22.11.2024

Проверка полевика мультиметром: Как проверить полевой транзистор мультиметром

Содержание

Как проверить полевой транзистор мультиметром

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Порядок проверки исправности n-канального транзистора мультиметром следующий:

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.
Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).

Оценка исправности р-канального устройства

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Выводы:

  1. Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
  2. Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
  3. Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.

Видео о том, как проверить полевой транзистор

Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром — Интернет-журнал «Электрон» Выпуск №5

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

 

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

 

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Как проверить полевой транзистор мультиметром. Часть 1. Транзистор с управляющим p-n переходом. — Интернет-журнал «Электрон» Выпуск №4

Продолжаем рубрику проверки электрорадиоэлементов, и сегодня я представляю первую статью по проверке полевых транзисторов тестером или как сейчас принято говорить — мультиметром.

Перед началом проверки полевых транзисторов рассмотрим, какие бывают виды полевых транзисторов.

На рисунке 1 вы видите классификацию полевых транзисторов.

Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором.

В зарубежной литературе полевой транзистор с управляющим p-n переходом обозначается как JFET(junction gate field-effect transistor), а транзистор с изолированным затвором — MOSFET (Metall-Oxid-Semiconductor FET).

Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом, а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи.

Для начала кратко рассмотрим структуру транзистора и принцип его работы.

Полевые транзисторы бывают n-канальные и p-канальные. В виду того, что широкое распространение получили n-канальные полевые транзисторы, на их примере и рассмотрим принцип работы полевого транзисторы с управляющим p-n переходом.

Итак, транзистор состоит из n-полупроводника с внедренными в него высоколегированными n-областями с большой концентрацией носителей заряда – электронов. Сам полупроводник находится на подложке p-типа, которая соединена с еще одной p-областью. Вместе эти области называются затвором (gate). Таким образом, каждая высоколегированная n-область создает с p-подложкой свой p-n переход.

Та часть n-полупроводника, которая находится между p-областями (затворами) называется каналом (в частности каналом n-типа).

Если к высоколегированным n-областям подключить источник напряжение, то в канале создастся электрическое поле, под воздействием этого поля электроны из n-области, к которой подключен «минус» источника будут перемещаться в n-область, к которой подключен «плюс» источника напряжения. Таким образом, через канал потечет электрический ток. Величина этого тока будет напрямую зависеть от электропроводности канала, которая в свою очередь зависит от площади поперечного сечения канала. Нетрудно догадаться, что площадь поперечного сечения канала зависит от ширины p-n переходов.

Та область, от которой движутся носители заряда, а в случае n-канала это электроны, называется истоком (source), а к которой движутся – стоком (drain).

Если на затвор относительно истока подать отрицательное напряжение, то p-n переход, образованный между затвором и истоком будет смещаться в обратном направлении, при этом ширина запирающего слоя будет увеличиваться, тем самым сужая размеры канала и уменьшая электропроводность.

Таким образом, изменяя напряжение между затвором и истоком, мы можем управлять током через канал полевого транзистора.

На этом об устройстве полевого транзистора все, далее в подробности углубляться я не буду, так как этого будет достаточно, что бы понять, как проверить полевой транзистор с управляющим p-n переходом.

Исходя из вышеизложенного можно составить эквивалентную схему полевого транзистора с управляющим p-n переходом, как мы делали при проверке биполярного транзистора.

При составлении схемы будем руководствоваться следующими принципами:

1. В транзисторе имеются два p-n перехода, первый между затвором и истоком, второй между затвором и стоком.

2. Канал между истоком и стоком при отсутствии отрицательного запирающего напряжения на затворе не закрыт и электропроводен, то есть имеет определенное значение сопротивления.

3. Теперь p-n переходы обозначим диодами, а электропроводность канала резистором.

Составляем эквивалентную схему полевого транзистора с управляющим p-n переходом.

 

Теперь зная эквивалентную схему полевого транзистора с управляющим p-n переходом можно построить алгоритм или схему проверки полевого транзистора.

Проверка полевого транзистора с управляющим p-n переходом и каналом n-типа.

1. Проверка сопротивления канала (на рис. R)

Для проверки сопротивления канала с помощью мультиметра необходимо на приборе установить режим измерения сопротивления, предел измерения 2000 Ом.

Измерить сопротивление между истоком и стоком транзистора при разной полярности подключения щупов мультиметра.

Значения сопротивления канала при разной полярности подключения щупов должны быть примерно одинаковыми.

2. Проверка p-n перехода исток-затвор (на рис. VD1).

Включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на исток. Мультиметр должен показать падение напряжения на открытом p-n переходе, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на исток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

3. Проверка p-n перехода сток-затвор (на рис. VD2).

Так же проверяем исправность p-n перехода сток-затвор. То есть включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на сток. Мультиметр должен показать падение напряжения на открытом p-n переходе затвор-сток, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на сток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

Если все три условия выполнились, то считается, что полевой транзистор исправен.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа осуществляется по вышеизложенному алгоритму, за исключением того, что при проверке p-n переходов полярность подключения щупов мультиметра меняется на противоположную.

Для наглядности и простоты понимания процесса я записал для вас видео как проверить полевой транзистор с управляющим p-n переходом, где я проверяю транзистор с каналом p-типа.

мосфет или полевик, мультиметром не выпаивая, с изолированным затвором на неисправность

Использование полевых транзисторов очень распространено. Если происходит поломка необходимо найти неисправную деталь. Иногда требуется точно определить, работоспособен ли полевой транзистор. Это возможно выполнить с использованием мультиметра. Как проверить полевик — подробнее рассказывается далее.

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.

Проверка мультиметром

Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором. Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток. Чем более высокое напряжение было подано на затвор, тем он будет сильнее.

Отличие полевого от биполярного транзистора

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).

Разновидности полевиков

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Транзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Назначение выводов

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

Проверка диода в прямом направлении

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

Проверка диода в обратном направлении

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Открытие канала

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Работа полевого МДП транзистора

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в.

Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

Цифровой мультиметр

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.

С управляющим p-n-переходом

  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Подготовка к работе

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

проверка не выпаивая и способом «прозвона»

Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.

Способы проверки

Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.

Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:

  1. Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
  2. Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
  3. Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.

Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.

Влияние разновидности микросхем

Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.

Например:

  1. Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
  2. Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
  3. Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.

Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.

Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.

Работоспособность транзисторов

Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:

  1. Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
  2. Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
  3. Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.

Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.

Конденсаторы, резисторы и диоды

Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.

Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.

Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.

Индуктивность, тиристор и стабилитрон

Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.

Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:

  1. Сначала соединить красный щуп с анодом, а черный, соответственно, с катодом. Сразу после этого на экране прибора появится информация о том, что сопротивление стремится к бесконечности.
  2. Выполнить соединение управляющего электрода с анодом и смотреть за тем, как значение сопротивления будет падать от бесконечности до нескольких единиц.
  3. Как только процесс падения завершится, можно отсоединять друг от друга анод и электрод. В результате этого отображаемое на экране мультиметра сопротивление должно остаться прежним, то есть равным нескольким Ом.

Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.

Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.

Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.

Разбираемся, как проверить полевой транзистор мультиметром или другими приборами

Для тестирования прибора на работоспособность стоит узнать, как проверить полевой транзистор мультиметром – это самый простой и быстрый способ диагностики устройства. Перед тем, как приступить к тестированию прибора на предмет его исправности, необходимо на несколько секунд замкнуть фольгой щупы. Эта манипуляция снимет с него статическое напряжение.

Для проведения проверки подойдет любой цифровой мультиметр, имеющий режим прозвонки диода. Эта функция измеряет изменение напряжение при p-n-переходе. Тестируемая величина будет показана на экране измерительного прибора.

Лучше использовать современные модели мультиметров, имеющие самые различные режимы и работы и удобный экран. Это позволит сделать тестирование более удобным и точным. Подробный алгоритм проверки описан в данной статье. В качестве наглядного примера добавлено два наглядных видеоролика и интересный скачиваемый файл по теме практики.

Устройство транзистора.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод. Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись.

Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку. Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).

Транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности.

Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем – в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.

Порядок измерений.

Проверка цепи сток-исток

Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится. Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа.

Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения — это значит, что транзистор перешел в проводящее состояние.

Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.

Проверка транзистора без выпаивания.

Если прибор запищит

Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.

Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. 

 Как проверить полевой транзистор

Такой транзистор можно заменить практически любым n-канальным с напряжением между стоком и истоком больше или равно 40V и током стока больше или равно 30А, например IRFZ44, 40n10, 50N06 и т.п. При ремонте аппаратов, в которых применены полевые транзисторы, часто возникает задача проверки целостности и работоспособности этих транзисторов.

Основные характеристики полевых транзисторов.

Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания. Расположение выводов полевых транзисторов (Gate – Drain – Source) может быть различным. Часто выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S).

Если такой маркировки нет, то желательно воспользоваться справочными данными. Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать некоторые правила безопасности.

Полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет.

Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой. При проверке чаще всего пользуются обычным омметром, у исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление, следует заметить, что тут могут быть некоторые исключения.

Например, если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный к истоку (S), емкость затвора зарядится и транзистор откроется. И тогда при замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое можно ошибочно принять за неисправность транзистора.

Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным.

Интересно по теме: Как проверить стабилитрон.

В противном случае транзистор признается неисправным. В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора.

Убедиться в наличии диода достаточно просто. Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Для диагностики полевых транзисторов N-канального вида, вначале берем и выпаиваем транзистор, кладем его на стол лицом к себе, ноги обязательно должны быть в воздухе, ничего не касаться. Черный щуп слева на подложку (D – сток), красный на дальний от себя вывод справа (S – исток), мультиметр показывает падение напряжения на внутреннем диоде ~502 мВ, транзистор закрыт .

Далее, не снимая черного щупа, касаемся красным щупом ближнего вывода (G – затвор и опять возвращаем его на дальний (S – исток), тестер показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться не 0, а ~150…170мВ): полевой транзистор открылся прикосновением.

Если сейчас черным щупом коснуться нижней (G – затвор) ножки, не отпуская красного щупа и вернуть его на подложку (D – сток), то полевой транзистор закроется, и мультиметр снова будет показывать падение напряжения около 500мВ.

Это верно для большинства N-канальных полевых транзисторов в корпусе DPAK и D²PAK. Открываем. Открыт. Закрываем. Закрыт. Транзистор выполнил всё, что от него требовалось. Диагноз – исправен. Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия.

Для этого просто меняем щупы мультиметра местами. Еще раз по-быстрому: Берем тестер на режиме проверки диодов. Кладем транзистор на стол лицом к себе, ноги в воздухе, ничего не касаются. Щупы тестера ставим так: минус в правую ногу, а плюс в левую. Это откроет транзистор. Плюс переносим на среднюю ногу.

Тестер должен показать минимальное падение напряжения (около 10-50 мВ). (В случае мультиметра – показывает около 0, что-то типа “002”) Теперь плюс на правую ногу, а минусом на левую. Это закроет транзистор. Тестер показывает бесконечность. И опять плюс на среднюю ногу, а минус на правую. Тестер показывает бесконечность. (Минус на среднюю ногу, плюс на правую – показывает что-то около 500 – это встроенный диод, защитный, присутствует в большинстве мощных мосфетов).

Типы транзисторов.

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия. В качестве основы используется полупроводник с n-проводимостью.

К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга. В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Важное по теме. Как проверить конденсатор.

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком.

Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком. Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Типы переходов электронов и дырок.

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние. Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях. Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку. На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.
  5. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Мультиметр.

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же. Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод.

Если полевик закрыт не будет, то это указывает на его неисправность. Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в. Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая. В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален.
  3. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.
  4. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  5. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах. Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять. При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче.

В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки. Полевики имеют широкое распространение в современных электронных приборах.

Заключение

Более подробно о том как проверить полевой транзистор можно узнать из статьи Практикум по полевым транзисторам. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electrik.info

www.kudashkin.com

www.rusenergetics.ru

www.electro-tehnyk.narod.ru

Предыдущая

ПрактикаКак правильно прозвонить транзистор?

Следующая

ПрактикаКак проверить тиристор на работоспособность?

Обнаружение ошибок в формулах — служба поддержки Office

Убедитесь, что вы

Дополнительная информация

Начинать каждую функцию со знаком равенства (=)

Если вы опустите знак равенства, то, что вы вводите, может отображаться как текст или как дата.Например, если вы введете СУММ (A1: A10) , Excel отобразит текстовую строку СУММ (A1: A10) и не выполнит вычисления. Если вы введете 11/2 , Excel отобразит дату 2 ноября (при условии, что формат ячейки — Общий ) вместо деления 11 на 2.

Соответствует всем открывающим и закрывающим круглым скобкам

Убедитесь, что все круглые скобки являются частью соответствующей пары (открывающая и закрывающая).Когда вы используете функцию в формуле, важно, чтобы каждая скобка была в правильном положении, чтобы функция работала правильно. Например, формула = ЕСЛИ (B5 <0), «Недействительно», B5 * 1.05) не будет работать, потому что есть две закрывающие круглые скобки и только одна открывающая скобка, тогда как каждая должна быть только по одной. Формула должна выглядеть так: = ЕСЛИ (B5 <0, «Недействительно», B5 * 1.05) .

Используйте двоеточие для обозначения диапазона

Когда вы ссылаетесь на диапазон ячеек, используйте двоеточие (:), чтобы отделить ссылку на первую ячейку в диапазоне и ссылку на последнюю ячейку в диапазоне.Например, = СУММ (A1: A5) , а не = СУММ (A1 A5) , что вернет #NULL! Ошибка.

Введите все необходимые аргументы

У некоторых функций есть обязательные аргументы. Также убедитесь, что вы не ввели слишком много аргументов.

Введите правильный тип аргументов

Некоторые функции, например СУММ , требуют числовых аргументов.Другие функции, такие как REPLACE , требуют текстового значения по крайней мере для одного из своих аргументов. Если вы используете неверный тип данных в качестве аргумента, Excel может вернуть неожиданные результаты или отобразить ошибку.

Гнездо не более 64 функций

Вы можете ввести или вложить не более 64 уровней функций в функцию.

Заключите другие названия листов в одинарные кавычки

Если формула относится к значениям или ячейкам на других листах или книгах, а имя другой книги или рабочего листа содержит пробелы или небуквенные символы, вы должны заключить его имя в одинарные кавычки (‘), например =’ Ежеквартально Данные ‘! D3 или =’ 123 ‘! A1 .

Поместите восклицательный знак (!) После имени рабочего листа, когда вы ссылаетесь на него в формуле

Например, чтобы вернуть значение из ячейки D3 на листе с именем Quarterly Data в той же книге, используйте следующую формулу: = «Quarterly Data»! D3 .

Включить путь к внешним книгам

Убедитесь, что каждая внешняя ссылка содержит имя книги и путь к ней.

Ссылка на книгу включает имя книги и должна быть заключена в квадратные скобки ([ Workbookname.xlsx ]). Ссылка также должна содержать имя рабочего листа в книге.

Если книга, на которую вы хотите сослаться, не открыта в Excel, вы все равно можете включить ссылку на нее в формулу. Вы указываете полный путь к файлу, например, в следующем примере: = ROWS (‘C: \ My Documents \ [Q2 Operations.xlsx] Продажи! A1: A8) . Эта формула возвращает количество строк в диапазоне, который включает ячейки с A1 по A8 в другой книге (8).

Примечание. Если полный путь содержит символы пробела, как в предыдущем примере, вы должны заключить путь в одинарные кавычки (в начале пути и после имени рабочего листа перед восклицательным знаком).

Ввод чисел без форматирования

Не форматируйте числа при вводе их в формулы.Например, если значение, которое вы хотите ввести, составляет 1000 долларов, введите в формулу 1000 . Если вы вводите запятую как часть числа, Excel обрабатывает ее как символ-разделитель. Если вы хотите, чтобы числа отображались так, чтобы в них отображались разделители тысяч или миллионов или символы валюты, отформатируйте ячейки после ввода чисел.

Например, если вы хотите добавить 3100 к значению в ячейке A3, и вы вводите формулу = СУММ (3,100, A3) , Excel складывает числа 3 и 100, а затем добавляет эту сумму к значению из A3, вместо добавления 3100 к A3, что будет = SUM (3100, A3) .Или, если вы введете формулу = ABS (-2,134), Excel отобразит ошибку, поскольку функция ABS принимает только один аргумент: = ABS (-2134) .

Важность проверки понимания

Что такое проверка на понимание?

Проверка понимания (КОЕ) — основа эффективного обучения. Проверка на понимание — это постоянная проверка учителем того, изучают ли ученики то, чему их учат, в то время как это преподается.CFU предоставляет учителю возможность улучшить обучение на основе ответов учеников в процессе преподавания и обучения. Использование CFU в режиме «реального времени» позволяет учителям принимать важные учебные решения по мере необходимости (например, повторное обучение) во время проведения урока.

Исследования, лежащие в основе проверки понимания

Согласно статье Принципы преподавания: стратегии, основанные на исследованиях, которые должны знать все учителя заслуженного профессора образования Барака Розеншайна ( Американский педагог , весна 2012 г., эффективное обучение задает вопросы и проверяет ответы всех учащихся, чтобы помочь студентам практиковать новую информацию и связать новый материал с их предыдущими знаниями.

В статье предлагается, чтобы для практики новой информации учителя должны задавать студентам вопросы во время преподавания. В эксперименте в классе группу учителей попросили увеличить количество фактических вопросов и обработать вопросы во время управляемой практики. Результаты этого эксперимента показали, что ученики, у которых были эти учителя, получили более высокие баллы, чем ученики, учителя которых не задавали несколько вопросов. Кроме того, у учителей, задававших большое количество вопросов, было больше учащихся.Кроме того, учителя могли оценить, поняли ли ученики содержание, что позволяло учителям вносить изменения в урок или при необходимости переучивать.

Rosenshine заметил, что успешные учителя нашли способы вовлечь всех учеников в ответы на вопросы. Примеры включают наличие всех студентов:

  • Скажи ответ соседу
  • Обобщите основную идею в одном или двух предложениях, напишите краткое содержание на листе бумаги и поделитесь им с соседом
  • Написание ответа на карточке и поднятие ее вверх
  • Поднимают руки, если они согласны с ответом, который дал кто-то другой

Национальный исследовательский совет рекомендует проводить формирующие (текущие) оценки, такие как проверка понимания, чтобы улучшить обучение.Национальный исследовательский совет формулирует такую ​​оценку как процесс научного обучения:

Учителя почти непрерывно собирают информацию о том, как учащиеся понимают, и вносят коррективы в свое обучение на основе своей интерпретации этой информации. Они наблюдают за критическими инцидентами в классе, формулируют гипотезы о причинах этих инцидентов, опрашивают учащихся, чтобы проверить их гипотезы, интерпретируют ответы учащихся и корректируют свои учебные планы.

Почему проверка понимания так полезна?

Используя стратегии, основанные на исследованиях, модель DataWORKS Explicit Direct Instruction включает проверку понимания во время урока, потому что:

  • Позволяет учителю принимать учебных решений во время урока. Он сообщает учителю , когда ускоряется, замедляется или повторно обучает. КОЕ помогает ускорить урок.
  • Когда учителя смотрят на самостоятельную работу, домашние задания, викторины или результаты государственных тестов, чтобы узнать, усвоили ли учащиеся… , уже слишком поздно изменять инструкцию .
  • CFU является основой эффективного обучения и явного прямого указания… , потому что вы, , измеряете , а отслеживаете учащихся, обучающихся в реальном времени .
  • CFU гарантирует высокий успех учащихся (80-100%)… потому что вы пересматриваете преподавание в прямом ответе на обучение студентов .
  • CFU гарантирует, что ваши ученики не будут практиковаться и укреплять свои ошибки. Практика делает постоянным, а не совершенным!

Цитаты

Барак Розеншайн, Принципы обучения: стратегии, основанные на исследованиях, которые должны знать все учителя

Почему вы используете КОЕ? Как проверка на понимание может помочь вам в классе? Пожалуйста, поделитесь любыми примерами, комментариями или отзывами ниже.

Автор: Патрисия Богданович

Патриция занимала различные должности в DataWORKS с 2002 года. В настоящее время она работает специалистом по учебным программам. Патрисия помогла разработать и создать множество первых ресурсов и семинаров, разработанных DataWORKS, и она является экспертом в области анализа стандартов. Патрисия планирует вести блог об учебной программе и оценках для CCSS и NGSS, стратегиях работы в классе, а также новостях и исследованиях из мира образования.

CCNA 1 Введение в сети v6.0 — Ответы на экзамен по главе 5 ITN

Как найти: Нажмите «Ctrl + F» в браузере и введите любую формулировку вопроса, чтобы найти этот вопрос / ответ.

ПРИМЕЧАНИЕ. Если у вас есть новый вопрос по этому тесту, прокомментируйте список вопросов и множественный выбор в форме под этой статьей. Мы обновим для вас ответы в кратчайшие сроки. Спасибо! Мы искренне ценим ваш вклад в наш сайт.

  1. Что происходит с короткими кадрами, полученными коммутатором Cisco Ethernet?
    • Фрейм отброшен.*
    • Кадр возвращается исходному сетевому устройству.
    • Кадр транслируется на все другие устройства в той же сети.
    • Кадр отправляется на шлюз по умолчанию.

    Explain:
    В попытке сохранить полосу пропускания и не пересылать бесполезные кадры, устройства Ethernet отбрасывают кадры, которые считаются короткими (менее 64 байтов) или большими (более 1500 байтов) кадрами.

  2. Каковы два размера (минимальный и максимальный) кадра Ethernet? (Выберите два.)
    • 56 байт
    • 64 байта *
    • 128 байт
    • 1024 байта
    • 1518 байт *

    Объяснение:
    Минимальный размер кадра Ethernet составляет 64 байта. Максимальный размер кадра Ethernet составляет 1518 байт. Сетевой специалист должен знать минимальный и максимальный размер кадра, чтобы распознавать короткие и большие кадры.

  3. Какое утверждение описывает Ethernet?
    • Он определяет самый распространенный тип локальной сети в мире.*
    • Это требуемый стандарт уровня 1 и 2 для связи через Интернет.
    • Он определяет стандартную модель, используемую для описания работы сети.
    • Он соединяет несколько сайтов, например маршрутизаторов, расположенных в разных странах.

    Объясните:
    Ethernet — это самый распространенный протокол LAN в мире. Он работает на уровне 1 и 2, но не требуется для связи через Интернет. Модель OSI используется для описания работы сетей.WAN соединяет несколько сайтов, расположенных в разных странах.

  4. Какие два утверждения описывают особенности или функции подуровня управления логическим каналом в стандартах Ethernet? (Выберите два.)
    • Управление логической связью реализовано программно. *
    • Управление логическим каналом указано в стандарте IEEE 802.3.
    • Подуровень LLC добавляет к данным заголовок и трейлер.
    • Уровень канала данных использует LLC для связи с верхними уровнями набора протоколов.*
    • Подуровень LLC отвечает за размещение и извлечение кадров на носителе и вне его.

    Объяснение:
    Управление логическим каналом реализовано в программном обеспечении и позволяет уровню канала данных взаимодействовать с верхними уровнями набора протоколов. Управление логическим каналом указано в стандарте IEEE 802.2. IEEE 802.3 — это набор стандартов, определяющих различные типы Ethernet. Подуровень MAC (Media Access Control) отвечает за размещение и извлечение кадров на носителе и из него.Подуровень MAC также отвечает за добавление заголовка и трейлера к блоку данных протокола сетевого уровня (PDU).

  5. Какое утверждение описывает характеристику MAC-адресов?
    • Они должны быть глобально уникальными. *
    • Они маршрутизируются только в частной сети.
    • Они добавляются как часть PDU уровня 3.
    • Они имеют 32-битное двоичное значение.

    Explain:
    Любой поставщик устройств Ethernet должен зарегистрироваться в IEEE, чтобы гарантировать, что поставщику назначен уникальный 24-битный код, который становится первыми 24 битами MAC-адреса.Последние 24 бита MAC-адреса генерируются для каждого аппаратного устройства. Это помогает обеспечить глобально уникальные адреса для каждого устройства Ethernet.

  6. Какое утверждение относительно MAC-адресов верно?
    • MAC-адреса реализуются программно.
    • Сетевая карта требует MAC-адреса только при подключении к глобальной сети.
    • Первые три байта используются поставщиком, назначенным OUI. *
    • ISO отвечает за правила, касающиеся MAC-адресов.

    Объясните:
    MAC-адрес состоит из 6 байтов. Первые 3 байта используются для идентификации поставщика, а последним 3 байтам должно быть присвоено уникальное значение в одном и том же OUI. MAC-адреса реализованы аппаратно. Сетевому адаптеру необходим MAC-адрес для связи по локальной сети. IEEE регулирует MAC-адреса.

  7. Какой адрес назначения используется в кадре запроса ARP?
    • 0,0.0.0
    • 255.255.255.255
    • FFFF.FFFF.FFFF *
    • 127.0.0.1
    • 01-00-5E-00-AA-23

    Объяснение:
    Цель запроса ARP — найти MAC-адрес хоста назначения в локальной сети Ethernet. Процесс ARP отправляет широковещательную рассылку уровня 2 всем устройствам в локальной сети Ethernet. Кадр содержит IP-адрес пункта назначения и широковещательный MAC-адрес FFFF.FFFF.FFFF.

  8. Какая информация об адресации записывается коммутатором для построения таблицы MAC-адресов?
    • адрес получателя уровня 3 входящих пакетов
    • адрес получателя на уровне 2 исходящих кадров
    • исходный адрес уровня 3 исходящих пакетов
    • исходный адрес уровня 2 входящих кадров *

    Explain:
    Коммутатор создает таблицу MAC-адресов, проверяя входящие кадры уровня 2 и записывая исходный MAC-адрес, найденный в заголовке кадра.Обнаруженный и записанный MAC-адрес затем связывается с портом, используемым для приема кадра.

  9. См. Экспонат. На выставке показана небольшая коммутируемая сеть и содержимое таблицы MAC-адресов коммутатора. ПК1 отправил кадр, адресованный ПК3. Что переключатель будет делать с рамкой?
    • Коммутатор отбрасывает фрейм.
    • Коммутатор пересылает кадр только на порт 2.
    • Коммутатор перенаправит фрейм на все порты, кроме порта 4.*
    • Коммутатор направит кадр на все порты.
    • Коммутатор будет пересылать кадр только на порты 1 и 3.

    Объясните:
    MAC-адрес ПК3 отсутствует в таблице MAC-адресов коммутатора. Поскольку коммутатор не знает, куда отправить кадр, адресованный ПК3, он пересылает кадр на все порты коммутатора, кроме порта 4, который является входящим портом.

  10. Какой метод переключения использует значение CRC в кадре?
    • прорезной
    • перемотка вперед
    • без фрагментов
    • с промежуточным накоплением *

    Explain:
    Когда используется метод переключения с промежуточным хранением, коммутатор получает полный кадр перед его пересылкой по назначению.Часть трейлера с циклическим избыточным кодом (CRC) используется для определения того, был ли фрейм изменен во время передачи. Два типа сквозных методов коммутации — перемотка вперед и без фрагментов.

  11. Что такое auto-MDIX?
    • тип коммутатора Cisco
    • разъем Ethernet типа
    • тип порта на коммутаторе Cisco
    • функция, которая определяет тип кабеля Ethernet *

    Explain:
    Auto-MDIX — это функция, которая включена на последних коммутаторах Cisco и позволяет коммутатору обнаруживать и использовать любой тип кабеля, подключенного к определенному порту.

  12. См. Экспонат. ПК1 выдает запрос ARP, потому что ему необходимо отправить пакет на ПК2. Что будет дальше в этом сценарии?
    • ПК2 отправит ARP-ответ со своим MAC-адресом. *
    • RT1 отправит ARP-ответ со своим MAC-адресом Fa0 / 0.
    • RT1 отправит ARP-ответ с MAC-адресом ПК2.
    • SW1 отправит ARP-ответ с MAC-адресом ПК2.
    • SW1 отправит ответ ARP со своим MAC-адресом Fa0 / 1.

    Объяснение:
    Когда сетевое устройство хочет установить связь с другим устройством в той же сети, оно отправляет широковещательный запрос ARP. В этом случае запрос будет содержать IP-адрес ПК2. Устройство назначения (ПК2) отправляет ответ ARP со своим MAC-адресом.

  13. Какова цель атаки с использованием спуфинга ARP?
    • , чтобы связать IP-адреса с неправильным MAC-адресом *
    • для перегрузки сетевых хостов запросами ARP
    • для наводнения сети широковещательными ответами ARP
    • для заполнения таблиц MAC-адресов коммутатора фиктивными адресами
  14. Что характерно для буферизации памяти на основе портов?
    • Фреймы в буфере памяти динамически связаны с портами назначения.
    • Все кадры хранятся в общем буфере памяти.
    • Фреймы помещаются в буфер в очередях, связанных с определенными портами. *
    • Все порты коммутатора совместно используют один буфер памяти.

    Объяснение: Буферизация — это метод, используемый коммутаторами Ethernet для хранения кадров до момента их передачи. При буферизации на основе портов кадры хранятся в очередях, которые связаны с определенными входящими и исходящими портами.

  15. Каков минимальный размер кадра Ethernet, который не будет отброшен получателем в виде короткого кадра?
    • 64 байта *
    • 512 байт
    • 1024 байта
    • 1500 байтов
  16. Какие две потенциальные проблемы сети могут возникнуть в результате работы ARP? (Выберите два.)
    • Ручная настройка статических ассоциаций ARP может облегчить отравление ARP или подделку MAC-адреса.
    • В больших сетях с низкой пропускной способностью множественные широковещательные передачи ARP могут вызвать задержки передачи данных. *
    • Сетевые злоумышленники могут манипулировать сопоставлениями MAC-адресов и IP-адресов в сообщениях ARP с целью перехвата сетевого трафика. *
    • Большое количество широковещательных рассылок ARP-запросов может привести к переполнению таблицы MAC-адресов хоста и препятствовать обмену данными хоста в сети.
    • Множественные ответы ARP приводят к тому, что таблица MAC-адресов коммутатора содержит записи, соответствующие MAC-адресам хостов, подключенных к соответствующему порту коммутатора.

    Объяснение:
    Большое количество широковещательных сообщений ARP может вызвать кратковременные задержки передачи данных. Сетевые злоумышленники могут манипулировать сопоставлениями MAC-адресов и IP-адресов в сообщениях ARP с целью перехвата сетевого трафика. Запросы и ответы ARP приводят к тому, что записи вносятся в таблицу ARP, а не в таблицу MAC-адресов.Переполнение таблицы ARP очень маловероятно. Настройка статических ассоциаций ARP вручную — это способ предотвратить, а не облегчить отравление ARP и подделку MAC-адресов. Для обычных операций пересылки кадров коммутатора требуется несколько ответов ARP, в результате которых таблица MAC-адресов коммутатора содержит записи, которые соответствуют MAC-адресам подключенных узлов и связаны с соответствующим портом коммутатора. Это не проблема сети, вызванная ARP.

  17. Заполните поле.
    Фрагмент коллизии, также известный как кадр RUNT , представляет собой кадр длиной менее 64 байтов.

    Объяснение:
    Короткий кадр — это кадр размером менее 64 байтов, обычно сгенерированный в результате конфликта или сбоя сетевого интерфейса.

  18. Заполните поле.
    На коммутаторе Cisco буферизация памяти на основе порта используется для буферизации кадров в очередях, связанных с определенными входящими и исходящими портами.
  19. Заполните поле.
    ARP подмена — это метод, который используется для отправки поддельных сообщений ARP на другие хосты в локальной сети. Цель состоит в том, чтобы связать IP-адреса с неправильными MAC-адресами.

    Объяснение:
    Подмена ARP или отравление ARP — это метод, используемый злоумышленником для ответа на запрос ARP для адреса IPv4, принадлежащего другому устройству, например шлюзу по умолчанию.

  20. Какая инструкция описывает обработку запросов ARP по локальной ссылке?
    Они должны пересылаться всеми маршрутизаторами в локальной сети.
    Они принимаются и обрабатываются каждым устройством в локальной сети. *
    Они отбрасываются всеми коммутаторами в локальной сети.
    Они принимаются и обрабатываются только целевым устройством.
  21. См. Экспонат.

    Коммутаторы находятся в своей конфигурации по умолчанию. Хосту A необходимо связаться с хостом D, но хост A не имеет MAC-адреса для своего шлюза по умолчанию. Какие сетевые узлы получат ARP-запрос, отправленный узлом A?
    только хост D
    только маршрутизатор R1
    только хосты A, B и C
    только хосты A, B, C и D
    только хосты B и C
    только хосты B, C и маршрутизатор R1 *

    Объясните:
    Поскольку хост A не имеет MAC-адреса шлюза по умолчанию в его таблице ARP, хост A отправляет широковещательную передачу ARP.Широковещательная передача ARP будет отправлена ​​на каждое устройство в локальной сети. Хосты B, C и маршрутизатор R1 получат широковещательную рассылку. Маршрутизатор R1 не пересылает сообщение.

  22. См. Экспонат.

    Коммутатор с конфигурацией по умолчанию соединяет четыре хоста. Показана таблица ARP для хоста A. Что происходит, когда хост A хочет отправить IP-пакет хосту D? Хост A отправляет запрос ARP на MAC-адрес хоста D.
    Хост D отправляет запрос ARP хосту A.
    Хост A отправляет пакет коммутатору. Коммутатор отправляет пакет только хосту D, который, в свою очередь, отвечает.
    Хост A отправляет широковещательную передачу FF: FF: FF: FF: FF: FF. Все остальные хосты, подключенные к коммутатору, получают широковещательную рассылку, и хост D отвечает своим MAC-адресом. *

    Explain:
    Всякий раз, когда MAC-адрес назначения не содержится в таблице ARP исходного хоста, хост (хост A в этом примере) будет отправлять широковещательную рассылку уровня 2 с MAC-адресом назначения FF: FF: FF: FF: FF: FF.Все устройства в одной сети получают эту трансляцию. Хост D ответит на эту трансляцию.

  23. Верно или нет?
    Когда устройство отправляет данные другому устройству в удаленной сети, кадр Ethernet отправляется на MAC-адрес шлюза по умолчанию.
    верно *
    ложно

    Объяснение:
    MAC-адрес используется только в локальной сети Ethernet. Когда данные предназначены для удаленной сети любого типа, данные отправляются на устройство шлюза по умолчанию, устройство уровня 3, которое выполняет маршрутизацию для локальной сети.

  24. Какие два типа адресов отображаются в таблице ARP в коммутаторе?
    Адрес уровня 3 для адреса уровня 2 *
    Адрес уровня 3 для адреса уровня 4
    Адрес уровня 4 для адреса уровня 2
    Адрес уровня 2 для адреса уровня 4

    Объяснение:
    Таблица ARP коммутатора хранит сопоставление MAC-адресов уровня 2 с IP-адресами уровня 3. Эти сопоставления могут быть изучены коммутатором динамически через ARP или статически через ручную настройку.

  25. Сопоставьте характеристику методу пересылки. (Используются не все параметры.) Элементы сортировки
    сквозное (A) -> низкая задержка (A) *
    сквозное (B) -> может пересылать короткие кадры (B) *
    сквозной (C) -> начинает пересылку, когда получен адрес назначения (C) *
    с промежуточным хранением (D) -> всегда сохраняет весь кадр (D) *
    store-and- вперед (E) -> проверяет CRC перед пересылкой (E) *
    с промежуточным хранением (F) -> проверяет длину кадра перед пересылкой (F)

    Объясните:
    Коммутатор с промежуточным хранением всегда сохраняет весь кадр перед пересылкой и проверяет его CRC и длину кадра.Сквозной коммутатор может пересылать кадры до получения поля адреса назначения, таким образом обеспечивая меньшую задержку, чем коммутатор с промежуточным хранением. Поскольку пересылка кадра может начаться до того, как он будет полностью принят, коммутатор может передать поврежденный или поврежденный кадр. Все методы пересылки требуют коммутатора уровня 2 для пересылки широковещательных кадров.

Другие вопросы

  1. В чем заключается характеристика метода доступа на основе конкуренции?
    • Он обрабатывает больше накладных расходов, чем методы контролируемого доступа.
    • Он имеет механизмы для отслеживания очередей доступа к средствам массовой информации.
    • Это недетерминированный метод. *
    • Очень хорошо масштабируется при использовании тяжелых сред.
  2. Какова цель преамбулы в кадре Ethernet?
    • используется в качестве заполнения для данных
    • используется для синхронизации времени *
    • используется для идентификации адреса источника
    • используется для идентификации адреса назначения
  3. Какой MAC-адрес многоадресной рассылки уровня 2 соответствует адресу 224 многоадресной рассылки IPv4 уровня 3.139.34.56?
    • 00-00-00-0B-22-38
    • 01-00-5E-0B-22-38 *
    • 01-5E-00-0B-22-38
    • ФЭ-80-00-0Б-22-38
    • FF-FF-FF-0B-22-38
  4. Какие два утверждения о MAC- и IP-адресах во время передачи данных верны, если NAT не задействован? (Выберите два.)
    • Пакет, прошедший через четыре маршрутизатора, четыре раза менял IP-адрес назначения.
    • MAC-адреса назначения никогда не изменятся в кадре, который проходит через семь маршрутизаторов.
    • MAC-адреса назначения и источника имеют локальное значение и меняются каждый раз, когда кадр переходит из одной LAN в другую. *
    • IP-адреса назначения в заголовке пакета остаются постоянными на всем пути к целевому узлу. *
    • Каждый раз, когда кадр инкапсулируется с новым MAC-адресом назначения, требуется новый IP-адрес назначения.
  5. Каковы две функции ARP? (Выберите два.)
    • Если хост готов отправить пакет на локальное устройство назначения и у него есть IP-адрес, но не MAC-адрес назначения, он генерирует широковещательную передачу ARP.*
    • Запрос ARP отправляется всем устройствам в локальной сети Ethernet и содержит IP-адрес хоста назначения и его MAC-адрес многоадресной рассылки.
    • Когда хост инкапсулирует пакет в кадр, он обращается к таблице MAC-адресов, чтобы определить соответствие IP-адресов MAC-адресам.
    • Если ни одно устройство не отвечает на запрос ARP, то исходный узел рассылает пакет данных всем устройствам в сегменте сети.
    • Если устройство, получающее запрос ARP, имеет адрес назначения IPv4, оно отвечает ответом ARP.*
  6. Хост пытается отправить пакет устройству в удаленном сегменте LAN, но в настоящее время в его кэше ARP нет сопоставлений. Как устройство получит MAC-адрес назначения?
    • Он отправит запрос ARP для MAC-адреса устройства назначения.
    • Он отправит ARP-запрос на MAC-адрес шлюза по умолчанию. *
    • Он отправит кадр и использует свой собственный MAC-адрес в качестве пункта назначения.*
    • Он отправит кадр с широковещательным MAC-адресом.
    • Он отправит запрос на DNS-сервер для получения MAC-адреса назначения.
  7. Сетевой администратор подключает два современных коммутатора с помощью прямого кабеля. Коммутаторы новые и никогда не настраивались. Какие три утверждения о конечном результате подключения верны? (Выберите три.)
    • Связь между коммутаторами будет работать с максимальной скоростью, поддерживаемой обоими коммутаторами.*
    • Канал между коммутаторами будет работать в полнодуплексном режиме. *
    • Если оба коммутатора поддерживают разные скорости, каждый из них будет работать на своей максимальной скорости.
    • Функция auto-MDIX настраивает интерфейсы, устраняя необходимость в перекрестном кабеле. *
    • Подключение будет невозможно, если администратор не заменит кабель на перекрестный.
    • Дуплексный режим необходимо настроить вручную, потому что он не может быть согласован.
  8. Коммутатор уровня 2 используется для переключения входящих кадров с порта 1000BASE-T на порт, подключенный к сети 100Base-T. Какой метод буферизации памяти лучше всего подходит для этой задачи?
    • Буферизация на основе портов
    • Буферизация кэша 1-го уровня
    • буферизация общей памяти *
    • буферизация фиксированной конфигурации
  9. Когда коммутатор будет записывать несколько записей для одного порта коммутатора в свою таблицу MAC-адресов?
    • , когда маршрутизатор подключен к порту коммутатора
    • , если было перенаправлено несколько широковещательных пакетов ARP
    • , когда другой коммутатор подключен к порту коммутатора *
    • , когда коммутатор настроен для коммутации уровня 3
  10. Какие два утверждения описывают коммутатор Ethernet фиксированной конфигурации? (Выберите два.)
    • Коммутатор не может быть настроен с несколькими VLAN.
    • Невозможно настроить SVI на коммутаторе.
    • Коммутатор с фиксированной конфигурацией может быть стековым. *
    • Количество портов на коммутаторе не может быть увеличено. *
    • Плотность портов коммутатора определяется Cisco IOS.
  11. Как добавление линейной карты Ethernet влияет на форм-фактор коммутатора?
    • за счет увеличения скорости переключения объединительной панели
    • за счет увеличения плотности портов *
    • , сделав коммутатор стекируемым.
    • за счет увеличения емкости NVRAM
  12. Какой адрес или комбинация адресов использует коммутатор уровня 3 для принятия решений о пересылке?
    • Только IP-адрес
    • только адрес порта
    • Только MAC-адрес
    • MAC-адреса и адреса портов
    • MAC- и IP-адреса *
  13. Какое утверждение иллюстрирует недостаток метода доступа CSMA / CD?
    • Детерминированные протоколы доступа к среде передачи данных снижают производительность сети.
    • Это сложнее, чем недетерминированные протоколы.
    • Коллизии могут снизить производительность сети. *
    • Технологии CSMA / CD LAN доступны только на более медленных скоростях, чем другие технологии LAN.
  14. Откройте действие PT. Выполните задания из инструкции к занятиям, а затем ответьте на вопрос.
    Какой адрес назначения будет включать ПК1 в поле адреса назначения кадра Ethernet, который он отправляет на ПК2?
    • 192.168.0.17
    • 192.168.0.34
    • 0030.a3e5.0401 *
    • 00e0.b0be.8014
    • 0007.ec35.a5c6
  15. Какой адрес или комбинация адресов использует коммутатор уровня 3 для принятия решений о пересылке?
    • MAC- и IP-адреса *
    • Только MAC-адрес
    • MAC-адреса и адреса портов
    • только адрес порта
    • только IP-адрес
  16. Запустить ПТ.Скрыть и сохранить PT

    Откройте действие PT. Выполните задания из инструкции к занятиям, а затем ответьте на вопрос. Какой адрес назначения будет включать ПК1 в поле адреса назначения кадра Ethernet, который он отправляет на ПК2?

    • 00e0.b0be.8014
    • 0030.a3e5.0401 *
    • 192.168.0.34
    • 192.168.0.17
    • 0007.ec35.a5c6
  17. Как добавление линейной карты Ethernet влияет на форм-фактор коммутатора?
    • за счет увеличения скорости переключения объединительной панели
    • за счет увеличения плотности портов *
    • за счет увеличения емкости NVRAM
    • , сделав коммутатор стекируемым.
  18. Какое утверждение иллюстрирует недостаток метода доступа CSMA / CD?
    • Коллизии могут снизить производительность сети.*
    • Детерминированные протоколы доступа к среде передачи данных снижают производительность сети.
    • Технологии CSMA / CD LAN доступны только на более медленных скоростях, чем другие технологии LAN.
    • Это сложнее, чем недетерминированные протоколы.
  19. Сетевой администратор вводит следующие команды на коммутаторе уровня 3:
    DLS1 (config) # интерфейс f0 / 3
    DLS1 (config-if) # нет switchport
    DLS1 (config-if) # IP-адрес 172.16.0.1 255.255.255.0
    DLS1 (config-if) # выключения нет
    DLS1 (config-if) # конец
     

    Что настраивает администратор?

    • экземпляр Cisco Express Forwarding
    • маршрутизируемый порт *
    • магистральный интерфейс
    • коммутируемый виртуальный интерфейс
  20. Двоичное число 0000 1010 можно выразить как « A » в шестнадцатеричном формате.
    Сопоставьте семь полей кадра Ethernet с их соответствующим содержимым.(Не все параметры используются.)

    Элементы сортировки
    Разделитель начального кадра -> Поле 2 *
    MAC-адрес источника -> Поле 4 *
    Инкапсулированные данные -> Поле 6 *
    Преамбула -> Начало кадра — Поле 1 *
    MAC-адрес назначения -> Поле 3 *
    Длина / Тип -> Поле 5 *
    Последовательность проверки кадра -> Конец кадра — Поле 7

Загрузите файл PDF ниже:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *