Назначение, устройство, принцип работы промежуточного реле РП. Промежуточное реле назначение
Устройство и назначение вспомогательных реле
К вспомогательным реле относят указательные (сигнальные), промежуточные и реле времени.
Реле времени
Реле времени (ЭВ) применяют для создания независимых от тока требуемых выдержек времени, обеспечивая, таким образом, селективную работу отдельных защит. Реле времени конструктивно имеют много разновидностей. Разберем работу реле времени на примере электромагнитных реле с часовым механизмом серий ЭВ – 100 и ЭВ – 200.
Реле серии ЭВ – 100 применяют в цепях оперативного постоянного тока на напряжения в 24, 48, 110 и 220 В, а ЭВ – 200 для работы в оперативных цепях переменного тока на напряжения 127, 220 и 380 В.
На рисунке ниже показано устройство реле времени ЭВ – 100:
Работа реле осуществляется следующим образом. Когда обмотка электромагнита 1 обесточена, рычаг часового механизма 17 отведен вверх до упора и удерживается на месте якорем 23 действием пружины якоря 22, при этом ведущая пружина 8 растянута (заведена). При замыкании контакта основного (пускового) реле по обмотке электромагнита ЭВ, включенной в оперативную цепь последовательно, потечет ток. Под действием электромагнитных сил якорь 23 втянется, и рычаг часового механизма опустится вместе с якорем, при этом зубчатый сегмент 13 под действием пружины 8 начнет вращаться по часовой стрелке, а ведущая шестерня 12 вместе с подвижным контактом 11 – против часовой стрелки. С помощью фрикционного сцепления на одном валу посажен часовой механизм (детали 2, 3, 4, 5, 6, 7, 14, 15, 16), который обеспечивает постоянную частоту вращения подвижного контакта 11. Когда подвижной контакт доходит до неподвижных контактов 10 и замыкает их, оперативная цепь тоже замкнется и реле даст импульс на отключение выключателя.
Изменение уставок реле (выдержки времени) осуществляют путем изменения расстояния между подвижными и неподвижными контактами (увеличением или уменьшением расстояния). Время срабатывания реле устанавливается на шкале 9, отградуированной в секундах. Контакты 18, 20, 21и поводок 19 используются тогда, когда требуется мгновенное срабатывание реле (без выдержки времени).
При исчезновении тока в катушке (линия отключена) якорь под действием пружины 22 поднимается вверх, а с ним и рычаг часового механизма и реле будут готовы для работы.
Промежуточные реле
Промежуточные реле (РП) благодаря наличию в них большого количества нормально замкнутых и разомкнутых контактов применяются в релейной защите, когда необходимо одновременно замыкать и размыкать несколько независимых цепей (цепи управления сигнализации, выключателей и другие), подключаемые к разным контактам реле. Кроме того, наличие у них мощных контактов дает возможность использовать их для разгрузки маломощных контактов основных реле от больших токов (для замыкания цепей электромагнитных приводов выключателей).
Промышленностью выпускается большое количество промежуточных реле, работающих на электромагнитном принципе. Основным элементом промежуточных реле является электромагнит с подвижным якорем и подвижная система комбинированных контактов (нормально закрытых и открытых), связанных с якорем. Промежуточные реле изготавливаются для работы в оперативных цепях переменного и постоянного тока. Реле РП – 23 и РП – 24 работают в оперативных цепях постоянного напряжением 12, 24, 48, 110 и 220 В, а реле РП – 25, РП – 26 – в цепях переменного тока напряжением 100 и 220 В.
На рисунке ниже показаны устройство и принцип действия реле РП – 23:
Реле состоит из катушки 12, размещенной на сердечнике 11, якоря 9 неподвижных контактов 4, подвижной контактной системы 5, разделенной изоляционными втулками 6, возвратной пружины 3, скобы 2, на которой закреплен сердечник упора 7, ограничителя хода якоря 10 и основания реле 1.
При подаче напряжения на катушку реле якорь, втягиваясь, хвостовиком 8 перемещает подвижную контактную систему вниз. При этом замыкаются нормально открытые контакты и размыкаются нормально закрытые контакты. Реле имеет четыре нормально открытых контакта и один нормально закрытый. При исчезновении тока в катушке реле под действием пружины 3 контактная система возвращается в исходное положение.
Указательные (сигнальные) реле
Сигнальные (указательные) реле служат для подачи сигналов (световых, звуковых, указательных и других) о возникновении не нормальных режимов работы на каком-то участке электрической цепи. Реле типа РУ – 21, работающие на электромагнитном принципе, является одним из наиболее распространенных. Принцип его действия заключается в том, что при прохождении тока по его обмотке якорь притягивается к сердечнику, флажок, ранее удерживаемый якорем, теряет упор, под действием собственного веса поворачивается по оси и устанавливается своей окрашенной поверхностью напротив застекленного окна в крышке реле. Это служит сигналом о срабатывании защиты. При повороте флажка одновременно замыкаются контакты цепи сигнализации. Флажок возвращается в первоначальное положение при повороте рукоятки.
elenergi.ru
Назначение, устройство, принцип работы промежуточного реле РП
⇐ ПредыдущаяСтр 5 из 7Следующая ⇒
Основным назначением промежуточных реле является: 1) размножение контактов основного реле в тех случаях, когда при срабатывании последнего требуется одновременно замкнуть или разомкнуть несколько цепей. Одним из таких случаев является одновременное отключение от защиты нескольких выключателей;
2) разгрузка контактов основного реле при необходимости замыкания или размыкания цепей такой мощности, на которую контакты основного реле не рассчитаны. В этих случаях основное реле замыкает цепь обмотки промежуточного реле, а промежуточное реле своими более мощными контактами замыкает или размыкает соответствующие цепи.
Промежуточные реле выполняются на электромагнитном принципе для работы па оперативном постоянном и переменном токе.
В зависимости от назначения промежуточные реле выполняются с обмотками напряжения или обмотками тока или теми и другими одновременно.
Промежуточные реле с обмотками напряжения включаются на полное напряжение источника оперативного тока. Промежуточные реле с обмотками тока включаются последовательно в цепь обмоток других аппаратов (например, отключающих катушек выключателей) и работают от тока, проходящего по этой цепи.
Реле постоянного тока изготавливаются на стандартные напряжения: 24, 48, ПО и 220 В, а переменного тока на — 127, 220 и 380 В
Рис 4.
Промежуточные реле типов РП-23 и РП-24 выполняются для работы на постоянном токе. Устройство реле типа РП-23 приведено на рис. 3. Реле состоит из электромагнита 1 с обмоткой 2, якоря 3 с хвостовиком 4, неподвижных контактов 5, подвижной контактной системы 6, возвратной пружины 7, упора 8, регулировочной пластины 9. Реле монтируется на цоколе 10 и закрывается кожухом 11. При подаче напряжения на обмотку реле якорь 3 втягивается и хвостовиком 4 перемещает вниз подвижную контактную систему. При этом замыкаются замыкающие и размыкаются размыкающие контакты реле.
Репе РП-24 отличается от реле РП-23 наличием встроенного механического указателя срабатывания с ручным
Промежуточные реле типов РП-25 и РП-26 выполняются для работы на переменном токе и имеют устройство, аналогичное реле РП-23 и РП-24. Для предотвращения вибрации подвижной системы эти реле имеют короткозамкнутыи виток на сердечнике электромагнита.
`
Рис. 5.
Промежуточноереле:1 — контакты, 2 — якорь, 3 — ярмо, 4 — ка тушка, 5 — скоба
Все реле этих типов имеют по пять контактов, которые могут быть использованы в различных комбинациях. Время срабатывания порядка 0,06 с. Потребляемая мощность при номинальном напряжении порядка 6 Вт у реле РП-23, РП-24 и порядка 8 В-А у реле РП-25, РП-26.
Конструкция малогабаритного промежуточного реле типа МКУ-48 показана на рис. 5. Реле имеет наборную контактную систему, состоящую из контактных пластин различного типа. В зависимости от необходимости контактные пластины набираются в различных комбинациях для получения нужного количества замыкающих, размыкающих и переключающих контактов. Реле имеют потребление около 3 Вт на постоянном и около 5—7 В-А на переменном токе. Время срабатывания зависит от количества контактных групп и составляет 0,03—0,06 с.
Промежуточные реле типов РП-211, РП-212, РП-213, РП-214 и РП-215 относятся к серии малогабаритных быстродействующих реле постоянного тока. Конструктивно реле всех указанных типов выполнены аналогично и отличаются друг от друга типом и количеством контактов и обмоток.
Охрана труда
mykonspekts.ru
назначение, где применяются и как их выбирают
Под термином "промежуточные реле" чаще всего подразумевают электромагнитные реле, которые используются в качестве так называемых вспомогательных реле, играющих не главную, но очень важную роль в схемах управления разнообразных технологических установок, станков, комплексов.
Сегодня под словом «реле» понимают не только электромагнитные реле, какими они были изначально, реле теперь может быть и электронным и электромагнитным. Так или иначе, реле — это ключ, предназначенный для размыкания или замыкания электрической цепи с той или иной целью, когда определенные параметры цепи принимают заданные значения, или когда часть технического устройства оказывается в заданном состоянии, например в результате внешних воздействий на него.
В настоящее время на рынке представлен достаточно широкий ассортимент промежуточных реле. Есть возможность подобрать промежуточное реле как по ценовой категории, так и по свойству решаемых задач. Самые распространённые производства фирм Finder, Phoenix, АВВ, Schneider electric. Из отечественных укажем реле типа РПЛ, РПУ-2М, РП, РЭП, к примеру.
В упрощенном виде промежуточное реле представляет собой электромагнитную катушку с сердечником, подключаемую либо на постоянный либо на переменный ток (это основные виды промежуточных реле), при появлении напряжения на которой, возникает электромагнитная сила притягивающая якорь, который, в свою очередь, замыкает подвижные контакты (обычно закреплённые на нём) с неподвижными, закреплёнными на корпусе. Тем самым замыкая или размыкая группы контактов. А уже эти контакты играют свою роль в цепях управления, то есть включают цепи сигнализации или защиты, размыкают (замыкают) цепь питания катушки магнитного пускателя электродвигателя (смотрите - схемы подключения магнитных пускателей). Вариантов может быть масса.
Промежуточное реле РПУ-2М
Одно промежуточное реле может иметь несколько групп замыкающих контактов и несколько групп размыкающих контактов. Необходимость в определенных технических характеристиках данного реле возникает из задач, стоящих перед проектировщиком.
Основная функция промежуточных реле - размножение контактов в цепях управления. Например, в цепи управления электродвигателем водяного насоса это реле имеет следующие функции - после нажатия кнопки «Пуск», одна пара замыкающих контактов замкнёт цепь сигнализации, показывающей оператору работу насоса, другая пара замкнёт цепь питания катушки магнитного пускателя, контактор пускателя сработает и запустит двигатель насоса. При этом пара размыкающих контактов разомкнёт цепь реверсивной работы электродвигателя, что предостережёт силовую схему от замыкания.
Кроме этого, промежуточные реле могут применяться в электрических схемах для усиления управляющих сигналов. Так, например, в схеме электрической нагревательной установки вход промежуточного реле подается сигнал с прибора теплового контроля, а уже своими контактами реле коммутирует катушку магнитного пускателя, который управляет подачей напряжения на нагревательные элементы печи.
Слабый сигнал с прибора теплового контроля не смог бы включить катушку пускателя. Что бы схема работала сигнал усиливают через промежуточное реле, т.е. реле срабатывает от сравнительно слабого тока, но включает электрические цепи по которым проходит значительно больший ток.
По сути само реле представляет собой миниатюрный электромагнитный пускатель, но полноценно не может заменить его в виду небольших коммутируемых токов. Проще говоря длительно допустимый ток контактных групп обычно не превышает 10А. Чего с избытком хватает для цепей управления. Четкость срабатывания реле обеспечивает отключающая пружина.
Промежуточные реле в шкафу управления
Выбор промежуточного реле происходит на основании его технических характеристик. Таких как питающее напряжения (В), потребляемая мощность (Вт), коммутируемый ток (А), длительно допустимый ток контактов (А), число и вид контактов контактов и габаритные размеры.
Не стоит забывать и об условиях эксплуатации: диапазон рабочих температур, вибрация, концентрация пыли, взрывоопасность среды, влажность воздуха и т. . п. Под каждое условие эксплуатации можно и нужно подобрать необходимый тип реле.
Необходимо помнить, что каждый элемент цепей защиты вносит в эту цепь свою погрешность. Так промежуточное реле имеет определённое время срабатывания (то есть вносит в схему защиты замедление), которое нужно учитывать. Обычно время срабатывания реле доходит до 0,1 сек. Но существуют так же и быстродействующие, максимальное время срабатывания которых достигает 0,02 сек.
Пример использования промежуточных реле:
Схема электрическая принципиальная электродного водонагревателя (промежуточные реле - КV1, KV2 и КV3, электромагнитный пускатель - КМ).
Напишите в комментариях для чего нужны эти три промежуточные реле в схеме водонагревателя?
elektruk.elektruk.info
назначение устройства, особенности конструкции и принцип работы
Реле представляет собой прибор, способный работать в автоматическом режиме. Сегодня в продаже можно найти классическое промежуточное реле 220 В электромагнитного типа, а также современные электронные устройства. Эти приборы нашли широкое распространение в промышленности и быту. Они активно применяются для коммутации электроцепей, управления электромоторами и так далее.
Область применения и назначение
Трудно найти отрасль промышленности, где не использовались бы промежуточные реле. Эти устройства сегодня устанавливаются в различное электротехническое оборудование и бытовые приборы. Можно выделить три случая применения этих приборов в сложных электротехнических системах:
- Переключение участков в независимых друг от друга электросетях.
- Увеличение времени задержки срабатывания защитных элементов в цепях с большими токами нагрузки.
- Контроль различных параметров, а также режимов функционирования отдельных элементов во вторичных электроцепях с высоким напряжением.
Следует заметить, что одно устройство способно выполнять последовательно либо одновременно несколько переключений в цепях. В качестве примера можно рассмотреть работу реле в системе водоснабжения и отопления. Во время включения насосной станции на обмотку прибора подается питающее напряжение. В результате замыкается контактная группа, активирующая систему контроля работы насоса.
На дисплее показываются наиболее важные параметры работы установки. Их количество зависит от сложности управляемой системы. Одновременно замыкается другая контактная группа, подавая тем самым напряжение на обмотку магнитного пускателя.
Во время срабатывания этого пускового прибора питающее напряжение подается на электронасос. Так как в отопительных системах слабый импульс не позволяет активировать катушки магнитных пускателей, рассчитанных на высокий ток, то с помощью реле промежуточного типа можно усилить управляющий сигнал.
Особенности конструкции и принцип работы
Прибор по конструкции напоминает магнитный пускатель небольших размеров. Следует заметить, что реле не может использоваться во всех схемах для переключения электроцепей, так как его главное назначение заключается в передачи управляющих импульсов. Это обусловлено тем, что контактные пластины изготовлены из тонкого материала. В продаже нечасто встречаются модели, которые могут на протяжении длительного временного отрезка пропускать токи более 10 А.
Конструкция классического реле промежуточного типа содержит:
- Основание, на котором смонтированы все остальные детали.
- Электромагнитную катушку и сердечник.
- Подвижную пластину, оснащенную рычагом для управления контактной группой.
- Пружину для возвращения рычага в начальное состояние, когда напряжение снимается.
- Контактную группу.
- Клеммы для подсоединения проводников к контактам и обмотке катушки.
Технические параметры и расшифровка маркировки
Опытный электрик сможет извлечь из маркировки изделия практически всю нужную информацию. В качестве примера расшифровки можно взять модель РЭП26−004А526042−40УХЛ4. Это реле электромагнитное промежуточное, 26-й серии. Прибор оснащен 4 переключаемыми контактами, имеющими класс износостойкости «А».
Реле предназначено для работы в цепях постоянного тока. Проводники крепятся с помощью пайки, а в конструкции также предусмотрен ручной переключатель. Класс защиты изделия от попадания внутрь влаги и пыли — 40. Реле предназначено для работы в условиях средних и северных широт.
Что касается наиболее важных технических характеристик прибора, то стоит отметить следующие:
- Минимальная сила тока переключения.
- Диапазон напряжений на обмотке электромагнита.
- Время размыкания контактных групп.
- Показатель коммутируемого напряжения.
- Максимально допустимая мощность подключаемой к изделию нагрузки.
- Показатель допустимого кратковременного тока, проходящего через контакты.
Способы классификации
Реле промежуточного типа принято делить на группы в соответствии с различными параметрами. Однако рассматривать стоит только основные виды приборов. В соответствии с типом переключения устройства могут быть минимальными и максимальными. Они предназначены для снижения или повышения определенного параметра до нужного значения соответственно.
В зависимости от функционального назначения принято выделять три типа реле:
- Комбинированные — для решения конкретной логической задачи объединяется группа приборов.
- Логические — функционируют с аналогичными параметрами в дискретных электроцепях.
- Измерительные — предназначены для изменения определенных показателей в заданном диапазоне значений.
Следующий вид классификации приборов определяется способом управления нагрузкой. Прямое воздействие предполагает подсоединение контактов реле непосредственно к нагрузке. Также возможно косвенное воздействие, когда нагрузка подключается через электроцепи вторичных элементов.
В соответствии с конструктивными особенностями выделяют следующие виды реле:
- Полупроводниковые — коммутация производится не с помощью механических контактов, а благодаря подаче управляющего импульса на p — n — p и n — p — n переходы полупроводниковых элементов, например, тиристоров.
- Индукционные — управляющий сигнал представляет собой напряжение, наведенное в соседней обмотке, которая не связана прямым электрическим соединением.
- Магнитоэлектрические — магнит в конструкции прибора является неподвижным элементом, а обмотка с контактной группой вращается, замыкая либо размыкая при этом цепь.
- Поляризационные — переключение нужных контактов определяется полярностью подключения на обмотке.
Благодаря применению реле в быту можно автоматизировать работу различных систем. Например, эти устройства можно использовать для управления освещением или отоплением. Выполнить подключение прибора будет несложно даже начинающему домашнему мастеру.
220v.guru
Промежуточное реле: назначение, принцип действия, устройство
В этой статье читатели сайта сам электрик могут узнать, какое назначение, принцип действия и устройство промежуточного реле. Очень часто данный аппарат используется в схемах, однако далеко не каждый имеет представление о том, как он работает и для чего применяется. Итак, рассмотрим более подробно каждый вопрос.
Содержание:
- Назначение
- Устройство
- Принцип работы
- Область применения
Назначение
В системах автоматики и управления широко применяются промежуточные реле (см. фото ниже). Эти аппараты коммутируют управляющие сигналы, управляют мощными устройствами, разделяют управляющие цепи от силовых и выполняют не мене важную роль, чем силовые реле.
Свое название промежуточное реле получили из-за положения в схемах автоматики и управления. Они находятся между источником задания и исполнительным устройством, таким как контактор, поэтому становится понятно, почему так назвали реле.
Получить дополнительную информацию о назначении и разновидностях изделий вы можете, просмотрев данное видео:
Описание ассортимента
Устройство
Данные аппараты бывают всевозможных типов и размеров. От миниатюрных реле на два контакта, до нескольких десятков в реле-повторителе. Во всех их конструктивный принцип одинаков. Устройство промежуточного реле представлено электромагнитной катушкой управления, магнитопроводом, пружинным механизмом и группой контактов. Подробно узнать о конструкции аппарата вы можете, просмотрев картинку ниже:
Промышленность выпускает широкий спектр устройств на разнообразное управляющее напряжение от 5 вольт и до 220. Они могут быть рассчитаны на переменное «АС» напряжение и постоянное «DC».
Внешне они ни чем, практически, не отличаются. Разница только в конструкции магнитопровода. Для переменного тока он набран из группы пластин, а постоянного тока цельный. Это сделано для уменьшения потерь на нагрев в магнитопроводе при прохождении переменного тока.
Что касается технических характеристик устройств, для каждого типа они разные. К примеру, для серии RE они будут иметь вид:
Для промышленных целей, изготавливаются колодки для промежуточных реле с установкой на DIN рейку. Реле и колодки для них также выпускаются с широким спектром видов разъемов. Это сделано для удобства эксплуатации в пределах одного устройства, когда присутствуют модели разного напряжения, и по невнимательности не произошла замена одного типа на другой.
Принцип работы
Не менее важно знать, как работает промежуточное реле. Принцип действия следующий: при подаче напряжения на управляющую катушку, магнитный поток, появившийся в сердечнике, втягивает механизм контактов. Последние в свою очередь меняют положение, и переключаются, при этом размыкая или замыкая контакты.
Более подробно узнать о принципе работы вы можете, просмотрев данное видео:
Как работает РЭК 73/3
Область применения
Промежуточные реле применяются в схемах управления для коммутации силовых цепей от источника с малым током. Также они нужны для сборки схемы удержания контактов, повторения сигнала и вывода на индикаторы, дублирование на выносные пульты управления, и т. д.
Очень часто данные аппараты используют в противоаварийных системах, промышленном оборудовании, устройстве релейной защиты и на электроэнергетических объектах.
Для примера возьмем схему управления асинхронным двигателем, с контролем наличия фазы. Данная схема собрана на промежуточных реле типа 1РН, 2РН, 3РН, 1РП, 2РП, а также с повторением на световые индикаторы о состоянии фаз. Кстати, сразу же обратите внимание на условное обозначение данного элемента на схеме.
Вот и все, что хотелось рассказать вам об устройстве, принципе действия и назначении промежуточного реле. Как вы видите, в схемах управления данный аппарат выполняет важную функцию, поэтому часто применяется на производстве.
Поделиться "Промежуточное реле: назначение, принцип действия, устройство"
onegifts.ru
28. Назначение промежуточного реле
Промежуточные реле применяются для выполнения логических операций как реле-повторители для одновременного замыкания или размыкания нескольких цепей, а также для замыкания и размыкания цепей с большими токами.
Примеры использования промежуточных реле в схемах РЗ приведены на рис.2.12. По способу включения промежуточные реле подразделяются на реле параллельного (рис.2.12, а) и последовательного (рис.2.12,б) включения. Обмотки первых включаются на полное напряжение источника питания, а вторых – на ток цепи последовательно с катушкой электромагнита отключения выключателяYATили какого-либо другого аппарата или реле.
Кроме того, выпускаются реле с дополнительными удерживающими катушками, например реле параллельного включения с удерживающей обмоткой, включаемой последовательно в управляемую контактами реле цепь (рис.2.12, в). Такое реле, подействовав от кратковременного импульса, поданного в параллельно включенную обмотку, остается в сработанном состоянии после его исчезновения под действием тока удержания, пока не сработает управляемый аппарат.
Мощность контактов должна быть достаточной для замыкания и размыкания цепей РЗ, а также для замыкания цепей управления выключателей.
Потребление обмоток реле параллельного включения стремятся ограничить до 6 Вт с тем, чтобы их цепь могли замыкать и размыкать реле с маломощными контактами.
Потребление обмоток реле последовательного включения выбирается из условия минимального падения напряжения в сопротивлении обмотки этого реле, которое допускается не более 5-10% нормального напряжения источника оперативного тока.
Промежуточные реле должны надежно действовать не только при нормальном напряжении, но и при возможном в условиях эксплуатации его понижении до 0,8 UНОМ– реле постоянного тока и до 0,85UНОМ – реле переменного тока.
29. Расчет уставок для токовой защиты с блокировкой по напряжению
Блокировка по напряжению выполнена по комбинированной схеме, состоящей из реле напряжения ОП KV2 и одного реле минимального напряжения KV1, включенного на междуфазное напряжение (рис. 17.17). Принцип действия такой блокировки рассмотрен в гл. 4. В схеме используются три токовых реле мгновенного действия.
Уставки зашиты. Ток срабатывания токовых реле выбирается по условию возврата при номинальном токе генератора:
Iс.з = kотсIном.г / kв(17.16)
где kотс= 1,1 -:- 1,2
Напряжение срабатывания реле минимального напряжения, включенного на междуфазное напряжение, выбирается из условий:
а) возврата при минимальном уровне рабочего напряжения Uрабmin после отключения КЗ в сети:
Uс.з 2 = Uрабmin / kотсkв(17.17)
б) недействия при понижении напряжения на зажимах генератора, вызванном самозапуском электродвигателей или асинхронным режимом работы генератора, имеющим место при потере возбуждения:
Uс.з 2 = (0,6 -:- 0,65) Uраб.норм (17.18)
Второе условие является определяющим.
Напряжение срабатывания реле KV2 (по отстройке от U2нб)
Uс.з 2 = 0,1 Uраб.норм (17.19)
Чувствительность РЗ проверяется по току и напряжению при КЗ на шинах и в конце второго участка согласно следующим выражениям:
по току:
kч= Iкmin/ Iс.з (17.20)
по напряжению:
- для реле KV в схеме блокировки с тремя минимальными реле напряжения
kч= Uс.з / Uкmax (17.21)
где Uкmax- наибольшее остаточное напряжение при двухфазном КЗ;
- для реле KV1 в схеме с комбинированным пуском
kч= Uвоз/ Uкmax (17.22)
- для реле KV2
kч= U2к min/ U2с.з(17.23)
где U2к min- наименьшее напряжение ОП при двухфазном КЗ в зоне действия защиты.
Выдержки времени:
- на деление шин
t1= tпpис+ At, (17.24)
где tпpис- наибольшая выдержка времени на РЗ присоединений, отходящих от шин генераторного напряжения;
- на отключение генератора
t2= t1+ At. (17.25)
studfiles.net
ЭЛЕКТРОМАГНИТНЫЕ ПРОМЕЖУТОЧНЫЕ РЕЛЕ
⇐ ПредыдущаяСтр 5 из 75Следующая ⇒а) Назначение реле и требования к ним
Промежуточные реле являются вспомогательными и применяются, когда необходимо одновременно замыкать или размыкать несколько независимых цепей или когда требуется реле с мощными контактами для замыкания и размыкания цепи с большим током.
Простейший пример использования промежуточного реле всхемах защиты приведен на рис. 2-13, а — в.
Промежуточные реле по способу включения подразделяются на реле параллельного (рис. 2-13, а) и последовательного (рис. 2-13, б) включения.
Обмотки первых включаются на полное напряжение источника питания, а вторых — последовательно с катушкой отключения выключателя или какого-либо другого аппарата или реле на ток цепи.
Кроме того, выпускаются реле с дополнительными удерживающими катушками, например реле параллельного включения с удерживающей обмоткой, включаемой последовательно в управляемую контактами реле цепь (рис. 2-13, в). Такое реле, подействовав от кратковременного импульса, поданного в параллельно включенную обмотку, остается в сработанном состоянии под действием тока удержания, пока не завершится операция.
Для одновременного замыкания нескольких не связанных друг с другом цепей промежуточные реле имеют несколько контактов. Мощность контактов должна быть достаточной для замыкания и размыкания цепей защиты (обычно потребляющих 50— 200 Вт) или цепей управления выключателей (1500—2000 Вт).
Потребление обмоток реле параллельного включения стремятся ограничить до 3—6 Вт, с тем чтобы их цепь могли замыкать реле с маломощными контактами.
Потребление обмоток реле последовательного включения выбирается из условия минимального падения напряжения в сопротивлении обмотки этого реле, которое допускается не более 5—10% нормального напряжения источника оперативного тока.
Промежуточные реле должны надежно действовать не только при нормальном напряжении, но и при возможном в условиях эксплуатации его понижении, достигающем 15—20%.
С учетом запаса напряжение срабатывания реле параллельного включения принимается 60—70% номинального значения.
К коэффициенту возврата промежуточных реле не предъявляется каких-либо требований, так как их возврат происходит при отсутствии тока в обмотке реле.
В схемах защиты промежуточные реле вносят нежелательное замедление, поэтому, за исключением особых случаев, их время должно быть очень малым, особенно когда они применяются в быстродействующих защитах.
Быстродействующие промежуточные реле должны работать со временем не более 0,01—0,02 с. Время срабатывания обычных промежуточных реле колеблется в зависимости от конструкции от 0,02 до 0,1 с.
б) Конструкции промежуточных реле постоянного тока [Л. 10]
Большинство промежуточных реле выполняется при помощи системы с поворотным якорем, позволяющей создавать большую электромагнитную силу при относительно малом потреблении и Удобной для изготовления многоконтактных реле. Применяются также системы с втягивающимся якорем. На рис. 2-14 показаны образцы промежуточных реле. Реле типа РП-210 (рис. 2-14, а) имеют четыре контакта. Время их срабатывания равно 0,01 с, потребление 5—8 Вт, разрывная мощность контактов 50 Вт. Широкое распространение получили кодовые реле (КДР) (рис. 2-14,б). Время срабатывания этих реле равно 0,01-0,02 с, потребление обмотки не более 3 Вт.
Реле последовательного включения отличаются от реле параллельного включения лишь обмоточными данными.
в) Время действия промежуточных реле
Таким образом, полное время действия реле tр складывается из времени нарастания тока в обмотке якоря tН до значения Iс.ри времени движения якоря tД:
tр = tН + tД (2-14)
Из диаграммы на рис. 2-15 следует, что tН зависит от скорости нарастания тока Iр, которая определяется постоянной времени Т; величины тока Iс.р, определяемой силой противодействующей пружины реле; величины установившегося тока Iру.
Составляющая tДзависит от величины хода якоря и скорости его перемещения.
Абсолютное значение tДневелико (составляет тысячные доли секунды), поэтому у реле постоянного тока время действия практически определяется tН.
Для получения быстродействующих промежуточных реле нужно уменьшать Т, ослаблять противодействующую пружину реле и увеличивать кратность тока к = Iр.у/ Iс.р.
При включении реле в его сердечнике появляются вихревые токи, замедляющие нарастание магнитного потока и увеличивающие, таким образом, время tН. Поэтому у быстродействующих реле магнитная система выполняется из шихтованной стали.
Уменьшение tДв быстродействующих реле достигается в основном путем облегчения подвижной системы и уменьшения трения.
К числу быстродействующих реле, применяемых в отечественных защитах, относятся реле типа РП-210—РП-215, кодовые роле КДР-1 и реле МКУ [Л. 101]; их время действия tр = 0,01 с.
г) Промежуточные реле постоянного тока замедленного действия
В ряде случаев в схемах защиты и автоматики требуются промежуточные реле, замыкающие или размыкающие свои контакты с некоторым замедлением. Замедление в таких реле получается за счет повышения составляющей tН в (2-14) путем увеличения постоянной времени Т обмотки.
Замедленное действие реле при втягивании якоря достигается размещением на магнитопроводе 3 короткозамкнутой обмотки 2, выполняемой в виде медной цилиндрической гильзы, или медных шайб, поверх которых наматывается основная обмотка 1 (рис.2-16).
При включении обмотки 1 на напряжение Uр магнитный поток Ф1в магнитопроводе реле устанавливается не сразу. .
В момент включения в обмотке 2 возникает ток I2, создающий магнитный поток Ф2, который противодействует нарастанию тока в обмотке 1. В результате этого скорость нарастания тока в обмотке реле уменьшается (рис. 2-17), а время нарастания тока tН увеличивается.
Для увеличения времени действия реле необходимо располагать обмотки 1 и 2 концентрически так, чтобы весь магнитный поток Ф2 обмотки 2 пронизывал обмотку 1, и увеличивать магнитный поток обмотки 2. Для этого следует увеличивать сечение медной гильзы (отчего возрастает ток I2) и уменьшать сопротивление магнитопровода реле.
Практически выдержка времени на втягивание якоря в промежуточных реле с короткозамкнутой обмоткой относительно невелика и не превосходит 0,5 с.
Замедленное действие при отпадании якоря также может быть получено при помощи короткозамкнутой обмотки 2 (рис. 2-16).
В момент отключения тока в обмотке 1 магнитный поток Ф1 начинает затухать (рис. 2-18).
При этом в обмотке 2 возникает ток I2, создающий магнитный поток Ф2, который противодействует исчезновению потока Ф1и поэтому совпадает с ним по направлению 1. Таким образом, несмотря на прекращение тока I1 в магнитопроводе реле продолжает существовать суммарный поток р = 1 + 2 поддерживаемый в основном током I2. Ток I2, а вместе с ним поток Ф2 и, следовательно, поток Фр постепенно затухают (рис. 2-18).
При отсутствии обмотки 2 (рис. 2-16) затухание потока Фр в магнитопроводе происходило бы значи тельно быстрее, так как в этом случае он поддерживался бы только вихревыми токами, возникающими в стали магнитопровода, влияние которых незначительно.
1 В этом случае ток I2 и поток Ф2 направлены противоположно показанному на рис. 2-16.
Чем больше постоянная времени короткозамкнутой обмотки Т2 = L2/r2, тем медленнее будет спадать магнитный поток Ф2. Через время t'Нмагнитный поток Фр снизится до величины Фвоз; при этом сила пружины превзойдет электромагнитную силу и якорь реле начнет отходить. Спустя время t'Дон переместится в конечное положение. Таким образом, полное время отпадания реле равно t'Н+ t'Д, при этом t'Д « t'Н.
Увеличение t'Ндостигается уменьшением Фвоз, увеличением начального значения Ф1 = Фр.у (рис. 2-18) и снижением скорости затухания Ф2; для последнего необходимо повышать постоянную времени короткозамкнутой обмотки Т2.
Практически для увеличения времени замедления на отпадание якоря реле следует уменьшать зазор (при втянутом якоре), увеличивать размеры гильз, намагничивающую силу обмотки 1 и ослаблять противодействующую пружину 4 (рис. 2-16).
Отечественные заводы изготовляют реле типов РП-250, КДР-3 РЭВ-81, РЭВ-810, РЭВ-880, имеющие замедленный возврат [Л. 101].
Замедление с помощью контура С и r. Замедление при размыкании цепи промежуточных реле может достигаться при помощи схем, состоящих из резистора r (активного сопротивления) и конденсатора С, как показано на рис. 2-19, а, б. В схеме.на рис. 2-19, а конденсатор С разряжается на обмотку П при размыкании контактов К1, благодаря чему время отхода якоря увеличивается. Резистор r ограничивает ток через конденсатор в момент включения реле П. При замыкании контактов К1на обмотку реле П подается полное напряжение, и поэтому нарастание тока в ней определяется только ее параметрами.
В схеме на рис. 2-19, б действие реле замедляется как при замыкании, так и при размыкании цепи обмотки реле П. В момент замыкания контактов К1 происходит заряд конденсатора С. В нем появляется ток IС, создающий повышенное падение напряжения на сопротивлении r. Вследствие этого напряжение на зажимах обмотки реле II уменьшается: UП= U — (IС + IП) r, где U — напряжение источника питания; UП— напряжение на обмотке реле П; IСи Iп — токи в конденсаторе и обмотке реле. Пропорционально этому уменьшается и ток в обмотке П.
По окончании заряда конденсатора прохождение тока Iс прекратится и на обмотке реле II установится нормальное напряжение UП= U — IПr. При размыкании контактов К1конденсатор С разряжается на обмотку реле П, удерживая реле в сработанном состоянии до тех пор, пока ток в обмотке не снизится до значения Iвоз. Чем больше емкость С, тем больше замедлится действие реле.
Недостатком замедленных реле является значительный разброс их времени действия, в частности за счет колебания уровня напряжения источника оперативного тока.
УКАЗАТЕЛЬНЫЕ РЕЛЕ
Указательные реле служат для фиксация, действия защиты в целом или каких-либо ее элементов. На рис. 2-20 показано указательное реле 1, сигнализирующее действие защиты на отключение выключателя. При срабатывании защиты по обмотке реле 1 проходит ток, приводящий реле 1 в действие.
Ввиду кратковременности прохождения тока в обмотке указательных реле они выполняются так, что сигнальный флажок и контакты реле остаются в сработанном состоянии до тех пор, пока их не возвратит на место обслуживающий персонал.
Указанные реле изготовляются для последовательного (рис. 2-20, а) и параллельного (рис. 2-20, б) включения. Реле последовательного включения более удобны и поэтому имеют весьма широкое применение. Общий вид указательного реле типа РУ-21 приведен на рис. 2-21.
При появлении тока в обмотке 3 якорь реле 5 притягивается , и освобождает флажок 9. Последний падает под действием собственного веса, принимая вертикальное положение. В этом положении флажок виден через прозрачный кожух 2. Возврат флажка в начальное положение производится кнопкой 10.
РЕЛЕ ВРЕМЕНИ
а) Назначение и основные требования
Реле времени служит для искусственного замедления действия устройств релейной защиты и электроавтоматики.
На схеме рис. 2-22 показано применение реле времени в защите. При замыкании контактов токового реле 1 плюс оперативного тока подводится к обмотке реле времени 2, которое спустя определенный интервал времени замыкает контакты и производит отключение выключателя. Время, проходящее с момента подачи напряжения на обмотку реле времени до замыкания его контактов, называется выдержкой времени реле.
Основным требованием, предъявляемым к реле времени, применяемым в схемах релейной защиты, является точность. Погрешность во времени действия реле не должна превосходить ±0,25 с, а в ряде случаев ±0,06 с. В схемах сигнализации и некоторых устройствах автоматики допускается меньшая точность работы реле времени.
Реле времени должно надежно срабатывать начиная с 80% номинального напряжения, и его выдержка времени не должна зависеть от возможных в эксплуатации колебаний оперативного напряжения. Потребление обмотки современных реле времени колеблется от 20 до 30 Вт.
Для быстрой готовности к повторному действию реле времени должно иметь мгновенный возврат после отключения его катушки от источника оперативного тока.
б) Конструкции реле времени
Реле времени имеют много конструктивных разновидностей, но принципы их устройства однородны и могут быть рассмотрены на примере конструкции, изображенной на рис. 2-23.
При появлении тока в обмотке 1 якорь 2 мгновенно втягивается, освобождая рычаг 4 с зубчатым сегментом 5. Под действием ведущей пружины 6 рычаг 4 приходит в движение, которое однако, не является свободным, так как оно замедляется специальным устройством выдержки времени 7. Через некоторое время tр, зависящее от расстояния l (или угла a; и скорости движения wр рычага 4, последний переместится на угол a и замкнет контакты реле 8. Таким образом реле сработает с выдержкой времени tр = a/wр.
Устройство выдержки времени может выполняться различными способами; в современных отечественных конструкциях оно осуществляется с помощью часового
механизма, основным элементом которого является анкерное устройство.
При исчезновении тока в реле якорь и рычаг 4 должны мгновенно возвратиться в начальное положение под действием возвратной пружины 3. Это обеспечивается с помощью храпового механизма или фрикционного устройства, обладающих свободным расцеплением при обратном ходе сегмента 5.
Регулирование выдержки времени осуществляется изменением угла a путем перемещения контактов реле 8. В некоторых конструкциях предусматривается мгновенный контакт 9, позволяющий замыкать цепь с малой, обычно нерегулируемой выдержкой времени (около 0,15—0,2 с).
Для уменьшения размеров реле катушка реле времени не рассчитывается на длительное прохождение тока. Поэтому реле, предназначаемые для длительного включения под напряжение, выполняются с добавочным сопротивлением rд, включаемым последовательно с обмоткой реле, как показано на рис. 2-24. Нормально сопротивление rд зашунтировано размыкающимся мгновенным контактом реле. После срабатывания реле этот контакт размыкается и сопротивление rд вводится в цепь реле, ограничивая проходящий в ней ток до величины, допустимой по условиям нагрева и достаточной для удержания реле в сработанном состоянии.
Отечественные заводы выпускают реле постоянного тока типов ЭВ-110, ЭВ-120, ЭВ-130,
ЭВ-140 и переменного тока ЭВ-210, ЭВ-220, ЭВ-230, ЭВ-240 [Л. 10, ЮН. Устройство этих реле показано на рис. 2-25, а.
В этой конструкции роль рычага 4 (рис. 2-23) выполняет сектор 10, приводимый в движение ведущей пружиной 11. Сектор М через ведущее зубчатое колесо 13 приводит в движение подвижный контакт реле 22 и фрикционное сцепление 14, показанное отдельно на рис. 2-25, б и в. Фрикционное сцепление связывает подвижную систему реле с часовым механизмом. Через зубчатые колеса 15, 16, 17 и 18 движение передается на анкерное колесо 19. Скорость вращения последнего ограничивается колебательным движением анкерной скобы 20, которое зависит от ее момента инерции, определяемого грузиками 21. Выдержка времени изменяется положением неподвижного контакта 23.
Реле времени ЭВ-133 выполняются термически стойкими по схеме на рис. 2-24.
Кроме рассмотренных электромагнитных реле времени применяются реле времени, выполняемые с помощью синхронных микродвигателей, и реле с контуром из емкости и активного сопротивления (см. § 4-8 и 11-17, в).
ПОЛЯРИЗОВАННЫЕ РЕЛЕ
Поляризованные реле являются разновидностью электромагнитных конструкций. В отличие от рассмотренных выше электромагнитных реле якорь поляризованного реле находится под воздействием двух магнитных потоков, из которых один создается током, питающим обмотку реле, а второй — постоянным магнитом. Магнитный поток обмотки называется рабочим, а постоянного магнита — поляризующим. Поляризованные реле выполняются в двух вариантах: с дифференциальной магнитной системой и мостовой.
Обе конструкции состоят из сердечника 1, обмотки 2, постоянного магнита 3, якоря 4 и контактной системы 5 (рис. 2-26).
Рассмотрим принцип действия реле на примере более простой дифференциальной системы (рис. 2-26). Поляризующий магнитный поток Фп постоянного магнита выходит из северного полюса N и разветвляется на две части ФПа и ФПб, замыкающиеся через воздушные зазоры dа и dб и соответствующие половины сердечника 1. Обмотка 2, обтекаемая током Iр, создает рабочий магнитный поток Фр, который замыкается по сердечнику 1 и по воздушным зазорам dа и dб.
Для простоты рассмотрения часть магнитного потока, ответвляющаяся через якорь, не учитывается. В воздушном зазоре dа магнитные потоки Фп и Фр суммируются, а в dб вычитаются, образуя результирующие магнитные потоки:
Под воздействием магнитного потока Фа якорь притягивается к левому полюсу a с силой Fa=kФ2а. Силе Fа противодействует сила стремящаяся притянуть якорь к правому полюсу d.
При определенном токе Iр ≥ Iс.рмагнитный поток Фастановится больше магнитного потока Фб, сила Фа>Фди якорь отклоняется влево, к полюсу a, замыкая контакты 5.
При изменении направления тока Iр поток Фр также меняет свое направление, вследствие чего в зазоре dа возникает разность в магнитных потоков, а в зазоре dбих сумма. Тогда при Iр ≥Iс.рпоток Фб > Фа, сила Fб~> Fаиякорь отклоняется вправо. Таким образом, благодаря наличию поляризующего потока реле становится направленным и реагирует не только на значение тока, но и на его направление (полярность).
Аналогичным образом работает реле и с мостовой магнитной системой, приведенное на рис. 2-26, б.
При питании реле переменным током якорь реле вибрирует, следуя за изменением направления тока. По этой причине поляризованные реле не пригодны для работы на переменном токе.
Поляризованные реле могут выполняться с односторонним и двусторонним действием, с фиксацией и без фиксации начального положения якоря. Реле одностороннего действия с фиксацией начального положения якоря показано на рис. 2-26, а, б. У этого реле упоры 6, ограничивающие ход якоря, устанавливаются так, чтобы при любом положении якоря преобладало влияние одного из полюсов, например правого б. Для этой цели зазор dа взят больше dб, Тогда при отсутствии тока Iр поляризующий магнитный поток ФПб > Фпа, соответственно сила Fб> Fаиякорь реле прижимается к правому упору под действием преобладающей силы Fб. При появлении Iр >Iс.р якорь отклоняется влево, замыкая контакты реле. После исчезновения тока Iр якорь возвращается под действием поляризующего поля в начальное положение.
Такая регулировка называется настройкой с «преобладанием». Реле подобного типа наиболее часто применяется в схемах защиты.
Если упоры 6 расположить симметрично по отношению к среднему положению якоря в зазоре (рис. 2-26, в), то такая регулировка называется нейтральной. В зависимости от направления Iр якорь отклоняется вправо или влево, замыкая соответствующие контакты реле. При исчезновении Iр якорь остается в том положении, в каком он находился при действии Iр. Следовательно, такое реле работает как реле двустороннего действия, но не имеет фиксированного начального положения якоря.
Поляризованные реле обладают важными преимуществами, к которым следует отнести: 1) высокую чувствительность и малое потребление, достигающее при минимальном токе срабатывания и зазоре между контактами около 0,5 мм, примерно 0,005 Вт; 2) высокую кратность тока термической стойкости, равную (20 ÷ 50) Iс.рмин, у обычных электромагнитных реле термическая кратность не превышает 1,5 Iс.рмин; 3) быстроту действия, которая достигает 0,005 с.
Недостатками поляризованных реле являются: малая мощность контактов; небольшой зазор между ними, от 0,1 до 0,5 мм, и относительно невысокий коэффициент возврата.
Поляризованные реле применяются в схемах релейной защиты как вспомогательные реле постоянного тока при необходимости быстродействия и высокой чувствительности, а также в качестве реагирующих (исполнительных) органов в схемах реле на выпрямленном токе.
ИНДУКЦИОННЫЕ РЕЛЕ
а) Принцип действия
На рис. 2-27 показан принцип выполнения индукционных реле. Реле состоит из подвижной системы 3, расположенной в поле двух магнитных потоков Ф1 и ФII. Магнитные потоки создаются токами, проходящими по обмоткам неподвижных электромагнитов 1 и 2. Подвижная система выполняется в виде медного илиалюминиевог о диска или цилиндра
(барабанчика), закрепленного на оси, которая может вращаться. При вращении против часовой стрелки подвижная система преодолевает момент пружины 5 и замыкает контакты 4.
Обмотки реле 1 и 2 питаются переменными (синусоидальными) токами I1 и I2, которые создают переменные магнитные потоки Ф1 и ФII, показанные на рис. 2-27. Пренебрегая потерями на намагничивание, считают, что потоки Ф1 и ФII совпадают по фазе с создающим их током, как изображено на векторной диаграмме (рис. 2-28).
Пронизывая подвижную систему 3, магнитный поток Ф1 наводит в ней э. д. с. ЕД1= , аналогично поток ФII создает э.д.с. ЕД2= . Согласно закону индукции наведенные э. д. с. отстают по фазе на 90° от вызвавших их магнитных потоков (рис. 2-28). Под действием э. д. с. ЕД1и ЕД2в подвижной системе возникают вихревые токи IД1и IД2, замыкающиеся вокруг оси индуктирующего их магнитного потока. Положительные направления IД1и IД2, определенные с помощью правила «буравчика» по п о л о ж и т е л ь н о м у направлению потоков Ф1 и ФII, показаны на рис. 2-27. Вследствие малой величины индуктивного сопротивления контура вихревых токов они принимаются совпадающими по фазе с соответствующей э. д. с. (рис. 2-28).
Из теории электротехники известно, что между магнитным потоком и током, находящимся в его поле, возникают электромагнитные силы взаимодействия. В рассматриваемой конструкции возникают две силы: Fэ1, обусловленная взаимодействием магнитного потока Ф1 и тока IД2, и Fэ2, вызванная взаимодействием ФII с IД1 (рис. 2-27).
Как известно, сила взаимодействия между магнитным потоком и контуром тока, индуктированного этим потоком, равна нулю, при условии, что магнитный поток создает равномерное магнитное поле. В индукционных реле это условие выполняется, и поэтому силы взаимодействия между Ф1 и IД1 и ФII и IД2 отсутствуют. Направление сил FЭ1и FЭ2 для положительного значения потоков и токов определяется по правилу «левой руки» и показано на рис. 2-27. Можно доказать, что мгновенное значение сил FЭ1и FЭ2меняет свой знак в течение периода Т = 1/f 4 раза, поэтому поведение реле (вращение подвижной системы) зависит от знака среднего значения сил FЭ1, и FЭ2. Знак и направление каждой силы определяется углом сдвига фаз между магнитным потоком и взаимодействующим с ним током Iд. Силы FЭ1и FЭ2образуют результирующую электромагнитную силу Fэ, равную их алгебраической сумме Fэ = FЭ1 + FЭ2 - Результирующая сила Fэсоздает вращающий момент Мэ = Fэd, где d — плечо силы Fэ. Электромагнитная сила и момент (Fэи Мэ) приводят в движение подвижную систему 3, которая в зависимости от знака Мэзамыкает или размыкает контакты реле 4.
Из сказанного следует, что принцип работы индукционных реле основан на взаимодействии двух магнитных потоков с вихревыми токами, индуктируемыми в подвижной системе реле.
б) Электромагнитная сила и ее момент
Соответственно электромагнитный момент |
Вывод уравнений (2-16) и (2-17) приводится ниже. |
Значение и знак электромагнитной силы Fэвыражаются через магнитные потоки Ф1 и ФII, угол сдвига фаз между ними ψ и частоту переменного тока f уравнением
Среднее значение силы взаимодействия между магнитным цотоком Ф и током I, находящимся в поле этого потока: |
Анализируя выражение электромагнитного момента (2-17), можно установить следующее:
1. Для получения электромагнитного момента конструкция реле должна обеспечивать создание не менее двух переменных магнитных потоков (Ф1 и ФII), пронизывающих подвижную систему в разных точках и сдвинутых по фазе на угол ψ ≠ 0.
2. Величина момента М3пропорциональна амплитудам магнитных потоков Ф1 и ФII и их частоте f и зависит от сдвига фаз ψ между потоками.
Реле имеет наибольший момент при сдвиге фаз магнитных потоков на 90°. При ψ = 0 реле не может работать, так как М3=0.
3. Знак момента зависит от sin ψ. Иначе говоря, он зависит от сдвига фаз ψ между магнитными потоками Ф1 и ФII или создающими их токами I1и I2. При значениях ψ в пределах от 0 до 180° момент Мэположителен, при этом магнитный поток ФII опережает поток Ф1 а сила Fэ направлена от оси опережающего магнитного потока ФII к оси отстающего Ф1. При — ψ в пределах от 180 до 360° момент Мэотрицателен. В этом случае поток ФII отстает от Ф1, а сила Fэнаправлена в обратную сторону — от оси Ф1 к оси ФII. Таким образом, результирующая сила Fэ всегда направлена от оси опережающего к оси отстающего магнитного потока.
4. На индукционном принципе могут выполняться только реле переменного тока. Это объясняется тем, что токи в диске или цилиндре индуктируются при условии, что электромагниты питаются переменным током. Индукционный принцип получил весьма широкое распространение. На этом принципе выполняются реле тока, направления мощности и многие другие виды реле.
Читайте также:
lektsia.com
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.