25.11.2024

Природный газ это вещество жидкое или газообразное: Вещества — урок. Окружающий мир, 3 класс.

Содержание

Отметь знаком «+» в соответствующем столбце, какие из перечисленных веществ относятся к твёрдым, жидким, газообразным.

Я помню, как определение агрегатного состояния вещества нам объясняли еще в начальных классах. Учительница привела хороший пример про оловянного солдатика и тогда всем стало все понятно. Ниже я попробую освежить свои воспоминания.

Определить состояние вещества

Ну тут все просто: если вещество берется в руки, его можно пощупать и при нажатии на него оно сохраняет свои объем и форму — это твердое состояние. В жидком состоянии вещество не сохраняет форму, но сохраняет объем. Например, в стакане стоит вода, в данный момент она имеет форму стакана. А если ее перелить в чашку, то она примет форму чашки, но количество самой воды не изменится. Это означает, что вещество в жидком состоянии может менять форму, но не объем. В газообразном состоянии не сохраняется ни форма, ни объем вещества, а оно старается заполнить все доступное пространство.

А применительно к таблице, стоит упомянуть, что сахар и соль могут показаться жидкими веществами, но на самом деле они сыпучие вещества, весь их объем состоит из маленьких твердых кристаллов.

Состояния вещества: жидкое, твердое, газообразное

Все вещества на свете находятся в определенном состоянии: твердом, жидком или в виде газа. И любое же вещество может перейти из одного состояние в другое. Удивительно, но даже оловянный солдатик может быть жидким. Но для этого надо создать определенные условия, а именно — поместить его в сильно-сильно разогретое помещение, где олово расплавится и превратится в жидкий металл.

Но проще всего рассмотреть агрегатные состояния на примере воды.

  • Если жидкую воду заморозить, то она превратиться в лед — это ее твердое состояние.
  • Если жидкую воду сильно разогреть, то она начнет испаряться — это ее газообразное состояние.
  • А если нагреть лед, то он начнет таять и опять превратится в воду — это называется жидким состоянием.

Особенно стоит выделить процесс конденсации: если сконцентрировать и охладить испаренную воду, то газообразное состояние перейдет в твердое — это называется конденсацией, и так образуется снег в атмосфере.

Природный газ и способы его транспортировки. Справка

В настоящее время основным видом транспортировки природного газа является трубопроводный. Газ под давлением 75 атмосфер движется по трубам диаметром до 1,4 метра. По мере продвижения газа по трубопроводу он теряет энергию, преодолевая силы трения как между газом и стенкой трубы, так и между слоями газа. Поэтому через определённые промежутки необходимо сооружать компрессорные станции (КС), на которых газ дожимается до 75 атм.

Чтобы энергетически обеспечить транзит газа по трубопроводу, дополнительно нужен так называемый «технический», или, используя правильный термин, топливный газ, необходимый для работы газоперекачивающих станций.

Для транспортировки газа в сжиженном состоянии используют специальные танкеры — газовозы.

Это специальные корабли, на которых газ перевозится в сжиженном состоянии при определенных термобарических условиях. Таким образом, для транспортировки газа этим способом необходимо протянуть газопровод до берега моря, построить на берегу сжижающий газ завод, порт для танкеров, и сами танкеры. Такой вид транспорта считается экономически обоснованным при отдаленности потребителя сжиженного газа более 3000 км.

В сфере сетевого газа поставщики жестко привязаны к потребителям трубопроводами. И цены на поставки определяются долгосрочными контрактами. Примерно такие же отношения сложились сегодня и в секторе СПГ. Около 90% СПГ тоже реализуется на основе долгосрочных контрактов.

Поставщики СПГ выигрывают за счет экономии на морских перевозках. При благоприятных условиях цена поставки газа танкером может быть ниже цены поставки по газопроводу почти на порядок. Сравнение транспортных расходов с использованием СПГ и газовозов показывает, что при увеличении расстояния транспортировки расходы увеличиваются гораздо более низкими темпами, подтверждая привлекательность нового рынка сжиженного природного газа. Напротив, прокладка как наземных, так и подводных трубопроводов с ростом расстояний увеличивает себестоимость традиционного природного газа гораздо быстрее.

Газовое топливо как оно есть — Энергетика и промышленность России — № 01-02 (141-142) январь 2010 года — WWW.

EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 01-02 (141-142) январь 2010 года

Несмотря на все очевидные преимущества газа, технология его подготовки и организация процесса сжигания в течение длительного времени остаются практически неизменными, не повышается и эколого-экономическая эффективность использования газообразного топлива.

Что такое газовое топливо

Газовое топливо, или просто газ, как известно, это разновидность ископаемых энергоносителей, представляющее собой горючие газообразные углеводороды нефтяного происхождения. Газообразные углеводороды, как правило, не имеют цвета и запаха и, несмотря на принадлежность к газам, обладают различным химическим составом, молекулярным весом, дисперсностью (размером) молекул и физическими свойствами. Условно все газовые энергоносители разделяют на три группы: природные газы самостоятельных месторождений, попутные, сопровождающие добываемую нефть газы и заводские (промышленные) газы, или газы нефтепереработки.

Природные газы представляют собой смеси легкокипящих углеводородов метанового ряда и неуглеводородных компонентов (балласта). Природные газы добываются из газовых месторождений. Как правило, природные газы имеют низкий молекулярный вес, а их основным компонентом является метан (около 90‑98 процентов). Кроме того, в состав природных газов входят этан, пропан, бутан, изобутан и пентан.

Чем привлекателен газ

Любой вид углеводородного топлива, как известно, горит только в парообразном состоянии, то есть в газовой фазе, что требует затрат дополнительного количества тепловой энергии на газификацию элементов исходного топлива. Газообразное топливо составляет исключение, поскольку при атмосферном давлении оно уже пребывает в газовой фазе и затраты, то есть потери дополнительного тепла, на его газификацию отсутствуют.

Сжигание газообразного топлива дает и ощутимые эксплуатационные выгоды. Во-первых, двигатели и котлы, сжигающие газообразное топливо, имеют минимальное время приготовления к работе из холодного состояния в рабочее. Во-вторых, эксплуатация газового хозяйства более простая по сравнению с эксплуатацией, например, жидко- или твердотопливного хозяйства. В-третьих, подача газа к топливосжигающей установке на сжигание требует меньших затрат, чем аналогичные технологические операции для жидкого и твердого топлива. И наконец, загрязнение поверхностей нагрева двигателей и котлов, сжигающих газ, незначительны, поскольку в конечных продуктах его сгорания количество копоти и сажи минимально, а зола и другие твердые отложения вовсе отсутствуют, что значительно увеличивает сроки между чистками наружных поверхностей нагрева.

Следует также отметить, что газ обладает наибольшим по сравнению со всеми другими видами углеводородных горючих коэффициентом полезного использования топлива, который практически соответствует 100 процентам (КПИТгаза = 99,7‑99,8 процента).

Что еще необходимо знать о газе

Использование газа, наряду с достоинствами, имеет и существенные недостатки, которые необходимо учитывать при работе с данным видом углеводородного горючего.

Являясь ископаемым топливом, газы обладают всеми им присущими недостатками. Так, в составе газообразного топлива имеется так называемый негорючий балласт, то есть химические вещества и соединения (например, вода), которые не горят и не выделяют тепловой энергии. Кроме того, составляющие газ углеводороды имеют разную молекулярную структуру и размеры, неодинаковое строение молекул, различные типы углеводородных соединений, что при применяемой технологии подготовки газа к сжиганию не позволяет добиться получения однородной по структуре гомогенной горючей смеси с оптимальным соотношением компонентов по всему объему горения. В связи с этим даже при сжигании газообразного топлива завышается коэффициент избытка воздуха, а в процессе горения выделяется сажа и появляется копоть.

Использование газообразного топлива, как показывает опыт эксплуатации газосжигающих энергоустановок, в условиях низких температур наружного воздуха (ниже -25 – -30˚С) практически невозможно, поскольку газ конденсируется, переходит в жидкую фазу и нетранспортабелен по газопроводам. Этот недостаток использования газа не является секретом, поэтому, начиная с середины 50‑х годов ХХ века, руководящие документы требуют на всех без исключения энергетических объектах, сжигающих газообразное горючее в качестве основного, обязательного наличия топливного хозяйства, способного обеспечить хранение, подготовку к сжиганию и подачу на горение резервного топлива.

Сегодня бытует мнение, что природный газ является самым калорийным видом топлива. Это утверждение абсолютно не обоснованно и вызвано тем, что сравнение калорийности газа (кДж/м3), жидкого (кДж/кг) и твердого (кДж/кг) топлив производится в разных единицах. Теплотворная способность сухого природного газа при нормальных условиях, как правило, составляет около 34 000‑38 000 кДж/м3. Для корректного сравнения этого важного энергетического показателя газообразного топлива необходимо перевести его в кДж/кг, умножив на среднюю плотность, которая, например, для сухого природного газа составляет около 0,55‑0,6 м3/кг. Становится очевидным, что теплота сгорания 1 килограмма сухого газа составляет приблизительно 18 700‑22 800 кДж, а с учетом наличия воды, которая всегда присутствует в его составе, калорийность влажного газового топлива значительно ниже. Это означает, что при нормальных условиях природный газ по своей калорийности уступает жидким топливам и соответствует значению аналогичного показателя для каменного угля с 50‑процентным содержанием минеральных включений.

В настоящее время бытует и другое ложное мнение, будто бы из всех используемых сегодня ископаемых энергоносителей газообразное топливо самое экологически чистое. Экологичность, или экологическая чистота, газа, как и любого другого вида углеводородного топлива, проявляется в процессе его использования по прямому назначению, то есть при сжигании, при этом уровень экологической чистоты горючего зависит, в большей степени, от качества организации процесса его горения, нежели от вида сжигаемого топлива. Дымовые газы – продукты сгорания газообразного топлива, как правило, прозрачные и визуально не определяются, именно поэтому создается иллюзия отсутствия загрязнения атмосферы при работе топливосжигающей установки на газе. При сжигании газообразных углеводородов, подготовленных к горению по традиционной технологии, в атмосферу выбрасывается более 83‑85 процентов оксидов азота (NOХ), что выводит газообразное топливо на первое место среди других углеводородных топлив по выбросу этих наиболее экологически опасных и высокотоксичных соединений, приводящих к формированию в атмосфере кислотных дождей.

Поскольку теплота сгорания природного газа относительно невысокая (QРВ=22800 кДж/кг), то для получения одинакового количества тепловой энергии его требуется сжечь в 1,8 раза больше, чем, например, топочного мазута М-100 с влагосодержанием 2,0 процента (QРН= 40530 кДж/кг). Увеличение расхода газового горючего, в свою очередь, приводит и к повышению выбрасываемого в атмосферу количества продуктов сгорания, которое с учетом завышенных коэффициентов избытка воздуха увеличивается в 2,0‑2,3 раза. Очевидно, что в 2,0‑2,3 раза возрастает и количество выбрасываемых в воздушный бассейн оксидов азота (NOХ). Кроме того, забранный из атмосферы и не участвующий в реакции горения воздух, называемый избыточным, мгновенно нагревается от температуры атмосферы до 1200˚С и более, проходит транзитом зону горения и горячим сбрасывается назад в атмосферу, вызывая ее тепловое загрязнение. Для мгновенного нагрева избыточного воздуха от температуры окружающей среды до температуры горения требуется, как известно, дополнительное количество газообразного топлива, что приводит к перерасходу газа на 6 процентов и более, а значит, и к увеличению газового и теплового загрязнения атмосферы.

Следует помнить, что на экологическую чистоту газообразного топлива оказывают влияние не только экологически опасные компоненты, содержащиеся как в атмосферном воздухе, так и непосредственно в газе, но и вещества, вводимые в состав газа с целью своевременного определения его утечек. Поскольку у газообразных углеводородов отсутствует запах, то для определения их утечек, как известно, производится одоризация газа, то есть ввод в состав газообразного топлива специальных химических соединений, обладающих специфическим запахом.

Таким образом, при сжигании газообразного топлива образующиеся дымовые или выхлопные газы, незначительно изменяясь качественно, более чем в 2,0 раза увеличиваются количественно, следовательно, экологический эффект от использования газа не такой уж высокий, как его пытаются представить.

Нельзя увлекаться одним газом

После топливного кризиса в 70‑х годах ХХ века доля газа, в основном природного, в мировом топливном балансе неуклонно возрастает и к настоящему времени достигла 22,3 процента. Причем потребление газа различными странами неодинаково. Так, наибольшее количество газа потребляется в России, где его доля в топливно-энергетическом балансе составляет более 50 процентов. Второе место по потреблению голубого топлива занимают страны Европейского Союза – около 30 процентов, третье место – государства СНГ (25 процентов). И наконец, последнее место в использовании газа принадлежит странам Юго-Восточной Азии, в которых основную долю топливного баланса составляет уголь.

Увеличение объема потребления газа в России, странах Европейского Союза и государствах СНГ, по мнению авторов, обусловлено, главным образом, очевидными его преимуществами перед другими видами углеводородных топлив. Увеличению доли газа в топливном балансе способствовали также относительно высокие температуры в зимний период за последние четверть века. Теплые зимы не позволили в полной мере выявить все недостатки, связанные с использованием газа, и оценить их влияние на надежность функционирования топливосжигающих установок в условиях низких температур. К немаловажным причинам увеличения объемов потребления газообразного топлива можно отнести и его сравнительно невысокую стоимость, при этом расчет стоимости газа производится в кубометрах, а не в килограммах, как стоимость других энергоносителей.

Сегодня практически все крупные города России имеют высокий уровень газификации. Так, доля природного газа в топливном балансе Москвы составляет 87‑89 процентов, в Санкт-Петербурге – 83‑85 процентов, а в Казани – 95‑96 процентов. При этом газообразным топливом в России отапливаются даже котлоагрегаты средних и крупных ТЭЦ.

Повсеместный переход на газообразное топливо имеет и свою оборотную сторону. Как правило, при отоплении топливосжигающей установки газом не уделяется должного внимания резервному топливному хозяйству, а в некоторых случаях резервное топливное хозяйство вообще отсутствует. В этом случае обслуживающий персонал теряет навыки эксплуатации резервного топливного хозяйства, что в экстремальных ситуациях, например при резком похолодании или при отключении по каким‑либо причинам газа, может привести к выходу из действия как одного энергообъекта, так и всего энергетического комплекса города или региона. В масштабах одного города или всей страны последствия такой остановки могут иметь катастрофический характер.

Становится очевидным, что приоритетное использование одного вида энергоносителя, например газа, недопустимо, поскольку, в конечном итоге, это может привести к снижению надежности функционирования экономики страны в целом.

Об оптимизации топливного баланса

По убеждению авторов, использование каждого вида углеводородного топлива, включая и газообразное, во всех случаях должно быть экономически выгодно и экологически обосновано, при этом надежность функционирования энергетики и промышленности в реальных условиях, в том числе и экстремальных, должна быть обеспечена на основе дифференцированного подхода к применению того или иного вида топлива. Надежность функционирования каждого энергетического и промышленного объекта будет тем выше, чем большее количество различных видов углеводородного топлива может на них использоваться.

Сегодня уже очевидно, что назрела объективная необходимость дифференцированного подхода к использованию природных энергоносителей, что требует оптимизации их соотношения в топливном балансе как для каждого отдельно взятого региона, так и для страны в целом, в том числе и обладающей своими энергоресурсами. Без оптимизации соотношения различных видов топлива в топливном балансе энергетика – основа экономики и жизнедеятельности любого государства – весьма уязвима, поскольку ее зависимость только от одного энергоносителя, в конечном итоге, может привести к снижению надежности функционирования не только в экстремальных, но и в нормальных условиях. В основу топливного баланса необходимо заложить, наряду с эколого-экономическим обоснованием использования в качестве основного топлива того или иного вида энергоносителя, приоритет углеводородных топлив, заменяющих основное топливо и применяемых в качестве резервного. Экономическая эффективность сжигания того или иного вида топлива определяется, в том числе, и затратами на его транспортировку к потребителю, в связи с этим использование местных энергоносителей всегда дешевле и экономически выгодней, чем сжигание привозных топлив. В то же время экологическая составляющая эффективности использования того или иного вида углеводородного топлива зависит, главным образом, от условий его хранения, уровня технологии топливоподготовки и качества организации процесса сгорания.

Опыт использования различных видов топлива в развитых странах мира показывает, что наибольшая эффективность сжигания газообразного топлива достигается в быту и на автотранспорте, жидкого горючего – в двигателях, установках транспортных средств и резервных аварийных энергокомплексах, а угля – в котлоагрегатах средних и крупных ТЭЦ. При этом для повышения надежности функционирования любого энергетического объекта в его конструкции заложено использование всех видов углеводородных топлив: газообразных, жидких (от бензинов и керосинов до сырых нефтей и нефтесодержащих отходов) топлив и углей. Именно такое использование углеводородных топлив, по убеждению авторов, является сегодня наиболее рациональным и экономически выгодным.

Как сегодня организуется сжигание газа

Традиционно газ и воздух подаются в зону горения раздельно, где смешиваются и образуют горючую смесь. К сожалению, применяемая схема подачи топлива и воздуха не учитывает постоянно изменяющихся значимых факторов (или движущих сил процесса сгорания), оказывающих существенное влияние на качество организации процесса горения, а именно разную структуру и размеры молекул, неодинаковое молекулярное строение, различные типы углеводородных соединений и химические молекулярные связи в газообразном топливе. В связи с этим использование общепринятой сегодня раздельной схемы подачи топлива и воздуха всегда приводит к приготовлению гетерогенной (неоднородной) газовоздушной смеси с нехваткой или излишком в ее отдельных локальных зонах окислителя или горючего. Так, в корне факела наблюдается значительный избыток воздуха, а в хвостовой части – его недостаток. Сжигание газообразного топлива, имеющего различную молекулярную структуру, молекулы разного строения и неоднородные типы углеводородных соединений, всегда требует наличия избыточного воздуха. В конечном итоге избыток воздуха приводит к увеличению разности температур в локальных зонах горения, к химическому и механическому недожогам и, как следствие, к перерасходу топлива. Плохое смешение горючего и окислителя, неравномерное распределение воздуха по объему горения, неравномерность локальных температур горения вызывают интенсивное образование не только оксидов азота (NOХ) = NO + NO2 + NO3) и углерода (СОX), но и метана (CH4), сероводорода (H2S), сажи (C), продуктов пиролиза (CXHY), а также молекулярного кислорода (О2), которые в составе дымовых газов сбрасываются в воздушный бассейн.

Очевидно, что с момента массового использования газообразного топлива технология его подготовки и организация процесса его сгорания практически не претерпели изменения, а значит, и эффективность использования газа не повышалась.

За счет чего можно повысить эффективность сжигания газа

Известно, что эффективность процесса сжигания любого вида углеводородного топлива, включая и газообразное, определяется, главным образом, качественными и количественными характеристиками приготавливаемой горючей смеси, отражающими однородность топливной структуры, дисперсность углеводородных молекул; равномерность смешения топлива и воздуха, гомогенность подаваемой на горение смеси, оптимальную концентрацию участвующих в реакции горения компонентов и другие. Эти характеристики, в свою очередь, зависят от способа подготовки и схемы подачи горючего и окислителя в зону горения. Исходя из сказанного, одним из реальных направлений повышения эффективности сжигания газообразного топлива является совершенствование процесса приготовления горючей смеси и внедрение новых схем ее подачи в зону горения.

Более эффективное сжигание газообразных углеводородов может быть достигнуто, например, при помощи разработанного авторами струйного распылителя, использование которого позволяет не только устранить недостатки применяемой сегодня раздельной схемы подачи газа и воздуха, но и отвести позитивную роль имеющейся в составе газа воде. Распылитель реализует совместную схему подачи газа и воздуха, при которой смешение горючего и окислителя происходит до зоны горения, а не в ней. В приемной камере распылителя молекулы газообразного топлива подвергаются деструкции (расщеплению), образуя однородные молекулы меньшей массы и углеводородные радикалы, которые, активно соединяясь с водяными молекулами и молекулярным кислородом, образуют мелкодисперсную, однородную воздушно-топливную смесь с заданным соотношением компонентов. Говоря проще, газообразное топливо перед подачей в зону горения насыщается воздухом и молекулами воды (при ее наличии), то есть подвергается аэрации. Для сгорания приготовленной с помощью струйного распылителя воздушно-газовой смеси избытка воздуха не требуется (коэффициент избытка воздуха α=1). Сжигание гомогенной воздушно-газовой смеси с оптимальным соотношением компонентов снижает количество экологически опасных химических соединений, веществ и элементов в продуктах сгорания газообразного топлива до минимально возможного уровня, а также устраняет химический и механический недожоги.

Струйный распылитель прошел комплексные испытания и опытную эксплуатацию на всех используемых сегодня жидких видах топлива (сырой нефти, мазутах, дизельных топливах, в том числе обводненных и некондиционных) в качестве горелки сушильного барабана асфальтобетонного завода марки АБЗ МУАД АК «АЛРОСА» Д-508 в 2009 году в городе Мирном (Якутия). После работы на жидких видах топлива распылитель был проверен также для природного газа и угольной пыли. Опыт практического применения распылителя в реальных условиях показал его работоспособность, многофункциональность и универсальность. Разработанный авторами распылитель без замены и изменения конструкции способен обрабатывать все виды органического топлива непосредственно перед его смешением с воздухом, приготавливать на их основе воздушно-топливную смесь заданного состава, аэрировать топливо и распыливать полученную смесь в зону горения. Экономия топлива при работе струйного распылителя составила около 15 процентов, а количество забранного на горение воздуха из атмосферы снизилось на 40 процентов.

Выводы

Наряду с явными преимуществами газообразное топливо обладает и существенными недостатками, ограничивающими использование этого вида углеводородного горючего, например, в условиях низких температур.

Использование исключительно газообразного топлива способно значительно снизить надежность функционирования как энергетических объектов, так и экономики государства в целом.Обеспечить высокую надежность функционирования энергетических объектов, работающих на газообразном топливе, а следовательно, и экономики любого государства возможно лишь при условии использования одного или нескольких видов резервных топлив.

Авторами разработана и апробирована практически для всех видов углеводородных топлив технология приготовления воздушно-топливной смеси, реализованная в конструкции универсального многофункционального распылителя топлива.

Урок 5. тела, вещества, частицы. разнообразие веществ — Окружающий мир — 3 класс

Окружающий мир 3 класс

Урок 5. Тела, вещества, частицы. Разнообразие веществ

Перечень вопросов, рассматриваемых на уроке:

  1. Что такое тела.
  2. Что такое вещества.
  3. Что такое частицы.
  4. Разнообразие веществ.
  5. Кислотные дожди.

Глоссарий по теме:

Молекула — наименьшая частица вещества, обладающая всеми его химическими свойствами.

Атом — мельчайшая частица элемента.

Кислота – кислый вкус.

Уксус – жидкость с резким, кислым вкусом.

Основная и дополнительная литература по теме урока:

  1. Окружающий мир. Рабочая тетрадь. 3 кл.: учеб.пособие для общеобразоват. организаций. В 2 ч. / А. А. Плешаков. — М.: Просвещение, 2017. с. 24.

Дополнительная литература:

  1. Атлас — определитель «От земли до неба» с. 8, с. 14.

Открытые электронные ресурсы по теме урока:

http://www.alto-lab.ru/himicheskie-opyty/opyty-s-limonom/

http://www.alto-lab.ru/zanimatelnya-himia/sluchajnye-otkrytiya-v-himii/

Теоретический материал для самостоятельного изучения

Если мы с вами оглядимся вокруг, что мы увидим? Мы увидим различные предметы – стол, стул, дома, машины, деревья, горы, люди, животные. Перечислить все предметы невозможно, потому что их очень много. Любой предмет или живое существо можно назвать телом. Планеты, солнце, Луна – тоже тела. Их называют небесными телами. Все тела делятся на две группы – естественные и искусственные. Естественные тела, это природные тела. Растения, животные, птицы, человек – всё это естественные тела. Искусственные тела, это тела, созданные руками человека. Дома, мосты, книги, машины – всё это и многое другое создал человек.

Все тела состоят из веществ. Например, сахар – это вещество, а кусок сахара – это уже тело. Стекло – это вещество, а стакан – это тело. Из одного вещества можно сделать разные тела. Например, из пластмассы – линейка, проволока, пластмассовый стаканчик. Есть тела, которые образованы несколькими веществами: карандаш, ножницы. Есть тела, которые образованы многими веществами. Например, растения состоят из воды, сахара, соли, крахмала и других веществ. Очень сложный состав имеют живые тела. Вещества тоже делятся на группы. Различают твёрдые, жидкие и газообразные вещества.

Ученые установили, что вещества состоят из мельчайших частиц, которые видны только под микроскопом. Чтобы убедиться в этом, давайте проведём опыт. Возьмём тело, состоящее из одного вещества, например кусочек сахара, опустим его в стакан с водой и хорошо помешаем. Сначала сахар будет виден, но постепенно станет исчезать. Попробуем воду на вкус, она сладкая. Значит, сахар не исчез, а остался в стакане. А мы его не видим, потому что он распался на маленькие, невидимые нашему глазу частицы, из которых он состоял, и эти частицы перемешались с частицами воды, поэтому вода стала сладкой на вкус. Мельчайшую, невидимую частицу вещества учёные назвали молекулой. А каждая молекула состоит из ещё более мелких частиц, которые называются атомами. Молекулы и атомы разных веществ отличаются друг от друга формой и размерами. Эти мельчайшие частицы постоянно движутся. Между частицами есть промежутки. В твёрдых веществах эти промежутки совсем маленькие, частицы плотно прижаты друг к другу, поэтому твёрдые тела сохраняют форму. В жидких промежутки немного больше, и молекулы могут перемещаться, поэтому жидкости текучи. Самые большие промежутки – в газообразных веществах. У газообразных веществ расстояние между молекулами намного больше самих молекул, поэтому молекулы в газах свободно и очень быстро движутся. Запомним, веществами называют то, из чего состоят тела.

Веществ тоже очень и очень много. Сейчас их известно около миллиона. В старших классах вы будете изучать очень интересный предмет – химию. Химия, это наука, которая изучает вещества, их состав, строение. Есть природные вещества, к примеру, это соль, вода, железо. И есть вещества, которые создал человек – стекло, резина, пластмасса. И каждый год человек придумывает новые вещества.

Чтобы познакомиться с некоторыми веществами, нам достаточно просто пойти на кухню. На столе мы видим солонку, а в ней поваренная соль. Самое важное для человека свойство поваренной соли – то, что она солёная на вкус, её используют для подсаливания пищи. Добывают соль из-под земли, это настоящее полезное ископаемое. Под землёй соль встречается в виде камня. Очень много соли содержится в водах солёных морей и озёр. Есть она и в почве, и в телах живых организмов.

Сахар мы тоже обязательно встретим на кухне. По внешнему виду сахар похож на соль. Сладкий вкус – главное свойство сахара. Получают сахар из растений – сахарной свёклы и сахарного тростника, который растёт в жарких странах. Глюкоза – ещё одна разновидность сахара. Она встречается в различных частях растений.

Крахмал – это вещество, которое мы тоже можем встретить на кухне. Крахмал – это белый порошок. Его добавляют, когда варят кисель. Крахмал очень важное питательное вещество, которое необходимо человеку. Он содержится во многих растительных продуктах – в белом хлебе, в картофеле. Чтобы узнать, есть ли в продукте крахмал, нам понадобится разбавленная водой настойка йода. Если капнуть ею на продукт, в котором содержится крахмал, настойка йода окрасится в сине-фиолетовый цвет.

Большая группа веществ, с которыми мы сталкиваемся на кухне – это кислоты. Всем нам знаком вкус лимона. Такой вкус ему придаёт лимонная кислота. В яблоках содержится яблочная кислота. Когда прокисает молоко, в нём образуется молочная кислота. Общее свойство эти веществ – кислый вкус. Надо быть острожным, нельзя пробовать любую кислоту на вкус. Многие кислоты очень едкие – они разрушают одежду, древесину, кожу человека, бумагу. Поэтому обращаться с ними надо осторожно. На кухне вы можете встретить и такую кислоту – уксусную. Её используют только в разбавленном виде. К бутылочке с этой кислотой вообще нельзя прикасаться! Из-за загрязнения окружающей среды стали образовываться кислоты высоко в небе. Они выпадают вместе с дождем на землю, такие дожди называют кислотные. От них страдают растения и всё живое, портятся многие постройки. Некоторые животные и растения используют кислоту, как средство защиты от врагов. Например, муравьи в момент опасности поднимают брюшко и выбрызгивают струйки муравьиной кислоты. Эта же кислота содержится в пчелином яде и в жгучих волосках крапивы.

Окружающий нас мир полон загадок и тайн. Нас впереди ждёт ещё много новых интересных открытий.

Примеры и разбор решения заданий

1. Выберите вещества, которые не относятся к твёрдым.

Варианты ответов: глина; молоко; соль; песок; почва; мел; сок; воздух; алюминий.

Правильный вариант ответа:

Молоко; сок; воздух; вода.

Разбор типового контрольного задания

2. В какой строчке указаны только вещества?

Варианты ответов: алюминий, соль, железо, линейка, проволока, крахмал, сахар, роса; бумага.

Правильный вариант ответа: алюминий, соль, железо.

Урок окружающего мира: «Твердые, жидкие и газообразные тела»


Твердые тела, жидкости и газы 1 класс


 


Цель: Познакомить детей с важнейшей характеристикой физических тел – агрегатным состоянием.


 


Задачи:


Обучающие: учить выделять признаки окружающих предметов и обнаруживать их взаимосвязи.


Развивающие: развивать творческие способности учащихся; умение ориентироваться в полученных знаниях, использовать их в жизни.


Воспитательные: воспитывать интерес к предмету,  бережное отношение к окружающим предметам.


 


Оборудование:


Демонстрационное: компьютер, проектор, экран, 4 стакана, вода, брусок, таз с водой, салфетка, духи


Раздаточное: 3 стакана на каждую парту, вода, деревянные бруски, целлофановые пакеты


ЦОР


 


Ход урока


 


На столе учащихся и учителя материалы для опытов (3 стакана, один из которых с водой, другой пустой, 3-с деревянным бруском, пакеты целлофановые).


 


  1. Орг. Момент


Приветствие гостей.


— Ребята, сегодня к нам на урок пришли гости, давайте поприветствуем их. Теперь посмотрите друг на друга, улыбнитесь. Вижу, вы к уроку готовы. Тихо садитесь.


Сегодня мы с вами отправимся в нашу маленькую лабораторию (слайд), которую создали сами в нашем классе. А что такое лаборатория? И мы будем лаборантами. Но чтобы начать проводить различные опыты, давайте вспомним правила поведения в лаборатории.(слайд) Каждый из лаборантов их должен выполнять:


  1. Внимательно слушать старшего лаборанта;

  2. Не шуметь, не мешать друг другу;

  3. Выполнять все задания.


— Эти правила у нас вынесены и на доску, чтобы вы могли при необходимости их вспомнить.


— Готовы начать работу?


 


  1. Актуализация знаний и постановка проблемы.


 


У вас на столах по три стакана. Что в первом стакане? (вода).


Что во 2 стакане? (деревянный брусок).


Что в третьем стакане? (ответы детей)


Возьмите пакеты и зажмите их рукой у горлышка. Что вы видите? (пакет надулся). Что в пакете? (выполняю задание вместе с детьми)


Загадка:


Через нос проходит в грудь


И обратный держит путь.


Он невидимый, и все же


Без него мы жить не можем. (воздух)


 


— А что в стакане? Как проверить? (опыт проделывает подготовленный ребенок: подходит к столу учителя, где стоит тазик с водой. Как вы думаете, намокнет ли салфетка, прикрепленная ко дну стакана, если стакан опустить в воду к верху дном? Опускает. Почему салфетка осталась сухой? (воздух не дал намочить салфетку)


— А для чего нам нужен воздух?


— Нас окружают различные предметы, по другому их называют физические тела. Можно ли воздух назвать телом? Какие еще бывают тела?


Как вы думаете, они все одинаковые? Чем они отличаются?


Дети перечисляют признаки предметов (размер, форму, цвет, материал).


— Чем отличаются предметы в ваших стаканчиках?


Приходят к выводу, что вода жидкая, брусок – твердый, воздух – при помощи учителя, это газ.


Оказывается, все  предметы можно еще разделить на три большие группы: 


На слайде и доске надписи:


Твердые тела         Жидкости          Газы


— Учитель обращает внимание на  слова на доске. Заполняется таблица.






Твердые тела


Жидкости


Газы


Брусок


Вода


Воздух


Пенал


Чай


Природный газ


Лёд


Молоко


Пар


— Давайте попробуем определить к какой группе относятся следующие тела. На доске вы видите названия этих тел. Попробуйте догадаться, вода какое тело? Брусок?…(по ходу объяснения вызываю по одному ребенку, который ставит слово в нужный столбик)


— Как вы думаете, о чем мы будем говорить на уроке?


— Действительно, сегодня мы с вами познакомимся с неживыми физическими телами, которые отличаются своими состояниями, бывают твердыми, жидкими и газообразными. Ну и, конечно, проделаем ряд опытов, которые покажут нам, чем же особенны эти состояния веществ.


— Давайте попробуем вместе выяснить, чем же отличаются тела, которые находятся в различных состояниях: твердом, жидком и газообразном.


 


  1. Исследовательская работа


 


1 свойство (опыт): Пробуем сжать брусок – не сжимается. Учитель при помощи шприца  пробует сжать воду – не сжимается, а газ сжимается. Дает попробовать детям.


Вывод: Твердые тела и жидкости не сжимаются, а газ – сжимается.


 


2 свойство (опыт): Разделить все вещества и материалы на 2 группы: сохраняющие форму и не сохраняющие форму.


— Учитель переливает воду из одного сосуда в другой.


— Какую форму приобретает жидкость при переливании из одного сосуда в другой? (жидкость сохраняет форму сосуда)


— Переложите брусок из одного стакана в другой. Изменил ли он форму? (нет, это твердое тело)


Вывод выносится на слайд: Твердые тела сохраняют свою форму, а жидкости сохраняют форму сосуда.


 


3 свойство:


— Мы говорили о твердых телах, жидкостях. А еще о каких телах нам нужно поговорить? (о газах)


— Сейчас вы ляжете все на парту и закроете глаза, когда я вам предложу проснуться, вы сможете поднять головы.


Пока дети лежат, я разбрызгиваю духи.


— Просыпайтесь, поднимайте головы. Вы ничего не чувствуете? Все почувствовали? А на задних партах?


— Почему, ведь я разбрызгивала у доски?


Вывод: Оказывается, газы занимают  все помещение, где они находятся.


 


Физкультминутка


 


На слайдах появляется интерактивная модель, изображающий молекулярное строение тел: твердых, жидких и газообразных.


— Ребята, почему же все так происходит? Почему твердые тела не могут течь, жидкие не могут сохранять определенную форму, а газы занимают весь объем помещения?


— Оказывается, все тела состоят из очень маленьких частиц, которые называются молекулы. Но в каждом теле молекулы располагаются по-разному. (слайд) Например, в твердом теле каждая молекула движется около определенной точки. В жидкостях молекулы не так крепко соединены и дают возможность перемещаться из одного положения в другое. А в газах, молекулы и вовсе не соединены друг с другом, поэтому легко разлетаются в разные стороны.


Какой же можно сделать вывод?


На доске таблица:






Твердые тела


Жидкости


Газы


Брусок


Вода


Воздух


Пенал


Чай


Природный газ


Лёд


Молоко


Пар


Показываю схематическое изображение молекул.


— Попробуйте определить эта схема каких тел? (каждая схема подставляется в столбики слов)


 


  1. Первичное закрепление знаний


 


На столе разные тела: чай в стакане, воздушный шар, сахар.


— Догадайтесь, к какой группе предметов относится чай? Сахар? Шарик с воздухом внутри?


 


  1. Постановка проблемы.


– Какое знакомое вам вещество может находиться во всех трех состояниях? (вода)


— А вот какие превращения происходят с водой мы узнаем на следующем уроке.


 


  1. Итог урока


— Что на уроке для вас было самым интересным?


— Что узнали сегодня на уроке?


— С какими основными состояниями тел мы сегодня с вами познакомились?


— Какими свойствами обладают твердые тела? Газообразные? Жидкие?


— Незнакомые жидкости нельзя пить и глотать и даже брать в руки. Это одно из правил разумного поведения.


— Сегодня занимались все на отлично, особенно хочется отметить…, вашей работой я довольна, больше хочется активности от…, а теперь оцените себя сами в своих дневниках.


 


Домашним заданием будет: во время прогулки соберите веточки деревьев, с условием, что ломать деревья не будете. Мы их в классе поставим в разные стаканы и будем вести наблюдение за ними.


 

Плюсы и минусы, а также особенности всех видов топлива (энергоносителя) для котлов отопления домов и квартир

Из за особенностей производства нижеперечисленных видов топлив, их скорость сгорания и объем выделяемого тепла (т.е. теплотворная способность или удельная теплота сгорания) может крайне сильно отличаться друг от друга. Например, различия в теплотворной способности дров из берёзы и ели могут составить более 30%.

Поэтому «плюсы и минусы» приведённые ниже по тексту, представлены исключительно в качестве сравнительного примера и не могут достоверно отражать эффективность того или иного вида топлива. Просим обратить на это особое внимание и перед окончательным решением более тщательно изучить тот или иной вид топлива самостоятельно.

Также хотим отметить, что расчёты стоимости расходов на отопление приведены исключительно в ознакомительных целях. Во всех современных котлах, в технической документации указывается особенности и расходы топлива, которые приближена к максимально достоверной и именно на них стоит опираться при принятии окончательного решения.

Итак, начнем, как правило на практике принято использовать следующие виды топлив:

Природный газ — это смесь газов, которые образуются под землей во время разложения органических веществ, поэтому он является полезным ископаемым.

При 101,325 кПа и 20 °C природный газ обретает газообразное состояние, из за чего, как правило, природный газ под недрами земли находится в газообразном состоянии, т.е. в виде отдельных скоплений, газовых залежей. Но также он встречается в виде газовых шапок нефтегазовых месторождений или в растворённом состоянии, например, в нефти или воде. 92-98 % природного газа составляет метан (Ch5), при этом в его состав также могут входить более тяжёлые углеводороды, такие как, этан (C2H6), пропан (C3H8), бутан (C4h20) и другие неуглеводородные вещества, такие как, водород (h3), сероводород (h3S), диоксид углерода (СО2), азот (N2), гелий (Не).

Стоит упомянуть, что природный газ, в чистом виде, не имеет никакого запаха и цвета, что повышает риск отравления при его утечке. Для того, чтобы определить источник утечки газа специалисты начали добавлять в него специальные вещества — одоранты, например, этилмеркаптан, который имеет сильный неприятный запах гнилой капусты, прелого сена и тухлых яиц.