. Работа этой ИМС усложняется тем, что линейный регулятор.

Блок-схема импульсного источника питания переменного тока постоянного тока

Выше представлена ​​базовая схема импульсного источника питания переменного тока постоянного тока. Фильтр электромагнитных помех обязателен для соответствия международным стандартам (для личного или некоммерческого использования им можно пренебречь).Он также имеет мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток. Он также имеет фильтр для обработки формы сигнала, так что на входе преобразователя DCDC почти чистый постоянный ток. Конвертер DCDC преобразует постоянный ток высокого напряжения в постоянный ток низкого напряжения. Как вы заметили, в этом отсеке помещен трансформатор, в отличие от линейного режима, который находится рядом с линией переменного тока. Благодаря такому расположению трансформатор может работать на очень высокой частоте, что делает его физические размеры очень маленькими и дешевыми. Q1 — это переключатель с широтно-импульсной модуляцией (ШИМ), поэтому он будет работать только в режиме насыщения и отсечки.В насыщении идеальные потери равны нулю, так как сопротивление в идеале равно нулю. С другой стороны, при отключении также отсутствуют потери, поскольку ток в идеале равен нулю. Преобразователь DCDC выдает напряжение прямоугольной или прямоугольной формы, а выходной выпрямитель обрабатывает его до постоянного тока. Конкретная диаграмма выше фактически представляет собой импульсный источник питания ACDC с обратноходовой топологией.

Базовая топология импульсного преобразователя постоянного тока

Существует несколько топологий для построения импульсного источника питания.Топология означает, какой тип коммутирующего преобразователя используется. Например, на приведенной выше блок-схеме; это обратный ход, используемый в секции преобразователя постоянного тока постоянного тока. Можно выбрать несколько топологий, и мы разберемся с каждым приложением.

1. Повышающий преобразователь

Повышающий преобразователь состоит из катушки индуктивности, переключателя (MOSFET, BJT или IGBT), диода и выходного накопительного конденсатора. Коммутатор модулируется ШИМ-сигналом, чтобы генерировать желаемое выходное напряжение таким образом, чтобы переключатель имел в идеале нулевые потери.

Повышающий преобразователь — это повышающий преобразователь постоянного тока. Другими словами, его выход выше, чем его вход. Выход и вход связаны коэффициентом заполнения. Идеальный рабочий цикл для повышающего преобразователя —

Рабочий цикл, наддув = 1 — (Vin / Vout)

Например, выход составляет 20 В, а вход — 5 В, рабочий цикл составляет 75%.

Повышающий преобразователь Работа при включенном переключателе

Когда переключатель находится в положении ON, индуктор заряжается.Диод будет смещен в обратном направлении. Выходной конденсатор будет обеспечивать требуемую мощность нагрузки.

Работа повышающего преобразователя при выключенном выключателе

Когда переключатель находится в положении ВЫКЛ, катушка индуктивности меняет свою полярность, что приводит к прямому смещению диода. Это позволит конденсатору перезарядиться. Потребляемая мощность нагрузки будет обеспечиваться входом в это время.

2. Понижающий преобразователь

Понижающий преобразователь — это понижающий преобразователь.Другими словами, выход ниже, чем вход. Понижающий преобразователь — это обычно используемый DCDC, особенно те, которые установлены на борту. Он состоит из переключателя (MOSFET, BJT или IGBT), диода, катушки индуктивности и выходного накопительного конденсатора. Переключатель модулируется ШИМ-сигналом для достижения целевого выходного напряжения с идеально нулевыми потерями со стороны переключателя.

Как и в случае повышающего преобразователя, входное и выходное напряжение понижающего преобразователя связаны коэффициентом заполнения. Идеальная продолжительность включения:

Рабочий цикл, buck = Vout / Vin

Предположим, что входное напряжение составляет 20 В, а выходное — 5 В, рабочий цикл составляет 25%.

Понижающий преобразователь Работа при включенном переключателе

Когда переключатель находится в положении ON, диод обратного смещения. Индуктор зарядится. Конденсатор тоже будет заряжаться. На этот раз потребляемая мощность нагрузки обеспечивается входным источником.

Понижающий преобразователь Работа при выключенном переключателе

Когда переключатель находится в положении ВЫКЛ, катушка индуктивности меняет полярность и переключает диод в прямое смещение.На этот раз потребляемая мощность нагрузки будет обеспечиваться энергией, накопленной в катушке индуктивности и конденсаторе.

3. Бак — буст

Понижающий-повышающий преобразователь представляет собой комбинацию повышающего и понижающего преобразователей. Он может работать как на выходе, так и ниже, чем на входе. Есть два способа получить функцию повышения-понижения; первый инвертирующий, второй — неинвертирующий. Инвертирование понижающего-повышающего требует меньшего количества деталей и дешевле. С другой стороны, неинвертирующий понижающий импульс требует большего количества деталей и затрат.Анализ неинвертирующего понижающего-повышающего топологий может быть таким же, как для понижающей и повышающей топологий, когда вы разбиваете операцию на понижение или повышение. С другой стороны, инвертирующий понижающий сигнал будет анализироваться иначе.

4. Обратный преобразователь

Обратный преобразователь

— это очень распространенное решение для использования в автономном импульсном источнике питания. Это очень распространено для адаптеров и зарядных устройств для ноутбуков. Это обычно используемая топология для зарядных устройств телефонов и планшетов. Он может работать с высоким диапазоном входного напряжения, поскольку доступные контроллеры обратного хода рассчитаны на очень высокое напряжение.Обратный преобразователь эффективен в диапазоне мощностей менее 150-200 Вт. Выше этого значения flyback может вообще не подходить. Топология обратного хода обеспечивает изоляцию между входом (сторона переменного тока) и выходом.

Обратный трансформатор

Fly Back Transformer не является обычным трансформатором. Обычный трансформатор передает мощность или энергию от первичной обмотки к вторичной в идеальном режиме в реальном времени и идеально. Обратный трансформатор накапливает энергию в первичном магнитном поле и по прошествии определенного периода времени подает на вторичную сторону.

Переключатель

Переключатель обеспечивает время включения и выключения, которое может намагничивать и размагничивать трансформатор

Выпрямитель и фильтр

Выпрямитель и фильтр сглаживают сигнал вторичной обмотки. Конденсатор служит элементом накопления энергии.

Выпрямитель и фильтр приводят к тому, что выход является чистым постоянным током.

Обратный преобразователь Основные операции

Переключатель включен

Когда переключатель находится в положении ON (состояние насыщения), первичная обмотка обратноходового трансформатора будет просто действовать как индуктор и заряжаться.Ток от Vin к земле проходит через переключатель S, который на этот раз действует как путь короткого замыкания. Диод на вторичной стороне смещен в обратном направлении, открывая вторичную обмотку. Нагрузка питается энергией, накопленной в выходном конденсаторе Cout.

Выключатель выключен

Когда переключатель выключается, энергия, запасенная в первичной обмотке трансформатора обратного хода, будет передана нагрузке. Полная доставка будет достигнута, если обратный ход работает в режиме постоянного тока или прерывистой проводимости.Частичная передача энергии будет наблюдаться, если обратный ход работает в режиме CCM или просто в режиме непрерывной проводимости. Практически в DCM работает обратный ход. В этот период времени будет наблюдаться обратное движение в первичной обмотке, особенно на стоке коммутатора, как указано Vds. Диод на вторичной стороне будет проводить, когда вторичная обмотка изменит свою полярность. На этот раз Cout будет перезаряжаться, и нагрузка будет питаться от вторичной обмотки.

5. Прямой преобразователь

Прямой преобразователь также обычно используется для автономного источника питания переменного тока постоянного тока.Для прямого преобразователя существует несколько подходов, например, с одним переключателем вперед, с двумя переключателями вперед или с чередованием с одним переключателем или с двумя переключателями вперед. Мы не будем вдаваться в подробности каждого из них, так как основные принципы являются общими. На схеме ниже показан простой прямой преобразователь с одним переключателем. Взгляните на точку на обмотке трансформатора; они находятся в фазе, в отличие от обратного хода.

Зажим УЗО

В простом и маломощном прямом преобразователе зажима УЗО достаточно для разряда трансформатора в каждый период переключения.В прямом преобразователе обязательно должен быть механизм для разряда пустого сердечника трансформатора в каждый период переключения, чтобы избежать явления, называемого «блужданием потока», которое приведет к насыщению трансформатора и вызовет катастрофический отказ.

В системах с более высокой мощностью требуется обмотка сброса трансформатора, что приводит к громоздкому и дорогому трансформатору. Другой подход — использовать метод с двумя переключателями, чтобы избавиться от обмотки сброса.

Flyback также нуждается в зажиме УЗО для сброса энергии утечки, которая вызовет выбросы высокого напряжения на переключающем MOSFET.Впрочем, это неплохо, так как вперед нужен разгрузочный тракт.

Трансформатор

Это обычный трансформатор, который передает всю энергию из первичной обмотки во вторичную в режиме реального времени, в отличие от обратного тока, который накапливает энергию до ее передачи во вторичную. Трансформатор прямого преобразователя может быть громоздким (но достаточно маленьким по сравнению с трансформатором 50/60 Гц в линейном источнике питания, поскольку частота переключения высока), если в качестве механизма разряда используется обмотка сброса.

Переключатель

Это может быть MOSFET, BJT или IGBT. Он приводится в действие сигналом ШИМ для генерации прямоугольного напряжения на вторичной обмотке трансформатора.

Прямой диод

Это называется прямым диодом, так как этот диод будет следовать за действием первичной стороны. Если первичный переключатель включен, трансформатор будет под напряжением, и этот диод будет проводить.

Диод свободного хода

Диод обгонной муфты проводит только тогда, когда переключатель находится в положении ВЫКЛ, так что ток будет продолжать течь через индуктор в направлении нагрузки.

Прямой преобразователь также может использоваться при высоком входном напряжении, таком как обратный ход, поскольку имеющиеся контроллеры рассчитаны на высокое напряжение. Прямой преобразователь более эффективен, чем обратный преобразователь, поскольку его трансформатор не накапливает энергию намеренно, как обратный преобразователь. При мощности более 150 Вт обратный ход является хорошей топологией. Его по-прежнему можно использовать для мощности менее 150 Вт, но обратный ход по-прежнему эффективен ниже этого уровня мощности, а обратный ход проще и дешевле, поэтому лично я выберу обратно для номинальной мощности до 150 Вт и выше этой мощности.Прямой преобразователь также обеспечивает изоляцию между входом (сторона переменного тока) и выходом.

Работа прямого преобразователя при включенном переключателе

Когда переключатель находится в положении ON, ток будет течь от входного напряжения VIN к первичной обмотке трансформатора и к переключателю. Прямой диод D5 на этот раз будет смещен в прямом направлении. Диод свободного хода с другой стороны имеет обратное смещение. Дроссель L1 и выходной конденсатор C2 будут заряжаться, и на выход будет подаваться ток от вторичной обмотки.

Работа прямого преобразователя при выключенном переключателе

Во время выключения ток не будет поступать со входа, но ток первичной обмотки будет по-прежнему течь по зажимам УЗО, пока энергия на сердечнике не исчезнет. Когда сердечник пуст с энергией утечки, диод на УЗО (D2) будет иметь обратное смещение. Поскольку от VIN источника входного сигнала не поступает ток, прямой диод будет иметь обратное смещение.С другой стороны, обратный диод будет направлять смещение. Как катушка индуктивности L1, так и конденсатор C2 будут обеспечивать потребляемую мощность нагрузки, используя свою энергию заряда.

Существует больше топологий для использования в коммутационных преобразователях DCDC, таких как полумост, полный мост, резонансный (например, LLC) или двухтактный. Все эти топологии обладают высокой эффективностью за счет переключения. Импульсный источник питания может быть выполнен из нескольких переключающих преобразователей, объединяющих описанные выше преобразователи.

Связанные

Принцип импульсного источника питания

Введение

Это видео показывает нам, как работает импульсный источник питания, на схемах, объяснениях, примерах и модификациях.


Каталог


1. Принцип импульсного источника питания

1.1 Базовый Принцип импульсного источника питания

Импульсный источник питания — это источник питания, в котором используются современные технологии силовой электроники для управления соотношением времени включения и выключения переключающего транзистора для поддержания стабильного выходного напряжения. Простая конструкция показана на рисунке 1.

Рисунок 1 . B asic C ircuit из Переключение P ower S подача

Коммутационный транзистор VT включен последовательно между входным напряжением VI и выходным напряжением Vo. Когда база транзистора VT вводит импульсный сигнал переключения, VT периодически переключается, то есть поочередно включается и выключается.Предполагая, что VT является идеальным переключателем, падение напряжения между базой и эмиттером приблизительно равно нулю, когда VT насыщен, и входное напряжение Vi подается на выход через VT; Напротив, в то время, когда VT отключена, выход равен нулю. После периодического переключения VT импульсное напряжение получается на выходе, а среднее напряжение постоянного тока получается схемой фильтра. Выходное напряжение указано в формуле 1:

.

(1)

T на — время включения, T — период переключения, а D — рабочий цикл.Можно видеть, что импульсный регулируемый источник питания может управлять значением выходного постоянного напряжения, изменяя рабочий цикл импульса переключения, то есть время включения.

1.2 Рабочий процесс импульсного источника питания

Импульсный источник питания обычно состоит из шести частей, как показано на рисунке 2.

Первая часть — это входная цепь, которая содержит фильтрацию нижних частот и одноступенчатое выпрямление. Vi получается после того, как переменный ток 220 В проходит через фильтр нижних частот и выпрямляется мостом.Это напряжение отправляется во вторую часть для коррекции коэффициента мощности. Цель состоит в том, чтобы улучшить коэффициент мощности. Форма должна поддерживать входной ток в фазе с входным напряжением. Третья часть — это преобразование мощности, которое завершается электронным переключателем и высокочастотным трансформатором. Он преобразует постоянное напряжение с высоким коэффициентом мощности в высокочастотное импульсное напряжение прямоугольной формы, которое соответствует проектным требованиям. Четвертая часть — это выходная цепь, которая используется для выпрямления и фильтрации высокочастотного прямоугольного импульсного напряжения на выходе постоянного напряжения.Пятая часть — это схема управления. После разделения и выборки выходного напряжения оно сравнивается с опорным напряжением схемы и усиливается. Шестая часть — это генератор частотных колебаний, который генерирует сигнал высокочастотного диапазона волн, который накладывается на управляющий сигнал для выполнения широтно-импульсной модуляции для достижения регулируемой ширины импульса. При высокочастотном колебании происходит преобразование мощности, поэтому суть импульсного источника питания заключается в преобразовании мощности.

Рисунок 2. Принципиальная блок-схема импульсного источника питания

1.3 Метод модуляции импульсного источника питания

Методы модуляции схемы импульсного источника питания в основном включают три типа: PWM, PFM и PSM. Частота переключения режима широтно-импульсной модуляции (ШИМ) постоянна. Изменяя ширину импульса включения для изменения рабочего цикла, достигается контроль выходной энергии, что называется расширением фиксированной частоты; Ширина импульса режима частотно-импульсной модуляции (ЧИМ) постоянна.Регулируя частоту переключения, коэффициент заполнения изменяется таким образом, чтобы реализовать управление выходной энергией, что называется модуляцией фиксированной ширины; ширина импульса режима модуляции с пропуском импульсов является постоянной, а выходная энергия регулируется путем выборочного пропуска определенных рабочих циклов.

1.3.1 P ulse W Ширина M odulation (PWM)

Режим ШИМ-модуляции — это наиболее часто используемый метод управления импульсным источником питания.Сигнал обратной связи на стороне нагрузки сравнивается с пилообразной волной, генерируемой внутри, и выходной прямоугольный сигнал с постоянной частотой расширяется для управления трубкой переключателя, а время включения трубки переключателя регулируется в реальном времени в соответствии с нагрузкой. состояние, чтобы стабилизировать выходное напряжение. Его рабочая форма сигнала показана на рисунке 3.

Рисунок 3. W orking P принцип D iagram из PWM

В настоящее время режим управления ШИМ является наиболее часто используемым в импульсных источниках питания и имеет следующие преимущества: высокий КПД в случае большой нагрузки, хорошая скорость регулировки напряжения, высокая линейность, небольшая пульсация на выходе и подходит для режима контроля тока или напряжения.Но он также имеет следующие недостатки: слабая модуляция входного напряжения, плохие частотные характеристики и снижение КПД при небольшой нагрузке.

1.3.2 Частотно-импульсная модуляция (ЧИМ)

PFM — это метод модуляции, часто используемый в импульсных источниках питания. Сравнивая сигнал обратной связи конца нагрузки с опорным сигналом, выходной сигнал ошибки регулирует рабочую частоту, а затем выводит прямоугольный сигнал постоянной ширины и переменной частоты для управления трубкой переключателя и регулирует время включения трубка переключателя в реальном времени в соответствии с условиями нагрузки, тем самым стабилизируя выходное напряжение.Его рабочая форма сигнала показана на рисунке 4.

Рисунок 4 . Принцип работы PFM

1.3.3 Пропуск импульса Modulatio n (PSM)

PSM — это новый метод управления импульсными источниками питания, который называется перекрестно-импульсной модуляцией. Сигнал обратной связи конца нагрузки преобразуется в цифровой уровень, а уровень сигнала обратной связи определяется по нарастающему фронту тактового сигнала, чтобы определить, работать ли в тактовом цикле, а время включения переключающей трубки регулируется для стабилизации. выходное напряжение.Его рабочая форма сигнала показана на рисунке 5.

Рисунок 5. Принцип работы PSM

В настоящее время режим управления PSM используется для импульсных источников питания и имеет следующие преимущества: высокая скорость при небольшой нагрузке, высокая рабочая частота, хорошие частотные характеристики и меньшая частота переключения силовых трубок, подходящая для небольших ИС управления питанием. Однако он также имеет следующие недостатки: большая пульсация на выходе и слабая возможность регулировки входного напряжения.

1.4 Метод управления импульсным источником питания

Импульсные источники питания, которые мы обычно используем, основаны на режиме ШИМ, поэтому мы сосредоточимся на технологии управления в режиме ШИМ. Существует два основных типа технологии управления ШИМ: один — это технология управления ШИМ в режиме напряжения, а другой — технология управления ШИМ в текущем режиме.

1.4.1 ШИМ-контроллер в режиме напряжения

Импульсный источник питания изначально был основан на технологии PWM в режиме напряжения.Основной принцип работы показан на рисунке 6. Выходное напряжение Vo сравнивается с опорным напряжением для получения сигнала ошибки VE. Это напряжение ошибки сравнивается с пилообразным сигналом, генерируемым пилообразным генератором. Компаратор PWM выдает управляющий сигнал прямоугольной формы с изменением рабочего цикла. Это принцип работы технологии управления ШИМ в режиме напряжения. Поскольку эта система представляет собой одноконтурную систему управления, ее самым большим недостатком является отсутствие сигнала обратной связи по току.Поскольку ток импульсного источника питания протекает через катушку индуктивности, соответствующий сигнал напряжения имеет определенную задержку. Однако для регулируемого источника питания необходимо постоянно регулировать входной ток, чтобы адаптироваться к изменению входного напряжения и требований нагрузки, тем самым достигая цели стабилизации выходного напряжения. Следовательно, недостаточно использовать метод выборки выходного напряжения, потому что реакция регулирования напряжения медленная. Даже при изменении большого сигнала трубка переключателя мощности повреждается из-за колебаний, что является самым большим недостатком технологии управления ШИМ в режиме напряжения.

Рисунок 6. Принцип работы технологии ШИМ управления в режиме напряжения

1.4.2 ШИМ-контроллер текущего режима

Технология управления ШИМ в режиме тока была разработана из-за недостатков технологии управления ШИМ в режиме напряжения. Так называемое управление ШИМ в режиме тока заключается в прямом сравнении сигнала обнаружения тока выходной катушки индуктивности с выходным сигналом усилителя ошибки на входном конце компаратора ШИМ для реализации управления рабочим циклом выходного импульса, так что пиковый ток выходного дросселя следует за изменением напряжения ошибки.Этот метод управления может эффективно улучшить скорость регулирования напряжения и скорость регулирования тока импульсного источника питания, а также может улучшить переходную характеристику всей системы. Принцип работы технологии управления PWM в текущем режиме показан на рисунке 7.

Технология управления PWM в токовом режиме в основном делится на технологию управления пиковым током и технологию управления средним током. Две технологии управления обнаруживают и возвращают пиковое значение и среднее значение изменения тока в течение одного периода проводимости.

Технология управления пиковым током: управление режимом пикового тока напрямую контролирует ток индуктора на стороне пикового выхода, а затем косвенно регулирует ширину импульса ШИМ. Пиковый ток индуктора легко обнаружить и логически согласуется с изменением среднего тока индуктора. Однако пиковый ток индуктора не может быть во взаимно однозначном соответствии со средним током индуктора, потому что один и тот же пиковый ток индуктора может соответствовать разным средним токам индуктора с разными рабочими циклами и единственным фактором, определяющим значение выходного напряжения. — значение среднего тока индуктора.Когда коэффициент заполнения системы ШИМ D> 50%, режиму управления режимом пикового тока с фиксированной частотой присуща нестабильность разомкнутого контура, и необходимо ввести соответствующую компенсацию наклона, чтобы устранить возмущение среднего тока индуктора из-за различных рабочих циклов и довести контролируемый пиковый ток индуктора до среднего значения тока индуктора. Когда крутизна применяемого сигнала компенсации крутизны увеличивается до определенной степени, управление режимом пикового тока преобразуется в управление режимом напряжения.Поскольку сигнал компенсации наклона полностью заменяется треугольной волной в колебательном контуре, он становится регулятором режима напряжения, но текущий сигнал в это время можно рассматривать как текущий сигнал прямой связи. Режим управления пиковым током представляет собой систему управления с двойным замкнутым контуром (внешний контур — это контур напряжения, а внутренний контур — это контур тока), а текущий внутренний контур мгновенно и быстро управляется в соответствии с импульсом за импульсом. При управлении с двойным контуром текущий внутренний контур отвечает только за динамическое изменение выходной катушки индуктивности, поэтому внешнему контуру напряжения необходимо только управлять выходным напряжением и не нужно управлять схемой накопления энергии.Следовательно, управление в режиме пикового тока имеет гораздо большую полосу пропускания, чем управление в режиме напряжения.

Рисунок 7. Принцип работы технологии ШИМ управления в токовом режиме

Метод контроля среднего тока: Контроль среднего тока требует определения тока катушки индуктивности, сигнала определения тока катушки индуктивности и заданного VE. После сравнения управляющий сигнал VC генерируется регулятором тока и сравнивается с сигналом пилообразной модуляции для генерации импульса ШИМ.Регуляторы тока обычно используют схему компенсации PI-типа и отфильтровывают высокочастотные компоненты в дискретизированном сигнале.

Сравнение двух технологий управления током: Технология управления пиковым током удобна и быстра, но требует компенсации стабильности; Технология управления средним током отличается стабильностью и надежностью, но скорость отклика ниже, а управление более сложным. Поэтому в практических приложениях режим управления пиковым током более распространен, чем режим управления средним током.

1,5 W orking M ode of S witching P ower S подача

Возьмите обратноходовой преобразователь, используемый в этой конструкции, в качестве примера, так называемый обратный преобразователь означает, что первичная полярность трансформатора противоположна вторичной полярности, как показано на рисунке 8. Он состоит из переключающей трубки VT, выпрямителя. диод D1, конденсатор фильтра C и развязывающий трансформатор.Если верхний конец первичной обмотки трансформатора положительный, верхний конец вторичной обмотки отрицательный, и переключающая трубка VT работает в режиме ШИМ. Обратный преобразователь имеет высокий КПД, простую схему и может обеспечивать несколько выходов, поэтому он получил широкое распространение.

Рисунок 8 . B asic C ircuit из Обратный ход C onverter

Обратный преобразователь PWM имеет два режима: постоянный ток и прерывистый ток.Для тока, протекающего через переключающую трубку первичной обмотки W1, его ток не может быть непрерывным, потому что ток переключающей трубки VT обязательно равен нулю после отключения. Но в это время во вторичной обмотке W2 неизбежно возникает ток. Для обратного преобразователя постоянный ток означает, что суммарный ампер двух обмоток преобразователя не равен нулю в течение одного цикла переключения, а прерывание тока означает, что синтетическая ампула равна нулю в течение периода выключения переключающей лампы VT.Когда ток является непрерывным, обратный преобразователь имеет два режима переключения, как показано на (a) и (b) на рисунке 9; и когда ток прерывается, обратный преобразователь имеет три режима переключения, как показано на (a) (b) (c) на рисунке 9.

Рисунок 9. Эквивалентная схема в различных режимах переключения

1.5.1 Принцип работы обратноходового преобразователя при постоянном токе

Как показано на рисунке 9 (a), при t = 0 включается переключающий транзистор VT, и напряжение питания Vi подается на первичную обмотку трансформатора W 1 .В это время индуцированное напряжение во вторичной обмотке W 2 отключает диод D 1 , и ток нагрузки поступает от конденсатора фильтра C. В этот момент вторичная обмотка трансформатора разомкнута, только работает первичная обмотка, что эквивалентно катушке индуктивности. Индуктивность L 1 , первичный ток L p линейно увеличивается от минимального значения I Pmin , а скорость увеличения составляет: (1-2)

Когда t = T на , ток I p достигает максимума I Pmax

(1-3)

Во время этого процесса сердечник трансформатора намагничивается, и его магнитный поток Φ также линейно увеличивается.Приращение потока Φ:

(1-4)

Как показано на рисунке 9 (b), когда t = T на , переключающая трубка VT выключена, первичная обмотка разомкнута, и индуцированная электродвижущая сила вторичной обмотки меняет направление, чтобы включить диод D . 1 . Энергия, запасенная в магнитном поле трансформатора, высвобождается через диод D 1 , заряжая конденсатор C, с одной стороны, и подает питание на нагрузку, с другой стороны.В этот момент работает только вторичная обмотка трансформатора, которая эквивалентна катушке индуктивности, а ее индуктивность составляет L 2 . Напряжение на вторичной обмотке составляет В o , вторичный ток I с линейно падает от максимального значения I Smin и скорость его падения составляет:

(1-5)

При t = T ток I s достигает минимального значения I Smin

(1-6)

Во время этого процесса сердечник трансформатора размагничивается, и его магнитный поток Φ также линейно уменьшается.Величина уменьшения магнитного потока Φ составляет:

(1-7)

1.5.2 Basic R elationship of F lyback C onverter W hen C urrent

При работе с регулируемым напряжением величина увеличения магнитного потока переключаемого сердечника обязательно равна величине уменьшения, когда переключатель VT выключен, то есть.Из формул (1-4) и (1-7) получаем:

(1-8)

В формуле — соотношение витков первичной и вторичной обмоток трансформатора.

Когда K 12 = 1 ,

(1-9)

Напряжение, которому подвергается переключающая трубка VT, когда она выключена, складывается из Vi и индуцированной электродвижущей силы в первичной обмотке W1, то есть

(1-10)

Когда напряжение источника питания V i является постоянным, напряжение переключающего транзистора VT зависит от продолжительности включения D, поэтому значение максимальной продолжительности включения D max должно быть ограничено.Напряжение диода D 1 равно сумме выходного напряжения V и входного напряжения Vi, преобразованного во вторичное напряжение:

(1-11)

Ток нагрузки Io — это среднее значение тока, протекающего через диод D1:

(1–12)

В соответствии с принципом работы трансформатора устанавливаются следующие две формулы.

(1-13)

(1-14)

Из формулы (1-3) и формулы (1-12) в (1-14) мы можем получить:

(1-15)

(1–16)

I Pmax и I Smax — соответственно максимальные значения тока, протекающие через переключающую трубку VT и диод D 1 .

1.5.3 Принцип работы и основные отношения обратного преобразователя при прерывании тока

Формула (1-9) все еще работает, если критический ток постоянный. В это время максимальный ток первичной обмотки составляет I Pmax , то есть ток нагрузки составляет

(1-17)

Критический постоянный ток нагрузки

(1-18)

Когда D = 0.5, I oG достигает максимального значения

(1-19)

Тогда формулу (1-18) можно записать как :

(1-20)

Формула (1-20) — критическая непрерывная граница тока индуктора.

Когда ток индуктора прерывается, это связано не только с рабочим циклом D, но и со значением тока нагрузки I o .Предположим, что относительное время свободного хода I с , мы можем получить, потому что величина увеличения и уменьшения магнитного потока сердечника равна одному циклу переключения. Итак,, и, то:

(1-21)

Формула

(1-21) показывает, что, когда ток прерывается, выходное напряжение не только связано с рабочим циклом D, но также связано с величиной тока нагрузки I o .Когда рабочий цикл D является постоянным, уменьшение тока нагрузки I o может привести к увеличению выходного напряжения V o .

В случае режима прерывания тока энергия, запасенная в первичной катушке индуктивности, зависит от пикового тока:

(1-22)

Энергия доставляется один раз за цикл,

(1-23)

Эта формула говорит нам, что как только входное напряжение зафиксировано, только T может увеличить выходную мощность за счет уменьшения частоты переключения или уменьшения индуктивности.А если также выбрана частота коммутации, то мощность можно увеличить только за счет уменьшения индуктивности. Однако фактическая индуктивность имеет минимальное значение, а обратный преобразователь, работающий в прерывистом режиме, имеет максимальный предел выходной мощности, обычно менее 50 Вт.

1,6 Резюме

Эта глава в основном знакомит с основным принципом работы и рабочим процессом импульсного источника питания. Он также вводит режим модуляции импульсного источника питания.В настоящее время режим управления ШИМ является наиболее часто используемым в импульсных источниках питания. Он имеет следующие преимущества: высокий КПД в случае большой нагрузки, хорошее регулирование напряжения, высокая линейность и небольшая пульсация на выходе, и подходит для режима управления током или напряжением. Следовательно, в этой конструкции будет использоваться модуляция ШИМ.

Существует два основных типа технологии управления ШИМ: один — это технология управления ШИМ в режиме напряжения, а другой — технология управления ШИМ в режиме тока. Поскольку метод управления током быстро реагирует на входное напряжение, в этой конструкции будет использоваться метод управления током.

В этой главе также описывается режим работы импульсного источника питания. Поскольку контур обратной связи в прерывистом режиме является стабильным, а мощность этой конструкции мала, принимается прерывистый режим.

2. Control D устройств U sed in S witching P ower S компонентов

2,1 Высокий F Требование T преобразователь

2.1.1 Кривая намагничивания и петля гистерезиса

Рисунок 10 . Намагниченность C urve и H истерезис L oop трансформатора T C

003 ore

Как показано на рисунке 10, в качестве прямого и мостового преобразователей большинство из них работают в зонах 1 и 2. Характеристики этих двух зон следующие: внешнее магнитное поле небольшое, и процесс намагничивания обратим.В зоне 1,. μ 1 — начальная проницаемость. И явно линейно. Для силовых трансформаторов с низкой выходной мощностью и низкой частотой значение B при работе может быть рассчитано чрезвычайно точно. В зоне 2,. Здесь B — постоянная Рэлея, и эта область не была линейной. Но процесс намагничивания все же обратим. Обычно для этих двух областей мы все же используем приблизительную формулу для инженерных приложений:. Из-за обратимости прямой преобразователь почти не имеет гистерезиса (на самом деле, из-за технологического процесса и по другим причинам все еще существует необратимая намагниченность, но это относительно неочевидно).Для источника питания с одинаковым входом и выходом, если используются топологии прямого и обратного возбуждения, соответственно, эффективность прямого трансформатора должна быть выше, чем у обратного трансформатора, пока рабочая частота одинакова.

Для обратноходового трансформатора рабочая зона — это зоны 1, 2 и 3. Среди них зона 3 относится к зоне необратимого намагничивания. Эта область является основной областью формирования гистерезиса, поэтому обратный трансформатор имеет компонент потерь на гистерезис.Работает в среднем диапазоне магнитного поля. Даже если диапазон изменения магнитного поля невелик, изменение B очень значительное. Магнитная проницаемость быстро увеличивается и достигает максимального значения. Эта область также является областью с максимальной магнитной проницаемостью. Очевидно, что магнитная проницаемость зоны 1, 2 и 3 не равна, но при расчете параметров трансформатора мы пользуемся формулой. Здесь μ e — эффективная проницаемость, которая делает кривую B — H зон 1,2 и 3 равной отношению B и H, полученной по прямой линии.Следует отметить, что эта формула адаптирована для обратноходового преобразователя, работающего в режиме DCM. Обратные преобразователи, работающие в режиме CCM, должны использовать инкрементную проницаемость для точных расчетов. Расчет индуктивности накопления энергии в прямом преобразователе также считается используемым в режиме DCM с использованием μ e и в режиме CCM с использованием инкрементной магнитной проницаемости.

Для петли максимального гистерезиса, если процесс намагничивания не может вернуться по первоначальному пути, неизбежно возникает потребление энергии.Мощность, потребляемая намагничиванием для одного круга, равна площади, окруженной кривой намагничивания. Чтобы снизить энергопотребление, мы всегда надеемся, что петля гистерезиса будет как можно более тонкой при выборе сердечника, поскольку она больше похожа на прямую, пересекающую нулевую координату. При использовании формулы она ближе к реальной ситуации. Поскольку это приблизительная формула, а значение B max магнитопровода уменьшается с повышением температуры, значение △ B необходимо оставить с запасом при проектировании трансформатора.(Режим DCM обычно не должен превышать 2/3 своего номинального значения B max . Следует отметить, что это значение соответствует максимальной температуре, при которой продукт может работать). Если запас небольшой, необходимо учитывать ограничение тока максимальной токовой защиты источника питания. Обычно, когда правильно спроектированный источник питания работает без обратной связи в пределах полного диапазона входного напряжения при полной нагрузке, сердечник трансформатора не насыщается.

Для трансформатора, если все вторичные обмотки не подключены, первичная обмотка эквивалентна индуктору, и весь ток, протекающий через первичную обмотку, намагничивается.В состоянии постоянного тока трансформатор эквивалентен короткозамкнутому компоненту и не может передавать энергию. Когда ток намагничивания велик, трансформатор будет насыщен. В это время резко падает эффективность передачи энергии. В реальных технических измерениях все другие обмотки обычно закорачиваются для измерения при измерении индуктивности рассеяния определенной обмотки.

Когда вторичная обмотка разомкнута, первичный ток является током возбуждения.Индуктивность первичной обмотки соответствующей вторичной разомкнутой цепи может быть приблизительно равна индуктивности намагничивания. Для фиксированного трансформатора ток возбуждения в основном определяется напряжением, приложенным к первичной обмотке, а индуктивность намагничивания является реальной индуктивностью. Идеальный трансформатор — это просто черный ящик, передающий энергию.

Для прямого трансформатора и преобразователя, работающих как прямой трансформатор, необходим магнитный сброс, и индуктивность намагничивания пропускается через схему сброса для достижения баланса вольт-секунда.Обратный источник питания не требует магнитного сброса, потому что процесс обратного преобразователя сам по себе является процессом магнитного сброса. Существуют некоторые распространенные схемы сброса, такие как резонансный сброс LC, сброс RC или RCD, активный фиксатор и сброс с одной обмоткой.

2.1.2 Контроль A ir G ap

Обратный трансформатор по сути является индуктором. Весь его ток — это ток возбуждения. Формула накопления энергии индуктора:.Чтобы увеличить запас энергии, кажется, есть два пути: во-первых, увеличить индуктивность (то есть увеличить количество витков). Таким образом, объем трансформатора будет значительно увеличен. Другая проблема заключается в том, что поскольку магнитопровод постоянен, максимальный рабочий ток неизбежно уменьшается, поэтому неразумно увеличивать индуктивность для увеличения накопления энергии. Второй — увеличить рабочий ток. Текущие требования к накоплению энергии магнитного сердечника возрастают, что в конечном итоге приводит к увеличению общего накопления энергии сердечника.

Хотя магнитная проницаемость после открытия воздушного зазора меньше, чем магнитная проницаемость, когда воздушный зазор не открыт, напряженность магнитного поля (которая пропорциональна току), достигающая магнитного насыщения магнитопровода, значительно увеличивается. Это способствует накоплению большего количества энергии. Увеличение сопротивления после воздушного зазора увеличивает утечку магнитного потока, особенно вокруг воздушного зазора. Если необходимо уменьшить индуктивность рассеяния, катушку можно намотать непосредственно на воздушный зазор, но катушка вокруг воздушного зазора будет находиться в сильном изменяющемся магнитном поле, и в проводе будет генерироваться локальный вихревой ток, и эмалированная проволока пригорает и обесцвечивается через долгое время.Для сердечника из железного порошка с дисперсными воздушными зазорами лучший способ уменьшить индуктивность рассеяния — это равномерно и равномерно обернуть весь сердечник. Ниже приводится формула расчета воздушного зазора трансформатора.

Во-первых, по закону Ома магнитопровода:

(2-1)

N — количество витков катушки, R м, — магнитное сопротивление, NI — магнитный потенциал (аналогичный электродвижущей силе), и — магнитный поток.

Закон петли Ампера: подставляем его в формулу (2-1) и получаем:

(2-2)

(2-3)

(2-4)

(2-5)

Теперь мы можем получить формулу магнитосопротивления:

(2-6)

По магнитному пути открытого воздушного зазора мы можем узнать, что полное сопротивление равно сумме сопротивления материала и сопротивления воздушного зазора.Поскольку магнитная проницаемость материала намного больше, чем магнитная проницаемость воздушного зазора. Следовательно, магнитное сопротивление материала намного меньше, чем магнитное сопротивление воздушного зазора, поэтому магнитное сопротивление материала игнорируется.

(2-7)

Из формулы накопления энергии индуктора:

(2-8)

Из закона петли Ампера:

(2-9)

Мы экспортируем:

(2-10)

мкм 0 — вакуумная проницаемость

I — первичный пиковый ток

B — значение магнитной индукции при номинальном режиме работы

S e — эффективная площадь поперечного сечения A e

2.1.3 Контроль индуктивности утечки

Рис. 11. Распределение F люкс L чернил в A ctual T преобразователь

На рисунке 11 показан двухобмоточный трансформатор, N p — первичный, а N s — вторичный. — это магнитный поток, который первично связан с вторичным, и магнитные потоки, которые не связаны друг с другом, то есть индуктивность рассеяния.Из-за наличия индуктивности рассеяния первичной обмотки энергия будет передана вторичной обмотке через некоторое время. На практике трансформатор имеет два метода намотки: метод последовательной намотки и метод многослойной намотки. Эти два метода намотки по-разному влияют на электромагнитные помехи и индуктивность рассеяния. Метод последовательной намотки обычно имеет индуктивность рассеяния около 5% от индуктивности, но поскольку первичная и вторичная обмотки имеют только одну контактную поверхность, а емкость связи мала, EMI лучше.Метод сэндвич-намотки обычно имеет индуктивность рассеяния примерно от 1% до 3% от индуктивности. Последовательность намотки многослойной обмотки обычно сначала первичная, затем от одной секунды до одной трети вторичной вторичной обмотки. И чем меньше соотношение сторон, тем меньше индуктивность рассеяния трансформатора. Однако, поскольку первичная и вторичная обмотки имеют только две контактные поверхности и емкость связи велика, электромагнитные помехи возникают относительно сложно. Как правило, когда мощность ниже 30 ~ 40 Вт, энергия утечки приемлема, поэтому чаще используется метод последовательной намотки.Когда мощность превышает 40 Вт, энергия индуктивности рассеяния велика, и обычно можно использовать только метод сэндвич-намотки.

2.1.4 A анализ C ontrol P процесс F lyback P ower 9005 S ly

В источнике питания обратного хода первичный и вторичный ток фактически не изменяются.Теоретически ток первичной обмотки и ток вторичной обмотки плавно изменяются посредством магнитной связи, и ток каждой самой обмотки может изменяться, но на самом деле никаких изменений. Подробный рабочий процесс выглядит следующим образом: после выключения МОП первичный ток заряжает выходной МОП конденсатор и паразитную емкость трансформатора (на самом деле паразитная емкость является разрядом. Для упрощения описания она описывается вместе как зарядка), а затем напряжение на клеммах DS трубки переключателя резонансно возрастает.Поскольку ток очень велик, значение Q в резонансном контуре очень мало, так что в основном это линейный рост. Когда напряжение на клемме DS повышается до тех пор, пока напряжение на вторичной обмотке не достигнет суммы выходного напряжения и напряжения выпрямителя, вторичная обмотка должна быть включена. Однако из-за влияния индуктивности рассеяния вторичной обмотки напряжение будет повышаться, чтобы преодолеть влияние индуктивности рассеяния вторичной обмотки, так что напряжение, отраженное в первичную обмотку, также немного выше, чем нормальное отраженное напряжение.В таких условиях вторичный ток начинает расти, а первичный ток начинает уменьшаться. Но не забывайте об индуктивности рассеяния первичной обмотки. Поскольку он не может быть связан, его энергия должна высвобождаться. В это время индуктивность рассеяния, выходная емкость MOS и паразитная емкость трансформатора резонируют, напряжение высокое и формируются несколько колебаний. Энергия потребляется в цепи зажима. Следует отметить, что ток индуктивности рассеяния всегда идет последовательно с током первичной обмотки, поэтому процесс снижения тока утечки является процессом увеличения вторичного тока.А процесс снижения тока утечки определяется разницей между напряжением на конденсаторе цепи фиксатора и отраженным напряжением. Чем больше разница, тем быстрее падение. Чем быстрее процесс преобразования, тем очевиднее эффективность, и процесс преобразования представляет собой процесс суперпозиции напряжения и тока. При использовании RC для поглощения, поскольку разница между напряжением на C и отраженным напряжением не слишком велика в установившемся режиме, процесс преобразования медленный, а эффективность низкая.При использовании TVS для поглощения допустимое напряжение и отраженное напряжение сильно различаются, поэтому преобразование происходит быстро, а эффективность высока. Конечно, RC потребляет больше энергии, чем TVS, но он дешевле.

Когда в источнике питания используется УЗО в качестве контура поглощения, во время процесса установки вторичного тока напряжение постоянного тока, подаваемое на конденсатор, отсутствует и превышает это напряжение. Энергия, поглощаемая контуром поглощения УЗО, состоит из двух частей: одна — это энергия индуктивности рассеяния, а другая — накопитель энергии первичной индуктивности.Если постоянная времени RC составляет от 1/10 до 1/5 периода переключения, потери будут большими, и в процессе обратного хода вторичная энергия будет поглощаться в большом количестве, что приведет к снижению энергоэффективности.

2.1.5 Конструкция A абсорбция C ontrol C Схема

Звон в трубке переключателя

Принцип работы мощного регулируемого импульсного источника питания

Теплые подсказки: слово в этой статье составляет около 3500, а время чтения — около 18 минут.

Сводка

В данной статье представлена ​​новая конструкция регулируемого импульсного источника питания большой мощности. Используя топологию импульсного источника питания Buck с одним выходом ШИМ, MC33060 в качестве управляющей ИС и микросхему драйвера IR2110 с двумя выходами, мы можем разработать высоковольтный импульсный источник питания высокой мощности как эффективное решение для регулируемого высокого напряжения. Схема импульсного питания. Это может эффективно решить проблему, заключающуюся в том, что в неизолированной топологии общий импульсный источник питания не может достигать высоких пределов и подключен с использованием защиты от перегрузки по току.В этой статье, основанной на применении MC33060, я представляю метод проектирования регулируемого импульсного источника питания, а затем подробно объясняется состав системы и функции каждой части. Наконец, кратко описаны характеристики системы.

Артикул сердечник Принцип работы регулируемого импульсного источника питания большой мощности Категория Мощность
Английское название Регулируемый импульсный источник питания высокой мощности

Характеристика

Высокая мощность, регулируемая и др.


Каталоги

Каталоги I. Импульсный источник питания Введение 2.2 Топология источника питания постоянного / постоянного тока 3.3 Схема привода обратной задержки
1.1 Характеристики источника питания большой мощностиb 2.3 Типовая схема и расчет параметров 3.4 Выборка главной цепи и выхода
1.2 Характеристики питания индикаторов постоянного тока III. Проектирование системы 3.5 Схема защиты от перегрузки по току
II. Типовая конструкция импульсного источника питания 3.1 Схема фильтра выпрямителя IV. Заключение
2.1 Управляющая микросхема 3.2 ИС управления и входная цепь

Введение

I.Переключаемый источник питания Введение

В качестве альтернативы источникам питания с линейной стабилизацией импульсные источники питания становятся все более сложными в использовании и реализации. Благодаря интегрированной технологии электронные устройства стали меньше и умнее. новые электронные устройства требуют импульсного источника питания меньшего размера и с меньшими шумовыми помехами для обеспечения интеграции и интеграции. Импульсный источник питания малой и средней мощности представляет собой монолитную интеграцию, но в области мощных приложений, поскольку его потери мощности слишком велики, трудно выполнить монолитную интеграцию, необходимо было основываться на его топологии, чтобы гарантировать, что мощность различных параметров Попробуйте уменьшить размер системы.

Вот некоторые сведения о технических показателях импульсного источника питания большой мощности. Импульсный источник питания высокой мощности в основном используется в импульсном источнике питания высокочастотной системы питания, технические показатели должны быть очень высокими и точными.

Определите технические показатели следующим образом, здесь прилагается примерная модель высокомощного регулируемого импульсного источника питания, схема технических характеристик.

  • 1. Входное напряжение: 380_ + 20%;

  • 2.Частота сети: 50 Гц_ + 10%;

  • 3 коэффициент мощности: 0,93 и выше;

  • 4. Аварийный сигнал перенапряжения на входе: 437V_ + 5V;

  • 5. Введите аварийную сигнализацию перегорания: 320V_ + 5V;

  • 6. Номинальное выходное напряжение: 220В;

  • 7. Диапазон выходного напряжения: 176-286В;

  • 8. Напряжение пульсации на выходе: 10 мВ;

  • 9.Номинальный выходной ток: 5А;

  • 10. Защита от перенапряжения на выходе: 325В + _5В;

  • 11. Защита от пониженного напряжения на выходе: 195В + _5В;

Модель

ANSXYD (X-напряжение Y-ток)

Ввод

напряжение

Однофазный: 220 В переменного тока ± 15% или 110 В переменного тока ± 15%

Трехфазный: AC380V ± 10% (более 8 кВт)

частота

AC380V ± 10% (8KW 以上)

напряжение

0–1000 В

Выход

текущий

0-100000A

мощность

Значение напряжения × значение тока

Диапалы

Светодиодная цифровая трубка

Эффект источника

напряжение

≤0.2% эффективное значение

текущий

≤0,2% эффективное значение

Температурный дрейф

напряжение

≤ 0,03% среднеквадратичного значения / ℃

текущий

≤ 0,03% среднеквадратичного значения / ℃

Временной дрейф

напряжение

≤ 0.5% эффективное значение

текущий

≤ 0,5% эффективное значение

Пульсация

≤0,3% 10 мВ (среднеквадратичное значение)

Шум

≤65 дБ

КПД

≥0.85

Защитная способность

Повышенное / пониженное напряжение на входе, ограничение выходного напряжения, ограничение тока, превышение тока, перенапряжение, превышение температуры и т. Д.

Интерфейс связи

4-20 мА, 0-10 В аналоговый интерфейс связи RS-232 / RS485

Метод охлаждения

Умное воздушное / принудительное воздушное охлаждение

Температура

﹣10 ℃ 40 ℃

Влажность

10 % ~ 90 % RH

1.1 Характеристики источника питания большой мощности

Технические показатели регулируемого источника питания можно разделить на две категории: первая — это характеристические показатели, такие как выходное напряжение, выходной ток и диапазон регулирования напряжения; другой — это показатели качества, отражающие плюсы и минусы регулируемого источника питания, включая стабильность, эквивалентное внутреннее сопротивление (выходное сопротивление), пульсации напряжения и температурный коэффициент.

1.2 Характеристики питания постоянного тока индикаторов

  • (1) максимальный выходной ток.Это зависит от основного регулирования максимально допустимого рабочего тока, мощности трансформатора и максимального тока диодного выпрямителя.

  • (2) Выходное напряжение и диапазон регулировки напряжения. Это можно определить в соответствии с требованиями пользователя. Для устройства, которому требуется постоянный источник питания, диапазон регулирования регулируемого источника питания предпочтительно меньше. И как только значение напряжения отрегулировано, лучше больше не менять.Для источника питания с регулируемым выходным напряжением выходная мощность варьируется от большей части регулировки нулевого напряжения, обычно требующей более широкого диапазона регуляторов напряжения, и плавной регулировки.

  • (3) защитные функции. В источнике питания постоянного тока, когда перегрузка тока нагрузки или короткое замыкание, регулятор будет поврежден. Следовательно, необходимо использовать быстродействующие схемы максимальной токовой защиты. Кроме того, при выходе из строя регулятора тока на выходе появится явление слишком высокого напряжения, что будет вредно для нагрузки.Следовательно, также требуется схема защиты от перенапряжения.

  • (4) Эффективность. Регулируемый источник питания — это преобразователь, поэтому возникают проблемы с эффективностью преобразования энергии. Повышение эффективности в основном за счет уменьшения трубки регулировки энергопотребления.

Вот конкретное объяснение регулируемого импульсного источника питания:

Это руководство по резисторам обратной связи в преобразователях постоянного тока в постоянный и о том, как создать регулируемый источник питания с высоким током, используя LM2678

II.Типовая конструкция импульсного источника питания

Импульсный источник питания обычно состоит из ИС управления широтно-импульсной модуляцией (ШИМ) и силовых устройств (силовых MOSFET или IGBT)。 Он удовлетворяет трем условиям: переключатель (устройство работает в нелинейном состоянии переключателя), высокая частота (устройство работает на высокой частоте, не близкой к верхней частоте низкой частоты) и постоянный ток (выходная мощность — постоянный ток вместо переменного тока).

2.1 ИС управления

Возьмем MC33060 в качестве примера для представления управляющей ИС.

MC33060 — это высокопроизводительный широтно-импульсный модулятор, управляемый напряжением, производимый ON Semiconductor, работающий в диапазоне температур от -40 ° C до 85 ° C с несимметричным выходом с фиксированной частотой. Его внутренняя структура показана на Рисунке 1 [1], основные характеристики следующие:

  • 1) Встроенная схема широтно-импульсной модуляции

  • 2) Встроенный линейный пилообразный генератор, внешние компоненты только один резистор и конденсатор;

  • 3) Встроенный усилитель ошибки;

  • 4) Встроенный 5V опорного напряжения, 1.Точность 5%;

  • 5) регулируемое управление мертвой зоной;

  • 6) Встроенный транзистор обеспечивает ток 200 мА;

  • 7) Защита от пониженного напряжения

Рисунок 1 Внутренняя структура MC33060

Кратко описывается принцип его действия: MC33060 представляет собой схему широтно-импульсной модуляции с фиксированной частотой и встроенным линейным пилообразным генератором.Частоту колебаний можно регулировать с помощью внешнего резистора и конденсатора, частота колебаний как (2-1) типа:

Ширина выходного импульса достигается путем сравнения пилообразного напряжения положительной полярности на конденсаторном ТТ с двумя другими управляющими сигналами. Выход силового транзистора Q1 управляется затвором ИЛИ-НЕ, то есть когда пилообразное напряжение больше управляющего сигнала.

Когда управляющий сигнал увеличивается, ширина выходного импульса будет уменьшена, конкретное время см. На следующем рисунке

Рисунок 2 Временная диаграмма MC33060

Управляющие сигналы вводятся с внешней стороны интегральной схемы на пути к компаратору мертвого времени, а затем к входу усилителя ошибки.Компаратор мертвого времени имеет входное напряжение смещения 120 мВ, что ограничивает минимальное выходное мертвое время примерно до 4% от периода пилообразного сигнала, т. Е. Максимальный рабочий цикл, управляемый выходом, составляет 96%. Когда вход управления мертвым временем прекращается. Фиксированное напряжение (в диапазоне 0–3,3 В) может создавать дополнительное мертвое время для выходного импульса. Широтно-импульсная модуляция Компаратор позволяет усилителю ошибки регулировать ширину выходного импульса: когда напряжение обратной связи изменяется с 0,5 В до 3.5 В, ширина импульса на выходе падает от нуля до максимума в процентах, определяемых зоной нечувствительности. Два усилителя ошибки имеют входной диапазон синфазного сигнала от -0,3 В до (Vcc-2,0), что определяется выходным напряжением и током источника питания. Выход усилителя ошибки, который часто имеет высокий уровень, соединяется с инвертирующим входом широтно-импульсного модулятора. Именно такая конфигурация схемы позволяет усилителю доминировать в контуре управления с минимальной выходной мощностью.

2.2 Топология источника питания постоянного / постоянного тока

Топологии питания

DC / DC обычно делятся на три категории: понижающие, повышающие и понижательно-повышающие. Здесь для упрощения топологии используются упрощенные визуализации, как показано на рисунке 3 ниже. Выход и вход с той же полярностью, пульсация входного тока, пульсация выходного тока небольшая, простая структура.

Рисунок 3 Схема понижающего прерывателя

Во время включения выключателя подводится питание нагрузки и индуктора; выключить, энергия индуктора сохраняется в цепи свободного хода через диод для обеспечения непрерывного выхода.Напряжение нагрузки удовлетворяет следующему соотношению (2-2):

2.3 Типовая схема и расчет параметров

Типовая схема, показанная на рисунке 4

Рисунок 4 Схема понижающего прерывателя MC33060

MC33060 в качестве главного выключателя управления чипом включения и выключения, от внутренней структуры функции мы можем видеть, что в пределах MC33060 имеет опорное напряжение +5 В, как правило, используются в качестве опорных два инвертирующих компаратора напряжения.Конструкция компаратора вывода 1 и вывода 2 используется в качестве обратной связи по выходному напряжению, компаратор на 13 футов и 14 футов используется для определения того, является ли электрический ток трубки переключателя превышающим по току. 2 фута в цепи соединен с опорным напряжением через анти-фазовой цепи. А понижающая обратная связь по выходу проходит через фазу, подключенную к MC33060 1 Foot. Когда схема находится в рабочем состоянии, напряжение в 1 фут и 2 фута будет сравниваться друг с другом в соответствии с разницей между ними, чтобы отрегулировать ширину импульса выходной формы волны, чтобы достичь цели управления и стабильного выхода.

от перегрузки по току Защита от короткого замыкание 0,1 Ом номинальной мощности 1 Вт мощности резистора в качестве резистора выборки, в текущей точке потока, напряжение выборки резистора 0.1V.14 футов в качестве точки выборки, так что 13-контактное опорное напряжение на Vref установленного значений давления до 0,15 В по сравнению с 0,1 В оставляют место. Когда напряжение выборки выше установленного значения, MC33060 автоматически защитит и отключит выход ШИМ. Точка защиты также связана с управляющим сигналом 3-контактного.Согласно функциональному анализу этого вывода, интегральная обратная связь выбирается таким образом, чтобы напряжение на выводе компаратора всегда находилось в пределах нормального диапазона (0,5–3,5 В), когда понижающая схема находится под напряжением.

Частота выходного сигнала ШИМ определяется емкостью контакта 5 и значением сопротивления контакта 6. Понижающая схема принимает частоту сигнала 25 кГц, выбирает конденсатор 1 нФ со значением CT и общий резистор с RT. 47К соответствует проектным требованиям.

III. Проектирование системы

В конструкции используется понижающая топология схемы преобразователя постоянного тока в постоянный. Вход 220 В переменного тока и регулируемое напряжение постоянного тока 0-10 В, выход регулируется в диапазоне 0-180 В, максимальный выходной ток до 8 А. Блок-схема системы показана на рисунке 5 ниже. В конструкции импульсного источника питания высокой мощности, чтобы предотвратить скачок импульсного тока при запуске, обычно используется схема плавного пуска, но в этой статье не рассматривается тип.

Рисунок 5 блок-схема системы

3.1 Схема фильтра выпрямителя

Схема полномостового выпрямителя

, показанная на Рисунке 6 ниже. Требования к выходному току до 8А. Учитывая потери мощности и определенный запас, можно выбрать квадратный мост KBPC3510 на 10А и предохранитель на 10А. Выпрямленное напряжение повышается до 310 В при использовании двух конденсаторов 250 В / 100 мкФ для фильтрации. На рисунке ниже переключатель S1 и резистор R1 параллельно действуют как часть «плавного пуска», которая здесь подробно не объясняется. Подробную схему плавного пуска можно увидеть в другой статье, посвященной различным схемам импульсного источника питания с плавным пуском.

Рисунок 6 Схема выпрямителя

3.2 ИС управления и входная цепь

Схема управления MC33060 и схема регулирования входа показаны на Рисунках 7-1 и 7-2, выбранный MC33060 используется в качестве ИС управления, выбор периферийного устройства не будет повторяться здесь. См. Раздел выбора параметров типовой схемы. Компаратор 1 используется для выборки напряжения, компаратор 2 — для выборки тока. Входное регулируемое напряжение, за которым следует парциальное давление на отрицательной стороне компаратора, обычно используется в качестве величины выходной мощности управления опорным напряжением.

Рисунок 7-1 MC33060 Цепь управления

Рисунок 7-2 Схема регулировки входа

3.3 Схема привода с обратной задержкой

Схема возбуждения инвертирующей задержки

показана на Рисунке 8 ниже. Микросхема драйвера в схеме использует IR2110 от компании International Rectifier (IR) в США, которая включает в себя не только основной блок переключателя и схему привода, но также функцию управления защитой в сочетании с внешней схемой.Конструкция с плавающим каналом дает возможность управлять переключателем при напряжении шины не выше 600В. Его внутренняя часть оснащена защитой от пониженного напряжения. В сочетании с внешней схемой вы можете легко спроектировать защиту от перегрузки по току, перенапряжения, поэтому не требуется дополнительная схема защиты от перенапряжения, пониженного напряжения, перегрузки по току упрощает конструкцию схемы.

Рисунок 8 Схема управления инвертированной задержкой

Микросхема представляет собой выходной высоковольтный драйвер затвора с двухрядным 14-контактным разъемом.Задержка управляющего сигнала составляет нс, а частота переключения — от десятков герц до сотен килогерц. IR2110 имеет два входных сигнала и два выходных сигнала. Один из двух выходных сигналов имеет функцию сдвига уровня, которая напрямую управляет силовыми устройствами на стороне высокого напряжения. Драйвер может работать вместе с главной схемой, и ему нужно только полностью контролировать питание, чтобы преодолеть недостатки, связанные с тем, что для обычного драйвера требуется несколько изолированных источников питания, что значительно упрощает конструкцию оборудования.Простая карта истинности IR2110, как показано на рисунке 9 ниже.

Рисунок 9 IR2110 Простая карта истинности

IR2110 имеет два выходных драйвера, сигнал берется из генератора входного сигнала, генератор обеспечивает два выхода, нижняя сторона управляющего сигнала напрямую от генератора сигналов LO, а высокая сторона управляющего сигнала HO должна проходить через уровень преобразования Для выходного драйвера высокого уровня. Система с двойным приводом может потребоваться IR2110.

Из-за того, что двойная лампа работает, и двойная лампа не может быть включена одновременно, выходы управляющей ИС имеют только один сигнал.На выходе управляющей ИС и приводе необходимо добавить схему противофазной задержки. Выход ШИМ управляющей ИС синфазен и синфазен. После того, как устройство, резистор R29 и подтягивающие конденсаторы R30 C12, C13 были заряжены с задержкой, обеспечивая симметричную комплементарность двух ШИМ и имеет определенную мертвую зону, чтобы гарантировать что две цепи главного выключателя не включаются. Форма сигнала HIN и LIN в схеме показана на рисунке 10 ниже.

Рисунок 10 форма волны инвертированного привода

3.4 Выборка главной цепи и выхода

Основная схема, показанная на рисунке 11, использует полумостовую схему переключения.

Рисунок 11 главная цепь

В соответствии с параметрами выпрямленного напряжения и входного тока IRF840 выбран как высокочастотный переключатель. Максимальное выдерживаемое напряжение VDS составляет 500 В, а максимальный выдерживаемый ток ID составляет 8 А, что соответствует проектным требованиям. Свободно вращающиеся диоды, работающие в высокочастотном состоянии, выбирает из общего быстровосстанавливающиеся диоды.Здесь я выбрал HFA25TB60, который выдерживает обратное падение напряжения 600 В, максимальный рабочий ток 25 А, а время восстановления составляет всего 35 нс. Выходная часть из двух резисторов делит схему выборки напряжения, как показано на рисунке 12 ниже.

Рисунок 12 Цепь выборки напряжения

3.5 Схема защиты от перегрузки по току

Схема защиты от перегрузки по току, как показано на Рисунке 13 ниже.

Рисунок 13 Схема обнаружения перегрузки по току

В верхнем конце главной цепи последовательно с 0.Резистор мощности 33 Ом 10 Вт в качестве резистора выборки, когда ток слишком велик, проводимость фототранзистора оптопары, схема обнаружения выводит высокий уровень на клемму SD IR2110, SD низкий, потому что эффективная, высокая точка выключения, поэтому ток слишком большой для защиты схемы. И, как упоминалось ранее, сам IR2110 имеет множество схем защиты, поэтому схему защиты от внешнего тока и напряжения можно значительно упростить.


Анализ

IV.Вывод

Эта конструкция обеспечивает неизолированную топологию метода импульсного источника питания большой мощности, структура схемы проста. В основной схеме используется полумостовая схема вместо традиционной одноламповой схемы переключателя. Когда верхняя трубка закрыта, открытие нижней трубки может лучше гарантировать стабильность выхода свободного хода и обеспечить выход мощности. В статье не приводится метод расчета индуктивности, поскольку он не является предметом обсуждения, в соответствии с выходным током схемы, напряжением и коммутационной трубкой RDS (сток трубки MOSFET и сопротивление истока) и другими параметрами для расчета фактических значений. некоторая маржинальная стоимость.Работа системы в основном стабильна, что можно рассматривать при проектировании промышленных источников питания.


Рекомендация книги

Во втором издании «Проектирование и оптимизация импульсных источников питания», которое подверглось тщательному пересмотру, объясняется, как проектировать надежные и высокопроизводительные импульсные источники питания для современной электроники. Книга охватывает современные топологии и преобразователи и содержит новую информацию по проектированию или выбору эталонов ширины запрещенной зоны, конструкции трансформатора с использованием новых подробных схем проектирования для эффектов близости, диаграмм снижения эффективности понижения эффективности, методам активного сброса, морфологии топологии и тщательному анализу AC-DC. конец процедуры проектирования.Этот обновленный ресурс содержит схемы проектирования и числовые примеры для комплексного проектирования контуров обратной связи, включая TL431, а также первую в мире упрощенную методологию нисходящего проектирования для резонансных преобразователей с широким входом (LLC). В это практическое руководство также включена пошаговая процедура сравнительного проектирования преобразователей прямого и обратного хода.

— Санджая Маниктала (Автор)

Признанный во всем мире как исчерпывающий справочник по проектированию источников питания на протяжении более 25 лет, проект Switching Power Supply Design был обновлен с учетом последних инноваций в технологиях, материалах и компонентах.В этом третьем издании представлены основные принципы наиболее часто используемых топологий и представлена ​​важная информация, необходимая для разработки передовых источников питания. Этот экспертный ресурс, использующий метод обучения, как и почему, наполнен примерами дизайна, уравнениями и диаграммами. Получите все необходимое для разработки полного импульсного источника питания: основные импульсные регуляторы * Топологии двухтактных и прямых преобразователей * Топологии полумостовых и полумостовых преобразователей * Топологии обратных преобразователей * Топологии с током и питанием по току * Разные топологии * Трансформатор и магнитная конструкция * Конструкция высокочастотного дросселя * Оптимальные условия привода для биполярных силовых транзисторов, полевых МОП-транзисторов, силовых транзисторов и IGBT * Цепи привода для магнитных усилителей * Пострегуляторы * Коммутационные потери при включении, выключении и демпферы с малыми потерями * Обратная связь- Стабилизация контура * Формы сигналов резонансного преобразователя * Коэффициент мощности и коррекция коэффициента мощности * Высокочастотные источники питания для люминесцентных ламп и регуляторы с низким входным напряжением для портативных компьютеров и портативного оборудования

— Авраам I.Прессман (автор), Кейт Биллингс (автор), Тейлор Мори (автор)

«Упрощенная конструкция импульсных источников питания» — это всеобъемлющее и универсальное руководство по проектированию импульсных источников питания. Пошаговые инструкции и диаграммы делают эту книгу незаменимой для студентов и экспериментаторов, а также для профессионалов в области проектирования. В «Упрощенном дизайне импульсных источников питания» основное внимание уделяется использованию регуляторов на интегральных схемах. Подробно описаны все популярные формы импульсных источников питания, в том числе преобразователи постоянного тока в постоянный, инверторы, понижающие, повышающие, повышающие, импульсные, частотно-импульсные, широтно-импульсные, токовые и пропускающие импульсы.Примеры дизайна могут быть использованы немедленно или могут быть изменены для достижения конкретной цели дизайна. В качестве учебного пособия для тех, кто не знаком с импульсными источниками питания, или в качестве справочника для тех, кто нуждается в обновлении, эта уникальная книга незаменима для тех, кто занимается проектированием импульсных источников питания.

  1. Подробно описывает работу каждой цепи

  2. Проверяет широкий выбор внешних компонентов, которые изменяют характеристики корпуса ИС.

  3. Содержит практическую важную информацию для проектирования импульсного источника питания

— Джон Ленк (Автор)


Соответствующая информация о «Принципе работы регулируемого импульсного источника питания большой мощности»

О статье «Принцип работы высокомощного регулируемого импульсного источника питания». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

Линейный и импульсный источник питания

Источник питания — важная часть схемы, и стабильность источника питания в значительной степени определяет стабильность схемы. Линейный источник питания и импульсный источник питания — это два общих источника питания, и у них есть большая разница в принципах, которые определяют разницу между двумя приложениями.

Принцип работы
Линейный источник питания состоит из трансформатора промышленной частоты, выходного выпрямителя и фильтра, цепи управления, схемы защиты и т. Д. Основной принцип линейного источника питания заключается в том, что коммерческая мощность понижается до низкого напряжения переменного тока. через трансформатор промышленной частоты, затем он выпрямляется и фильтруется до постоянного тока, и, наконец, стабильный низковольтный постоянный ток выводится через схему стабилизации напряжения. Регулирующие компоненты в схеме работают в линейном состоянии.

Импульсный источник питания состоит из входного сетевого фильтра, входного выпрямителя и фильтра, инвертора, выходного выпрямителя и фильтра, схемы управления и защитной схемы. Основной принцип заключается в том, что переменный ток напрямую выпрямляется в постоянный ток на выходной стороне, а затем под действием высокочастотного колебательного контура с переключающей трубкой для управления током включения-выключения высокочастотный импульсный ток составляет сформирован. С помощью индуктора (высокочастотного трансформатора) выводится стабильный постоянный ток низкого напряжения.

Преимущества и недостатки

  • Линейный источник питания
    Преимущества: относительно простая конструкция, небольшая пульсация на выходе, небольшие высокочастотные помехи. Простая структура означает легкое обслуживание, то есть обслуживание линейного источника питания часто намного проще, чем импульсного источника питания, и уровень успешности обслуживания линейного источника питания также намного выше, чем у импульсного источника питания.
    Пульсация — это составляющая переменного тока, которая накладывается на установившийся постоянный ток.Чем меньше пульсация на выходе, тем выше чистота постоянного тока на выходе, что является важным символом качества электроэнергии постоянного тока. Высокие пульсации постоянного тока повлияют на нормальную работу трансивера. Теперь полноценная линейная пульсация мощности может достигать уровня 0,5 мВ, обычные продукты могут достигать уровня 5 мВ. Линейный источник питания не имеет устройства, которое работает на высоких частотах, поэтому при правильной работе входного фильтра почти нет высокочастотных помех или высокочастотного шума.
    Недостатки: поскольку необходим большой и тяжелый трансформатор, объем и вес необходимого конденсатора фильтра довольно велики.Схема обратной связи по напряжению работает в линейном состоянии, а регулирующая трубка имеет определенное падение напряжения, что приводит к высокому энергопотреблению и низкой эффективности преобразования при выводе большего рабочего тока. Также необходимо установить большой радиатор. Он не подходит для компьютеров и другого оборудования, которое постепенно будет заменено импульсным блоком питания.
  • Импульсный источник питания
    Преимущества: небольшой размер, легкий вес, высокая эффективность, низкое энергопотребление, более сильная защита от помех, широкий диапазон регулирования и модульность.
    Недостатки: в цепи инвертора может образовываться высокочастотное напряжение, которое создает некоторые помехи для окружающего оборудования, поэтому требуются хорошее экранирование и заземление. После выпрямления переменный ток может стать постоянным. Однако из-за изменений переменного напряжения и тока нагрузки выпрямленное постоянное напряжение обычно приводит к изменениям напряжения от 20% до 40%. Чтобы получить стабильное напряжение постоянного тока, следует использовать схему регулятора напряжения для достижения стабилизации напряжения.

Приложения
Линейный источник питания работает в линейном состоянии.Другими словами, силовые устройства никогда не останавливаются после запуска, поэтому они плохо работают с точки зрения эффективности работы, которая составляет 50-60%. А еще он большой, малый КПД и большой нагрев. Однако у линейного источника питания есть и преимущества. Он производит меньше шума из-за меньшего количества волн и удовлетворительной скорости регулировки. Линейный источник питания применим к искусственной схеме и различным усилителям.
Импульсный источник питания имеет небольшой размер, высокий КПД, но с некоторой пульсацией и помехами.С постоянным развитием электронных технологий дизайн импульсных источников питания становится все более и более научным. В настоящее время импульсные источники питания находят более широкое применение, чем линейные источники питания, и становятся основным направлением во всех сферах применения.

Бесконтактные переключатели Принцип работы

Датчик приближения — это датчик, определяющий приближение (близость) некоторого объекта. По определению, эти переключатели являются бесконтактными датчиками, использующими магнитные, электрические или оптические средства для определения близости объектов.

Бесконтактный переключатель будет находиться в «нормальном» состоянии, когда он находится на расстоянии от любого обнаруживаемого объекта.

Будучи бесконтактными по своей природе, бесконтактные переключатели часто используются вместо концевых выключателей прямого контакта с той же целью определения положения детали машины, с тем преимуществом, что они никогда не изнашиваются со временем из-за повторяющегося физического контакта.

Большинство бесконтактных переключателей имеют активную конструкцию. То есть они включают в себя электронную схему с питанием, чтобы определять близость объекта.Индуктивные датчики приближения обнаруживают присутствие металлических предметов с помощью высокочастотного магнитного поля. Емкостные датчики приближения обнаруживают присутствие неметаллических объектов с помощью высокочастотного электрического поля. Оптические бесконтактные переключатели обнаруживают прерывание светового луча объектом. Ультразвуковые бесконтактные переключатели определяют присутствие плотной материи по отражению звуковых волн.

Обозначение бесконтактного переключателя

Обозначение на принципиальной схеме бесконтактного переключателя с механическими контактами такое же, как и для механического концевого выключателя, за исключением того, что символ переключателя заключен в ромбовидную форму, указывающую на включенное (активное) устройство:

Однако многие датчики приближения не имеют выходов «сухой контакт».Вместо этого их выходные элементы представляют собой транзисторы, сконфигурированные либо на источник тока, либо на сток. Термины «источник» и «опускание» лучше всего понять, визуализируя электрический ток в направлении обычного потока, а не потока электронов.

На следующих схематических диаграммах сравниваются два режима работы переключателя. Красные стрелки показывают направление тока (условное обозначение потока). В обоих примерах нагрузка, приводимая в действие каждым бесконтактным переключателем, представляет собой светодиод (LED):

Принцип работы:

Бесконтактный переключатель

состоит из схемы датчика и схемы управления.Цепь датчика используется для обнаружения любых находящихся поблизости объектов. Схема датчика отправляет выходной сигнал высокого уровня на схему транзисторного драйвера, когда какой-либо объект обнаруживается рядом со схемой датчика. Схема драйвера на основе транзисторов может использовать транзисторы NPN или PNP, и это зависит от используемого приложения.

Когда сигнал получен от цепи датчика, транзистор будет включен, а выход будет включен. Когда объект удаляется от цепи датчика, выход датчика выключен, поэтому транзистор выключен, и выход будет выключен.

Примечание: Схема датчика может содержать LC-резонансный генератор или схему на основе взаимной индукции. Резонансный генератор LC непрерывно генерирует заданные резонансные колебания. всякий раз, когда рядом с датчиками находится какой-либо металлический объект, колебания могут варьироваться, и это зависит от свойств объекта. Это изменение колебаний будет обнаружено и выдаст на выходе либо высокий, либо низкий уровень, но ничего, кроме обнаруженного объекта, или нет.

Бесконтактный переключатель NPN Тип

Примечание: Красная точка в анимации обозначает поток текущего пути.

Бесконтактный переключатель PNP, тип

Обычно электронные датчики приближения окрашиваются в коричневый цвет для источника питания + V, синий для заземления (- полюс источника питания) и черный для коммутируемого выходного сигнала. Это соглашение характерно как для бесконтактных переключателей, так и для источников питания.

Электронный переключатель, предназначенный для отвода тока по сигнальному проводу, также называют переключателем NPN из-за типа транзистора, используемого на его выходе.И наоборот, электронный переключатель, предназначенный для подачи тока через сигнальный провод, может называться переключателем PNP.

Ключом к пониманию этих меток является понимание того, что вывод эмиттера выходного транзистора всегда подключен к шине источника питания. Для понижающего переключателя это означает, что эмиттер должен подключаться к отрицательной шине, что требует наличия NPN-транзистора для переключения. Для переключателя источника это означает, что эмиттер должен подключаться к положительной шине, и в этом случае будет достаточно только транзистора PNP.

Справочник по импульсным источникам питания

Книга

Название: Справочник по импульсным источникам питания
Книга

Автор: Кейт Биллингс и Тейлор Мори

Формат: PDF

Объем: 849 страниц

Размер файла: 19 МБ

Содержание:

Часть 1: Функции и требования, общие для большинства импульсных источников питания с прямым отключением
  • 1. Общие требования: обзор
  • 2. Защита от перенапряжения в линии переменного тока
  • 3.Электромагнитные помехи (Emi) в импульсных источниках питания
  • 4. Экраны Фарадея
  • 5. Выбор предохранителя
  • 6. Линейные выпрямительные и конденсаторные входные фильтры для импульсных источников питания «прямого отключения»
  • 7. Контроль пускового тока
  • 8. Методы пуска
  • 9. Плавный пуск и блокировка низкого напряжения
  • 10. Предотвращение скачков напряжения при включении
  • 11. Защита от перенапряжения
  • 14. Ограничение выходного тока обратного (возвратного) тока
  • 15.Требования к базовому приводу для высоковольтных биполярных транзисторов
  • 16. Пропорциональные схемы привода для биполярных транзисторов
  • 17. Методы защиты от насыщения для высоковольтных транзисторов
  • 18. Демпферные сети
  • 19. Перекрестная проводимость
  • 20. Выходные фильтры
  • 21. Цепи предупреждения о сбое питания
  • 22. Центрирование (регулировка по центру) вспомогательных выходных напряжений на преобразователях с несколькими выходами
  • 23. Системы вспомогательного питания
  • 24.Параллельная работа источников питания со стабилизированным напряжением
Часть 2 Конструкция: теория и практика
  • 1. Импульсные источники питания обратного хода с несколькими выходами
  • 2. Конструкция обратного трансформатора
  • 3. Снижение коммутационной нагрузки транзистора
  • 4. Выбор силовые компоненты для обратноходовых преобразователей
  • 5. Диагональный полумостовой обратноходовой преобразователь
  • 6. Автоколебательные обратноходовые преобразователи с прямым выходом в автономный режим
  • 7. Применение токового режима управления обратным преобразователем
  • 8.Прямые автономные несимметричные прямые преобразователи
  • 9. Конструкция трансформатора для прямых преобразователей
  • 10. Диагональные полумостовые прямые преобразователи
  • 11. Конструкция трансформатора для диагональных полумостовых прямых преобразователей
  • 12. Полумостовой толкатель преобразователи с регулируемой скважностью
  • 13. Мостовые преобразователи
  • 14. Маломощные автоколебательные преобразователи вспомогательные
  • 15. Однотрансформаторные двухтранзисторные автоколебательные преобразователи
  • 16.Двухтрансформаторные автоколебательные преобразователи
  • 17. Концепция преобразователя постоянного тока в постоянный
  • 18. Составные регулирующие системы с несколькими выходами
  • 19. Двухтактные преобразователи с регулируемой продолжительностью включения
  • 20. Постоянный ток в- Импульсные регуляторы постоянного тока
  • 21. Регулятор мощности с высокочастотным насыщающимся реактором (управление магнитной скважностью)
  • 22. Источники постоянного тока
  • 23. Переменные линейные источники питания
  • 24. Переменные импульсные источники питания 25.Конструкция импульсного трансформатора источника питания с регулируемым режимом
Часть 3 Прикладная конструкция
  • 1. Индукторы и дроссели в импульсных источниках питания
  • 2. Сильноточные дроссели с сердечниками из железного порошка
  • 3. Конструкция дросселя с использованием тороидальных сердечников из железного порошка
  • 4 Конструкция коммутационного трансформатора (общие принципы)
  • 5. Пример оптимальной конструкции трансформатора мощностью 150 Вт с использованием номограмм
  • 6. Насыщение трансформаторной лестницы
  • 7. Удвоение потока
  • 8.Стабильность и компенсация контура управления в SMPS
  • 9. Нуль в правой полуплоскости
  • 10. Управление токовым режимом
  • 11. Оптопары
  • 12. Номинальные значения пульсирующего тока электролитических конденсаторов
  • 13. Неиндуктивные токовые шунты
  • 14. Трансформаторы тока
  • 15.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *