08.07.2024

Проверка сопротивления изоляции проводов и кабелей: Запрашиваемая страница не найдена!

Содержание

Измерение сопротивления изоляции

Мегаомметр — прибор для измерения больших сопротивлений. Именно В состав мегомметра входит генератор, который создаёт повышенное испытательное напряжение 250, 500, 1000 или 2500 вольт. Повышенное напряжение прикладывается к паре жил при снятой нагрузке, в результате чего, через диэлектрик начинает проходить ток утечки. Прибор определяет сопротивление изоляции на основании измеренного тока и известного значения напряжения. Если изоляция в отличном состоянии, то ток утечки через диэлектрик не пойдет. Сопротивление при этом будет стремиться к бесконечности и, как правило, превышать верхнюю границу диапазона измерений мегомметра. Когда изоляция изношена, между жилами появляются токопроводящие «мостики», по которым идет утечка. В обычных условиях эти утечки пренебрежимо малы и незаметны, но под воздействием повышенного напряжения ток утечки усиливается, становясь током КЗ, а сопротивление изоляции при этом стремится к нулю.

При измерении сопротивления изоляции проверяемая кабельная линия должна быть отключена от электроустановки с обеих сторон: и со стороны источника питания, и со стороны потребителя. Обычно, отключения и прерывание электроснабжения создает массу неудобств при проведении электроизмерений на действующем объекте. Проводить работы нужно в нерабочие часы, либо согласовывать временные отключения электроэнергии в рабочие часы. К счастью, измерение сопротивления изоляции каждой кабельной линии занимает немного времени, а линии отключают по очереди, а не все одновременно. Когда отключение в рабочие часы невозможно, работы переносят на утренние, вечерние, ночные часы или выходные дни.

Значение сопротивления измеряется попарно для всех жил кабеля:

  • для двужильного кабеля — одно измерение;
  • для трехжильного кабеля — три измерения;
  • для четырёхжильного кабеля — шесть измерений;
  • для пятижильного кабеля — десять измерений.

Измеренные значения по каждому кабелю фиксируются инженерами электролаборатории на бумаге или в память измерительного прибора. В дальнейшем эти данные будут занесены в таблицу результатов измерений в протоколе измерения сопротивления изоляции. Если сопротивление ниже минимально допустимых значений, эта информация отражается в заключении к протоколу и дефектной ведомости технического отчета. Такую кабельную линию нужно ремонтировать или менять.

проведение испытаний, измерений мегаомметром ПУЭ по доступной цене от Testvolt

Проверка: испытание или измерение, зачем они нужны

Любой коммерческий или производственный объект имеет достаточно разветвленную электрическую цепь. Сюда входят и провода, кабели, и электрооборудование, например, трансформаторы, генераторы, усилители тока, и обычные приборы – потребители электричества, которые питаются от этой же сети. Так как вся данная техника и прочие элементы отличаются высокой пожароопасностью и возможностью к короткому замыканию, то необходим сотрудник, который будет постоянно обслуживать электросеть.

У него, кроме ежедневных обязанностей, есть еще и дополнительные: по созданию плана тестирования, проведению ремонта. Но зачастую у штатного работника не хватает ни времени, ни опыта, ни оборудования, с которыми можно провести замеры. Итак, объясним, для чего вам необходима проверка напряжения и измерение электрического сопротивления изоляции аппаратов, электропроводок, электрооборудования и электроустановок.

Плохо изолированная электроцепь – одна из самых частотных проблем на производстве, которая приводит к массе последствий: от небольших затруднений до травм, пожаров и несчастных случаев. Мы рекомендуем своевременно осуществлять анализ всей техники. Это позволит избежать:

  • нестабильной работы;
  • снижения эффективности;
  • пожароопасных ситуаций;
  • порчи устройств.

Помимо личной безопасности компании и сотрудников, экспертиза нужна для предоставления отчета всем проверяющим инстанциям. Это один из главных документов, которые запрашивают при проверке. Без его наличия организацию могут временно закрыть, приостановив ее деятельность. Мы поможем вам не дожидаться осложнений, а вовремя производить профилактические обследования.

Что такое испытания и измерения сопротивления изоляции мегаомметром проводов и силовых кабелей, кабельных линий

Для этой процедуры используется специальный прибор, который фиксирует наличие Ом между двумя точками электрооборудования. Высокие показатели говорят, что изолирование контактов проведено недостаточно хорошо и между двумя элементами (например, между обмоткой и корпусом) образуется ток – он «пробивает», утекает, его здесь быть не должно. Именно такой дефект определяется после проведения замеров. Для анализа используется постоянное напряжение.

Результат записывается в мегаомах – МОм, отсюда и название измерительного прибора – мегаомметр. Принцип работы этого приспособления заключается в том, что он может провести измерение сопротивления проводников, подсчитывая число вытекающего тока под воздействием напряжения, которое подает сам электроприбор.

Допустимое количество Ом для различного оборудования

Насколько много разных электроустановок и кабелей, настолько многочисленны и нормы, стандартные показатели. Чтобы определить правильное значение, нужно знать:

  • напряжение техники;
  • предназначение;
  • модель.

Имея такую информацию, необходимо обратиться к нормативному документу – ПТЭЭП, в котором представлен подробный перечень. Приведем пример в виде выдержки из акта: при проверке электроизделия с напряжением до 50 В мегаомметром с подачей в 100 В допустимое сопротивление изоляции должно быть не менее 0,5 МОм.

Типовые причины неисправности

При замере электросопротивления важно обнаружить исходный источник утечки, чтобы устранить его. Обычно это бывают такие факторы: 

  • Электрические нагрузки, превышающие номинальное значение, указанное в сопроводительной документации.
  • Частые запуски и выключения.
  • Прямое механическое воздействие на кабель.
  • Агрессивная окружающая среда – наличие в воздухе пыли, химикатов, повышенной влажности.
  • Сильные перепады температуры.

Обычно эти факторы необходимо исключать еще на этапе профилактической проверки.

Принцип и особенности работ в нашей электролаборатории

Предлагаем ежегодное проведение измерений сопротивления изоляции электрооборудования и электроустановок до 1000 В, согласно нормам ПТЭЭП и ПУЭ, с помощью мегаомметра с указанием расценок в смете – цена будет определена в течение 30 минут. Невысокая стоимость способствует регулярному обращению к нам. Рекомендуем делать это не реже, чем раз в три года, но лучше ежегодно. Также следует обязательно проверять обмотку в ряде случаев:

  • При первичной установке оборудования или монтаже электросети. Без приемо-сдаточных исследований вы не получите акт допуска в эксплуатацию.
  • При включении в сеть новых элементов.
  • После ремонта или длительного застоя.

Помните, что любые технические средства, материалы, установки и проведенные линии имеют тенденцию к износу. Он может быть вызван естественными причинами (временем и внешними природными факторами) или спровоцирован механическим, физическим, химическим воздействием среды.

В момент процедуры используется принцип вычислений по закону Ома. Мы подаем постоянный ток, ниже, чем напряжение электропрочности, а затем записываем показания. Они могут быть настолько велики, что будут писаться не только в МОм, но и в ГОм и даже ТОм. Ниже подробнее расскажем об используемой методике.

Подготовка к испытаниям

Обязательные требования, которые обеспечивают точность измерений и их безопасность: 

  • Отключение кабельной линии со всех сторон. 
  • Учет температуры воздуха – она влияет на показания. 
  • Требуется убедиться в отсутствии напряжения и установить заземление (или закоротить проводник).
  • Развешивание плакатов, которые должны запрещать проход и предупреждать об электрических мероприятиях. 

Методика тестирования

Наша электролаборатория организует в Москве проведение ПУЭ замеров, испытаний и измерений сопротивления изоляции мегаомметром на предприятиях, в кафе, магазинах и других объектах – стоимость работ складывается из методов, которые мы применяем:

  • Визуальный осмотр. Часто потертости, отслоения, потеря герметичности и прочие дефекты обнаруживаются уже на первом этапе. Когда найдены «слабые места», дальше продвигаться проще.
  • Используем указанное выше приспособление. Мы подключаем его к каждой из жил, чтобы узнать, нет ли воздействия одной на другую.
  • Точно подбираем тестовое напряжение для каждого элемента сети.

Если мы находим неисправности, то всегда даем подробные объяснения заказчику. Эти мероприятия бывают как самостоятельными, так и частью комплексного обслуживания. Почти все наши предложения включают в себя осмотр состояния изолирующих деталей.

Этапы сотрудничества с нами

Всегда начинаем с подписания договора и утверждения задания. Согласно им будут произведены:

  • Оперативный выезд бригады на место – вам не надо долго ждать очереди, мы выполняем все быстро.
  • Снятие показаний точными современными приборами.
  • При необходимости – дополнительные лабораторные исследования и расчеты.
  • Оформление и передача заказчику официального документа – технического отчета. В нем указаны все результаты и рекомендации по исправлению недостатков и проблем, если такие были обнаружены.

Для высоковольтных силовых кабелей

Алгоритм: 

  • Проверка отсутствия напряжения.
  • Установка испытательного заземления зажимами типа «крокодильчик».
  • Разведение жил на достаточное расстояние друг от друга – со второй стороны.
  • Вывешивание плакатов.
  • Измерение мегаомметром на 2500В по 1 минуте на каждый провод. 
  • Запись всех снятых показаний. 

Для низковольтных силовых кабельных линий

Подготовительные процедуры такие же, прибор для измерений тоже на 2500 В. Какие жилы мы прозваниваем: 

  • фазные: А-В, А-С, В-С; 
  • 0-земля;
  • фаза-нуль
  • фаза-земля. 

Для контрольных кабелей

Жилы можно не отсоединять от общей цепи и замерять показания вместе с подключенным электрооборудованием. В остальном все аналогично, алгоритм прежний, только стоит взять измеритель на 500 – 2500В. 

Приборы для проведения измерений

Можно проводить тесты с помощью: 

  • специальных установок, стендов, которые необходимы только при работе с аппаратурой, имеющей напряжение более 1 кВ; 
  • мегаомметров, которые бывают электромеханическими и полностью электронными.  

Измерители могут быть на 100, 500, 1000 и 2500 В. Они имеют цифровой монитор или стрелочный экран. 

Нормы испытательного напряжения для кабелей

Электропроводники бывают трех видов: 

  • высоковольтные – используются при показателях от 1 кВ, нормальным результатом является один мОм на кВ;
  • низковольтные – до 1 кВ, норма – 0,5 мОм;
  • контрольные – для формирования схем вторичной коммутации, предел изоляции – 1 мОм.

Безопасность при тестировании 

Наши специалисты используют диэлектрики при работе, в том числе специальную одежду, перчатки и обувь. Также мы всегда проверяем состояние своих измерительных приборов и помещения, где будет осуществляться испытание.

Часто задаваемые вопросы

  • Из чего складывается стоимость? 

Цена образуется из объема работ. 

  • Как быстро готов результат? 

Зависит от количества электрических схем и их состояния. 

  • Есть ли заключения юридической значимости?

Да, наша электролаборатория имеет аккредитацию.  

Как выбрать мегомметр

Рекомендуем покупать прибор: 

  • известной торговой марки; 
  • с цифровой панелью; 
  • подходящий под ваше напряжение в сети. 

Пример измерения

Посмотрим на видео, как проходит данная процедура в жизни: 

Измерение сопротивления изоляции. Методика и приборы. Порядок

Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.

Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:
  • Высокое напряжение.
  • Солнечный свет.
  • Механические повреждения.
  • Температурный режим.
  • Среда использования.

Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.

Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:
  • Неисправности устройств.
  • Возникновение пожара.
  • Аварийные ситуации.
  • Чрезмерный износ устройства.
  • Короткие замыкания.
  • Удары электрическим током персонала, обслуживающего устройства.

Методика

Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.

Приборы

Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.

Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.

Мегомметры можно разделить по величине напряжения:
  • До 1000 вольт.
  • До 2500 вольт.

В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров. Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору. Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.

Порядок измерений

Перед началом контрольных измерений необходимо выполнить:
  • Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
  • Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
  • Произвести заземление токоведущих жил испытуемого кабеля.

Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки. Запрещается касаться токоведущих элементов, присоединенных к мегомметру.

Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.

Схема проверки сопротивления

Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.

При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:
  • Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
  • Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.

При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление. Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.

После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.

При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:
  • Снять напряжение с измеряемого проводника, подключить к нему заземление.
  • Установить правильное положение переключателя и возобновить измерение на новом диапазоне.

При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора. Заряд снимается при помощи наложения заземления.

Проверка изоляции осветительной цепи

Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:
  • Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
  • Сопротивления изоляции от этажных распредщитов до квартирных щитков.
  • Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
  • Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.

Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.

Требования безопасности

Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.

Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.

Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:
  • Извещение владельца проверяемой электроустановки о целях работы.
  • Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
  • Проведение вводного инструктажа.
  • Ознакомление с электросхемой и особенностями установки.
  • Подготовка рабочего места.

Организация (владелец) несет ответственность за соблюдением требований охраны труда. Работы осуществляются по наряду-допуску.

При выполнении измерений необходимо:
  • Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
  • Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
  • Коммутацию приборов осуществлять при обесточенных токоведущих частях.
  • Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.

Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности. При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.

 

Интервалы проведения проверок

Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.

В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.

При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам. В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети. Изоляция проверяется во время эксплуатационных испытаний.

Похожие темы:

Замер сопротивления Изоляции | ИЗМЕРЕНИЕ проводятся аттестованной ЭлектроЛабораторией в Москве и МО

Мероприятия по измерению сопротивления изоляции проводятся с целью исключения утечки тока, сохранения безопасности человека и работоспособности приборов. При этом исследование лицензированной электролабораторией осуществляется измерение изоляционного сопротивления проводки, кабеля и точек соединения электролинии. Эти электроизмерения выполняются с использованием специального оборудования – мегаомметра, который улавливает показатели утечки тока между 2 цепями электросети. Чем они выше, тем ниже изоляционное сопротивление, а это уже повод для беспокойства и тщательной ревизии электроустановки.

Специалисты компании ТМ-Электро выполняют замеры сопротивления изоляции электрооборудования с помощью современных цифровых электроизмерительных приборов компаний Sonel и Merten.

Профессиональное лабораторное измерительное оборудование позволяет провести измерение сопротивления изоляции более точно, не мешая работе организации Заказчика и выпонять поставленные задачи в кратчайшие сроки по невысокой цене. Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Например, для изоляции электропроводки осветительной сети составляет 1 раз в 3 года. Эти же нормы действуют для электроустановок офисных помещений и торговых павильонов, складов, предприятиях и общественных заведениях.

Внешняя электропроводка и электроустановки в особо опасных помещениях, должны проходить замер сопротивления изоляции ежегодно. Также необходимо ежегодно выполнять измерения сопротивления изоляции проводов, кабелей, кабельных трасс,электрооборудования и электроустановки в школах, институтах, детских, медицинских и оздоровительных учреждениях, в жилых многоквартирных домах.

Какие бывают измерения сопротивления изоляции:

Лабораторные измерения проводятся c определенной периодичностью, в случае:

  • Приемо-сдаточные испытания;
  • Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
  • Эксплуатационные испытания;
  • Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
  • Профилактические испытания.

Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.

Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.

Юридическую силу имеют документы выданные только лицензированной электролабораторией и только после проведения реального исследования объекта.

Большое доверие вызывает компания, в которой имеется свой полный штат сотрудников электроизмерительной лаборатории и парк приборов необходимых для проверки электрики. Привлечение не обладающих должным опытом лиц для оказания услуги замера сопротивления изоляции приводит к снижению качества работ и не нужным рискам для Заказчика.

Компания ТМ-Электро обладает своим полным парком электроизмерительного оборудования для проведения любых измерений и испытаний, в штате компании только профессиональные сотрудники, постоянно повышающие свою квалификацию, имеющие группы допуска и все необходимые разрешения и свидетельства. Гарантируем точное соблюдение сроков и условия договора. Грамотно составим Технический отчет и дадим рекомендации. В случае необходимости предоставим свою электромонтажную бригаду.

Измерение сопротивления изоляции электрических аппаратов, вторичных цепей и электропроводок напряжением до 1кВ (1000В).

Измерение сопротивления изоляции является, пожалуй, самым необходимым лабораторным испытанием. В Техническом отчете — Протокол №3. Если говорить кратко, то это измерение нужно для проверки состояния изоляции проводов и кабелей. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром или современным электронным оборудованием на напряжение 2500 В в течение одной минуты. Показатели сопротивления изоляции должны быть не менее 0,5 МОм. Полученные данные заносятся в журнал протокола с соответствующей пометкой “соответствует” или “не соответствует”.

При несоответствии нормативным значениям кабельную трассу рекомендуется заменить.

Очень часто изоляция кабеля повреждается при выполнении электромонтажных работ, при протаскивании через гильзы, отверстия с острой кромкой, при общестроительных работах (например, шурупом, во время крепления гипсокартона, плохо заизолированы кабельные муфты в земле) и т.д. В этих случаях очень помогут измерения сопротивления изоляции при выполнении комплекса приемо-сдаточных испытаний. Своевременно обнаруженный дефект проще устранить.

Периодичность проведения испытаний, обычно 1 раз в 3 года. Школьные и дошкольные учреждения 1 раз в год. По Нормативной документации Правительства г. Москвы изоляция бытовых стационарных электроплит измеряется не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 МОм.

Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. Проверка состояния таких цепей, провода, кабеля, электроприборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год!

Стоит напомнить, что работы связанные с напряжением должен проводить только подготовленный технический персонал, прошедший необходимое обучение, получивший соответствующие удостоверения с правом проведения измерительных работ. Все испытания проводятся правильно откалиброванным оборудованием, прошедшим ежегодную поверку в сертифицированном центре.

Использование современного электронного оборудования компаний Sonel, Metrel, Fluke – гарантирует качество и удобство проведения работ.

Внимание, остерегайтесь пользоваться услугами неатестованных лабораторий и частников! Грамотные инженеры с современным оборудованием не нанесут вреда вашей электроустановке и подключенным приборам. При заказе работ требуйте документы подтверждающие квалификацию инженеров, свидетельство на лабораторию и поверку измерительных приборов. Не соглашайтесь на Технические отчеты “без выезда”! Ни одна уважающая себя лаборатория не будет даже предлагать подобные работы, т.к. это влечёт за собой административную и уголовную ответсвенность. Скорее всего, подобная организация пришла на рынок ненадолго и ответственность за выполненние работ ляжет на энергетическую службу предприятия Заказчика работ или директора.

Измерение сопротивления изоляции контрольных кабелей | Полезные статьи

Измерение сопротивления изоляции контрольных кабелей входит в комплекс мероприятий по оценке состояния самого кабеля и/или определению безопасности работы определенного участка электрической цепи. Полученные в результате замеров сведения помогают определить примерный остаточный срок службы кабеля — об этом можно судить по качеству (текущему состоянию) его оболочки и/или изоляции токопроводящих жил.

Сопротивление контрольного кабеля производится при определенных условиях со строгим соблюдением правил безопасности. Для выполнения операции измерения используются мегаомметры аналогового или цифрового типа.

 

Когда и при каких условиях производятся замеры

Согласно современным требованиям, приводимым в ПУЭ и ПТЭЭП документации, испытания изоляции на сопротивление контрольного кабеля должны производиться не реже, чем 1 раз в 3 года (1 раз в год в случае с кабелями, эксплуатируемыми в особо опасных помещениях либо задействованными в работе подвижных установок — лифты, краны и т. д.). Частота проверок также зависит от условий эксплуатации кабельной продукции — в этом случае испытания должны проводиться согласно правилам эксплуатации, устанавливаемым еще на стадии проектирования цепей управления.

Сопротивление изоляции контрольных кабелей производятся при соблюдении следующих условий:

•    Температура окружающей среды — от –30 до +50°С. Влажность воздуха до 90 %. Допустимая температура и влажность зависят от возможности конкретной модели мегаомметра работать при тех или иных условиях.
•    Участки кабеля, условия измерения и величина напряжения, прикладываемая к токопроводящим жилам, зависят от конкретной марки изделия.
•    При отсутствии документации к конкретной марке контрольного кабеля, согласно ПУЭ (таблица 1.8.39), к жилам прикладывается напряжение величиной от 500 до 1000 В.
•    Контрольный кабель может испытываться со всеми подключенными к нему аппаратами (пускатели, реле, приборы и т. д.).

Меры безопасности:

•    Замеры сопротивления изоляции контрольных кабелей напряжением до 1 кВ допустимо производить специалистами с 3-й или выше группой по электробезопасности.
•    Кабель отключается от питающей сети, после чего с него снимается остаточное напряжение путем заземления токопроводящих частей.
•    Перед началом процедур необходимо убедиться в отсутствии людей у той части аппарата, к которой присоединен мегаомметр.
•    Напряжение прикладывается к токоведущим частям кабеля при помощи измерительных щупов с изолированными держателями.
•    Запрещается прикасаться к токопроводящим жилам, к которым подключен работающий мегаомметр.
•    По завершению измерений с измеряемой части кабеля снимается остаточный заряд путем его кратковременного заземления или включения соответствующей функции мегаомметра (присутствует в некоторых моделях устройств).

Методика проведения измерений

Измерение сопротивления изоляции контрольных кабелей производятся согласно требованиям, предъявляемым к проведению измерения сопротивления низковольтных кабелей (до 1 кВ) за одним исключением: токопроводящие жилы можно не отсоединять от электрооборудования. Для выполнения процедуры требуется использование цифрового/аналогового мегаомметра, рассчитанного на работу при напряжении от 500 до 2500 В (зависит от спецификации конкретной марки кабеля). Алгоритм выполнения измерений выглядит следующим образом:

1.     Проверка отсутствия напряжения в испытуемых токопроводящих жилах. Снятие остаточного напряжения путем заземления испытуемых жил.
2.    С испытуемой стороны кабеля концы токопроводящих жил разделываются (оголяются) и разводятся друг от друга на некоторое расстояние (5–10 см).
3.    Каждая жила кабеля испытывается отдельно следующим образом:
o    Испытуемая жила подключается к одному из входов («+») мегаомметра, все остальные жилы объединяются между собой и подключаются к «земле», куда также подключается второй вход
(«–») прибора (см. рисунок ниже).
o    На кабель подается напряжение. Если мегаомметр снабжен электромеханическим генератором, напряжение генерируется путем вращения рукоятки на оборотах 120–150 об/мин. Если генератор не предусмотрен, используется внешний источник электропитания (питающая сеть или аккумулятор).
o    Испытания проводятся в течение 1 минуты. По истечении этого времени результат заносится в журнал.
o    Далее действия повторяются по отношению к каждой токопроводящей жиле (испытуемая жила подключается к выводу мегаомметра, все другие — объединяются в единую цепь со вторым выводом прибора и подключаются к «земле»).

После каждого измерения с испытуемой жилы необходимо снять остаточно напряжение. Кроме того, мегаомметру дают «отдохнуть» между испытаниями в течение некоторого времени (зависит от спецификации конкретного прибора).

Компания «Кабель.РФ®» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку контрольного кабеля по выгодным ценам.

Измерение сопротивление изоляции проводов и кабелей

Проверка состояния изоляции проводки электропроводки обязательно проводится при приёмо-сдаточных и периодических испытаниях электроустановок. Связано это с тем, что с течением времени и под влиянием условий окружающей среды (влажность, перепады температуры и т. п.) этот важнейший показатель её безопасности может терять свои свойства. Кроме того, это может привести к возникновению аварийных ситуаций.

Параметры изоляционных свойств

Из определения сопротивления следует, что его значение может быть вычислено как отношение значения приложенного напряжения Uv к величине тока, в данном случае — тока утечки через изоляцию — Iy. Формула для сопротивления изоляции Riso согласно закону Ома будет выглядеть так:

Формула верна при использовании при измерении постоянного напряжения.

Кроме того, изоляционные свойства любого диэлектрика определяются возможностью перемещения в нём зарядов под воздействием электрического поля. В приложении к свойствам изоляции этот показатель, определяемый как коэффициент поляризации Rpol, позволяет судить о деградации её свойств, то есть о старении.

Вычисляется он как отношение сопротивлений, измеренных через 600 и 60 секунд после первого измерения, то есть приложения напряжения. В виде формулы это выглядит так:

Следующий показатель характеризует качество изоляции с точки зрения её абсорбционных свойств, то есть возможности противостоять влаге. Этот параметр — Kabs, определяется он как отношение сопротивления, измеренного через 60 и 15 секунд после приложения напряжения, то есть

При повышенной влажности изоляции этот коэффициент абсорбции стремится к единице.

Используемое оборудование и условия проведения измерения

Для измерения вышеуказанных параметров применяется мегаоометр, только с помощью которого возможно достичь необходимого напряжения при измерении высоких, мегаомных сопротивлений. В нашей электролаборатории применяется многофункциональный прибор MI 3102H, аттестованный как средство измерения.

Важнейшее значение имеют условия проведения замеров. Дело в том, что при низких температурах (ниже 10 градусов) показания искажаются, то же происходит при повышенной влажности. Поэтому работы обычно проводятся при температуре +15…+35 °С, а относительная влажность окружающего воздуха не должна превышать 80%. Значения параметров должны соответствовать нормативным требованиям. Качественная изоляция характеризуется значением коэффциентов Kabs больше 1,6 и Rpol больше 4.

Специалисты электролаборатории компании «Техэкспо» проводят эти измерения в строгом соответствии с нормативами и предоставляют Заказчику Акт и Протокол измерения сопротивления изоляции, который необходим для предоставления в контролирующие органы.

Замеры сопротивления изоляции

Замеры сопротивления изоляции электропроводки

Основным предназначением изоляции является разделение токоведущих жил, а также отделение электрического кабеля от земли. Неисправная изоляция не только приводит к утечкам электротока из электросистемы, но и представляет серьёзную опасность для жизни потребителей электроэнергии.

Измерение сопротивления изоляции

Механические повреждения кабеля могут возникать при его транспортировке на место прокладки, при проведении монтажных работ. За время эксплуатации линий электроснабжения изоляция может также нарушаться под воздействием различных погодных условий (трескаться от мороза или жары, пересыхать, преждевременно стареть). Необходимо должное внимание уделять такому важному мероприятию, как измерение сопротивления изоляции для того, чтобы не допустить неполадок в электросети и возникновения аварийных ситуаций.

Замер сопротивления изоляции для выявления степени изношенности изоляции, обнаружения неисправных участков электрической проводки, в обязательном порядке должен выполняться во всех сетях и на электрических линиях. Своевременная проверка сопротивления изоляции позволяет защитить людей от поражения электротоком и предупреждает возникновение пожаров.

Особенности измерения сопротивления изоляции

Перед тем, как проводить измерение сопротивления изоляции кабелей и проводов, специалисты электролабораторийосуществляют визуальный осмотр электрической проводки, кабелей, проводят обследование мест присоединения проводов к оборудованию, соединений в распределительных коробках. Проводя замер сопротивления изоляции электропроводки, особое внимание уделяется проводам и кабелям, жилы которых подсоединяются к аппаратам защиты. Специалистами используется методика измерения сопротивления изоляции, позволяющая получать точные результаты, которые по окончанию проведения процедуры заносятся в акт замеров сопротивления изоляции.

Для того, чтобы осуществить замер изоляции используется особый прибор – мегаомметр. Измерение изоляции кабеля мегаомметром проводится при полном отключении электрооборудования от проводов и кабелей, которые подлежат обследованию. Выполняя измерение сопротивления изоляции кабелей и проводов необходимо также снять лампы с приборов, предназначенных для освещения, выключатели должны находиться в положении включения. Отключается и электропитание всех проводов и кабелей, измерение изоляции которых производится.

Измерение сопротивления изоляции выполняют между:

  • • фазными проводниками; 
  • • фазными проводниками и нейтральными; 
  • • фазными проводниками и землёй; 
  • • нейтральными проводниками и землёй.

Если проверка сопротивления изоляции выявила не соответствие показаний нормам ПТЭЭП и ПУЭ, то данный кабель обязательно демонтируется.

Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра М4100/4 (проверочное напряжение — 1000В).

Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром СО 0202/2-Г (проверочное напряжение — 2500В).

Удовлетворительным принято считать сопротивление изоляции линий питания при значении между любыми её проводами не больше 0,5МОм.

 

Узнайте, как проводится проверка сопротивления изоляции

Разработанный в начале 20 века тест сопротивления изоляции (IR) является старейшим и наиболее широко используемым тестом для оценки качества изоляции. Тест сопротивления изоляции — это второй тест, требуемый стандартами тестирования электробезопасности. Проверка сопротивления изоляции заключается в измерении сопротивления изоляции испытуемого устройства, при котором фаза и нейтраль замыкаются накоротко. Измеренное сопротивление должно быть выше указанного в международных стандартах предела. Мегаомметр (также называемый тестером сопротивления изоляции, тераомметром) используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.

Изоляция не может быть идеальной так же, как что-то не может быть без трения. Это означает, что всегда будет проходить небольшой ток. Это известно как «ток утечки». Это приемлемо с хорошей изоляцией, но если изоляция ухудшится, утечка может вызвать проблемы.Так что же делает изоляцию «хорошей»? Ну, ему нужно высокое сопротивление току, и он должен быть в состоянии выдерживать высокое сопротивление в течение длительного времени

Почему проводится проверка сопротивления изоляции?

Изоляция начинает стареть сразу после ее изготовления. С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Напряжения из-за различных факторов, таких как:

  • Электрические напряжения: В основном связаны с повышенным и пониженным напряжением.
  • Механические напряжения: Частые запуски и остановки могут вызвать механические нагрузки.
  • Проблемы с балансировкой вращающегося оборудования и любые прямые нагрузки на кабели и установки в целом.
  • Химическая нагрузка: Близость химикатов, масел, агрессивных паров и пыли в целом влияет на изоляционные характеристики материалов.
  • Напряжения, связанные с колебаниями температуры: В сочетании с механическими напряжениями, вызванными последовательностями пуска и останова, напряжения расширения и сжатия влияют на свойства изоляционных материалов.Работа при экстремальных температурах также приводит к старению материалов.
  • Загрязнение окружающей среды вызывает ускорение старения изоляции.

Этот износ может снизить удельное электрическое сопротивление изоляционных материалов, тем самым увеличивая токи утечки, которые приводят к инцидентам, которые могут быть серьезными как с точки зрения безопасности (людей и имущества), так и затрат, связанных с остановками производства. Таким образом, важно быстро определить это ухудшение, чтобы можно было предпринять корректирующие действия.Помимо измерений, проводимых на новом и отремонтированном оборудовании во время ввода в эксплуатацию, регулярные испытания изоляции на установках и оборудовании помогают избежать таких инцидентов за счет профилактического обслуживания. Эти испытания обнаруживают старение и преждевременное ухудшение изоляционных свойств до того, как они достигнут уровня, который может вызвать описанные выше инциденты.

Это испытание часто используется в качестве приемочного испытания заказчиком с минимальным сопротивлением изоляции на единицу длины, часто указываемым заказчиком.Результаты, полученные от IR Test, не предназначены для использования при обнаружении локализованных дефектов в изоляции, как в тесте trueHIPOT, а скорее дают информацию о качестве материала, используемого в качестве изоляции.

Производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.

Что делается во время измерения сопротивления изоляции?

Измерение сопротивления изоляции — это стандартное стандартное испытание, выполняемое для всех типов электрических проводов и кабелей.Его цель — измерение сопротивления изоляции при постоянном напряжении с высокой стабильностью, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Омическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

Стабильность напряжения критична; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

После того, как все необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. В течение этого интервала сопротивление должно падать или оставаться относительно стабильным. В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления

.

Выбор ИК-тестеров (Megger):

Напряжение Уровень ИК-тестер
650 В 500 В постоянного тока
1.1КВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66кВ и выше 5 кВ постоянного тока

Как измеряется сопротивление изоляции?

Измерение сопротивления изоляции выполняется с помощью ИК-тестера. Это портативный инструмент, который представляет собой более или менее омметр со встроенным генератором, который используется для создания высокого постоянного напряжения. Напряжение обычно составляет не менее 500 В и вызывает протекание тока по поверхности изоляции.Это дает показание ИК в омах.

Измерение сопротивления изоляции основано на законе Ома. (R = V / I). Подавая известное постоянное напряжение ниже, чем напряжение для испытания диэлектрика, а затем измеряя протекающий ток, очень просто определить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому, измеряя протекающий слабый ток, мегомметр показывает значение сопротивления изоляции, предоставляя результат в кВт, МВт, ГВт, а также TW (на некоторых моделях).Это сопротивление характеризует качество изоляции между двумя проводниками и дает хорошее представление о рисках протекания токов утечки.

Что ж, если вы смотрите на большое количество ИК-излучения, у вас хорошая изоляция. С другой стороны, если он относительно низкий, значит, изоляция плохая.

Однако это еще не все — на ИК может влиять множество факторов, включая температуру и влажность. Со временем вам придется провести ряд тестов, чтобы убедиться, что значение IR остается более или менее неизменным.Значение сопротивления изоляции часто выражается в гигаомах [ГОм].

Хорошая изоляция — это когда показания мегомметра сначала увеличиваются, а затем остаются постоянными. Плохая изоляция — это когда показания мегомметра сначала увеличиваются, а затем уменьшаются.

Ожидаемое значение IR попадает на Темп. От 20 до 30 градусов по Цельсию. Если эта температура снизится на 10 градусов по Цельсию, значения ИК увеличатся в два раза. Если выше температура увеличится на 70 градусов по Цельсию, значения ИК уменьшатся в 700 раз.

Чтобы измерить большое электрическое сопротивление, измерительное напряжение должно быть намного выше, чем в случае стандартных измерений сопротивления.Это напряжение часто находится в диапазоне от 100 до 1000 В постоянного тока, и его нельзя использовать для измерения сопротивления электронных компонентов, поскольку они могут быть повреждены.

Сопротивление высокого значения

Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения подается на измеряемое сопротивление, и результирующий ток считывается на высокочувствительной цепи амперметра, которая может отображать значение сопротивления.

В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

Цепь шунтирующего амперметра

Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI. Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений.

Цепь амперметра обратной связи

Эта схема чаще всего используется в наших приборах. Он охватывает измерение сопротивления высоких значений.

Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность — два важных параметра, которые влияют на значение сопротивления изолятора.

Разница между испытанием на диэлектрическую прочность и испытанием на ИК-излучение

Испытание диэлектрической прочности, также называемое «испытанием на пробой», измеряет способность изоляции выдерживать скачки напряжения средней продолжительности без возникновения искрового пробоя.В действительности, этот скачок напряжения может быть вызван молнией или индукцией, вызванной неисправностью на линии электропередачи. Основная цель этого испытания — убедиться, что соблюдаются правила строительства, касающиеся путей утечки и зазоров. Этот тест часто выполняется с применением переменного напряжения, но также может выполняться с постоянным напряжением. Для этого типа измерения требуется высокопроизводительный тестер. Полученный результат представляет собой значение напряжения, обычно выражаемое в киловольтах (кВ). Диэлектрические испытания могут иметь разрушительные последствия в случае неисправности, в зависимости от уровней испытаний и доступной энергии в приборе.По этой причине он зарезервирован для типовых испытаний нового или отремонтированного оборудования.

Однако измерение сопротивления изоляции не является разрушающим при нормальных условиях испытаний. Выполняется путем подачи напряжения постоянного тока с меньшей амплитудой, чем при испытании диэлектрической проницаемости, и дает результат, выраженный в кВт, МВт, ГВт или ТВт. Это сопротивление указывает на качество изоляции между двумя проводниками. Поскольку он является неразрушающим, он особенно полезен для контроля старения изоляции в течение срока службы электрического оборудования или установок.Это измерение выполняется с помощью тестера сопротивления изоляции, также называемого мегомметром

.

Факторы, влияющие на значения сопротивления изоляции:

  • Емкостной зарядный ток: ток, который начинается с высокого уровня и падает после того, как изоляция была заряжена до полного напряжения (подобно потоку воды в садовом шланге, когда вы впервые открываете кран).
  • Ток абсорбции: Также изначально высокий ток, который затем падает (по причинам, обсуждаемым в разделе «Метод сопротивления времени»).
  • Ток проводимости или утечки Небольшой, по существу, постоянный ток через изоляцию и над ней.

Требования безопасности для Измерение сопротивления изоляции

  • Все тестируемое оборудование должно быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено), по крайней мере, на время подачи испытательного напряжения, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабелей промаркированы должным образом для безопасности.
  • При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае проверка покажет неисправную изоляцию, хотя на самом деле это не так.
  • Убедитесь, что все соединения в испытательной цепи затянуты.
  • Концы кабеля, которые необходимо изолировать, должны быть отключены от источника питания и защищены от контакта с источником питания, заземлением или случайным контактом.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.

О Megger:

Мегаомметр обычно оснащен тремя выводами.

  1. Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.
  2. Клемма «ЗЕМЛЯ» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.
  3. Клемма «GUARD» (или «G») обеспечивает обратную цепь, которая обходит счетчик. Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD». Это самый простой из тестов.

Почему ультиметр M не используется для измерения сопротивления изоляции?

Мультиметр может измерять различные величины, в том числе электрическое сопротивление, которое измеряется в омах.Его работа, в частности, для измерения сопротивления, обеспечивается действием внутренней батареи (низкое напряжение), которая пропускает небольшой ток через измеряемое сопротивление или, в противном случае, через проводник или обмотку. Полученное значение в омах относится к электрическому сопротивлению, которое заставляет ток проходить через проводник, и увеличивается в зависимости от его долготы и сечения.

С другой стороны, мегомметр, также известный как Megger, часто используется для измерения сопротивления изоляции изолированного тела. Для своей работы он использует генератор постоянного тока или аккумулятор, способный генерировать значения выходного напряжения до 5000 В. Результаты, полученные при испытании на сопротивление, относятся к сопротивлению изоляции, которое имеет изолированный элемент, относящийся к активному элементу или проводнику.

Несмотря на некоторое сходство между обоими инструментами, сопротивление изоляции в обязательном порядке измеряется с помощью мегомметра (или аналогичного устройства), поскольку он может генерировать высокое напряжение, которое создает момент напряжения в изоляции.Сопротивление изоляции обычно рассчитывается в мега- или тераомах, включая

.

В заключение, мультиметр измеряет электрическое сопротивление проводника (катушки), в то время как мегомметр измеряет сопротивление изоляции изолированной группы (две катушки по отношению к массе), что не может сделать мультиметр.

Типы испытаний сопротивления изоляции

Кратковременный или точечный тест
В этом методе вы просто подключаете прибор Megger к проверяемой изоляции и включаете его в течение короткого определенного периода времени, вы просто выбираете точку на кривой возрастающего сопротивления. значения; довольно часто значение будет меньше на 30 секунд, больше на 60 секунд.Помните также, что температура и влажность, а также состояние изоляции влияют на чтение.

Если тестируемое устройство имеет очень маленькую емкость, например, короткая проводка в доме, то все, что необходимо, — это точечный тест. В течение многих лет специалисты по техническому обслуживанию использовали правило одного мегомма для установления допустимого нижнего предела сопротивления изоляции. Можно сформулировать правило: сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения с минимальным значением в один МОм.

Метод сопротивления времени
Этот метод практически не зависит от температуры и часто может дать окончательную информацию без учета прошлых испытаний. Он основан на поглощающем эффекте хорошей изоляции по сравнению с влажной или загрязненной изоляцией. Испытания этим методом иногда называют испытаниями на абсорбцию.

Этот тест имеет ценность еще и потому, что он не зависит от размера оборудования. Увеличение сопротивления чистой и сухой изоляции происходит одинаково, независимо от того, большой или маленький двигатель.Таким образом, вы можете сравнить несколько двигателей и установить стандарты для новых, независимо от их номинальной мощности.

Сопротивление изоляции должно быть выполнено для предотвращения таких опасностей, как поражение электрическим током и короткое замыкание, вызванное тем, что изоляция электрических устройств, деталей и оборудования, используемых на промышленных предприятиях, зданиях и других объектах, ухудшается в течение длительного периода использования.

Общие сведения об испытании сопротивления изоляции | EC&M

Изоляция начинает стареть сразу после ее изготовления.С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Это ухудшение может привести к опасным условиям надежности электроснабжения и безопасности персонала. Таким образом, важно быстро выявить это ухудшение, чтобы можно было предпринять корректирующие действия. Не все понимают один из простейших тестов и необходимый для него инструмент. Чтобы помочь устранить это непонимание, давайте подробно обсудим тестирование сопротивления изоляции (IR) и мегомметр.


Компоненты для испытания изоляции

Подойдем к теме покомпонентно.

Мегаомметр

Базовая схема подключения мегомметра показана на рис. 1 (слева). Мегомметр похож на мультиметр, когда последний выполняет функцию омметра. Однако есть различия.

Во-первых, выходной сигнал мегомметра на намного выше, чем у мультиметра, . Используются напряжения 100, 250, 500, 1000, 2500, 5000 и даже 10000 В (, таблица 1, ).Наиболее распространенные напряжения — 500 В и 1000 В. Более высокие напряжения используются для большей нагрузки на изоляцию и, таким образом, для получения более точных результатов. Таблица 1. Рекомендуемые испытательные напряжения для текущих проверок сопротивления изоляции оборудования, рассчитанного на напряжение 4 160 В и выше.

Во-вторых, диапазон мегомметра выражается в мегаомах, как следует из названия, а не в омах, как в мультиметре.

В-третьих, мегомметр имеет относительно высокое внутреннее сопротивление, что делает его менее опасным в использовании, несмотря на более высокие напряжения.

Контрольные соединения

Мегаомметр обычно оснащен тремя выводами. Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.

Клемма «EARTH» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.

Клемма «GUARD» (или «G») обеспечивает обратный контур, который обходит счетчик.Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD».

Фиг. 2, 3 и 4 показаны соединения для тестирования трех распространенных типов оборудования. На рис. 2 показано соединение для проверки ввода трансформатора без измерения поверхностной утечки. Измеряется только ток через изоляцию, так как любой поверхностный ток будет возвращаться на провод «GUARD».

Различные тесты изоляции

По сути, есть три различных теста, которые можно выполнить с помощью мегомметра.

1) Сопротивление изоляции (IR)

Это самый простой из тестов. После того, как необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. (Одноминутный интервал — это отраслевая практика, которая позволяет всем снимать показания одновременно. Таким образом, сравнение показаний будет иметь значение, потому что методы тестирования, хотя и взяты разными людьми, согласованы.) интервале сопротивление должно падать или оставаться относительно стабильным.В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления.

Обратите внимание, что ИК чувствителен к температуре. Когда температура повышается, ИК понижается, и наоборот. Следовательно, чтобы сравнить новые показания с предыдущими, вам необходимо скорректировать показания до некоторой базовой температуры. Обычно в качестве температур сравнения используются 20 ° C или 40 ° C; таблицы доступны для любой коррекции.Однако общепринятое практическое правило состоит в том, что ИК-излучение изменяется в два раза на каждые 10 ° C.

Например, предположим, что мы получили показание ИК-излучения 100 МОм при температуре изоляции 30 ° C. Скорректированный ИК (при 20 ° C) составит 100 МОм умноженное на 2, или 200 МОм.

Также обратите внимание, что допустимые значения IR будут зависеть от оборудования. Исторически сложилось так, что полевой персонал использовал сомнительный стандарт «один мегом на кВ плюс один». Международная ассоциация электрических испытаний.(NETA) Спецификация NETA MTS-1993, «Спецификации технического обслуживания оборудования и систем распределения электроэнергии », предоставляет гораздо более реалистичные и полезные значения.

Результаты испытаний следует сравнить с предыдущими показаниями и показаниями, снятыми для аналогичного оборудования. Любые значения ниже стандартных минимумов NETA или внезапные отклонения от предыдущих значений должны быть исследованы.

2) Коэффициент диэлектрической абсорбции

Этот тест подтверждает тот факт, что «хорошая» изоляция будет показывать постепенно увеличивающееся ИК-излучение после подачи испытательного напряжения.После того, как соединения выполнены, прикладывается испытательное напряжение, и ИК считывается в два разных момента: обычно 30 и 60 секунд или 60 секунд и 10 минут. Более поздние показания делятся на более ранние, в результате получается коэффициент диэлектрического поглощения. 10 мин. / 60 сек. отношение называется индексом поляризации (ПИ).

Например, предположим, что мы применяем мегомметр, как описано ранее, с соответствующим испытательным напряжением. Одна мин. Показание ИК составляет 50 МОм, а 10 мин.Показание ИК составляет 125 МОм. Таким образом, PI составляет 125 МОм, разделенное на 50 МОм, или 2,5.

В различных источниках имеются таблицы допустимых значений коэффициентов диэлектрической абсорбции (см. , таблица 2, ). Таблица 2. Список условий изоляции, указанных в коэффициентах диэлектрической абсорбции. Эти значения следует рассматривать как предварительные и относительные, с учетом опыта использования метода сопротивления времени в течение определенного периода времени.

* Эти результаты будут удовлетворительными для оборудования с очень низкой емкостью, например, для коротких проводов в доме.

** В некоторых случаях с двигателями значения, примерно на 20% превышающие указанные здесь, указывают на сухую, хрупкую обмотку, которая может выйти из строя при ударах или во время пусков. Для профилактического обслуживания обмотку двигателя необходимо очистить, обработать и высушить для восстановления гибкости обмотки.

3) Испытание ступенчатым напряжением

Это испытание особенно полезно при оценке устаревшей или поврежденной изоляции, не обязательно имеющей влажность или загрязнения. Здесь требуется испытательный прибор с двойным напряжением. После подключения выполняется ИК-тест при низком напряжении, скажем, 500 В. Затем образец для испытаний разряжается, и испытание проводится снова, на этот раз при более высоком напряжении, скажем, 2500 В. Если разница между двумя показаниями ИК-излучения превышает 25%, следует подозревать старение или повреждение изоляции.

БОКОВАЯ ПАНЕЛЬ: Основная теория

Эквивалентная схема для электрической изоляции показана на Рис.5 ниже. Верхний вывод может быть центральным проводом силового кабеля, а нижний вывод — его экраном. Ток, протекающий через изоляцию кабеля, будет тем током, который на схеме обозначен как «полный ток». Как видите, полный ток равен сумме «емкостного тока» плюс «ток поглощения» плюс «ток утечки».

Обратите внимание, что полный ток — это не ток нагрузки, протекающий через систему. Скорее, это ток, который течет от проводника под напряжением через изоляцию к земле.

Давайте дадим здесь несколько основных определений.

Емкостный ток . Конденсатор создается, когда два проводника разделены изолятором. Такова ситуация в энергосистеме.

Если внезапно приложить напряжение постоянного тока (замыкающий переключатель на рис. 5 ), электроны устремятся к отрицательной пластине и будут вытягиваться из положительной пластины. Первоначально этот ток будет очень большим, но постепенно будет уменьшаться до гораздо меньшего значения, в конечном итоге приближаясь к нулю.Ток, обозначенный как «емкостной зарядный ток» в . Рис. 6 ниже показывает, как этот ток изменяется со временем после приложения постоянного напряжения.

Ток утечки . Никакая изоляция не идеальна; даже новая изоляция будет иметь некоторый ток утечки, хотя и небольшой. Этот ток утечки будет увеличиваться с возрастом изоляции. Это также ухудшится, если изоляция будет влажной или загрязненной.

«Ток проводимости или утечки», показанный на Рис. 6 — это графическое представление тока утечки.Обратите внимание, что он начинается с нуля и быстро увеличивается до конечного значения 10 мкА. Так ведет себя хорошая изоляция. Однако по мере старения и ухудшения состояния изоляции в токе утечки могут произойти два изменения. Одно изменение может заключаться в том, что конечное значение тока утечки может увеличиваться, а не выравниваться. Например, вместо выравнивания на уровне 10 мкА конечный ток может увеличиться до 20 мкА. Другое изменение может заключаться в том, что вместо быстрого повышения до конечного значения и выравнивания ток утечки просто может продолжать увеличиваться.В этом случае изоляция рано или поздно выйдет из строя.

Ток потребления . Заряды, которые образуются на пластинах конденсатора, притягивают заряды противоположной полярности в изоляции, заставляя эти заряды перемещаться и, таким образом, потреблять ток. Наибольшее движение заряда происходит в начальные моменты, а затем постепенно спадает почти до нуля. Этот ток называется диэлектрическим поглощением или просто током поглощения. Временной график этого тока, обозначенный как «ток поглощения», также показан на рис.6 .

Итого текущие . Полный ток, протекающий в цепи, равен сумме компонентов, показанных на рис. 6. Полный ток, протекающий при приложении постоянного напряжения, начинается с относительно высокого значения, а затем падает, установившись на значении чуть выше ток утечки. При плохой или изношенной изоляции общий ток будет медленно падать или даже увеличиваться.

Измерение сопротивления изоляции (IR)

Дефекты изоляции

Измерение сопротивления изоляции — это обычное стандартное испытание, проводимое для всех типов электрических проводов и кабелей.В качестве производственного испытания это испытание часто используется в качестве приемочного испытания заказчиком, при этом заказчик часто указывает минимальное сопротивление изоляции на единицу длины.

Измерители сопротивления изоляции Megger MIT1020 10 кВ разработаны специально для помощи пользователю при тестировании и обслуживании высоковольтного оборудования.

Результаты, полученные в результате ИК-теста, не предназначены для использования при обнаружении локальных дефектов изоляции, как в реальных условиях. Тест HIPOT, а скорее дает информацию о качестве сыпучего материала, используемого в качестве изоляции.

Даже когда это не требуется конечному потребителю, многие производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.

Выбор ИК-тестеров (Megger):

Доступны тестеры изоляции с испытательным напряжением 500, 1000, 2500 и 5000 В. Рекомендуемые характеристики тестеров изоляции приведены ниже:

Уровень напряжения ИК-тестер
650 В 500 В постоянного тока
1. 1 кВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66 кВ и выше 5 кВ постоянного тока

Испытательное напряжение для измерения мегомметров:

При использовании переменного напряжения действует правило большого пальца. составляет:
Испытательное напряжение (перем. ток) = (2X напряжение с паспортной таблички) +1000.

Когда используется постоянное напряжение (чаще всего используется во всех мегомметрах)
Испытательное напряжение (постоянный ток) = (2X напряжение с заводской таблички).

Характеристики оборудования / кабеля Испытательное напряжение постоянного тока
24 В до 50 В 50 В до 100 В
50 В до 100 В 100 В до 250 В
100 240В 250В до 500В
440В до 550В 500В до 1000В
2400В 1000В до 2500В
4100В 1000В до 5000В

Megger Измерение

Испытательное напряжение Диапазон измерений
250 В постоянного тока от 0 МОм до 250 ГОм
500 В постоянного тока 0 МОм до 500 ГОм
1 кВ постоянного тока 0 МОм 0 МОм

2. 5 кВ пост. Тока от 0 МОм до 2,5 ТОм
5 кВ пост. Тока от 0 МОм до 5 ТОм

Меры предосторожности при выполнении мегомметра

Перед выполнением мегомметра:

Убедитесь, что все соединения в испытательной цепи надежны. Перед использованием проверьте мегомметр, выдает ли он значение INFINITY , когда он не подключен, и НУЛЬ, когда два терминала соединены вместе и ручка вращается.

Во время измерения в режиме мегомметра:

При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае тест покажет неисправную изоляцию, хотя на самом деле это не так.

Убедитесь, что заземление, используемое при проверке заземления и разомкнутых цепей, хорошее, иначе тест даст неверную информацию. Запасные жилы не следует перерабатывать, когда другие рабочие жилы того же кабеля подключены к соответствующим цепям.

После завершения измерения кабеля:

  • Убедитесь, что все проводники подключены правильно.
  • Проверьте правильность работы точек, треков и сигналов, подключенных через кабель.
  • В случае сигналов аспект необходимо уточнять лично.
  • В случае точек проверьте позиции на месте. Проверьте, не произошло ли случайно заземление любой полярности проводки, проходящей через кабель.

Требования безопасности для Meggering:

  • Все тестируемое оборудование ДОЛЖНО быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено), по крайней мере, до тех пор, пока подавалось испытательное напряжение, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабеля промаркированы должным образом для безопасности.
  • Изолируемые концы кабеля должны быть отключены от источника питания и защищены от контакта с источником питания, земли или случайного контакта.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.
  • Не выполняйте мегомметр при влажности более 70%.
  • Хорошая изоляция: показания мегомметра сначала увеличиваются, а затем остаются постоянными.
  • Плохая изоляция: показания мегомметра сначала увеличиваются, а затем уменьшаются.
  • Ожидаемое значение IR попадает на Темп. От 20 до 30 градусов по Цельсию.
  • Если указанная выше температура снизится на 10 градусов по Цельсию, значения ИК-излучения увеличатся в два раза.
  • Если выше температура увеличится на 70 градусов по Цельсию, значения ИК-излучения уменьшатся в 700 раз.

Как использовать Megger

Meggers оснащен тремя соединительными клеммами линии (L), клеммами заземления (E) и защитными клеммами (G).

Соединения мегомметра

Сопротивление измеряется между клеммами линии и заземления, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых ситуаций тестирования, когда одно сопротивление должно быть изолировано от другого. Давайте рассмотрим одну ситуацию, когда сопротивление изоляции должно быть проверено в двухжильном кабеле.

Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить «линейный» вывод мегомметра к одному из проводов и подключить заземляющий провод мегомметра к проводу, намотанному на оболочку. кабеля.

Конфигурация мегомметра

В этой конфигурации мегомметр должен считывать сопротивление между одним проводником и внешней оболочкой.

Мы хотим измерить сопротивление между проводником-2 и оболочкой, но на самом деле мегомметр измеряет сопротивление параллельно с последовательной комбинацией сопротивления проводник-проводник ( R c1-c2 ) и первого проводника до оболочки ( R c1-s ).

Если нас не волнует этот факт, мы можем продолжить тест в соответствии с настройками.Если мы хотим измерить только сопротивление между вторым проводником и оболочкой ( R c2-s ), тогда нам нужно использовать клемму мегомметра « Guard ».

Megger — Подключение клеммы защиты

При подключении клеммы «Guard» к первому проводнику два проводника имеют почти равный потенциал .

При небольшом напряжении между ними или его отсутствии сопротивление изоляции почти бесконечно, и поэтому между двумя проводниками не будет тока .Следовательно, показания сопротивления мегомметра будут основываться исключительно на токе, протекающем через изоляцию второго проводника, через оболочку кабеля и к намотанному вокруг провода, а не на токе, протекающем через изоляцию первого проводника.

Защитный зажим (если он установлен) действует как шунт, выводя подключенный элемент из зоны измерения. Другими словами, это позволяет вам избирательно оценивать определенные компоненты большого электрического оборудования.Например, рассмотрим двухжильный кабель с оболочкой.

Как показано на диаграмме ниже, необходимо учитывать три сопротивления.

Меггеринг проводов

Если мы измеряем между сердечником B и оболочкой без подключения к клемме защиты, некоторый ток пройдет от B к A и от A к оболочке. Наше измерение было бы низким. При подключении защитной клеммы к A две жилы кабеля будут иметь почти одинаковый потенциал, и, таким образом, эффект шунтирования устранен.

Продолжение здесь — Измерение сопротивления изоляции (IR) — Часть 2

Сопротивление изоляции: Измерение негерметичных проводов

Целостность изоляции проводов — фундаментальная составляющая их характеристик.Без него значительно снижается безопасность и надежность провода. За прошедшие годы в отрасли разработаны десятки методов оценки целостности изоляции.

Среди множества тестов, существующих в мире электромонтажа, одним из тестов, которые часто неправильно понимают или применяют неправильно, является испытание сопротивления изоляции. Несмотря на то, что это часть квалификационных испытаний почти для всех проводов, представленных на рынке, испытание сопротивления изоляции может быть неправильно применено и неправильно понято.

В этой статье представлен обзор этого теста, показано, как различные значения могут влиять на производительность системы и на что обращать внимание при устаревании систем.

Основы

На фундаментальном уровне провод представляет собой комбинацию проводящей среды, защищенной резистивной средой. Характеристики этого резистора или изолятора значительно различаются в зависимости от материала, толщины и условий эксплуатации. В большинстве приложений предпочтительно, чтобы изолятор имел высокое сопротивление; это обеспечивает безопасность для тех, кто обращается с проводами, пока они находятся под напряжением. Кроме того, это гарантирует, что любой сигнал или мощность, передаваемые по проводу, не попадут по непредусмотренному пути, например, к другому проводу или токопроводящей цели (например,грамм. структура).

Изоляция проводов — не идеальный изолятор. Когда на проводник подается высокое напряжение, через изоляцию будет протекать электрический ток. Сила тока зависит от конструкции провода, материалов, существующих повреждений, ухудшения характеристик, влажности и напряжения.

Испытание сопротивления изоляции позволяет оценить сопротивление изоляции провода. При выполнении в лабораторных условиях проволока погружается в водяную баню концами над водой.На проводник подается высокое напряжение, а электрическое заземление помещается в водяную баню. Хотя установка для теста проста, сбор полезных данных требует осторожности.

Одна из трудностей при выполнении теста сопротивления изоляции (IR) состоит в том, что для этого требуется специальное испытательное оборудование и провод значительной длины. В качестве примера, метод тестирования AS4373 предлагает использовать провод длиной не менее 26 футов, и для этого есть причина: современные типы изоляции проводов — очень хорошие резисторы.

Для определения сопротивления компонента требуется один из двух методов: сравнительное падение напряжения или точное измерение электрического тока. Сложность проведения сравнительных измерений падения напряжения заключается в том, что в большинстве вольтметров для измерений используется внутренний резистор 10 МОм. Измерения, выполненные на резисторах выше 10 МОм, неточны.

Чтобы решить эту проблему, обычно используемый метод требует точного измерения электрического тока или пикоамперметра.В этой конфигурации напрямую измеряется ток утечки через изолятор. Учитывая, что большинство типов проводов имеют сопротивление изоляции в гига омах на тысячу футов, электрический ток, протекающий через изоляцию, даже при длине 100 футов провода, часто измеряется в наноамперах.

Правильный блок питания

Для правильного выполнения ИК-теста необходимо использовать источник постоянного тока. Источник питания постоянного тока является предпочтительным, поскольку он позволяет избежать повторных зарядов и разрядок изоляции.В лабораторной испытательной установке изоляция действует как диэлектрик конденсатора. Если источник питания не выдает чистую мощность без пульсаций, будет выполнено непоследовательное и ненадежное измерение сопротивления изоляции.

Последствия для высокого напряжения

Важно отметить, что измерения сопротивления изоляции не дают никаких указаний на высоковольтные характеристики изоляции. Типы изоляции с высоким сопротивлением могут по-прежнему иметь относительно низкие начальные напряжения частичных разрядов.Другие тесты лучше подходят для определения характеристик высокого напряжения и долговечности.

Выполнение IR в поле

Сопротивление изоляции проводов с возрастом снижается. Это может быть электрическое напряжение на изоляции, воздействие повышенных температур, вызывающее деградацию полимера, термоциклирование, вызывающее трещины, механическое повреждение или множество других источников ухудшения. Для некоторых типов проводов сопротивление изоляции может использоваться как индикатор состояния провода; конечно, те провода, у которых было значительное сокращение (т.е. 90%) следует немедленно рассмотреть для замены. Однако снижение сопротивления изоляции напрямую не означает, что провод следует заменять. Многочисленные исследования показали, что сопротивление изоляции — это всего лишь одно значение, которое следует учитывать.

Например, те, кто использует тестеры ремней безопасности в самолетах, часто обнаруживают другие (низкие) значения сопротивления изоляции влажным утром, чем в сухой день. Кроме того, температура играет важную роль в инфракрасном излучении.У некоторых изоляционных материалов ИК-излучение уменьшается на 50% при повышении температуры на 10 90 684 o 90 685 ° C. Из-за этой изменчивости важно, чтобы сравнительное тестирование или оценка состояния здоровья проводились в одинаковых условиях; невыполнение этого может привести к неверным выводам.

Заключение

Испытание сопротивления изоляции — отличный способ оценить характеристики провода / кабеля и целостность изоляции. Также важно знать, что способ выполнения теста так же важен, как и сами результаты; без четкого понимания оборудования, напряжений и системы, подлежащих оценке, результаты могут быть бессмысленными.

Чтобы получить максимальную отдачу от тестов по оценке проводов / кабелей, свяжитесь с Lectromec.

Михаил Траскос

Президент, Lectromec

[email protected]

Майкл более десяти лет занимается оценкой деградации и отказов проводов. Он работал над десятками проектов по оценке надежности и квалификации компонентов EWIS. Майкл является FAA DER с делегированными полномочиями в отношении сертификации EWIS и председателем комитета по установке EWIS SAE AE-8A.

Испытание сопротивления изоляции | Цветность

При испытании сопротивления изоляции (IR) измеряется общее сопротивление между любыми двумя точками, разделенными электрической изоляцией. Таким образом, испытание определяет, насколько эффективно диэлектрик (изоляция) сопротивляется прохождению электрического тока. Такие тесты полезны для проверки качества изоляции не только при первом производстве продукта, но и в течение долгого времени, когда продукт используется.

Выполнение таких испытаний через регулярные интервалы времени может выявить надвигающиеся нарушения изоляции до их возникновения и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.

Как показано на Рисунке 15, 2-проводное незаземленное соединение является рекомендуемой установкой для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования 2-контактных устройств, таких как конденсаторы, резисторы и другие дискретные компоненты.

Как показано на Рисунке 16, для проверки заземленных компонентов рекомендуется двухпроводное заземление.Заземленный компонент — это компонент, в котором одно из его соединений идет на заземление, тогда как незаземленный компонент — это компонент, в котором ни одно соединение не идет на землю. Измерение сопротивления изоляции кабеля в водяной бане является типичным применением 2-проводного заземленного соединения.

Процедура измерения

Проверка сопротивления изоляции обычно состоит из четырех этапов: зарядки, выдержки, измерения и разрядки. Во время фазы заряда напряжение нарастает от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток тестируемого устройства.Как только напряжение достигнет выбранного значения,

Затем можно позволить напряжению

оставаться на этом уровне до начала измерений.

После измерения сопротивления в течение выбранного времени ИУ снова разряжается до 0 В во время последней фазы.

Измерители сопротивления изоляции

обычно имеют 4 выходных соединения — заземление, экран, (+) и (-) — для различных применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока.При выполнении теста оператор сначала подключает ИУ, как показано на рисунках 15 или 16.

Прибор измеряет и отображает измеренное сопротивление. При подаче напряжения через изоляцию сразу же начинает течь ток. Этот ток имеет три компонента: ток «диэлектрического поглощения», зарядный ток и ток утечки.

Диэлектрическая абсорбция

Диэлектрическое поглощение — это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени.Это демонстрируется путем подачи напряжения на конденсатор в течение длительного периода времени, а затем его быстрой разрядки до нулевого напряжения. Если конденсатор оставить разомкнутым в течение длительного периода, а затем подключить к вольтметру, измеритель покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрическим поглощением». Это явление обычно связано с электролитическими конденсаторами.

При измерении ИК-излучения различных пластиковых материалов это явление приводит к увеличению значения ИК-излучения со временем.Завышенное значение IR вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.

Зарядный ток

Поскольку любое изолированное изделие демонстрирует основные характеристики конденсатора — два проводника, разделенных диэлектриком, приложение напряжения через изоляцию вызывает протекание тока по мере зарядки конденсатора. В зависимости от емкости продукта этот ток мгновенно повышается до высокого значения при приложении напряжения, а затем быстро спадает экспоненциально до нуля, когда продукт полностью заряжается.Зарядный ток спадает до нуля намного быстрее, чем ток диэлектрического поглощения.

Ток утечки

Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Целью теста является измерение сопротивления изоляции. Чтобы вычислить значение IR, подайте напряжение, измерьте установившийся ток утечки (после того, как диэлектрические токи поглощения и зарядные токи уменьшатся до нуля), а затем разделите напряжение на ток.Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным. Если нет, тест не пройден.

Важна ли проверка сопротивления изоляции?

Вы знаете, как называется это цветное покрытие на внешней стороне провода? Это называется изоляцией. А знаете ли вы, что в день разработки провода изоляция провода начинает стареть и ухудшаться? К сожалению, это правда. Изоляция провода не похожа на хорошее вино; он не улучшается с возрастом.А с возрастом как насчет «электрической» прочности провода? Со временем его характеристики ухудшаются, а способность изолировать проводник снижается. Воздействие на провод жестких условий окружающей среды и экстремальных температур еще больше ускоряет деградацию изоляции. Повреждение изоляции провода при изготовлении жгутов электропроводки, например порезы кусачками, также может снизить целостность изоляции. Вот почему в аэрокосмической и оборонной промышленности крайне важно, среди прочего, тщательно проверять все жгуты проводов на сопротивление изоляции.

Самым простым тестом, используемым для обнаружения пробоев изоляции проводов, является тест «сопротивления изоляции» или тест «IR». Хотя ИК-тест был разработан в начале 1900-х годов, мы все еще используем его сегодня. Здесь, в InterConnect Wiring, большинство наших жгутов проводов и панелей устанавливаются на военные самолеты. Опасная ситуация может возникнуть, если нарушение изоляции провода отрицательно повлияет на оборудование или приведет к травмам, особенно в воздухе. Поэтому мы понимаем, насколько чрезвычайно важно для нас быстро обнаруживать любое ухудшение изоляции в наших изделиях для электропроводки в процессе производства и принимать превентивные меры.Во время ИК-теста испытательное оборудование прикладывает (неразрушающее) высокое постоянное напряжение (DC), обычно от 500 до 1500 В постоянного тока, между проводником и одним или несколькими другими проводниками в течение определенного времени. Поскольку мы проверяем целостность изоляции проводов, мы хотим, чтобы между проводниками протекал небольшой ток или совсем его не было. Таким образом, ожидается высокое значение сопротивления — обычно от 35 до 100 МОм.

Каждый электрический тест, который мы проводим для наших продуктов, включает в себя ИК-тесты. Мы прекрасно понимаем, что пробой изоляции провода может существовать, даже если он не виден невооруженным глазом.За эти годы мы добились успехов в тестировании нашей продукции, чтобы убедиться, что наши провода «электрически» прочны. Испытания на сопротивление изоляции (IR) не только важны, но также необходимы для всех годных к полетам жгутов электропроводки и кабельных сборок военных и коммерческих самолетов.

InterConnect Wiring и наша первоклассная группа тестирования были представлены в журнале Aerospace Testing International. Обратитесь к стр. 91, чтобы узнать о том, как мы значительно повысили эффективность наших испытаний, когда поддержали перемонтаж нескольких самолетов F-15 для ВВС США.

Связанные

Объяснение сопротивления изоляции и способы его измерения

Как измерить сопротивление изоляции электрического кабеля ?, Измерение сопротивления изоляции кабеля с помощью тестера изоляции.

Значение сопротивления изоляции на электрическом проводе является важным базовым параметром и показывает уровень производительности проводника для подачи электрического напряжения от источника питания (электростанции) в следующую электрическую сеть или на нагрузку. или использование электрооборудования, нужен проводник.

Учитывая, что электричество также имеет потенциальный риск короткого замыкания, если другой проводник может соприкоснуться с другими проводниками, А также, чтобы избежать риска протекания электричества через другие объекты, для защиты проводника необходим изоляционный материал. от различных нарушений, которые могут возникнуть.

Проводник
Проводник (проводник) — это материал или вещество, твердое, газообразное, жидкое, которое может проходить надлежащим образом или проводить напряжение или электрический ток.

Хорошими электрическими проводниками считаются те, которые имеют наименьшее сопротивление.

Изолятор
Изолятор — это материал или вещество, твердое, жидкое или газообразное, которое не может или затруднено для передачи электрического заряда.

Каждый токопроводящий кабель снабжен изоляционным материалом, который предотвращает передачу нежелательных электрических зарядов и может вызвать помехи в электрической установке или даже вызвать другие более смертельные риски.

Функция изоляции:

  • Предотвратите передачу электричества от двух разных типов проводников, которые потенциально отличаются, что может привести к короткому замыканию.
  • Предотвратить передачу электричества от проводника на землю, приводящую к потере / утечке электрического тока
  • Предотвращает передачу электричества от проводника к другому объекту. например, риск прикосновения к электрическим кабелям людей, земли или других объектов вокруг них.

Если к электрическому проводнику прикасаются люди, это может привести к поражению электрическим током, угрожающему безопасности человека. Прикосновение к электрическому проводнику другим предметом может вызвать утечку тока, искры и возгорание.

Почему существует электрическая сеть без изоляции?

Воздух — лучший изолятор

В дополнение к обычному изоляционному материалу, которым покрывается токопроводящий кабель, у нас также есть хороший изоляционный материал для предотвращения возникновения утечек электричества, а именно воздух.

Таким образом, в электрической сети, установленной в воздухе, даже при использовании кабеля или проводника без электричества (без изоляции), она по-прежнему остается изолированной по воздуху и не представляет опасности для нас и других объектов.

Электропроводящие кабели в электрической установке, снабженные изолирующей оболочкой, предназначенной для предотвращения различных помех и других опасностей.

Как узнать, что изоляция шнура питания в хорошем состоянии?

Чтобы убедиться, что изоляция электрического кабеля находится в хорошем состоянии и служит для предотвращения утечки тока, каждая электрическая изоляция должна иметь минимальное значение сопротивления 1000 Ом, умноженное на электрическое напряжение кабеля.

Минимальное значение сопротивления изоляции
Хорошая изоляция определяется величиной сопротивления. Чем больше значение сопротивления изоляции, тем лучше функция изоляции. Следовательно, необходимо проверить и измерить каждую изоляцию электрического проводника, независимо от того, имеет ли она еще хорошее значение сопротивления или нет.

Значение сопротивления изоляции кабеля или электрического проводника имеет минимальное значение, а именно:

1000 Ом x Напряжение.

Пример:
Если электрический проводник изолирован, электрическое напряжение составляет 380 вольт, тогда минимальное значение сопротивления изоляции составляет: 1000 Ом x 380 вольт = 380000 Ом (380 кОм)

Важность испытаний изоляции
Зачем вам нужны для проверки значения сопротивления или проверки изоляции на электропроводящем кабеле?

Необходимо провести измерение сопротивления изоляции кабеля, потому что:

  • Значение сопротивления изоляции электропроводного кабеля является самым основным параметром электрических характеристик
  • Кабели с изоляцией с сопротивлением ниже минимального значения могут вызвать различные электрические помехи, такие как утечка электрического тока, короткое замыкание (короткое замыкание), пожар и даже другие несчастные случаи со смертельным исходом.
  • Следовательно, необходимо регулярно проверять / измерять значения сопротивления изоляции.

Пояснение к сопротивлению изоляции и способам его измерения

Иллюстрация сопротивления изоляции

Как вы измеряете сопротивление изоляции электрического кабеля?

Метод измерения сопротивления изоляции (Insulation Test)
Проверка сопротивления изоляции — это то, что необходимо сделать для определения уровня снижения сопротивляемости изоляционной системы.

Метод или метод, обычно используемый для проведения этого испытания изоляции, заключается в обеспечении напряжения, которое имеет более высокое значение, чем напряжение, обычно протекающее по проводнику.

Перед измерениями убедитесь в том, в каком состоянии измеряется кабель:

  • Убедитесь, что источник питания отключен (Выкл.)
  • Отсоедините кабель от клеммы или соединения.
  • Разъедините кабели по одному.
  • Убедитесь, что измеряемый кабель не контактирует с другим материалом.

Причины снижения значений сопротивления изоляции
Значения сопротивления или сопротивления изоляции электрического проводника со временем будут уменьшаться в зависимости от условий окружающей среды, влажности, влажности, пыли, температуры, воды, перепадов давления и других факторов.

Поэтому нужно делать периодическое тестирование. На нарушение значения сопротивления изоляции указывает утечка электрического тока.

Утечка электрического тока
Каждая изоляция имеет степень утечки электричества, в зависимости от значения сопротивления изоляции, чем больше значение сопротивления или сопротивление изоляции, тем меньше будет величина утечки тока. Высокое напряжение вызывает ток через изоляцию.

Величина тока утечки на шнур питания зависит от:

  • Подача напряжения
  • Емкость системы
  • Общее значение сопротивления
  • Температура материала

Три типа утечек тока, в том числе:

  1. Утечка поляризационного поглощения (IA)
  2. Утечки проводимости (IL)
  3. Емкостные утечки заряда (IC)

Утечка поглощения поляризации (IA)
Молекулы поляризованного материала в диэлектрическом материале
Низкая емкость, высокий ток в течение нескольких секунд, затем падает до нуля
Высокая емкость, большой ток в течение длительного времени, затем на долгое время падает до определенного значения (не до нуля), может даже не до нуля.

Утечки проводимости (IL)
Нормальные токи, протекающие через изоляцию
Увеличиваются, когда способность к изоляции уменьшается, и это является наиболее важным

Емкостная утечка заряда (IC)
Изолированные и близко расположенные проводники действуют как конденсаторы .

Поглощенный ток

  • Поглощенный ток зависит от материала используемого изолятора, некоторые изоляционные материалы содержат молекулы, которые будут реагировать на воздействие поля напряжений.
  • По сравнению с зарядным / емкостным током, этот потребляемый ток медленнее.
  • Влияние зарядного тока и тока поглощается при измерении с помощью аналогового тестера изоляции:

«Максимальный зарядный ток (сопротивление изоляции = небольшое) в начале теста и медленно снижающийся (сопротивление изоляции = большое), пока через определенное время не будет заменен поглощенным током».

Ток утечки

  • Утечка тока указывает на утечку тока, которая возникает в изоляторе, и эта утечка является постоянной.
  • Этот ток возникает, если возникли зарядный и поглощающий ток.
  • Если в изоляторе преобладают эти компоненты, показания на тестере изоляции будут стабильными, и испытание можно будет завершить в короткие сроки.

Поверхностная утечка

  • Эта поверхностная утечка обычно возникает при измерениях высокого сопротивления, и эта утечка поверхностного тока является ошибкой для результатов измерения.

Напряжение, обычно используемое для испытания значений испытаний изоляции

Испытание напряжения

DAR и PI

  1. Испытание сопротивления изоляции (IR) является основным для определения качество утеплителя.
  2. Если оборудование находится в среде с высоким уровнем загрязнения или влажности, рекомендуется проводить испытания на коэффициент диэлектрической адсорбции (DAR) и индекс поляризации (PI).
  3. DAR и PI — приложения для ИК-тестирования в более длительном промежутке времени

Тестер изоляции
Проверка значения сопротивления изоляции (Проверка изоляции) может быть выполнена с помощью специального измерительного прибора для измерения изоляции или Тестера изоляции, или также обычно называемого мегомметром (мегомметром).

Принцип работы этого измерительного прибора заключается в том, чтобы обеспечить значение напряжения, превышающее значение рабочего напряжения / используемого (протекающего) проводника. и преобразовали в результат значение сопротивления (Ом).

Принцип работы мегомметра или тестера изоляции

Чем больше напряжение, приложенное к проводнику, тем больше напряжение пробоя или ток утечки, возникающий при изоляции.

Однако следует отметить, что когда по изолированному проводящему кабелю проходит измерительное напряжение, значение которого превышает проводимость кабеля, это может привести к ухудшению качества изоляции кабеля, тогда это напряжение подается только на мгновение и ограничен минимально возможным током утечки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *