08.07.2024

Силовые трансформаторы устройство и принцип действия: назначение, конструкция и принцип работы

Содержание

Принцип работы силового трансформатора

Трансформаторные будки есть практически на каждой улице любого города вне зависимости от размеров. Вся планета подвержена власти электричества. Что такое силовой трансформатор? Для чего они? Принцип работы силового трансформатора? При должном объяснении все станет понятно любому школьнику.

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Принцип работы силового трансформатора

Чтобы говорить о принципе работы силового трансформатора требуется вспомнить некоторые понятия из школьного курса физики. В итоге будет проще понять объяснения рабочей схемы устройства.

Индукция

Чтобы понять, как работает силовой трансформатор, надо разбираться в понятии индукции. Именно на ней основана львиная доля современной электроники. Суть этого явления в том, что при прохождении через проводник ток создает переменное электрическое поле. Движение электронов в свою очередь порождает переменное магнитное поле, которое при попадании в другой проводник породит так переменное электрическое поле.

То есть, если поставить рядом два проводника, причем один из них подключить к источнику тока, а другое не подключать – электричество будет течь в обоих проводниках. Причем во втором проводнике направление тока будет противоположным таковому в исходном варианте.

Свойство индукции используется достаточно часто: в усилителях, передатчиках и, конечно, школьных опытах

Устройство трансформатора

Корпус аппарата представляет собой бак, в который заливается масло. Масло насыщается минералами, чтобы лучше отводить тепло. Выбросы тепловой энергии при работе трансформатора огромны. Однако даже такие потери в тысячи раз меньше возможных утечек энергии при транспортировке.

Масло циркулирует по внутреннему и внешнему контуру трансформатора. Отдельно отметим, что внешний контур часто представляет собой оребренный радиатор. Увеличение площади теплоотдачи приводит к улучшению отдачи тепла. Проще говоря, чем больше площадь соприкосновения масла из внутреннего контура и внешнего радиатора – тем лучше будет отводится тепло, тем меньше вероятность аварии на трансформаторной подстанции.

Само устройство силового трансформатора представляет собой квадратного сечения сердечник, набранный из тонких электростальных пластинок. Используются именно наборные сердечники, чтобы свести к минимум появление самоиндукционных токов, которые приводят к перегреву и увеличению потерь энергии.

На противоположные стороны квадрата наносят обмотку. Обмотка, на которую поддается ток, называется первичной, обмотка, отдающая преобразованную энергию, вторичной.

Принцип работы

Схема работы силового трансформатора выглядит так:

  1. Ток подается на первичную обмотку.
  2. Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
  3. Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.

Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.

Схема простейшего трансформатораСхема простейшего трансформатора

Почему трансформатор называют силовым

Как мы уже сказали, силовые трансформаторы используют для понижения высоковольного тока до приемлемых для города параметров, то есть 220/360 В – в зависимости от местности и прочих условий. Но нужно отметить, что напряжение высоковольтных линий ненамного больше 1000 к В, а это больше миллиона вольт. Именно за трансформацию столь сильного напряжения, устройство и назвали таким красивым именем.

Установленный силовой трансформаторУстановленный силовой трансформатор

Именно силовые трансформаторы используются для преобразования электричества городских и квартальных сетей. Получается многоступенчатая система снабжения страны электроэнергией:

  1. Сначала повышающие трансформаторы увеличивают напряжение до огромных значений
  2. По проводам ток течет в города и села
  3. Понижающие трансформаторы понижают напряжение сначала до общегородских, а потом и до квартальных значений.

Отдельно нужно сказать, что иногда приходится понижать значение напряжения до 360 В в городе, потому что высоковольтные линии проводить в городской черте запрещено.

Виды трансформаторов

Уже были названы повышающие и понижающие трансформаторы. В зависимости от места использования можно выделить сетевые и силовые аппараты. Сетевые трансформаторы используются в устройствах, поскольку даже квартальные параметры тока слишком высоки для простого телевизора или ноутбука. Поэтому используется трансформатор, чтобы преобразовать ток в подходящий для конкретного предмета бытовой техники.

Сразу использовать маленькие параметры в городе нельзя из тех же соображений экономии. К тому же, разные приборы требуют разных параметров – всем производителям электроники не угодишь, а потому проще каждому встраивать в свой прибор трансформатор.

Отдельной строкой идут автомобильные трансформаторы, которые позволяют заводить машину с использованием небольшого электрического импульса. Выделяют и импульсные и многие другие трансформаторы, но всех их объединяет одно: принцип работы. Отличия кроются только в рабочих параметрах тока и предназначении трансформатора.

Сетевой трансформаторСетевой трансформатор

Контроль работы устройства

Во время сервисных работ строго запрещается заглядывать внутрь бака, сливать полностью масла и проводить какие-либо манипуляции с содержимым корпуса трансформатора. Работоспособность изделия проверяется путем химической оценки пробы масла и холостого подключения аппарата. В результате удается узнать, насколько трансформатор работоспособен в данный момент времени.

Даже к месту монтажа привозят уже готовую конструкцию, которую остается только подключить к сети. Заливка маслом производится на заводе, не говоря уже о более сложных процедурах. Для доставки оборудования используется специализированная техника.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 78 чел.
Средний рейтинг: 3 из 5.

назначение и зачем нужен, устройство и принцип работы, различные виды

Электромагнитные статические устройства используются для создания и применения магнитного поля. Случаев, зачем нужен трансформатор в электронных, электрических цепях и радиотехнике, существует много. Устройство оснащено индуктивными обмотками, взаимно связанными на магнитопроводе. Сеть способствует возникновению переменного поля, а трансформатор с помощью электромагнитной индукции придает току постоянные значения без изменения частоты.

transformator

 

Определение и назначение

Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.

ulichniy transformator

Устройство и принцип работы

Производитель выбирает базовые правила функционирования агрегата, но это не влияет на надежность эксплуатации. Отличаются концепции процессом изготовления. Принцип действия трансформатора основывается на двух положениях:

  • изменяющееся движение направленных носителей заряда создает переменное магнитное силовое поле;
  • влияние на силовой поток, передаваемый через катушку, продуцирует электродвижущую силу и индукцию.

Устройство состоит из следующих частей:

  • магнитный привод;
  • катушки или обмотки;
  • основа для расположения витков;
  • изолирующий материал;
  • охладительная система;
  • другие элементы крепления, доступа, защиты.

Работа трансформатора осуществляется по виду конструкции и сочетания сердечника и обмоток. В стержневом типе проводник заключен в обмотках, его трудно рассмотреть. Витки спирали видны, просматривается верх и низ сердечника, ось располагается вертикально. Материал, из чего состоит виток, должен хорошо проводить электричество.

В изделиях броневого типа стержень скрывает большую часть оборотов, он ставится горизонтально или отвесно. Тороидальная конструкция трансформаторов предусматривает расположение на магнитопроводе двух независимых обмоток без электрической связи между собой.

Магнитная система

Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо — это элемент без витков, выполняющий замыкания цепи.

Принцип действия трансформатора зависит от схемы стоек, которая бывает:

  • плоская — оси ярм и сердечников находятся в единой плоскости;
  • пространственная — продольные элементы устраиваются в разных поверхностях;
  • симметричная — одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
  • несимметричная — отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.

Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.

Обмотки

Делают в виде совокупности витков, устраиваемых на проводниках квадратного сечения. Форма используется для эффективной работы и повышения коэффициента заполнения в окне магнитопровода. Если требуется увеличить сечение сердечника, то его выполняют в виде двух параллельных элементов, чтобы уменьшить возникновение вихревых токов. Каждый такой проводник называется жилой.

Стержень оборачивается бумагой, покрывается эмалевым лаком. Иногда два сердечника, расположенных параллельно, заключают в общую изоляцию, комплект называется кабелем. Обмотки различают по назначению:

  • основные — к ним подводится переменный ток, выходит преобразованный электроток;
  • регулирующие — в них предусмотрены отводы для трансформации напряжения при невысокой силе тока;
  • вспомогательные — служат для снабжения своей сети с мощностью меньше номинального показателя трансформатора и подмагничивания схемы постоянным током.

obmotka

Способы обкручивания:

  • рядовая обмотка — обороты делают в направлении оси по всей длине проводника, последующие витки наматывают плотно, без промежутков;
  • винтовое обматывание — многослойная обвивка с просветами между кольцами или заходом на соседние элементы;
  • дисковая накрутка — спиральный ряд выполняется последовательно, в круге обвивание производится в радиальном порядке по внутреннему и наружному направлению;
  • фольговая спираль ставится из алюминиевого и медного широкого листа, толщина которого колеблется в пределах 0,1-2 мм.

Условные обозначения

Чтобы удобно читалась схема трансформатора, есть специальные знаки. Сердечник вычерчивается толстой линией, цифра 1 показывает первичную обмотку, вторичные витки обозначаются цифрами 2 и 3.

В некоторых схемах линия сердечника аналогична по толщине черте полуокружностей обвивки. Обозначение материала стержня различается:

  • магнитопровод из феррита чертят толстой линией;
  • стальной сердечник с магнитным зазором рисуют тонкой чертой с разрывом в середине;
  • ось из намагниченного диэлектрика обозначают тонким пунктиром;
  • медный стержень имеет на схеме вид узкой линии с условным обозначением материала по таблице Менделеева.

Для выделения катушечного вывода применяют жирные точки, обозначение мгновеннодействующей индукции одинаково. Используется для обозначения промежуточных агрегатов в каскадных генераторах для показания противофазности. Ставят точки, если требуется установить полярность при сборке и направление расположения обмоток. Число витков в первичной обмотке определяется условно, как не нормируется и количество полуокружностей, пропорциональность есть, но строго не соблюдается.

Основные характеристики

Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Типы трансформаторов

От номинального значения тока в первичном и вторичном контуре зависит классификация трансформаторов. В распространенных видах показатель находится в пределах 1-5 А.

Разделительный агрегат не предусматривает связь обеих спиралей. Оборудование обеспечивает гальваническую развязку, т. е. передачу импульса бесконтактным способом. Без нее протекающий между цепями ток ограничивается только сопротивлением, которое не принимается во внимание из-за малого значения.

Согласующий трансформатор обеспечивает согласование различных показателей сопротивления для минимизации искажения формы импульса на выходе. Служит для организации гальванической развязки.

Прежде чем выяснить, какие бывают трансформаторы силового направления, отмечают, что их выпускают для работы с сетями большой мощности. Приборы переменного тока изменяют показатели энергии в приемных установках и работают в местах с большой пропускной способностью и скоростью изменения электроэнергии.

Вращающий трансформатор не следует путать с вращающимся оборудованием — машиной для преобразования угла поворота в напряжение цепи, где эффективность зависит от частоты вращения. Прибор передает электроимпульс на подвижные части техники, например на головку видеомагнитофона. Двойной сердечник с отдельными обмотками, одна из которых поворачивается вокруг другой.

Масляный агрегат использует охлаждение катушек специальным трансформаторным маслом. Имеют магнитопровод замкнутого типа. В отличие от воздушных видов могут взаимодействовать с сетями большой мощности.

Сварочные трансформаторы для оптимизации работы оборудования, понижения напряжения и создания тока высокой частоты. Это происходит из-за изменения индуктивного сопротивления или показателей холостого хода. Ступенчатое регулирование выполняется компоновкой электрообмотки на проводниках.

vidy transformatorov

устройство, принцип действия и особенности монтажа

Силовой трансформатор – большое по габаритам устройство, которое используется для передачи электрической энергии от основного источника на большие расстояния. Чаще всего он имеет две обмотки (может и больше), которые преобразовывают напряжение тока, и делают его приемлемым для использования в домах, на предприятиях и других учреждениях. Для этого устройство обладает переменным магнитным полем.

силовой трансформаторСиловой трансформатор может быть понижающим (распределяет энергетический поток) и повышающим (передает напряжение на большие расстояния), в зависимости от того, как он должен «переделывать» напряжение. Нужно отметить, что до того, как ток попадет от станции в места бытового пользования, он преобразовывается несколько раз.

Принцип действия агрегата основывается на явлении взаимной индукции. Здесь задействованы обе обмотки. В первой, при поступлении на нее электричества, образуется переменным магнитный поток, который создает электродвижущую силу во второй обмотке. Если ко второй обмотке присоединен приемник энергии, то через него начинает проходить ток. При этом напряжение уже будет преобразованным.

Нужно отметить, что силовой трансформатор имеет неодинаковое напряжение в обеих обмотках. Этот параметр и определяет тип агрегата. Если вторичное напряжение будет ниже первичного, то устройство называется понижающим, в противном случае оно будет повышающим.

силовые трансформаторы напряженияЧто касается обмоток, то они чаще всего имеют цилиндрическую форму. Возле самого магнитопровода должно быть более низкое напряжение, так как его легче изолировать. Между обмотками обязательно должна находиться изолирующая прокладка.

Силовой трансформатор является достаточно большим устройством, для установки которого необходимы время, сила и осторожность. Заниматься этим должны специалисты-электрики, имеющие разрешение на совершение подобных работ. Прежде всего, агрегат доставляется на место монтажа. Для этого используется большой грузовик или платформа на рельсах. На территории, где будут совершаться все работы, должны быть организованы возможности для подъезда и работы погрузочно-монтажного транспорта и оборудования.

монтаж силовых трансформаторовМонтаж силовых трансформаторов должен производиться согласно с требованиями правил безопасности. Площадка должна быть оснащена всем необходимым инвентарем, а также всей необходимой техникой для пожаротушения. На месте проведения работ должна быть установлена телефонная связь. Далее необходимо обеспечить хорошее освещение установочной площадки.

Если все подготовительные работы произведены, то необходимо полностью осмотреть силовые трансформаторы напряжения на предмет плохо установленных деталей, трещин или других повреждений. Также необходимо проверить ввод при помощи испытательного напряжения.

После монтажа агрегаты необходимо тщательно проверить. Если во время испытаний были замечены проблемы, то их нужно обязательно устранить. Если недостатки не могут быть устранены на месте, то устройство необходимо отправить на производство, где оно будет тщательно осмотрено и отремонтировано.

назначение, устройство и принцип действия трансформатора

Трансформатор  –  это статическое электромагнитное устройство предназначенное для преобразование переменного тока одного напряжения той же частоты подающегося на его входную обмотку,  в другое переменное напряжение поступающиеся с его выходной обмотки.

Если на вход трансформатора поступает напряжение ниже, чем образующиеся на его выходе то такой трансформатор называют повышающим. Если на вход поступает напряжение выше чем образующие на его выходе, то это понижающий трансформатор.

Есть некая аналогия с передаточным числом шестереночной передачей.

зубчатая передача

Назначение и принцип действия трансформатора

Назначение и принцип действия трансформатора — это  передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.

Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.

Повышая напряжение (U), и снижая силу тока (I), передаваемая мощность (Р) остается неизменна.

Формула мощности  P = U * I или P = U2 / I

передача электроэнергии трансформаторамипередача электроэнергии трансформаторами

Это позволяет экономить  на линиях электропередач:

  1. Используя провода с меньшим поперечным сечение, снижается расход  цветных металлов;
  2. Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.

На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ.  Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.

Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями.  Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.

Для понижения напряжения  используются различные понижающие трансформаторы. Любой трансформатор можно использовать как для повышения, так и для понижения напряжения.

Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.

Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.

Трансформатор работает только с переменным напряжением, на постоянном токе не работает, так как не будет создаваться переменного магнитного поля, которое и составляет принцип работы любого трансформатора.

Изобретение трансформатора

Трансформатор изобрел выдающийся русский ученый П.И. Яблочковым в 1876г. Он использовал индукционную катушку с двумя обмотками для питания своей знаменитой лампы, «свечи Яблочкова». Это был первый генератор переменного тока. Этот трансформатор имел незамкнутый сердечник. Замкнутые сердечники, которые используются сейчас, появились только в 1884 г.

В 1889 году русский ученый М. О. Доливо-Добровольским изобрел трехфазную систему переменного тока и построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор.

С 1891г, он демонстрирует на электротехнической выставке в Франкфурте-на-Майне передачу высоковольтного трехфазного тока на расстояние более 100 км. Его трехфазный генератор имел мощность 230 кВА и напряжение U =95V. С помощью трехфазного трансформатора напряжение повышалось до 15 кВ и понижалось в точке приема до 65V (фазное напряжение), питая трехфазный асинхронный двигатель мощностью 75 кВт насосной установки. С помощью последовательного включения двух обмоток высокого напряжения удалось повысить 28 кВ и увеличить КПД электропередачи до 77%, что в то время было достаточно высоким.

Как устроен трансформатор

работа трансформатораПринцип работы трансформатора

Простейший трансформатор – это две обмотки катушек, намотанные на магнитопроводе (замкнутом сердечнике трансформатора) с изоляцией по которым пропускают переменный ток.
Для наглядности обмотки расположены на разных стержнях стального сердечника. На самом деле часть обмоток может находится на одном стержне, а часть на другом. Такое расположение обмоток улучшает магнитную связь и снижает потери на магнитный поток рассеяния. Обмотка, на которую подают напряжение, называют первичной обмоткой, а обмотка трансформатора, с которой снимают напряжение, называют вторичной.

схема трансформатораИзображение трансформатора на схеме

Обычно в быту для питания различных устройств, применяют понижающие трансформаторы, где напряжение первичной обмотки всегда больше напряжения на вторичной обмотке.
Трансформаторы предназначены не только для передачи электроэнергии, но и служат в различных электронных устройствах: компьютерах, телевизорах и осветительной аппаратуре. В современном мире трансформаторы являются наиболее употребительными и универсальными устройствами.

Видео: Трансформатор. Принцип работы и советы конструкторам

Видео доступным языком объясняет работу трансформатора и даёт некоторые конструктивные советы

Простое объяснение принципа работы трансформатора

Чтобы понять, что такое трансформатор, попробуем собрать его, попутно разбираясь в каждом шаге.

 

Для начала соберем электромагнит. Самый простейший электромагнит это кусок ферромагнетика, например гвоздь (сотка), вокруг которого намотана проволока. (катушка).

катушка индуктивностикатушка индуктивности

Намотайте катушку, скажем витков 20-30 на гвоздь, подключите к батарейке или любому блоку питания постоянного напряжения (например 9 вольт).

При подаче тока на катушку, гвоздь усиливает свое магнитное свойство и становится постоянным электромагнитом — полной копией простого магнита.

Количеством витков, их толщиной (сечением провода), напряжением и током, материалом сердечника, способом намотки (например в два провода) Вашей катушки — Вы можете регулировать степень магнитной силы Вашего электромагнита.

А подключением намотки Вы можете регулировать положение полюсов Вашего электромагнита. (это важно)

соленоидПри подключении катушки к батарейке у гвоздя, т. е. у Вашего электромагнита образовывается, как и у простого магнита два полюса, условно северный (он же плюс) и южный (он же минус).

Поднесите к Вашему электромагниту простой магнит любым из полюсов. Вы увидите электромагнитное взаимодействие. Магнит будет отталкиваться Вашим электромагнитом.

Теперь поменяйте провода от Вашей батарейки местами, т. е. плюс на минус. При этом Вы заметите, что электромагнит поменял направление силы — теперь он наоборот притягивает.

Чем чаще Вы переключаете плюс на минус, тем чаще Ваш магнит будет менять направление силы. Иными словами электромагнит будет притягивать отталкивать с частотой питающей его сети.

Северный и южный полюса магнита будут меняться между собой, потому что ВЫ создали переменное напряжение с частотой Вашего переключения плюс на минус.

Теперь на гвозде намотайте вторую точно такую же катушку и Вы получите простейший трансформатор.

Трансформатор это прибор, который трансформирует напряжение и ток одной величины в напряжение и ток другой величины.

Первая катушка называется первичной обмоткой, а вторая катушка вторичной обмоткой.

Итак соберите такую конструкцию.

  • Гвоздь, на нем две одинаковые катушки.
  • Подключите первичную обмотку к блоку питания с возможностью менять направление тока.
  • Ко второй катушке подключите мультиметр.

Теперь включите блок питания и начинайте переключать полярность с некоторой частотой. На второй катушке у Вас начнет появляться напряжение, которое передается посредством того, что называют электромагнитной индукции. В итоге на Вашем гвозде у Вас работают два электромагнита, на первый вы подаете ток и напряжение, а на втором электромагните этот ток и напряжение индуктируются.

Виды трансформаторов

Силовой трансформатор

силовой трансформаторТак выглядит силовой трансформатор

Этот виды трансформаторов относится к трансформаторам работающих в сетях промышленных и бытовых установках частотой питающей сети 50-60 Гц. Силовые трансформаторы предназначены для преобразование электрической энергии для передачи ее по ЛЭП например, с 38 кВ до 6кВ, 380V на 220V (380/220В). Электро цепи где используется высокое напряжение принято называть в электротехнике силовыми цепями, а трансформаторы соответственно силовые трансформаторы.

Конструкция силового трансформатора состоит из двух или трёх обмоток, возможно больше. Располагаются обмотки на броневом сердечнике, изготавливаемом из листов электротехнической стали. Некоторые силовые трансформаторы (с расщепленными обмотками) могут иметь несколько обмоток с низшего напряжения (НН) которые запитаны параллельно. Это позволяет получать напряжение больше чем от одного генератора и передавать больше электроэнергии, тем самым повышая КПД электроустановки.

Мощные силовые трансформаторы очень часто делают масляными, то есть его обмотки помещают в бак со специальным трансформаторным маслом. Трансформаторное масло служит для активного охлаждения и одновременной изоляции его обмоток.
Трансформаторы мощностью 400 кВА обладают большим весом и монтируются на специальных платформах или помещениях. Они поступают с завода в собранном состоянии, готовыми к подключению нагрузки на подстанциях или электростанциях. Основное исполнение силовых трансформаторов – это трехфазные трансформаторы. это связно с тем, что потери КПД однофазных трансформаторов на 15% больше.

Сетевые трансформаторы

сетевой трансформаторсетевой трансформатор

Сетевые трансформаторы это самый распространенный вид трансформаторов, который можно встретить практически в любом бытовом электроприборе. Все сетевые трансформаторы, как правило, делают однофазными. Эти трансформаторы служат для преобразования высокого напряжение сети 220V до приемлемого напряжения, используемого в том или ином электроприборе. Понижающее напряжение может быть: 220/12V или 220/9V, 220/36V и т.д.

Многие изготавливают сетевые трансформатор не с одной, а с несколькими вторичными обмотками, что делает трансформатор более универсальным, часто используемый на разное напряжение одновременно.

Например, часть схемы запитана напряжение 12 Вольт, а другая 3 Вольта от одного трансформатора с несколькими обмотками.

магнитопроводыконструкция магнитопроводов трансформатора

Изготавливают сетевые трансформаторы чаще всего из электротехнической стали на Ш – образных или стержневых сердечниках. Встречаются тороидальные сердечники. Ш-образный сердечник набирается из пластин, на которые надевают каркас на который наматываются обмотки трансформатора.

Тороидальный трансформатор имеет преимущества из-за своего более компактного вида и обладают более лучшими характеристиками. Обмотки тороидального трансформатора полностью охватывают магнитопровод, нет пустого пространства незанятого обмоткой в отличие от стержневых или броневых трансформаторов.

Сварочные трансформаторы также можно отнести к сетевым, мощность которых не превышает 6 кВт. Все сетевые трансформаторы работают на низкой частоте равной 50-60 Гц.

Автотрансформатор

схема автотрансформатора
Автотрансформатор – это трансформатор где обмотки низшего напряжения являются частью обмотки высшего. Обмотки автотрансформатора имеют прямую электрическую связь, а не только посредством магнитопровода. Делая отводы от одной обмотки можно получить различное напряжение. Отличить обмотки низшего и высшего напряжение можно по различному сечению использованного для намотки провода.

Преимущество автотрансформатора – это меньшие размеры, меньше использованного провода, меньше сердечник, меньше затрачено стали на его изготовление в итоге меньшая цена автотрансформатора.

Главный недостаток трансформатора — это гальваническая связь обмоток низшего и высокого напряжения. Возможность попадания сети высшего напряжения в сеть низшего. Невозможность применение автотрансформаторов в сетях с заземлением.
Автотрансформаторы применяют в сетях трехфазного тока с соединением обмоток в чаще всего в звезду, реже в треугольник.

Автотрансформаторы часто применяют в устройствах управления напряжением, в высоковольтных установках, в промышленности для пуска мощных асинхронных электродвигателей переменного тока. Мощность автотрансформаторов может быть до 100 МВт.

Преимущество автотрансформаторов увеличивается с увеличением коэффициента трансформации близкими (К=1-2).

Лабораторный автотрансформатор (ЛАТР)

ЛатрЛатр

Разновидностью автотрансформатора можно назвать лабораторный трансформатор (ЛАТР). Его основное назначение — это плавная регулировка напряжения, подающаяся к нагрузке, к любому потребителю электроэнергии. Конструкция автотрансформатора представляет собой тороидальный трансформатор у которого есть только одна обмотка, по которой бежит ползунок (угольный роликовый контакт) подключающий каждый виток не изолируемой обмотки (дорожки) автотрансформатора к схеме. Таким образом, создается регулирующий эффект.

При замыкании соседних витков роликовым ползунком в ЛАТР, не происходит межвитковых замыканий, так как токи питающей сети и нагрузки автотрансформатора в общей обмотке близки друг к другу и направлены встречно. Самые распространенные ЛАТРы регулируют напряжение от 0 до 250V. Трехфазные регулируют от 0/450 вольт. Автотрансформаторы ЛАТРы часто используют в научно исследовательских лабораториях для пусконаладочных работ различного назначения.

Трансформаторы тока

трансформаторы тока

Трансформатор тока служит в основном в измерительной технике. Первичную обмотку такого трансформатора подключают к источнику тока, вторичная обмотка используется для различных измерительных приборов при небольшом внутреннем сопротивлении (R вн).
Первичная обмотка – это, как правило, всего виток провода включенного последовательно с измеряемой цепью переменного тока. Ток первичной обмотки прямо пропорционален току вторичной, в чем и достигается измерение величины силы тока (А).

Главная особенность трансформаторов тока состоит в том, что вторичная обмотка должна быть всегда нагружена, иначе происходит пробой изоляции высоким напряжением, также при отключенной нагрузке магнитопровод трансформатора тока просто сгорает от некомпенсированных наведенных токов.

Конструктивно трансформатор тока это одна или несколько изолированных обмоток намотанных на шихтованную холоднокатаную электротехническую сталь называемую сердечником. Первичная обмотка может быть просто провод, который пропущенный через окно магнитопровода трансформатора тока который измеряет силу тока проходящий через этот провод или шину. Коэффициент трансформации здесь 100/5, безопасны, так как отсутствует гальваническая связь между обмотками.

Применение трансформаторов тока: измерения силы тока в схемах релейной защиты, в измерительной аппаратуре. Выпускают с 1-2 группами вторичных обмоток. Одна группа может, подсоединяется к защитным устройствам, другая к измерительным приборам и счетчикам.

Трансформаторы напряжения

трансформатор напряженТрансформатор напряжения НОМ-3

Трансформаторы напряжения – это трансформаторы, преобразующие высокие напряжения пропорционально и точно в соответствии с фазами в величины, пригодные для измерения. Трансформаторы среднего напряжения имеют единственный магнитопровод и могут быть выполнены с одной или несколькими вторичными обмотками. Заземляемые трансформаторы напряжения по желанию помимо измерительной или защитной обмотки могут быть выполнены с дополнительной обмоткой для регистрации замыкания на землю.

Импульсный трансформатор тока

импульсный трансформатор токаимпульсный трансформатор тока

Применяются для измерения направления или силы тока в импульсных схемах. Импульсный трансформатор состоит из кольцевого ферритового сердечника с одной обмоткой. Измеряемый провод проходит сквозь кольцо, обмотку подключают к сопротивлению нагрузки (Rн).
Если обмотка содержит 1000 витков провода, то ток, проходящий через измеряемый провод будет равен 1000\1, то есть на сопротивлении нагрузки будет ток, который в 1000 раз меньше тока проходящего через измеряемый провод.

Производители трансформаторов тока изготовляют импульсные трансформаторы тока с различным коэффициентом трансформации. Инженеру проектировщику нужно лишь рассчитать сопротивление нагрузки и соответствующую схему измерения.
Если нужно измерить направление тока, то вместо сопротивления нагрузки подключают два стабилитрона с встречным включением.

Импульсный трансформатор

импульсный трансформатор

Распространен во всех современных электронных схемах. Импульсный трансформатор предназначен для сварочных устройств, блоков питания, импульсных преобразователей. Заменили в настоящее время низкочастотные трансформаторы с сердечниками из шихтованной стали, которые имели больше габариты и вес.
Состоит из ферритового магнитопровода различной формы: кольцо, чашечка, стержень, Ш — образный, П – образный. Ферритовый сердечник импульсных трансформаторов дает им несравненное преимущество перед старыми трансформаторами из стали в том, что они могут работать на частотах до и свыше 500 000 гц.

Импульсный трансформатор – это ВЧ (высокочастотный) трансформатор габариты и вес, которого с ростом частоты становиться только меньше!
Обмотка требует меньшего количества витков, а для регистрации высокочастотного тока достаточно полевого или биполярных транзисторов включенных по специальной схеме:

  • Прямоходовая;
  • Двухтактная;
  • Полумостовая;
  • Мостовая схема

Применяют импульсные трансформаторы и дроссели на феррите в энергосберегающих лампах, зарядных для мобильных устройств, в мощных инверторах тока, сварочных аппаратах.

Трансформатор Тесла

Трансформатор Николы Теслы — это аппарат, с помощью которого получают токи высокой частоты. Реализовывается при помощи первичной и вторичной обмотки, но первичная обмотка получает питание на частоте резонанса вторичной обмотки, при этом напряжение на выходе возрастает в десятки раз.

По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе. сли проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями.

С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился.

С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.

Видео: Принцип работы трансформатора

Основы — как работает трансформатор, первичная и вторичная обмотка, каким образом понижается или повышается напряжение у трансформатора за счет магнитного поля, для чего нужен магнитопровод и что такое взаимоиндуктивность — обо всем этом смотрите в видео!

Принцип работы трехфазного трансформатора

Принцип действия трехфазного трансформатора

Трансформаторы – статические электромагнитные аппараты, с помощью которых возможно преобразовать переменный ток из одного класса напряжения в другой, при этом с неизменной частотой.

В энергосистемах трансформатор, который преобразовывает электроэнергию трехфазного напряжения, называют трехфазным силовым.

Для передачи электроэнергии от генераторов электростанций к линиям электропередач (ЛЭП) применяют повышающие трансформаторы (они увеличивают класс напряжения), от ЛЭП к распределительным подстанциям и далее к потребителям – понижающие (они уменьшают класс напряжения).

Конструктивная особенность

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней.

На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.

На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка.

Электроэнергия передаётся за счет электромагнитной индукции.

Главная функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.

Трансформатор силовой трехфазный с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)

Трансформатор силовой трехфазный ТС и ТСЗ

Трансформатор-стабилизатор высоковольтный дискретный ВДТ-СН

Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.

Принцип работы

Электромагнитная индукция является базовым явлением в работе трансформатора.

Из электрической сети подается питание к первичной обмотке, в ней появляется переменный ток, в магнитопроводе при этом образуется магнитный переменный поток. Как известно из физики, если поместить второй проводник в магнитное поле, в нем также появляется переменный ток. В качестве второго проводника в трансформаторе выступает вторичная обмотка. Таким образом, в ней появляется напряжение.

Разница между первичным и вторичным напряжением зависит от коэффициента трансформации, который определяется числом витков в обмотках.

Трехфазный трансформатор: строение, виды, принцип работы

Преобразование трёхфазной системы напряжения можно реализовать с помощью трёх однофазных трансформаторов. Но при этом будет использован аппарат значительного веса и внушительных размеров. Трехфазный трансформатор лишён этих недостатков, так как его обмотки располагаются на стержнях общего магнитопровода. Поэтому в сетях мощностью до 60 тыс. кВА его применение является оптимальным вариантом.

Назначение трёхфазного трансформатора

Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.

Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта.

Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока.

Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.

После того, как напряжение будет доставлено потребителям, его следует снизить до необходимой величины.

Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.

Определение и виды прибора

Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.

Классификация по количеству фаз:

  • однофазные;
  • трехфазные.

Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).

Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:

  • для питания токоприёмников специального назначения;
  • для присоединения измерительных приборов;
  • для изменения значения напряжения при испытаниях;
  • для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.

Принцип действия

Основой трёхфазного трансформатора являются магнитопровод и обмотки. В каждой фазе присутствует своя повышающая и понижающая обмотка. Так как фаз три, соответственно обмоток шесть. Между собой они не соединены.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции.

При подключении к сети первичной обмотки в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.

Если количество витков вторичной обмотки меньше, нежели число витков первичной, то на выходе окажется напряжение меньшего значения, чем на входе и наоборот.

Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:

E 1 = 4, 44f 1 Ф W 1

E 2 = 4, 44 f 1 Ф W 2

E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;

f 1 — частота тока в сети, Гц;

Ф — максимальное значение основного магнитного потока, Вб;

W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Строение трансформатора

Основными частями преобразователя напряжения являются:

  • магнитопровод;
  • обмотки высокого и низкого напряжения;
  • бак;
  • вводы и выводы.

К дополнительной аппаратуре относятся:

  • расширительный бак;
  • выхлопная труба;
  • пробивной предохранитель;
  • приборы для контроля и сигнализации.

Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:

  • бронестержневой;
  • броневой;
  • стержневой.

Для изготовления обмоток трансформаторов небольшой мощности используют провод из меди, имеющий прямоугольное или круглое сечение.

Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно.

У трансформаторного масла две задачи:

  • охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
  • повышение изоляции.

Схемы и группы соединения обмоток

В трёхфазных трансформаторах необходимо соединять между собой первичные обмотки по фазам и вторичные.

Существует три схемы соединения:

  • звезда;
  • треугольник;
  • зигзаг.

При соединении обмоток звездой напряжение линейное — между началами фаз — будет в 1,73 раза больше, чем фазное (между началом и концом фазы). При соединении обмоток трансформатора треугольником фазное и линейное напряжения будут одинаковы.

Соединять обмотки звездой более выгодно при высоких напряжениях, а треугольником — при значительных токах. Соединение обмоток зигзагом даёт возможность сгладить асимметрию намагничивающих токов. Но недостатком такого способа соединения является повышенная трата обмоточного материала.

Сфера использования

Такие трансформаторы в основном используются в промышленности. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Немного из истории

Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.

Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

Источники:

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Трехфазный силовой трансформатор, назначение трехфазного трансформатора

• трехфазный силовой трансформатор

Трехфазный трансформатор – статический аппарат с тремя парами обмоток, предназначенный для преобразования напряжения при передаче электрического тока на дальние дистанции. Такое преобразование можно осуществить с помощью трех однофазных трансформаторов. Но комплексный аппарат имеет значительные габариты и массу. Трехфазный трансформатор свободен от этих недостатков, благодаря тому, что три обмотки расположены на общем магнитопроводе. Трехфазные аппараты успешно применяют в сетях мощностью до 60 кВА.

Назначение трехфазного трансформатора

Главная задача такого аппарата – преобразовать параметры электрического тока таким образом, чтобы потери при нагреве проводов были минимальными. Для решения этой проблемы необходимо снизить силу тока и увеличить значение напряжения до 6-500 кВ, чтобы значение мощности осталось постоянным. После доставки электрического тока потребителю напряжение необходимо снизить до требуемой величины – 380 В. И эту проблему тоже решают трехфазные аппараты.

Также эти устройства применяют для присоединения измерительных приборов, изменения напряжения при проведении испытаний или подключении силовой нагрузки.

Принцип действия и устройство силового трехфазного трансформатора

В конструкцию этого аппарата входят:

  • Магнитопровод. К нему крепятся все части аппарата. Также он служит для создания основного магнитного потока. Магнитопровод может быть стержневым, бронестержневым, броневым.
  • Обмотки. В каждой фазе присутствуют две обмотки – понижающая и повышающая. Обмотки могут соединяться «звездой» или «треугольником» В первом случае линейное напряжение (между началами фаз) в 1,73 раза выше фазного (между началом и концом фазы). При соединении «треугольником» линейное и фазное напряжения одинаковы. Соединение «звездой» эффективно при значительных напряжениях, «треугольником» – при высоких токах.
  • Вводы и выводы. Необходимы для присоединения концов обмоток к ЛЭП. Ввод соединяется с первичной обмоткой, вывод – со вторичной.

В каталоге силовых трансформаторов представлены «сухие» и «масляные» модели. В маломощных трансформаторах охлаждение осуществляется воздушным способом. Такие аппараты называют «сухими». Высокомощные устройства имеют масляное охлаждение, благодаря чему их называют «масляными». Масло не только охлаждает обмотки, которые нагреваются из-за протекания по ним электрического тока, но и повышает изоляционные характеристики.

устройство силового трехфазного трансформатора

Принцип действия:

  • При подключении первичной обмотки в сеть в ней начинает протекать переменный .
  • В сердечнике магнитопровода появляется магнитный поток, охватывающий обмотки всех фаз. В каждом витке присутствует ЭДС, равная по направлению и величине.
  • Если количество витков в первичной обмотке больше, чем число витков во вторичной обмотке, то выходное напряжение больше входного. И наоборот.

Силовые сухие трехфазные трансформаторы — особенности эксплуатации и характеристики

В сухих трансформаторах тепло от нагревающихся токоведущих частей отводится воздушным потоком. Такая охлаждающая система эффективна для аппаратов мощностью не выше 4000 кВА и напряжением обмоток высшего напряжения не более 35 кВ. Эти устройства применяются в местах, в которых предъявляются повышенные требования к безопасности обслуживающего персонала и оборудования. Они востребованы на металлургических предприятиях, в нефтяной индустрии, машиностроении, при организации электроснабжения объектов жилого, административного и производственного назначения.

Преимущества сухих трехфазных трансформаторов с выходным напряжением 380 В:

  • Возможность установки в непосредственной близости от людей и оборудования, в любом помещении. Необходимо только предусмотреть защитное ограждение, вентиляционную систему, средства мониторинга.
  • Безопасность. Эти аппараты взрывобезопасны, поскольку элегаз и жидкий диэлектрик отсутствуют.
  • Экологичность. Масляные испарения отсутствуют. Поэтому такие модели разрешены для установки возле дошкольных, учебных, медицинских учреждений.
  • Простота эксплуатации. Необходимо контролировать только основные параметры – температуру обмоток, отсутствие или наличие КЗ.
  • Современные комплектующие. Благодаря им удалось уменьшить габариты и массу аппаратов.

Недостатки моделей «сухого» типа:

  • Чувствительность к условиям окружающей среды – температуре, влажности, запыленности, сейсмическим воздействиям.
  • Отсутствие моделей, рассчитанных на напряжение более 35 кВ и мощность выше 4000 кВА.
  • Вероятность появления микротрещин в обмотке, которые развиваются и становятся причиной выхода устройства из строя и даже его возгорания.

Цены на сухие трансформаторы зависят от мощности аппарата и материала (медь, алюминий), из которого изготовлены обмотки. Также на стоимость влияет исполнение: открытое, защищенное, герметичное.

Трехфазные силовые трансформаторы масляного типа – плюсы и минусы конструкции

Эти аппараты более опасны в эксплуатации, по сравнению с «сухими» аналогами. Отказ от софтолового масла сделал устройства более безопасными и экологичными, но полностью предотвратить возгорания и взрывы этого оборудования пока не удалось. При использовании масляных устройств необходимо специальное обслуживание и постоянный контроль комплекса рабочих параметров, что повышает эксплуатационные расходы. Оборудование сложно транспортировать к месту назначения, поскольку для доставки масла необходима специальная станция.

трансформаторы силовые сухие трехфазные

Преимущества масляных силовых трехфазных трансформаторов:

  • Неприхотливость к условиям окружающей среды.
  • Привычная конструкция для электриков старшего поколения.
  • Отсутствие межвитковых и межслойных замыканий, благодаря теплопроводности масла.
  • Отсутствие вероятности появления микроскопических трещин в обмотках.
  • Наличие моделей, рассчитанных на значительные напряжение (375 кВ и выше) и мощность (40000 кВА и выше).

У обоих видов трансформаторов имеются собственные достоинства и недостатки. Поэтому при выборе конкретного типа оборудования инженеры-электрики учитывают запланированные эксплуатационные условия, требования СНиПов, ГОСТов, ПУЭ, рекомендации изготовителя.

§63. Назначение и принцип действия трансформатора

Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Транс-

Рис. 212. Схема включения однофазного трансформатора

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ?1 и ?2 этих обмоток, т. е.

E1/E2 = ?1/ ?2.

Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Евн / Eнн = ?вн / ?нн.

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.

U1/U2? ?1/ ?2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ? U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ? ?2/?1. Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.

Устройство и принцип работы трансформатора

Назначение и виды трансформатора.

Трансформатор представляет собой статическое электромагнитное оборудование, в котором происходит преобразование переменного тока с преобразованием напряжения. Те. это устройство позволяет его опускать или увеличивать. Установленные в электростанциях трансформаторы обеспечивают передачу электроэнергии на большие расстояния до 1150кВ. И уже непосредственно в местах потребления происходит падение напряжения, в пределах 127-660В.На таких значениях обычно работают различные потребители электроэнергии, которые устанавливаются на заводах, фабриках и в многоквартирных домах. Электрические приборы, электросварка и другие элементы в цепи высокого напряжения также требуют использования трансформатора. Они бывают одно- и трехфазные, двух- и многообмоточные.

Существует несколько типов трансформаторов, каждый из которых определяется своими функциями и назначением. Силовой трансформатор преобразует электрическую энергию в сети, которые предназначены для использования и приема этой энергии.Трансформатор тока служит для измерения больших токов в устройствах электрических систем. Трансформатор напряжения преобразует высокое напряжение в низкое. Автотрансформатор имеет электрическую и электромагнитную связь за счет прямого соединения первичной и вторичной обмоток. Импульсный трансформатор преобразует импульсные сигналы. Разделительный трансформатор отличается тем, что первичная и вторичная обмотки электрически не связаны друг с другом. Одним словом, во всех формах принцип работы трансформатора в чем-то схож.Еще можно выделить гидротрансформатор, принцип работы которого заключается в передаче крутящего момента на коробку передач от двигателя автомобиля. Это устройство позволяет плавно изменять скорость и крутящий момент.

Устройство и принцип работы трансформатора.

Принцип работы трансформатора — проявление электромагнитной индукции. Это устройство состоит из магнитопровода и двух расположенных на нем обмоток. К одному подведено электричество, а ко второму подключены потребители.Как уже было сказано выше, эти обмотки называются первичной и вторичной соответственно. Магнитопровод изготовлен из листовой электротехнической стали, элементы которой изолированы лаком. Его часть, на которой расположены обмотки, называется сердечником. И именно такая конструкция получила более широкое распространение, поскольку имеет ряд преимуществ — простая изоляция обмоток, простота ремонта, хорошие условия охлаждения. Судя по всему, принцип работы трансформатора не так уж и сложен.

Также существуют бронированные трансформаторы конструкции, что значительно снижает их габаритные размеры.Чаще всего это однофазные трансформаторы. В таком оборудовании боковые ярма выполняют защитную роль обмотки от механических повреждений. Это очень важный фактор, поскольку небольшие трансформаторы не имеют корпуса и размещаются вместе с остальным оборудованием в одном месте. Трехфазные трансформаторы чаще всего выполняются с тремя стержнями. Армированная стержневая конструкция также используется в трансформаторах большой мощности. Хотя это увеличивает стоимость электроэнергии, но позволяет уменьшить высоту магнитопровода.

Бывают трансформаторы методом соединительных стержней: стыковые и ламинированные. Шатуны и коромысла собираются отдельно и соединяются крепежными деталями. А в ламинат листы собираются внахлест. Плавленые трансформаторы получили большее применение, т.к. у них гораздо более высокая механическая прочность.

Принцип работы трансформатора также зависит от обмоток, которые бывают цилиндрическими, дисковыми и концентрическими. Оборудование большой и средней мощности имеет газовое реле.

p >>

.

Что такое трансформатор? Его конструкция, работа, типы и применение

Что такое трансформатор? Его части, работа, типы, ограничения и применение

Что такое трансформатор?

  • Как следует из названия, трансформатор передает электроэнергию из одной электрической цепи в другую. Это не меняет ценности власти.
  • Трансформатор не меняет частоту цепи во время работы.
  • Трансформатор работает на электричестве i.е. взаимная индукция.
  • Трансформатор работает, когда в обеих цепях действует взаимная индукция.
  • Трансформатор не может повышать или понижать уровень постоянного напряжения или постоянного тока.
  • Трансформатор только повышает или понижает уровень переменного напряжения или переменного тока.
  • Трансформатор не меняет значение магнитного потока.
  • Трансформатор не работает от постоянного напряжения.

What is a Transformer, Its Types, Construction, Working, & Applications What is a Transformer, Its Types, Construction, Working, & Applications

Без трансформаторов электроэнергии, вырабатываемой на станциях, вероятно, будет недостаточно для снабжения энергией города.Представьте себе, что трансформаторов нет. Как вы думаете, сколько электростанций нужно установить, чтобы обеспечить город энергией? Создать электростанцию ​​непросто. Это дорого.

Многочисленные электростанции должны быть установлены, чтобы иметь достаточную мощность. Трансформаторы помогают, усиливая выходной сигнал трансформатора (повышая или понижая уровень напряжения или тока).

Когда количество витков вторичной катушки больше, чем количество витков первичной обмотки, такой трансформатор известен как повышающий трансформатор.

Точно так же, когда количество витков катушки первичной обмотки больше, чем у вторичного трансформатора, такой трансформатор известен как понижающий трансформатор.

Конструкция трансформатора (части трансформатора)

Construction of a Transformer Construction of a Transformer Детали трансформатора

1 Клапан масляного фильтра 17 Клапан слива масла
2 Консерватор 18 Подъемная втулка
3 Реле Бухгольца 19 Пробка
4 Клапан масляного фильтра 20 Фундаментный болт
5 Вентиль сброса давления 21 Клемма заземления
6 Втулка высокого напряжения 22 Основание салазок
7 Втулка низкого напряжения 23 Катушка
8 Проушина подвески 24 Прижимная пластина змеевика
9 Зажим BCT al 25 Сердечник
10 Бак 26 Клеммная коробка для защитных устройств
11 Устройство РПН без напряжения 27 Паспортная табличка
12 Ручка переключателя ответвлений 28 Циферблатный термометр
13 Крепление для сердечника и змеевика 29 Радиатор
14 Подъемный крюк для сердечника и змеевика 30 Люк
15 Концевая рама 31 Подъемный крюк
16 Болт давления змеевика 32 Указатель уровня масла шкального типа

Принцип работы трансформатора

Трансформатор статическое устройство (и не содержит вращающихся частей, следовательно, без потерь на трение), которое c переключать электрическую мощность из одной цепи в другую без изменения ее частоты.Он повышает (или понижает) уровень переменного напряжения и тока.

Трансформатор работает по принципу взаимной индукции двух катушек или закону Фарадея об электромагнитной индукции. Когда ток в первичной катушке изменяется, магнитный поток, связанный с вторичной катушкой, также изменяется. Следовательно, ЭДС индуцируется во вторичной катушке из-за закона электромагнитной индукции Фарадея.

Трансформатор основан на двух принципах: во-первых, электрический ток может создавать магнитное поле (электромагнетизм), и, во-вторых, изменяющееся магнитное поле внутри катушки с проволокой индуцирует напряжение на концах катушки (электромагнитная индукция ).Изменение тока в первичной катушке приводит к изменению развиваемого магнитного потока. Изменяющийся магнитный поток индуцирует напряжение во вторичной катушке.

Operating-Working-Principle-of-a-Transformer Operating-Working-Principle-of-a-Transformer

Простой трансформатор имеет сердечник из мягкого железа или кремнистой стали и размещенные на нем обмотки (железный сердечник). И сердечник, и обмотки изолированы друг от друга. Обмотка, подключенная к основному источнику питания, называется первичной, а обмотка, подключенная к цепи нагрузки, называется вторичной.

Обмотка (катушка), подключенная к более высокому напряжению, известна как обмотка высокого напряжения, а обмотка, подключенная к низкому напряжению, известна как обмотка низкого напряжения.В случае повышающего трансформатора первичная обмотка (обмотка) является обмоткой низкого напряжения, количество витков вторичной обмотки больше, чем у первичной. И наоборот, для понижающего трансформатора.

Как объяснялось ранее, ЭДС вызывается только изменением величины магнитного потока.

Когда первичная обмотка подключена к сети переменного тока, через нее протекает ток. Поскольку обмотка соединяется с сердечником, ток, протекающий через обмотку, создает переменный поток в сердечнике.ЭДС индуцируется во вторичной катушке, поскольку переменный поток связывает две обмотки. Частота наведенной ЭДС такая же, как у магнитного потока или подаваемого напряжения. Operating & Working Principle of a Transformer Operating & Working Principle of a Transformer

Таким образом (изменение магнитного потока) энергия передается от первичной обмотки к вторичной посредством электромагнитной индукции без изменения частоты напряжения, подаваемого на трансформатор. Во время этого процесса в первичной катушке создается самоиндуцированная ЭДС, которая противодействует приложенному напряжению.Самоиндуцированная ЭДС известна как обратная ЭДС.

Ограничение трансформатора

Чтобы понять основные моменты, мы должны обсудить некоторые основные термины, относящиеся к работе трансформатора. Итак, давайте ненадолго вернемся к основам.

Трансформатор — это машина переменного тока, повышающая или понижающая переменное напряжение или ток. Однако трансформатор, являющийся машиной переменного тока, не может повышать или понижать постоянное напряжение или постоянный ток. Хотя это звучит немного странно. Вы можете подумать: «А разве нет трансформаторов постоянного тока?»

Чтобы ответить на два вопроса, существуют ли трансформаторы постоянного тока или нет, и знать, «почему трансформатор не может повышать или понижать напряжение постоянного тока», необходимо знать, как электрический ток и магнитное поле взаимодействуют друг с другом при работе трансформатора.

Электромагнетизм

Взаимодействие между магнитным полем и электрическим током называется электромагнетизмом. Токоведущие проводники создают магнитное поле, когда через них проходит ток. Движение электронов в проводнике приведет к возникновению электрического тока (дрейфующих электронов), который возникает в результате ЭДС, возникающей в проводнике.

ЭДС, возникающая в проводнике, может быть в форме энергии, хранящейся в химической энергии или магнитном поле. Проводник с током, помещенный в магнитное поле, будет испытывать механическую силу, в то время как проводник, помещенный в магнитное поле, будет перемещать электроны, что приведет к возникновению электрического тока.

Field Flux

Два магнита с разными полюсами будут притягиваться друг к другу, в то время как магниты с одинаковыми полюсами будут отталкивать друг друга (то же самое происходит с электрическими зарядами). Каждый магнит окружен силовым полем и представлен воображаемыми линиями, исходящими от северного полюса магнита, переходящего в южный полюс того же магнита.

Прочтите важные термины, связанные с потоком поля и магнитным полем. Заполните формулы здесь.

«Линии, соединяющие северный и южный полюсы магнита, которые представляют силовое поле, которое связывает катушки в трансформаторе, называются магнитным потоком».

Электромагнитная индукция

Электромагнитная индукция — это явление, которое объясняет, как ЭДС и ток индуцируются или могут индуцироваться в катушке при взаимодействии катушки и магнитного поля. Это явление «электромагнитной индукции» объясняется законами электромагнитной индукции Фарадея. Направление наведенной ЭДС в катушке объясняется законом Ленца и правилом правой руки Флеминга.

Законы электромагнитной индукции Фарадея

После того, как Ампер и другие исследовали магнитное действие тока, Майкл Фарадей попробовал обратное.В ходе своей работы он обнаружил, что при изменении магнитного поля, в которое была помещена катушка, в катушке индуцировалась ЭДС.

Это происходило только тогда, когда он перемещал катушку или магнит, которые он использовал в эксперименте. ЭДС индуцировалась в катушке только при изменении потока поля (если катушка зафиксирована, перемещение магнита по направлению к катушке или от нее вызывает наведение ЭДС). Таким образом, законы электромагнитной индукции Фарадея гласят:

Первый закон Фарадея

Первый закон Фарадея об электромагнитной индукции гласит, что «ЭДС индуцируется в катушке, когда происходит изменение магнитного потока, связывающего катушку».

Второй закон Фарадея

Второй закон электромагнитной индукции Фарадея гласит, что «величина наведенной ЭДС в катушке прямо пропорциональна скорости изменения магнитного потока, связывающего катушку».

e = N dϕ / dt

Где

  • e = Индуцированная ЭДС
  • N = количество витков
  • dϕ = Изменение потока
  • dt = Изменение во времени

Соответствующий пост: Is it Можно ли использовать трансформатор 50 Гц на частоте 5 Гц или 500 Гц?

Закон Ленца

Закон Ленца определяет, как можно определить направление наведенной ЭДС в катушке.«Таким образом, он утверждает, что направление наведенной ЭДС таково, что оно противодействует вызывающему ее изменению.

Другими словами, когда в цепи индуцируется ЭДС, текущая установка всегда противодействует движению или изменению тока, которое его вызывает. OR

Индуцированная ЭДС заставит ток течь в замкнутой цепи в таком направлении, в каком ее магнитное воздействие будет противодействовать вызвавшему его изменению.

Согласно этому закону (введенному Линзом в 1835 году) можно определить направление тока.когда ток через катушку изменяет магнитное поле, напряжение создается в результате изменения магнитного поля, направление индуцированного напряжения таково, что оно всегда противодействует изменению тока.

очень простыми словами, закон Ленца, гласящий, что индуцированный эффект всегда таков, чтобы противостоять причине, которая его произвела. Lenz-Law Lenz-Law

Правило Флеминга для правой руки

В нем говорится, что «если большой, указательный и средний пальцы удерживаются таким образом, что они взаимно перпендикулярны друг другу (составляет 90 ° углов), затем указательный палец указывает направление поля, большой палец указывает направление движения проводника, а средний палец указывает направление индуцированного тока (от ЭДС).

Почему трансформаторы не могут повышать или понижать напряжение или ток постоянного тока?

Трансформатор не может повышать или понижать напряжение постоянного тока. Не рекомендуется подключать источник постоянного тока к трансформатору, потому что, если номинальное напряжение постоянного тока приложено к катушке (первичной) трансформатора, магнитный поток, создаваемый в трансформаторе, не изменится по своей величине, а останется прежним и будет результат ЭДС не будет индуцироваться во вторичной катушке, кроме момента включения, поэтому трансформатор может начать дымиться и гореть, потому что;

В случае питания постоянного тока Частота равна нулю .Когда вы прикладываете напряжение к чисто индуктивной цепи, тогда согласно

X L = 2 π f L

Где:

  • X L = индуктивное сопротивление
  • L = индуктивность
  • f = Частота

, если мы положим частоту = 0, то общее X L (индуктивное реактивное сопротивление) также будет равно нулю.

Теперь перейдем к току, I = V / R (а в случае индуктивной цепи, I = V / X L )….основной закон Ома

Если мы положим индуктивное реактивное сопротивление равным 0, тогда ток будет бесконечным (короткое замыкание)…

Итак, если мы подадим постоянное напряжение на чистую индуктивную цепь, цепь может начать дымиться и гореть.

Таким образом, трансформаторы не могут повышать или понижать напряжение постоянного тока. Кроме того, в таких случаях в первичной катушке не будет самоиндуцированной ЭДС, что возможно только с изменяющейся магнитной связью для противодействия приложенному напряжению. Сопротивление первичной обмотки низкое, и поэтому сильный ток, протекающий через нее, приведет к перегоранию первичной обмотки из-за чрезмерного нагрева, производимого током.

Также прочтите: При каких условиях питание постоянного тока безопасно подается на первичную обмотку трансформатора?

Типы трансформаторов

Существуют различные типы трансформаторов в зависимости от их использования, конструкции и конструкции.

Типы трансформаторов в зависимости от их фаз
  1. Однофазный трансформатор
  2. Трехфазный трансформатор
Типы трансформаторов на основе конструкции сердечника
  • Трансформатор типа сердечника
  • Трансформатор типа оболочки
  • Берри Трансформатор
Типы трансформаторов на основе его сердечника
  • Трансформатор с воздушным сердечником
  • Трансформатор с ферромагнитным / железным сердечником
Типы трансформаторов на основе его usege

    9 9000 9000

  • Распределительный трансформатор
  • Трансформатор малой мощности
  • Трансформатор сигнального освещения
  • Трансформатор управления и сигнализации
  • Трансформатор газоразрядной лампы
  • Трансформатор звонка
  • Инструментальный трансформатор
  • Трансформатор постоянного тока серии
  • Трансформатор для уличного освещения

Связанное сообщение: Разница между силовыми и распределительными трансформаторами?

Типы трансформаторов на основе изоляции и охлаждения
  • Трансформатор с воздушным охлаждением или сухого типа
  • Сухой тип с воздушным воздушным охлаждением
  • Масляный, самоохлаждаемый (OISC) или ONAN (натуральное масло, естественное воздушное масло)
  • Погруженный в масло, комбинация самоохлаждения и воздушного обдува (ONAN)
  • Погруженный в масло, с водяным охлаждением (OW)
  • Погруженный в масло, с принудительным масляным охлаждением
  • Погруженный в масло, сочетание самоохлаждения и водяного охлаждения (ONAN + OW)
  • Масло с принудительным воздушным охлаждением (OFAC)
  • Масло с принудительным охлаждением с водяным охлаждением (FOWC)
  • Масляное принудительное с принудительным охлаждением (OFAN)
Типы измерительных трансформаторов

Связанная публикация: Защита силового трансформатора и неисправности

Использование и применение трансформатора

Использование и применение трансформатора уже обсуждалось в этом предыдущем посте.

Преимущества трехфазного трансформатора перед однофазным трансформатором

Прочтите здесь о преимуществах и недостатках однофазного и трехфазного трансформатора.

Похожие сообщения:

.

Определение, типы, принцип работы, диаграмма

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • Решения RS Aggarwal Class 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12
            • Вопросники предыдущего года CBSE
              • Вопросники предыдущего года CBSE, класс 10
              • Вопросники предыдущего года CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Класс 11 Физика
              • HC Verma Solutions Класс 12 Физика
            • Решения Лакмира Сингха
              • Решения Лахмира Сингха класса 9
              • Решения Лахмира Сингха класса 10
              • Решения Лакмира Сингха класса 8
            • 9000 Класс

            9000BSE 9000 Примечания3 2 6 Примечания CBSE

          • Примечания CBSE класса 7
          • Примечания

          • Примечания CBSE класса 8
          • Примечания CBSE класса 9
          • Примечания CBSE класса 10
          • Примечания CBSE класса 11
          • Примечания 12 CBSE
        • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
        • CBSE Примечания к редакции класса 10
        • CBSE Примечания к редакции класса 11
        • Примечания к редакции класса 12 CBSE
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы по математике класса 8 CBSE
        • Дополнительные вопросы по науке 8 класса CBSE
        • Дополнительные вопросы по математике класса 9 CBSE
        • Дополнительные вопросы по математике класса 9 CBSE Вопросы
        • CBSE Class 10 Дополнительные вопросы по математике
        • CBSE Class 10 Science Extra questions
      • CBSE Class
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8 Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Учебные решения
    • Решения NCERT
      • Решения NCERT для класса 11
        • Решения NCERT для класса 11 по физике
        • Решения NCERT для класса 11 Химия
        • Решения NCERT для биологии класса 11
        • Решение NCERT s Для класса 11 по математике
        • NCERT Solutions Class 11 Accountancy
        • NCERT Solutions Class 11 Business Studies
        • NCERT Solutions Class 11 Economics
        • NCERT Solutions Class 11 Statistics
        • NCERT Solutions Class 11 Commerce
      • NCERT Solutions for Class 12
        • Решения NCERT для физики класса 12
        • Решения NCERT для химии класса 12
        • Решения NCERT для биологии класса 12
        • Решения NCERT для математики класса 12
        • Решения NCERT, класс 12, бухгалтерия
        • Решения NCERT, класс 12, бизнес-исследования
        • NCERT Solutions Class 12 Economics
        • NCERT Solutions Class 12 Accountancy Part 1
        • NCERT Solutions Class 12 Accountancy Part 2
        • NCERT Solutions Class 12 Micro-Economics
        • NCERT Solutions Class 12 Commerce
        • NCERT Solutions Class 12 Macro-Economics
      • NCERT Solut Ионы Для класса 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для математики класса 6
        • Решения NCERT для науки класса 6
        • Решения NCERT для класса 6 по социальным наукам
        • Решения NCERT для класса 6 Английский язык
      • Решения NCERT для класса 7
        • Решения NCERT для математики класса 7
        • Решения NCERT для науки класса 7
        • Решения NCERT для социальных наук класса 7
        • Решения NCERT для класса 7 Английский язык
      • Решения NCERT для класса 8
        • Решения NCERT для математики класса 8
        • Решения NCERT для науки 8 класса
        • Решения NCERT для социальных наук 8 класса ce
        • Решения NCERT для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 по социальным наукам
      • Решения NCERT для математики класса 9
        • Решения NCERT для математики класса 9 Глава 1
        • Решения NCERT для математики класса 9, глава 2
        • Решения NCERT

        • для математики класса 9, глава 3
        • Решения NCERT для математики класса 9, глава 4
        • Решения NCERT для математики класса 9, глава 5
        • Решения NCERT

        • для математики класса 9, глава 6
        • Решения NCERT для математики класса 9, глава 7
        • Решения NCERT

        • для математики класса 9, глава 8
        • Решения NCERT для математики класса 9, глава 9
        • Решения NCERT для математики класса 9, глава 10
        • Решения NCERT

        • для математики класса 9, глава 11
        • Решения

        • NCERT для математики класса 9 Глава 12
        • Решения NCERT

        • для математики класса 9 Глава 13
        • NCER Решения T для математики класса 9 Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки класса 9
        • Решения NCERT для науки класса 9 Глава 1
        • Решения NCERT для науки класса 9 Глава 2
        • Решения NCERT для науки класса 9 Глава 3
        • Решения NCERT для науки класса 9 Глава 4
        • Решения NCERT для науки класса 9 Глава 5
        • Решения NCERT для науки класса 9 Глава 6
        • Решения NCERT для науки класса 9 Глава 7
        • Решения NCERT для науки класса 9 Глава 8
        • Решения NCERT для науки класса 9 Глава 9
        • Решения NCERT для науки класса 9 Глава 10
        • Решения NCERT для науки класса 9 Глава 12
        • Решения NCERT для науки класса 9 Глава 11
        • Решения NCERT для науки класса 9 Глава 13
        • Решения NCERT

        • для науки класса 9 Глава 14
        • Решения NCERT для класса 9 по науке Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 по социальным наукам
      • Решения NCERT для математики класса 10
        • Решения NCERT для класса 10 по математике Глава 1
        • Решения NCERT для математики класса 10, глава 2
        • Решения NCERT для математики класса 10, глава 3
        • Решения NCERT для математики класса 10, глава 4
        • Решения NCERT для математики класса 10, глава 5
        • Решения NCERT для математики класса 10, глава 6
        • Решения NCERT для математики класса 10, глава 7
        • Решения NCERT для математики класса 10, глава 8
        • Решения NCERT для математики класса 10, глава 9
        • Решения NCERT для математики класса 10, глава 10
        • Решения NCERT для математики класса 10 Глава 11
        • Решения NCERT для математики класса 10 Глава 12
        • Решения NCERT для математики класса 10 Глава ter 13
        • Решения NCERT для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки класса 10
        • Решения NCERT для класса 10 науки Глава 1
        • Решения NCERT для класса 10 Наука, глава 2
        • Решения NCERT для класса 10, глава 3
        • Решения NCERT для класса 10, глава 4
        • Решения NCERT для класса 10, глава 5
        • Решения NCERT для класса 10, глава 6
        • Решения NCERT для класса 10 Наука, глава 7
        • Решения NCERT для класса 10, глава 8
        • Решения NCERT для класса 10, глава 9
        • Решения NCERT для класса 10, глава 10
        • Решения NCERT для класса 10, глава 11
        • Решения NCERT для класса 10 Наука Глава 12
        • Решения NCERT для класса 10 Наука Глава 13
        • NCERT S Решения для класса 10 по науке Глава 14
        • Решения NCERT для класса 10 по науке Глава 15
        • Решения NCERT для класса 10 по науке Глава 16
      • Программа NCERT
      • NCERT
    • Commerce
      • Class 11 Commerce Syllabus
        • Учебный план класса 11
        • Учебный план класса 11
        • Учебный план экономического факультета 11
      • Учебный план по коммерции класса 12
        • Учебный план класса 12
        • Учебный план класса 12
        • Учебный план
        • Класс 12 Образцы документов для торговли
          • Образцы документов для предприятий класса 11
          • Образцы документов для коммерческих предприятий класса 12
        • TS Grewal Solutions
          • TS Grewal Solutions Class 12 Accountancy
          • TS Grewal Solutions Class 11 Accountancy
        • Отчет о движении денежных средств 9 0004
        • Что такое предпринимательство
        • Защита прав потребителей
        • Что такое основные средства
        • Что такое баланс
        • Что такое фискальный дефицит
        • Что такое акции
        • Разница между продажами и маркетингом
      • 03

      • ICC
      • Образцы документов ICSE
      • Вопросы ICSE
      • ML Aggarwal Solutions
        • ML Aggarwal Solutions Class 10 Maths
        • ML Aggarwal Solutions Class 9 Maths
        • ML Aggarwal Solutions Class 8 Maths
        • ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
      • Решения Селины
        • Решения Селины для класса 8
        • Решения Селины для класса 10
        • Решение Селины для класса 9
      • Решения Фрэнка
        • Решения Фрэнка для математики класса 10
        • Франк Решения для математики 9 класса

        9000 4

      • ICSE Class
        • ICSE Class 6
        • ICSE Class 7
        • ICSE Class 8
        • ICSE Class 9
        • ICSE Class 10
        • ISC Class 11
        • ISC Class 12
    • IC
      • 900 Экзамен IAS
      • Экзамен по государственной службе
      • Программа UPSC
      • Бесплатная подготовка к IAS
      • Текущие события
      • Список статей IAS
      • Пробный тест IAS 2019
        • Пробный тест IAS 2019 1
        • Пробный тест IAS4

        2

      • Комиссия по государственным услугам
        • Экзамен KPSC KAS
        • Экзамен UPPSC PCS
        • Экзамен MPSC
        • Экзамен RPSC RAS ​​
        • TNPSC Group 1
        • APPSC Group 1
        • Экзамен BPSC
        • Экзамен WPSC
        • Экзамен JPSC
        • Экзамен GPSC
      • Вопросник UPSC 2019
        • Ответный ключ UPSC 2019
      • 900 10 Коучинг IAS
        • Коучинг IAS Бангалор
        • Коучинг IAS Дели
        • Коучинг IAS Ченнаи
        • Коучинг IAS Хайдарабад
        • Коучинг IAS Мумбаи
    • JEE4
    • 9000 JEE 9000 JEE 9000 Advanced

    • Образец статьи JEE
    • Вопросник JEE
    • Биномиальная теорема
    • Статьи JEE
    • Квадратное уравнение
  • NEET
    • Программа BYJU NEET
    • NEET 2020
    • NEET Eligibility
    • NEET Eligibility
    • NEET Eligibility 2020 Подготовка
    • NEET Syllabus
    • Support
      • Разрешение жалоб
      • Служба поддержки
      • Центр поддержки
  • Государственные советы
    • GSEB
      • GSEB Syllabus
      • GSEB Образец

        003 GSEB Books

    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы статей
      • MSBSHSE Вопросы
    • AP Board
    • AP Board
    • AP Board
        9000

      • AP 2 Year Syllabus
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board
      • Assam Board
      • Assam Board Документы
    • BSEB
      • Bihar Board Syllabus
      • Bihar Board Учебники
      • Bihar Board Question Papers
      • Bihar Board Model Papers
    • BSE Odisha
      • Odisha Board
      • Odisha Board
        • Odisha Board 9000
        • ПСЕБ 9 0002
        • PSEB Syllabus
        • PSEB Учебники
        • PSEB Вопросы и ответы
      • RBSE
        • Rajasthan Board Syllabus
        • RBSE Учебники
        • RBSE
        • RBSE
        • 000 HPOSE

        • 000 HPOSE
        • 000
        • 000 HPOSE

        • 000
        • 000 HPOSE

        • 000
        • 000

          0003 Контрольные документы

      • JKBOSE
        • JKBOSE Syllabus
        • JKBOSE Образцы документов
        • Экзаменационные образцы JKBOSE
      • TN Board
        • TN Board Syllabus
        • 9000 Papers 9000 TN Board Syllabus

          9000 Книги

      • JAC
        • Программа обучения JAC
        • Учебники JAC
        • Вопросы JAC
      • Telangana Board
        • Telangana Board Syllabus
        • Telangana Board Textbook
        • Telangana Board
        • Учебник
        • Telangana Board
        • KSEEB
          • KSEEB Syllabus
          • KSEEB Типовой вопросник
        • KBPE
          • KBPE Syllabus
          • Учебники KBPE
          • KBPE

            0

          • 9000 UPMS Board UPMS
          • Документы с вопросами UP Board

.

Защита силового трансформатора и неисправности

Защита силового трансформатора и типы неисправностей

В предыдущем посте мы уже обсуждали системы, устройства и блоки электрической защиты. Сегодня мы поговорим о различных типах защиты трансформатора и неисправностях более подробно.

Неисправности силового трансформатора

Трансформаторы — это жизненно важное оборудование в сети передачи и распределения , и поэтому защита от внутренних и внешних неисправностей является очень важным фактором при проектировании этих сетей.

Неисправности трансформаторов могут возникнуть:

  • В диэлектрических (изоляционных) материалах, а именно в масле.
  • В обмотках.
  • В основном (реже).
Неисправности масла и изоляции обмоток

Трансформаторные масла предназначены для обеспечения электрической изоляции при высоких электрических полях ; любое значительное снижение электрической прочности может указывать на то, что масло больше не может выполнять эту жизненно важную функцию .

Некоторые из факторов, которые могут привести к снижению диэлектрической прочности, включают полярных загрязнителей, таких как вода, продукты разложения масла и разрушение целлюлозной бумаги .

Неисправности трансформатора могут возникать в масле из-за газообразования, старения, загрязнения воздухом и недостаточного уровня и давления. Power Transformer Protection & Faults Power Transformer Protection & Faults

В случае незначительной неисправности , например, , повреждение изоляции сердечника болта, локальный перегрев и т. Д. ., искрение вызывает медленное образование газа в масле .

Все неисправностей в сердечнике и обмотках трансформатора приводят к локальному нагреву и выходу из строя на мкл.

Когда неисправность относится к очень незначительному типу , например, горячее соединение , газ выделяется медленно и поднимается в сторону расширителя .

Основная ошибка , где возникает сильная дуга , вызывает быстрое выделение большого объема газа и паров масла .

Этот бурный выброс газа и паров масла не успевает выйти, а вместо этого создает давление и физически вытесняет масло , вызывая выброс масла в расширитель .

Неисправности также могут возникать в изоляционном материале обмоток , вследствие отказа масла, старения , перегрева и пробоя изоляции .

Неисправности сердечника

Если какая-либо часть изоляции сердечника выходит из строя или ламинированная структура сердечника перекрывается любым проводящим материалом , который может пропускать вихревой ток , достаточный для протекания , он вызовет серьезный перегрев .

Болты с изолированной сердцевиной используются для затяжки сердцевины . Если изоляция этих болтов выходит из строя и обеспечивает легкий путь для паразитного тока , это приведет к перегреву .

Механические удары во время погрузочно-разгрузочных работ и транспортировки может приложить к трансформатору с силой, эквивалентной , более 3g (где g — ускорение свободного падения; g = 9.81 м / с 2 .) , что может вызвать искажение сердечника .

Неисправности обмоток

Неисправности общих обмоток: :

  • Неисправности между первичной и вторичной обмотками ( короткое замыкание ) той же фазы .
  • Короткое замыкание между витками обмотки .

Эти неисправности обычно являются результатом диэлектрического разрушения , как между обмотками, так и между витками одной и той же обмотки , из-за старения изоляционного материала , которое может увеличить из-за перегрузок .

Также необходимо учитывать, что на обмотки действуют как радиальные, так и осевые силы , связанные с взаимодействием тока и магнитного потока . Радиальные силы во внутренней обмотке ( обычно это низковольтная обмотка ) находятся в состоянии сжатия , в то время как силы внешней обмотки ( обычно обмотка высокого напряжения ) находятся в растяжении .

Конструкция обмоток и связей должна учитывать величину этих сил и обеспечивать достаточную прочность , чтобы выдерживать их без значительной механической деформации , которая может привести к диэлектрическому разрушению .

Также механических ударов во время обработки и транспортировки может приложить к трансформатору эквивалентную силу выше 3g , что может вызвать деформацию и / или смещение обмоток и уменьшение изоляции обмотки .

Неисправности, связанные с перегрузкой

Нагрузка трансформатора определяется допустимым превышением температуры обмоток и маслом . Допустимая температура масла составляет 65 ° C и горячая точка Температура обмотки составляет 80 ° C при номинальной нагрузке .

Поскольку нагрузка трансформатора не остается стабильной и изменяется в соответствии с кривой нагрузки , нагрузка трансформатора становится важной эксплуатационной проблемой .

Номинальная мощность силового трансформатора указана на заводской табличке со ссылкой с до , указанное превышение температуры при определенных условиях испытаний .

Выход , который может быть получен от трансформатора без чрезмерного ухудшения изоляции , может быть больше или меньше номинального значения на паспортной табличке в зависимости от рабочих условий , таких как температура окружающей среды , начальная нагрузка, охлаждение, ожидаемый срок службы и т. д. .

Неисправности из-за перегрева

Перегрев в трансформаторе может быть вызван перегрузками, превышающими допустимые перегрузки , указанные производителями , в соответствии со стандартами IEC ( 60354 для маслонаполненных трансформаторов и 60905 для сухих трансформаторов трансформаторы ) и внешних неисправностей , таких как короткое замыкание на установках после .Большинство этих неисправностей может быть ограничено надлежащим обслуживанием трансформатора.

Перегрев может вызвать пробой изоляции обмоток.

Защита силового трансформатора

Встроенная защита

Трансформаторы снабжены пулей ( внутренних защит) для диэлектрического повреждения ( образование газа ), температура , Давление масла, уровень, температура обмотки и на устройстве РПН .

В соответствии с конструкцией трансформаторов должны быть предусмотрены следующие защиты :

Масляные трансформаторы с расширителем

  • Реле Букхольца для диэлектрического повреждения ( 2 ступени : аварийный сигнал и отключение )
  • Реле давления и уровня масла ( 2 ступени : аварийный сигнал и отключение )
  • Термостат температуры масла ( 2 ступени : аварийный сигнал и отключение )
  • Защита устройства РПН ( 2 шаги : аварийный сигнал и отключение )

Реле Букхольца имеет несколько методов обнаружения неисправного трансформатора .

  • При медленном накоплении газа , возможно, из-за небольшой перегрузки , газа, образовавшегося в результате разложения изоляционного масла , накапливается в верхней части реле , а понижает уровень масла на . Поплавковый выключатель в реле используется для подачи аварийного сигнала . В зависимости от конструкции, второй поплавок на может также служить для обнаружения медленных утечек масла .
  • Если дуга образует , накопление газа происходит быстро , и нефть быстро течет в расширитель .Этот поток масла управляет переключателем , прикрепленным к лопатке , расположенной на пути движущегося масла .

Реле Бухгольца имеют испытательный порт , позволяющий извлекать накопившийся газ для испытания . Горючий газ , обнаруженный в реле указывает на некоторую внутреннюю неисправность , такую ​​как перегрев или искрение , тогда как воздух в реле может указывать только на низкий уровень масла или утечку .

Для трансформаторов , оснащенных охлаждающими вентиляторами и насосами , используются температурные устройства для автоматического запуска и остановки принудительного охлаждения . Они также оборудованы для подачи сигнала тревоги и отключения для очень высоких температур трансформатора . 2 уровней ( аварийный сигнал и отключение )

Сухие трансформаторы

  • Температура обмоток с 2 уровнями ( аварийный сигнал и отключение ) — датчик температуры сопротивления PT 100 ( платиновый зонд ) или PTC («положительный температурный коэффициент »), то есть термистор ( полупроводниковый материал, чувствительный к температуре ).

Эти защиты имеют прямое действие на катушки отключения выключателей .

Дифференциальная защита

Идеальный способ защиты из любой части оборудования энергосистемы — это сравнение тока, входящего в эту часть оборудования, с током на выходе .

В нормальных нормальных условиях два равны . Если два тока не равны , то должна существовать ошибка .

Это осуществляется с помощью « дифференциальная защита » (код 87T ANSI / IEEE / IEC ), , диаграмма которого показана на рисунке 1, а принцип действия основан на действующем законе Кирхгофа .

Полезно знать:

IEC : Международная электротехническая комиссия.

ANSI : Американский национальный институт стандартов.

IEEE : Институт инженеров по электротехнике и электронике.

Transformer Differential Protection Diagram Transformer Differential Protection Diagram

Рисунок 1 — Схема дифференциальной защиты

EHV и HV Трансформаторы и автотрансформаторы для напряжений выше 49,5 кВ и MV трансформаторов с номинальной мощностью свыше -4 МВА обычно имеют в качестве основной защиты Дифференциальную защиту для коротких замыканий обмоток коротких замыканий между витками обмотки или между обмотками, которые соответствуют межфазному или трехфазному короткому замыканию -схемы .

Если в точке размещения трансформатора нет заземления , то эту защиту n также можно использовать для защиты от замыканий на землю .

Если ток замыкания на землю равен , ограниченному импедансом , обычно невозможно установить для порогового значения тока на значение, меньшее, чем ограничивающий ток.

Эта защита подключена к трансформаторам тока CT (трансформаторы тока ) на с обеих сторон трансформатора (первичная обмотка и вторичная обмотка ), как показано на Рисунке 1.

Использование дифференциальной защиты трансформатора создает некоторые проблемы, которые необходимо учитывать:

Проблема , связанная с коэффициентом трансформации и методом соединения

Первичный и вторичный токи имеют разная амплитуда из-за коэффициента трансформации и разные фазы в зависимости от метода связи (трансформатор треугольник-звезда обеспечивает сдвиг фаз на 30 °).Следовательно, измеренные значения тока должны быть скорректированы таким образом, чтобы сравниваемые сигналы были одинаковыми во время нормальной работы.

Этот выполняется с использованием согласующих вспомогательных трансформаторов, роль которых заключается в балансировании амплитуды и фазы .

Когда одна сторона трансформатора соединена звездой с заземленной нейтралью, согласующие трансформаторы на этой стороне соединяются треугольником, так что остаточные токи, которые могут быть обнаружены при возникновении замыкания на землю вне трансформатора, очищено.

На рисунке 16 показан пример подключения дифференциальной защиты с использованием согласующих вспомогательных трансформаторов .

Transformer differential protection diagram Transformer differential protection diagram Рисунок — Схема дифференциальной защиты трансформатора

В настоящее время с электронными и микропроцессорными устройствами защиты эта компенсация осуществляется с помощью программного обеспечения .

Функция защиты основана на коэффициенте трансформации « n », который можно выразить уравнением :

n = (U 1 / U 2 ) = (I 2 / I 1 )

( U 1 : первичное напряжение; U 2 : вторичное напряжение; I 1 : первичный ток; I 2 : вторичный ток).

Приведенное выше соотношение является следствием уравнения номинальной мощности ( S ) трансформатора:

S = √3 x U 1 x I 1 = √3 x U 2 x I 2

Проблема , связанная с пусковым током трансформатора

Трансформатор переключение из вызывает очень высокий переходный ток от 8 до 15 I n ), который проходит только через первичную обмотку и длится несколько десятых секунды .

Это — это , таким образом, определяется защитой как дифференциальный ток и длится намного дольше времени срабатывания защиты ( 30 мс ). Обнаружение, основанное только на разнице между первичным и вторичным токами трансформатора , вызовет активацию защиты . Следовательно, защита должна иметь возможность различать дифференциальный ток, вызванный неисправностью, и дифференциальный пусковой ток .

Опыт показал, что волна пускового тока содержит не менее 20% составляющих второй гармоники (ток на частоте из 100 Гц ), тогда как этот процент никогда не превышает , чем 5% при возникновении перегрузки по току из-за неисправности внутри трансформатора .

Следовательно, защита должна быть просто заблокирована , когда процентное соотношение составляющей второй гармоники по отношению к составляющей основной гармоники (ток при , 50 Гц, ) выше, чем 15% , i.е. , « I 2 / I 1 > 15% ».

Проблема , относящаяся к току намагничивания при возникновении перенапряжения внешнего происхождения

Ток намагничивания или ток возбуждения — это ток, протекающий через первичную обмотку силового трансформатора при отсутствии нагрузки на вторичную обмотку ; этот ток устанавливает магнитное поле в сердечнике , а обеспечивает энергию для потерь мощности без нагрузки в сердечнике .Он отвечает за « потерь в железе, ».

Ток намагничивания составляет разницы между первичным и вторичным токами трансформатора. Следовательно, это определяется как ток короткого замыкания дифференциальной защитой, даже если это не связано с отказом .

В нормальных рабочих условиях этот ток намагничивания составляет очень низкий и не достигает порога срабатывания защиты .

Однако, когда происходит перенапряжение за пределами трансформатора , магнитный материал насыщает (в целом трансформаторы рассчитаны на работу при пределе насыщения для номинального напряжения питания ), а намагничивание текущее значение сильно увеличивает . Таким образом, порог срабатывания защиты может быть достигнут .

Опыт показал, что намагничивающий ток из-за магнитного насыщения имеет высоких частот пятой гармонической составляющей (ток на частоте из 250 Гц ).

Дифференциал трансформатора, следовательно, требует довольно сложных функций, поскольку он должен уметь измерять ток второй и пятой гармоник или, чтобы избежать измерения токов пятой гармоники, он должен уметь обнаруживать перенапряжения внешнего происхождения.

Характеристики дифференциальной защиты трансформатора связаны с трансформатором спецификации :

  • Коэффициент трансформации
  • Векторная группа

  • 0 9005 Пусковой ток

  • Постоянный ток намагничивания
Защита от перегрузки по току

Трансформаторы среднего напряжения с номинальной мощностью от до 2.5 MVA обычно защищены только от сверхтоков с помощью реле максимального тока.

  • Трехфазное или межфазное короткое замыкание, мгновенное ( код ANSI / IEEE / IEC 50 ).
  • Трехфазное или междуфазное короткое замыкание с выдержкой времени ( ANSI / IEEE / IEC код 51 ).
  • Короткое замыкание фазы на землю, мгновенное ( код ANSI / IEEE / IEC 50N ).
  • Короткое замыкание фазы на землю, с выдержкой времени ( код ANSI / IEEE / IEC 51N ).

Этот набор защит используется в трансформаторах высокого и среднего напряжения с номинальной мощностью свыше 3-4 МВА как « резервная » защита , в дополнение к дифференциальная защита .

В некоторых установках и сетях трансформаторы MV с номинальной мощностью до 630 кВА могут быть защищены от сверхтоков с помощью предохранителей , связанных с выключателями-разъединителями , как показано на рисунке 2.

В этих ситуациях выключатели-разъединители должны иметь отключающую катушку , чтобы обеспечить срабатывание встроенных защит трансформаторов .

Switch-disconnector associated with fuses Switch-disconnector associated with fuses Рисунок 2 — Выключатель-разъединитель, связанный с предохранителями

Предохранители должны иметь механическую защелку для индикации fusion и для инициирования трехполюсного размыкания выключателя-разъединителя , чтобы избежать срабатывания установка только с двумя фазами .

Производители предоставляют таблицы для выбора номинального тока предохранителя с учетом номинального напряжения и мощности , как показано в таблице 1, в соответствии со стандартами IEC .

Таблицы варьируются от производителя к производителю , в соответствии с используемыми стандартами , рекомендуется использовать таблицу, предоставленную выбранным производителем .

Таблица 1 — Номинальный ток предохранителей для защиты силовых трансформаторов

-16

911

200

31,5 — 63

100-160

Номинальная мощность трансформатора

(кВА)

Линейное напряжение (кВ)
6.2 10–12 15–17,5 20–24 30–36
Номинальный ток предохранителя (A)
50 10 6,3 — 10 6,3 4 — 6,3
100 16-31,5 16-25 16 10 6,3 — 10
20-40 16 — 31.5 20 10-16 6,3 — 10
160 31,5-50 20 — 31,5 20-25 16-20 10-16
31,5-63 25-40 20-31,5 16-20 10-16
250 40-80 25-40 31,5 16-25 — 20
315 50-100 31.5-50 31,5 — 50 16-25 16-25
400 63-100 40-63 31,5 — 63 20-40 16-25
500 80-125 50-80 40-80 25-50 20-31,5
630 100-160 63-100 63-100 20-40
800 125-160 80-125 63-100 40-63 25-50
1000 160-200 100 50-80 31.5-50
1250 250 160 125 80 50

Rated current of fuses for power transformers protection Rated current of fuses for power transformers protection

Ограниченная защита от замыканий на землю

Защита от замыканий на землю / IEEE / IEC code 64G / 64REF ) используется в качестве дополнения или для замены дифференциальной защиты для замыканий обмоток на землю .

Внешнее повреждение на стороне звезды приведет к протеканию тока в линейном трансформаторе тока затронутой фазы и в то же время в трансформаторе тока нейтрали протекает ток балансировки , следовательно, Следовательно, результирующий ток в реле равен нулю .

Таким образом, эта защита не сработает при внешнем замыкании на землю . Но во время внутренней неисправности трансформатор тока нейтрали передает только ток дисбаланса и срабатывание из срабатывает защита .

Эта схема ограниченной защиты от замыканий на землю является очень чувствительной для внутреннего замыкания на землю силового трансформатора.Схема защиты на сравнительно дешевле , чем схема дифференциальной защиты .

Ограниченная защита от замыканий на землю предусмотрена в силовом трансформаторе для обнаружения внутреннего замыкания на землю трансформатора . В этой схеме вторичная обмотка ТТ каждой фазы силового трансформатора соединена вместе , как показано на Рисунке 3.

Transformer restricted earth fault protection diagram Transformer restricted earth fault protection diagram

Рисунок 3 — Схема ограниченной защиты от замыканий на землю

Всякий раз, когда есть несимметрия в между тремя фазами силового трансформатора, результирующий ток небаланса протекает через закрытый путь , подключенный к общим клеммам вторичной обмотки ТТ .

Ток дисбаланса будет также протекать через нейтраль силового трансформатора и, следовательно, будет вторичный ток в ТТ нейтрали из-за этого тока дисбаланса нейтрали .

В ограниченном замыкании на землю схема общие выводы фазного ТТ подключены к вторичной обмотке Нейтрального ТТ таким образом, что вторичный ток небаланса фазного ТТ и вторичной обмотки текущий из Нейтральный CT будет противостоять друг другу .

Если эти оба тока равны по амплитуде , то не будет , никакой результирующий ток не будет циркулировать через упомянутый замкнутый путь . ограниченная защита от замыканий на землю защита подключается к этому замкнутому пути . Следовательно, реле не будет реагировать на даже при несимметричном фазном токе силового трансформатора .

Защита от перегрузки

Основной критерий для нагрузки трансформатора — это температура самой горячей точки твердой изоляции ( горячей точки ).Оно не должно превышать предписанное значение , чтобы избежать повреждений изоляции. , поскольку l нагрузочная способность силовых трансформаторов ограничена в основном температурой обмотки .

Температура твердой изоляции является основным фактором старения трансформатора.

При температуре и времени целлюлозная изоляция проходит процесс деполимеризации . По мере того как целлюлозная цепочка становится короче , механические свойства бумаги , такие как прочность на разрыв и эластичность , ухудшаются на .В конце концов бумага становится хрупкой и не способна выдерживать силы короткого замыкания и , даже нормальные колебания , которые являются частью срока службы трансформатора. Эта ситуация характеризует по окончании срока службы твердой изоляции . Поскольку это нереверсивный , он также определяет как — истечение срока службы трансформатора .

Перегрузки трансформатора могут возникать во время чрезвычайных ситуаций , которые являются результатом одного, двух или различных элементов системы, изолированных от источника питания системы .Они также могут возникать, когда трансформаторы уже находятся на 80% -90% из их , полная номинальная мощность и , требуется дополнительная мощность , особенно в жаркое лето .

Традиционно реле максимального тока с обратнозависимой выдержкой времени (кривая с обратнозависимой выдержкой времени — это , характеризуемая посредством i

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *