05.10.2024

Проводит алюминий электричество: ЭЛЕКТРОПРОВОДНОСТЬ

Содержание

алюминий ток проводит? — Школьные Знания.com

определите тип химической связи в оксиде натрия и хлориде калия. Напишите схемы процессов , в результате которых образуются, Хлорида калия из атомов к

алия и хлора​

какими общими свойствами обладают вещевства,изображенные на рисунке 1? какие еще вещества обладают подобными свойствами? приведите собственный примерп

омогите пожалуйста,у меня сор​

объясните какие из атомов отдают какиепринимают электроны при образовании ионов из металлов и неметаллов​

Определите массу воды в 10% растворе 250г хлорида натрия

определи относительную атомную массу фтора азота натрия. варианты ответов
три правельных ответов
1. 23. 21. 14. 19. 22. 18.

какую массу воды и вещества нужно взять чтобы приготовить 1кг раствора с массовый долей вещества 2%​

какое химическое свойство проявляет кислород в этой реакции​

Рассчитаем массу сульфата натрия, образовавшегося при нейтрализации гидроксида натрия массой 12г. серной кислотой. 1. Какова масса кальция, вступив

шего в реакцию с водой, если при этом образуется гидроксид массой 4,44г. Са H-0 — Са (ОН) 2 + Н2 2. При действии цинка на соляную кислоту было получено 5 г водорода. Найдите объем кислоты, вступив в химическую реакцию. Zn + HCI3D ZnClz + h3 4. Какой объем хлора прорeагировал с иодидом калия, если при этом получилось 25,4 г. нода. 5. Рассчитаем объем углекислого газа (н.у.), выделившегося при разложении 40 г карбоната кальция. 6. Найдите массу и количество вещества нитрата меди (II), образовавшегося при взаимодействии оксида меди (1) массой 4 г. с азотной кислотой. CuO + HNO3- Cu (ОН) 2 + Н 0 7. Рассчитаем объем (н у.) Кислорода, який необходим для полного сгорания магния массой 4,8 г. Mg + Oa — MgО Рассчитаем объем хлороводорода при нормальных условиях, полученный при действии серной кислоты на 5,85 г. хлорида натрия. 9. При взаимодействии водорода с оксидом меди образовалось 0,1 моль меди Рассчитаем массу оксида. 10. Определите массу магния, вступившего в реакцию с кислородом, если образовалось 4 г. оксида. Mg + Oz- Mg0​

Путём выпаривания досуха 80 гнасыщенного при 10 градусах Сраствора хлорида натрия получено21,04г соли. Рассчитайтерастворимость хлорида натрия вводе п

ри 10 градусах C.помогите пожалуйста ​

Установите соответствие. дав характеристику химическому элементу КАЛий по положению впериодической системе химических элементовПериод, группа, подгруп

па+19Заряд ядра2, 8, 8, 1Число протонов4, 1, главнаяЧисло нейтронов20K20Распределение электронов поэнергетическим уровнямКОНСвойства простого вещества19Формула высшего оксидаметаллФормула высшего гидроксида​

что лучше всего подходит для проводки?

В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился. 

Превосходство меди над алюминием для проводки

1. Электропроводность

Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм2/м в то время, как у алюминия 0,028 Ом*мм2/м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм2, например, NYM 3х2,5, или алюминиевый сечением 4 мм2. Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.

2. Окисление

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).

У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.

3. Механическая прочность

Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

4. Теплопроводность

Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Превосходство алюминия над медью для ЛЭП 

Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно! 

1. Вес

Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м3, а алюминия 2700 кг/м3. То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.

2. Цена

Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.

Интересные факты из мира электрики:

Теги

электропроводка

Электропроводность — алюминий — Большая Энциклопедия Нефти и Газа, статья, страница 3

Электропроводность — алюминий

Cтраница 3

Алюминий имеет высокую теплопроводность и электропроводность. Электропроводность алюминия также зависит от его чистоты.
 [31]

А электропроводность алюминия лишь на одну треть уступает электропроводности меди. Эти обстоятельства и тот факт, что алюминий стал значительно дешевле меди ( в паши дни — примерно в 2 5 раза), послужили причиной массового использования алюминия в проводах и вообще в электротехнике.
 [32]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсато — — ров. Хотя электропроводность алюминия меньше, чем у меди ( около 0 % электропроводности меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электропроводности алюминиевый провод весит вдвое меньше медного.
 [33]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электропроводность алюминия меньше, чем у меди ( около 60 % электропроводности меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электропроводности алюминиевый провод весит вдвое меньше медного.
 [34]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электропроводность алюминия составляет только около 60 % электропроводности меди, но это компенсируется легкостью-алюминия, позволяющей делать провода более толстыми: при одинаковой электропроводности алюминиевый провод весит вдвое меньше медного.
 [35]

Чистый алюминий в электротехнике частично заменяет медь; из него делают провода, шины, контакты и другие изделия, которые должны обладать высокой электропроводностью. Хотя электропроводность алюминия составляет всего 65 % от электропроводности меди, плотность его более чем в три раза ниже, следовательно меньше расход металла в весовом отношении.
 [36]

В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электропроводность алюминия меньше, чем у меди ( около 60 % электропроводности меди), по это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электропроводности алюминиевый провод весит вдвое меньше медного.
 [37]

Более важным является отношение Z) / ( S 28n), где 5П — глубина проникновения магнитного потока в пазовое пространство в переходном режиме. Увеличение электропроводности алюминия за счет его охлаждения уменьшает глубину проникновения магнитного потока в тело экрана и тем самым увеличивает степень поперечного сжатия магнитного потока. Наибольшая степень сжатия обеспечивается сверхпроводящими экранами.
 [38]

Чистый алюминий применяют в электротехнике для изготовления проводников тока. Тепло — и электропроводность алюминия несколько ниже, чем у чистой меди. Все примеси, присутствующие в алюминии, ухудшают его тепло — и электропроводность.
 [39]

Более заметное действие оказывают примеси меди, серебра и магния, снижающие электропроводность алюминия на 5 — 10 % при том же весовом содержании. Очень сильно понижают электропроводность алюминия добавки титана и марганца.
 [40]

Более заметное действие оказывают примеси меди, серебра и магния, снижающие электропроводность алюминия па 5 — 10 % при том же весовом содержании. Очень сильно понижают электропроводность алюминия добавки титана и марганца.
 [41]

Согласно нормам VDE 0202 / VII.43 изменение сопротивления алюминиевого проводника для электротехнических целей, имеющего длину 1 м и площадь поперечного сечения 1 мм2, составляет 1 1 10 — 4 ом / С. При наименьшей величине электропроводности алюминия, применяемого для проводников, х 36 это соответствует критической температуре f 0 232 C. Согласно измерениям, произведенным автором, для алюминия, имеющего такую электропроводность, величина критической температуры оказывается немного больше. ГОСТ 183 — 55 рекомендует для алюминия д0 245 С.
 [42]

Он хорошо проводит тепло и электричество. В зависимости от чистоты, электропроводность алюминия составляет 62 — 65 / а электропроводности меди.
 [43]

При сварке меди Ml с алюминием марки А5 по слою стандартного флюса, применяемого для сварки алюминия ( АН-А1) при толщине металла до 20 мм, используют проволоку марки АД1 диаметром 2 5 мм. МПа, электропроводность сохраняется на уровне электропроводности алюминия.
 [44]

По способности проводить электрический ток алюминий также заметно уступает меди. В отличие от меди отжиг не изменяет электропроводность алюминия.
 [45]

Страницы:  

   1

   2

   3

   4




Почему для проводов используют медь и алюминий?

Почему для проводов используют медь и алюминий?

В качестве материала проводников для изготовления силовых кабелей используются такие материалы как медь или алюминий. Но мало кто задумывается, почему же именно эти металлы среди множества остальных являются наиболее подходящими для проведения электроэнергии. Всё дело в оптимальном сочетании проводящих свойств элементов с их доступностью с ценой.

Использование медных проводов уходит корнями в начало 19 века. Медь обладает низким показателем удельного сопротивления, соответственно передача электроэнергии по подобным проводникам происходит при низких энергозатратах, т.к. электричество проводится с наименьшими потерями. Сегодня медные проводники используются для производства медножильных кабелей связи и силовых проводов, клемм, катушек, трансформаторов и прочих устройств электротехнического характера.

Алюминиевые же провода начали применять в качестве проводника в середине 20 века. Алюминий можно охарактеризовать как легкий, практичный и недорогой материал с хорошими показателями проводимости. Однако в сравнении с медью алюминий имеет большее сопротивление току, поэтому слабее проводит электроэнергию. Так при одинаковом сопротивлении жил алюминиевый провод будет в 1,5 раза толще медного.

И медные, и алюминиевые кабели широко используются во всех сферах деятельности, при этом выбор проводника зависит от конкретных условий эксплуатации и цены.


Малая стоимость алюминиевых силовых кабелей зачастую сильно влияет на выбор покупателей. При невысоких ценах качество исполнения алюминиевых проводов находится на приличном уровне, а сами проводники представлены широкой типоразмерной линейкой изделий. Но алюминиевый кабель обладает и рядом существенных недостатков.

Во-первых, это уже упомянутая низкая проводимость. В сравнении с медными проводниками данный показатель у алюминиевых модификаций в 1,5 раза меньше.

Во-вторых, алюминиевый провод абсолютно негибкий. Он легко переламывается и не терпит больших изгибающих усилий, что соответственно откладывает отпечаток на сферу его применения.

И, наконец, алюминий быстро окисляется на воздухе, что при неблагоприятных условиях способствует образованию оксидной плёнки и препятствует нормальной передаче тока.


Медный силовой кабель является всё-таки более надёжным проводником электроэнергии. Медный проводник характеризуется отличной проводимостью, малым сопротивлением и хорошей гибкостью. При этом медь сама по себе плотнее и тяжелее алюминия, поэтому медная кабельная продукция имеет большой вес, что в свою очередь может представлять некие трудности при транспортировке и монтаже. Так же стоит отметить, что силовые кабели с медными жилами достаточно дорогие.

При выборе силового кабеля необходимо основываться на конкретных требованиях к продукции и планируемых условиях эксплуатации. Конечно, на сегодняшний день наиболее оптимальным вариантом для построения качественной, надёжной и безопасной электрической сети является медный силовой кабель. Однако при особых требованиях к массе изделия или жёстких ценовых ограничениях целесообразно приобретать именно алюминиевый кабель.

Какая проводка лучше медная или алюминиевая: преимущества и недостатки

На чтение 7 мин. Просмотров 57 Опубликовано Обновлено

Владельцы недвижимости часто с трудом могут определиться, какая проводка лучше — медная или алюминиевая. Этот вопрос встает перед частными застройщиками и владельцами городских квартир, в которых планируется капитальный ремонт. От правильности принятого решения зависят не только эксплуатационные характеристики жилья, но и безопасность проживания хозяев. Чтобы не ошибиться в выборе электропроводки, необходимо разобраться с плюсами и минусами каждого материала, выяснить общие моменты и принципиальные различия.

На что обращать внимание при выборе проводов

Схема медного и алюминиевого проводов

Выбирая между медью или алюминием для проводки, необходимо отталкиваться от нескольких критериев, от которых зависит эффективность работы электрической системы.

Обращать внимание нужно на такие нюансы:

  • Места расположения розеток, осветительных приборов, пакетных и клавишных выключателей. На основании схемы можно подсчитать, требуемый метраж кабеля.
  • Суммарная мощность приборов, которые одновременно будут включены в сеть. Получается показатель максимальной токовой нагрузки проводов.
  • Стандарт розеток. Они приспособлены под присоединение жил, диаметр которых не превышает 2,5 мм. Соотносится токовая нагрузка и электропроводность металлов.
  • Стоимость материала. На этот параметр нужно ориентироваться в последнюю очередь, так как безопасность превыше всего.

Не следует забывать о таком критерии, как долговечность. Замена коммуникаций — слишком дорогое и трудоемкое мероприятие, чтобы проводить его раз в несколько лет

Свойства алюминия

Алюминиевая проводка легко гнется, но быстро ломается

Алюминий относится к категории легких, химически и биологически инертных металлов с удельным весом 2700 кг/м³. Материал безопасен для человека и окружающей среды.

Достоинства алюминия:

  • Доступная стоимость. Цена определяется более низкой температурой плавления и меньшими, чем у других металлов, затратами на производство.
  • Пластичность. Провод хорошо гнется, сохраняя приданную форму. Жилам придается любая нужная в работе конфигурация.
  • Образование защитного слоя. Поверхность металла после зачистки покрывается тонким слоем, который препятствует его окислению по всему объему.

Вместе с тем, алюминий имеет следующие недостатки:

  • Высокая степень сопротивления потоку электронов. Это вызывает нагревание линий, что может привести к возгоранию отделочных материалов.
  • Большой уровень теплового расширения. Из-за этого возникает ослабление контактных соединений. При частом включении и отключении линий с высокой нагрузкой происходит разъединение цепи.
  • Окисление при контакте с воздухом. Образующаяся от этого пленка имеет плохую проводимость, из-за чего контакты перегреваются и плавят изоляцию, а линия «земля» просто перестает выполнять свою функцию.
  • Короткий срок эксплуатации. Он не превышает 30 лет при средней нагрузке.

Сегодня в соответствии с требованиями ГОСТ использование алюминия запрещено в строительстве жилых домов и инженерных сооружений.

Свойства меди

Медная проводка устойчива к скручиванию и изгибанию

Медь является тяжелым металлом с удельным весом 8700 кг/м³. Это показатель следует учитывать только при прокладке ЛЭП с ограниченным запасом прочности опор. В быту им можно пренебречь. Материал активно взаимодействует с кислородом, образуя оксид — патину, которую можно увидеть на статуях, ограждениях и сувенирах.

Достоинства меди следующие:

  • Долговечность. Если линия не проходит на улице, она может прослужить 30-50 лет в зависимости от влажности помещения.
  • Прочность. Медь устойчива к скручиванию и изгибанию. Качественный кабель можно деформировать до 100 раз без потери его рабочих характеристик.
  • Высокая проводимость. Металл хорошо пропускает электроны, не подвергаясь нагреванию и тепловому расширению.
  • Гибкость. Проводка легко принимает нужное положение, распрямляясь после прекращения действия нагрузки. С кабелями удобно работать в процессе монтажа.

Минусы у материала тоже есть:

  • Высокая цена. Объясняется это сложностями добычи руды и затратами на ее переработку. Чтобы расплавить концентрат, требуется большое количество энергии, плюс затраты на транспортировку.
  • Окисление при взаимодействии с водой и воздухом. Образующаяся пленка ухудшает проводимость контактов и способствует их нагреванию.

Выбирая между алюминиевой или медной проводкой, целесообразно останавливаться на втором варианте, так как он имеет больше достоинств, чем недостатков.

Что лучше проводит ток

Этот показатель определяет такие свойства разводки, как ее предельная мощность, долговечность и пожарная безопасность.

От проводимости зависят такие эксплуатационные характеристики проложенной линии:

  • потери на нагревание от потока электронов;
  • сохранение параметров тока, что важно для чувствительных приборов;
  • степень повышения температуры кабеля во время работы мощных потребителей;
  • наличие или отсутствие в помещении запаха от плавящейся и горящей проводки.

Чтобы понять, что лучше проводит ток — медь или алюминий, можно сопоставить степень их сопротивления. Чем этот показатель меньше, тем ниже вероятность возникновения нежелательных явлений.

Данный показатель составляет:

  • медь — 0,018 Ом×мм²/м;
  • алюминий — 0,028 Ом×мм²/м.

Медь проводит ток более, чем в 1,5 раза лучше. Компенсация сопротивления достигается за счет увеличения сечения жил в кабеле.

Какой материал для проводки лучше

Виды соединений медных проводов

При всех достоинствах алюминия не стоит забывать о его недостатках. Главным из них, не считая механических характеристик, является низкая проводимость. Бесконечно увеличивать диаметр кабеля нельзя, так как бытовые приборы и проложенные в стенах каналы на такое не рассчитаны. Не следует забывать о таком факторе, как хрупкость металла. После нескольких лет эксплуатации он может лопнуть при замене розетки или счетчика. Делать в подрозетнике скрутку нежелательно, так как она долго не прослужит. Выбор в пользу алюминия даст хорошую экономию на закупке материалов, но последующие затраты на ремонт могут свести ее на нет.

Медь тоже имеет свои минусы, но они компенсируются большим количеством преимуществ. Даже процесс протягивания кабеля по каналу происходит легче, так как он хорошо изгибается без каких-либо склонностей к поломке или разрыву. Стоит помнить и о низком сопротивлении. Установив линию с жилами 2,5 мм², можно использовать в быту настолько мощные потребители, насколько это позволяет общая домовая линия.

Подводя итог, можно рекомендовать мастерам делать свой выбор в пользу изделий из меди. Если бюджет ограничен, можно комбинировать материалы, используя современные средства коммутации.

Полезные рекомендации

Соединение проводов должно соответствовать правилам безопасности

Схема разводки кабелей в квартире состоит из верхнего и нижнего уровня. К нижнему проведены розетки, предназначенные для питания потребителей, мощность которых может достигать 2 кВт: стиральные машины, бойлеры, микроволновые печи. Чтобы не подвергать линии риску перегрева и обгорания, здесь целесообразно провести медный кабель с максимально допустимым для бытовых розеток сечением жил.

Верхний уровень используется для питания дверных звонков, потолочных и настенных ламп. Эти изделия потребляют минимальное количество электричества, особенно если в них установлены современные светодиодные лампы. Поверху можно пустить тонкий и недорогой алюминиевый кабель, запаса мощности которого хватит с большим резервом. При таком решении отдельным вопросом встает безопасный способ соединения двух несовместимых между собой металлов.

Токопроводящая паста

Чтобы избежать проблем с контактами после проведения монтажа, можно воспользоваться одним из таких приспособлений:

  • Зажим. Изделие состоит из 3 стальных пластин. Жилы вставляются между ними, после чего пластины затягиваются болтами.
  • Болт с 2 железными шайбами. Концы жил скручиваются кольцами и насаживаются на ось, между разными материалами устанавливаются шайбы. Закручивание гайки обеспечивает надежный контакт.
  • Пружинный коммутатор. Его клеммы обработаны специальной смазкой против коррозии. Жилы вставляются в пазы и фиксируются пружинными рычагами.
  • Колодки. Представляют собой стальную планку с контактами, запрессованную в пластиковый корпус. В концы кабеля вставляются в отверстия, где затягиваются болтами. Изделия могут использоваться для соединения 2-10 пар проводов.

Чтобы избежать окисления проводов, медь следует пропаивать, а алюминий покрывать специальной токопроводящей пастой.

Кабель алюминий или медь какой лучше?

Буквально еще лет 20-30, вся проводка была алюминиевой, а в современных стройках и ремонтах таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Где лучше применить алюминий, а где медь? Рассказываем, почему материал проводов так быстро и безповоротно изменился в лучшую сторону. На сегодняшний день оптимальным решением, для прокладки электрической проводки, является использование медных проводов.

Алюминиевые провода

 

Использование алюминия было оправдано в основном за счет низкой стоимости этого материала. Алюминиевые провода легче меди, но они более слабый проводник электричества. Проводимость алюминия примерно в 1,5 раза ниже, чем проводимость меди. Также алюминий, в сравнении с медью, менее устойчив к растяжению.

Алюминиевая проводка не позволяет использовать энергоемкие электроприборы, такие как индукционные варочные поверхности, печи, автоматические стиральные машины и т.п. Как правило, такая электропроводка требуют замены и модернизации.

В настоящее время алюминиевые провода успешно используются, в основном с большими поперечными сечениями, обычно выше 10 мм². В этом случае важным преимуществом алюминиевых проволок является то, что они на 70% легче, чем медь. Это повышает удобство при прокладке длинных и толстых кабелей.

 

Медные провода

 

Решающим фактором при использовании медных проводов является очень хорошая электропроводность меди. Также установка медных проводов легче чем алюминиевых, главным образом из-за их большей гибкости и механической прочности. Медные провода не повреждаются при изгибе или скручивании.
Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм2/м в то время, как у алюминия 0,028 Ом*мм2/м. То есть электропроводность алюминия составляет 65-70% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением выше чем меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм2, например, ввг 3х2,5, или алюминиевый аввг сечением 4 мм2.

Превосходство меди над алюминием для проводки

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта.

Если брать механическую прочность то медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распределительных коробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, и после этого ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

Что касается способности проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Превосходство алюминия над медью для линий электропередач (ЛЭП)
Если рассматривать алюминий для воздушных линий электропередач то есть существенное преимущество, их по-прежнему выполняют из этого металла.
Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м3, а алюминия 2700 кг/м3. То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для воздушных линий электропередач используют алюминиевый провод.

Что же касается цены, то алюминий имеет явное преимущество. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в несколько раз ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.

Специалисты часто спорят, что лучше использовать в проводах и кабелях, алюминий или медь. Эти два металла обладают лучше, в отличие от других металлов, электропроводностью при относительно невысокой стоимости. Говорить о том, что какой-то из материалов лучше другого просто не корректно, хотя оба вида проводов имеют определенные преимущества и недостатки.

Совокупно все факторы настолько важны, что алюминиевые провода и кабели повсеместно применяются для передачи электроэнергии на большие расстояния (например, между станциями и подстанциями, для подключения конечных потребителей к общим электрическим сетям т.д.). Благодаря низкому весу алюминиевых проводов уменьшается загрузка на электрические опоры и изоляторы. Отсюда можно сделать вывод, что алюминиевый кабель повышенного диаметра выгоднее применять, чем медный. Однако алюминий имеет и ряд отрицательных свойств — это:

  • невысокая прочность;
  • пониженная эластичность;
  • плохая свариваемость;
  • низкая технологичность дальнейшей переработки и употребления;
  • низкий срок эксплуатации;
  • невысокая ремонтопригодность, и высокочастотные свойства такого кабеля не на высшем уровне.
  • Алюминиевый провод мало используется в тех местах электрических машин, где большую важность имеет не только вес, но и габариты. 

Что касается меди, то как уже говорилось, ее электропроводность в полтора раза выше, чем алюминия. Соответственно и тепловые потери (и потери напряжения) в медных проводниках будут в полтора раза меньше, чем у алюминия такого же поперечного сечения. Кроме того медь менее повержена коррозии.

Конкуренция по использованию алюминия или меди существует в мире давно (особенно для промышленной и бытовой электропроводки), поэтому выбор между ними должен осуществляться квалифицированным специалистом в зависимости от конкретной ситуации.

Также не стоит забывать, что алюминиевый и медные провода нельзя соединять непосредственно друг с другом, потому что образуется гальваническая пара, в которой алюминий в следствие электрокоррозии очень быстро разрушается, что ухудшает электрический контакт. Место с плохим контактом будет нагреваться, искрить. В результате этого надежность контактов будет уменьшаться, что может привести и к пожару. Поэтому при необходимости соединения медного и алюминиевого проводов используют стальные клеммы, разъемы и переходники, которые предотвращают непосредственный контакт алюминия и меди.

Если у вас дом старше 20 лет, при этом в нем алюминиевая проводка – замените ее, потому что срок действия алюминия как раз 20 лет. С ходом времени этот металл теряет пластичность и в любое время может быть разрушен под действием внешних факторов. Новую проводку лучше делать при помощи медного кабеля с учетом потребления электроэнергии техники.

Как правило, стандарты проводки для светильников и люстр требуют медного двухжильного кабеля, более сложные приборы (требующие заземления, к примеру, стиральные машины, компьютер, водонагреватель) требуют применения трехжильного медного кабеля. Отдельной проводки требуют кухонные электроприборы. Для нее целесообразно использовать медный трехжильный кабель до 4 квадратных миллиметров.

Если вы определились с типом кабеля, который подходит именно вам, и хотите получить безупречное качество товара и высококвалифицированую консультацию наших специалистов, перед тем как купить кабель, обращайтесь к Запорожскому заводу кабельной продукции МПКА.

Хотите знать больше, быть в курсе всех событий, знать о новинках в ассортименте кабельной продукции МПКА,  и получать информацию об уникальности и особенностях той или иной кабельной продукции?

Обязательно подпишитесь на наши страницы в соцсети:
Facebook Instagram

 

Как правильно соединить провода алюминий и медь

Практически все уже знают, что алюминиевая проводка это наследие прошлого века, и ее обязательно нужно менять при ремонте квартиры. Мало кто проводит капремонт и забывает об этом.

Однако случаются ситуации, когда ремонт проводится частично, и возникает крайняя необходимость соединить алюминиевый провод с медным или просто их нарастить, добавив несколько лишних сантиметров жилы.

Электрохимическая коррозия

При этом алюминий и медь не совместимы гальванически. Если вы их соедините напрямую, это будет что-то вроде мини батарейки.

При прохождении тока через такое соединение, даже при минимальной влажности, происходит электролизная химическая реакция. Проблемы обязательно рано или поздно себя проявят.

Окисление, ослабление контакта, его дальнейший нагрев с оплавлением изоляции. Переход в короткое замыкание, либо отгорание жилы.

К чему может в итоге привести такой контакт, смотрите на фото.

Как же сделать такое соединение грамотно и надежно, чтобы избежать проблем в будущем.

Вот несколько распространенных способов, которые применяют электрики. Правда не все они удобны для работы в монтажных коробках.

Рассмотрим подробнее каждый из них и выберем наиболее надежный, не требующий последующего обслуживания и ревизий.

Соединение через болт и стальные шайбы

Здесь для соединения используется стальная шайба и болт. Это один из наиболее проверенных и простых методов. Правда получается очень габаритная конструкция.

Для монтажа, закручиваете кончики проводов колечками. Далее подбираете шайбы.

Они должны быть такого диаметра, чтобы все ушко провода спряталось за ними и не могло контактировать с другим проводником.

Самое главное, как расположить колечко. Его нужно одевать так, чтобы во время закручивания гайки, ушко не разворачивалось, а наоборот стягивалось во внутрь.

Стальные шайбы между проводниками из разных материалов препятствуют процессам окисления. При этом не забывайте про установку гравера или пружинной шайбы.

Без нее контакт со временем ослабнет.

Особо нужно отметить, что не рекомендуется использовать оцинкованные болты или шайбы.

Дело в том, что безопасно соединять между собой можно металлы, у которых электрохимический потенциал соединения не превышает 0,6мВ.

Вот таблица таких потенциалов.

Как видите у меди и цинка здесь целых 0,85мВ! Такое подключение даже хуже чем прямой контакт алюминиевых и медных жил (0,65мВ). А значит, соединение будет не надежным.

Однако, несмотря на простоту резьбовой сборки, в итоге получается большая, неудобная конструкция, формой похожая на улей.

И запихнуть все это дело в не глубокий подрозетник, не всегда есть возможность. Более того, даже в такой простой конструкции многие умудряются напортачить.

Последствия себя не заставят ждать через очень короткое время.

Еще один способ — это применение соединительного сжима типа орех.

Он часто используется для ответвления от питающего кабеля гораздо большего сечения, чем отпайка.

Причем здесь даже не требуется разрезание магистрального провода. Достаточно снять с него верхний слой изоляции. Некоторые нашли ему применение для подключения вводного кабеля к СИПу.

Однако делать этого не стоит. Почему, читайте в статье ниже.

Но опять же, для распаечных коробок орехи не подходят. Более того, и такие зажимы бывает, выгорают. Вот реальный отзыв от пользователя на одном из форумов:

Есть серия специальных зажимов, которыми можно стыковать медь с алюминием.

Внутри таких клемм находится противоокислительная паста.

Однако споры о 100% надежности таких зажимов, тем более для розеточных, а не осветительных групп, не утихают до сих пор. При определенной укладке в ограниченном пространстве, контакт может ослабнуть, что неминуемо приведет к выгоранию.

Причем произойти это может даже при нагрузке ниже минимальной на которую рассчитаны Ваго. Почему и когда это происходит?

Дело в том, что когда сжимаются соединяемые проводники, между прижимной пластиной и местом контакта появляется небольшой зазор. Отсюда и все проблемы с нагревом.

Вот очень наглядное видео, без лишних слов объясняющее данную проблему.

Клеммная колодка

Данный способ имеет один существенный минус. Большинство продаваемых колодок очень низкого качества.

Некоторые исхитряются и чтобы избежать прямого контакта меди и алюминия, медную жилку припаивают сбоку такого зажима, а не вставляют во внутрь.

Правда клемму для этого придется разобрать. Кроме того, надежный контакт алюминия под винтом без ревизии, не живет очень долго.

Винтики каждые полгода-год нужно будет подтягивать. Частота ревизионных работ будет напрямую зависеть от нагрузки и ее колебаний в периоды максимума и минимума.

Забудете подтянуть и ждите беды. А если все это соединение запрятано глубоко в подрозетнике, то лезть туда каждый раз, не совсем удобное занятие.

Поэтому остается самый надежный из доступных способов – опрессовка. Здесь не будем рассматривать применение специализированных медно-алюминиевых гильз ГАМ, так как они начинаются от сечений 16мм2.

Для домашней же проводки, как правило наращивать нужно провода 1,5-2,5мм2 не более.

Соединение меди с алюминием опрессовкой

Рассмотрим наиболее распространенный случай, который встречается в панельных домах. Допустим, вам нужно запитать одну или несколько дополнительных розеток от уже существующего алюминиевого вывода в сквозной нише.

Для наращивания берете ГИБКИЙ медный провод сечением 2,5мм2. Это уменьшит механическое воздействие на алюминиевою жилу, когда вы будете укладывать провода в подрозетник.

Зачищаете концы медного провода. Далее, для такого соединения их нужно обязательно пропаять. Это исключит непосредственный контакт в гильзе меди и алюминия.

Для пайки удобно использовать самодельный тигель, представляющий из себя слегка доработанный паяльник в форме топорика.

При этом перед пайкой флюсом снимите с жилы оксидный слой.

Сам процесс лужения заключается в окунании провода в специальное отверстие в паяльнике, заполненное оловом.

После остывания жилы остатки флюса удаляются растворителем.

Далее переходите к алюминиевым проводам, торчащим из стены. Аккуратно зачищаете их концы и также удаляете слой окиси.

Для этого можно воспользоваться оксидной токопроводящей пастой. Такая же паста используется при монтаже модульных штыревых систем заземления.

Она рассчитана на работу в любых условиях и исключает дальнейшее появление окиси на поверхности провода. Имейте в виду, что оксидная пленка может в последствии иметь сопротивление в несколько раз большее, чем сам алюминий.

И не удалив ее, вся ваша дальнейшая работа пойдет насмарку. Более того, температура плавления такой пленки достигает 2000 градусов (против примерно 600С у Al).

После всех подготовительных работ, вставляете в гильзу ГМЛ провода с двух сторон. Все что осталось, это опрессовать данное соединение.

У некоторых  возникнет логичный вопрос, а не продавится ли при опрессовке слой припоя на жиле? Тогда получается что все манипуляции по лужению будут напрасны.

Главное здесь правильно подобрать по сечению гильзу и матрицы инструмента для обжатия.

В этом случае мягкий припой как бы загерметизирует контактное пятно медноалюминиевого соединения. А без отсутствия доступа кислорода к этой точке, эрозии контакта наблюдаться не будет.

Будьте внимательны, при работе с алюминиевыми проводниками нужно действовать крайне осторожно, так как это очень ломкий материал. Одно неосторожное движение и облом жилы вам обеспечен.

После опрессовки необходимо заизолировать данное соединение клеевой термоусадкой.

Именно клеевой тип обеспечит 100% герметичность и предотвратит поступление кислорода к контактным местам. Чтобы не рисковать и не прожечь изоляцию, нагревать термоусадку лучше строительным феном, а не зажигалкой или портативной горелкой.

Полученный пучок проводов укладывать в подрозетник нужно с большой осторожностью, так как алюминий не любит резких перегибов.

Так как наращенные медные жили гибкие, то на концы этих проводников одеваете изолированные наконечники НШВИ.

Только после этого их можно смело заводить в клеммные колодки розеток и затягивать винты.

Безусловно, это не единственный способ наращивания алюминиевых проводов, но он является одним из самых простых (в отличии от сварки или пайки) и надежных (в отличии от скрутки). Подробнее

Если же у вас есть малейшая возможность сменить целиком алюминиевую проводку, делайте это обязательно, не экономьте на своей безопасности.

Статьи по теме

Какой тип алюминия лучше всего подходит для электрических применений?

Если вы инженер-электрик или регулярно работаете с электричеством, то вы, вероятно, уже привыкли иметь дело с алюминием. Как металл, который демонстрирует ряд положительных свойств, связанных с использованием электричества, алюминий внес важный вклад во множество отраслей, как прямо, так и косвенно связанных с электричеством.По этой причине важно понимать, какие сплавы лучше всего подходят для электрических применений.

Независимо от того, сколько у вас опыта как производителя или инженера, вы всегда можете получить пользу от работы с экспертами. Квалифицированные и опытные технические специалисты в Clinton Aluminium уделяют первоочередное внимание оказанию помощи нашим клиентам на каждом этапе их производственного процесса. Наша цель — помочь вашему бизнесу добиться успеха.

Свяжитесь с нами, чтобы узнать больше о том, как правильный алюминиевый сплав может помочь вашему электрическому оборудованию работать наилучшим образом.

Почему алюминий так хорошо подходит для электрических применений?

Легко отметить все многие полезные свойства алюминия. Естественно, он чрезвычайно легкий, с высоким отношением прочности к весу. Кроме того, он чрезвычайно устойчив к коррозии. Это же покрытие также защищает металл от бактерий и влаги, поэтому алюминий так часто используется в качестве упаковочного материала в фармацевтической промышленности, пищевой промышленности и производстве напитков.

Гладкая поверхность алюминия

не оставляет пятен, ее легко покрасить и анодировать.Он на 100% пригоден для вторичной переработки, что в сочетании с легкостью делает его особенно экологически чистым. Поэтому неудивительно, что с тех пор, как впервые появилась возможность коммерциализировать алюминий в широком масштабе, он произвел революцию или даже сделал возможным множество отраслей, от строительства до аэрокосмической и авиационной промышленности.

Хотя многие люди знают по крайней мере о некоторых из вышеперечисленных свойств, те, кто еще не знаком с алюминием, могут быть удивлены, узнав, насколько хорошо он проводит электричество.Из всех известных металлов алюминий является вторым по проводимости электричеством, уступая только меди. Однако, поскольку алюминий значительно легче меди, он более эффективен в качестве проводника.

Вы можете быть удивлены, узнав, что большинство воздушных линий электропередачи состоит из алюминиевых жил. Если присмотреться, алюминиевый провод, по сравнению с медным, будет иметь на 50% больше поперечного сечения, чтобы пропускать такое же количество тока, как и медный провод. Если сравнить вес, алюминиевая проволока в два раза легче.Поэтому неудивительно, что, учитывая вес, который является основным фактором для воздушных кабелей, алюминий использовался в качестве материала еще с 1880-х годов.

Какой алюминий лучше всего подходит для электропроводки?

Чаще всего для изготовления проводов и кабелей используются алюминиевые сплавы серий 1ххх, 6ххх и 8ххх. Фактически из сплавов серии 8ххх можно производить проволоку со сроком службы, который может превышать 40 лет.

Для начала, в качестве заготовки для кабеля используется прочный алюминиевый стержень диаметром от 9 до 15 мм.Этот стержень легко сгибать и катить, и вам не нужно беспокоиться о растрескивании. Фактически, алюминий настолько прочен, что практически невозможно порвать или сломать стержень, и он способен выдерживать значительные статические нагрузки.

Для создания прочного и эффективного стержня используется процесс непрерывной разливки и прокатки. Затем отлитую деталь прокатывают через стан несколько раз до достижения желаемого размера. Полученный шнур довольно гибкий и после охлаждения сворачивается в большую катушку.Затем требуется специальное оборудование для вытягивания стержней, чтобы получить окончательный диаметр, обычно от 4 до 0,23 мм.

В каких электрических системах используется алюминий?

Помимо электрических сетей, существует ряд приложений, в которых алюминий используется в электрической и энергетической областях. Например, алюминиевые шины были нормой уже более 60 лет благодаря легкому весу и долговечности. Для тех, кто не знаком с этим термином, шина — это система электрических проводников в генерирующей или принимающей станции, на которой сосредоточена энергия для распределения.

Алюминий также часто встречается на крупных промышленных предприятиях, например, на плавильных и электрохимических заводах, из-за необходимости в больших сечениях литых стержней (до 600 мм × 150 мм). Алюминий также является обычным материалом для распределительных устройств и магистральных систем. Кроме того, он используется в обмотках конденсаторов. Они варьируются по размеру от самых маленьких осветительных приборов до силовых конденсаторов промышленных размеров.

Еще одно не упомянутое нами полезное свойство алюминия, которое делает его желательным материалом в электрических и энергетических областях, — это его способность передавать тепло.Некоторые примеры фольговых нагревательных элементов, которые могут быть изготовлены из алюминия, включают пленочные обои, полимеризацию бетона и утепление почвы.

Поскольку алюминий относительно легко прессовать по сравнению со многими другими металлами, это идеальный выбор радиаторов. Он может быть отлит или экструдирован в сплошные или полые формы, если это необходимо для использования в качестве радиатора в таких устройствах, как полупроводники и баки трансформаторов. Он также используется в баках трансформаторов, установленных на столбах.

Кроме того, новый энергетический сектор все чаще обращается к алюминию для обеспечения своих инноваций с целью снижения нашей зависимости от ископаемого топлива.Его можно найти в самих солнечных батареях, а также в корпусах, в которых установлены солнечные батареи. Ветряные турбины также используют различные алюминиевые сплавы для изготовления множества механических деталей.

Ваш надежный партнер по техническим ресурсам

Алюминий был критически важным компонентом производства электроэнергии на протяжении почти полутора веков, со времен Томаса Эдисона. В последние годы наблюдается стремительное развитие разнообразия и возможностей алюминиевых сплавов во всех областях. Производителям и инженерам нужны партнеры, которые могут не только поставить правильный материал, но и помочь в оптимизации производственного процесса.

В Clinton Aluminium нашим приоритетом всегда была помощь нашим клиентам в поиске подходящего материала для работы. Свяжитесь с одним из наших дружелюбных представителей по обслуживанию клиентов сегодня, чтобы узнать больше о том, какой алюминиевый сплав может вам подойти.

Лучший проводник электроэнергии — выбор правильных металлов

В Quest-Tech мы используем различные сорта углерода, нержавеющей стали, алюминия, латуни и меди, и у нас есть производственные мощности для удовлетворения ваших производственных потребностей под одной крышей.Хотя все металлы (и некоторые металлические сплавы) в определенной степени проводят электричество, некоторые из них обладают большей проводимостью, чем другие.

Серебро

Лучшим проводником электричества является чистое серебро, но неудивительно, что это не один из наиболее часто используемых металлов для проведения электричества.

Широкое использование чистого серебра имеет несколько недостатков. Во-первых, он имеет тенденцию к потускнению при использовании, что вызывает проблемы, связанные со «скин-эффектом», то есть неравномерным распределением тока, которое может возникать по токам высокой частоты.Второй недостаток является наиболее очевидным — прокладывать серебряную проволоку через здание слишком дорого — гораздо дороже, чем алюминий или медь.

Медь

Медь — один из наиболее часто используемых металлов для проведения электричества. Медь пластична, ее легко наматывать или паять, что делает ее лучшим выбором, когда требуется большое количество проводов. Основная электрическая функция меди связана с передачей электроэнергии и выработкой электроэнергии. Он используется в двигателях, генераторах, трансформаторах и втулках.При правильной установке это самый безопасный и эффективный металл для производства электроэнергии.

Медь обычно используется в качестве эффективного проводника в бытовых приборах и в электрическом оборудовании в целом. Из-за низкой стоимости большинство проводов имеют медное покрытие. Часто можно встретить сердечники электромагнитов, обычно обмотанные медной проволокой. Медь также используется в микроэлектронных проводниках, электрических цепях и микропроцессорах из-за ее высокой проводимости и низкого сопротивления джоулевому нагреву.Он также используется в мобильных телефонах, телевизорах и компьютерах.

Алюминий

Алюминий — еще один металл, известный своей высокой проводимостью электричества. Хотя по объему его проводимость составляет всего 60% от меди, по весу один фунт алюминия имеет пропускную способность по электрическому току, равную двум фунтам меди. Это делает его очень экономичным материалом, и по этой причине он все чаще заменяет медь в некоторых приложениях, связанных с электричеством.

Алюминий используется в линиях электропередач на большие расстояния, при передаче и распределении электроэнергии высокого напряжения в коммунальных сетях; а в зоне обслуживания — служебный вход и механизмы подачи проволоки.Его плотность и исключительно низкая стоимость делают его очень разумным выбором для многих крупных электрических приложений, таких как электрические силовые кабели, электрические разъемы и даже электрические контакты выключателя. Алюминий часто используется в спутниковых антеннах.

Золото

Золото

также известно своей высокой проводимостью, но из-за своей стоимости оно используется только в умеренных количествах. Микрочипы могут иметь золотые провода для соединений, и там, где приложения требуют высокой стойкости к окислению и коррозии наряду с высокой проводимостью, используется очень тонкое золотое покрытие.

Когда дело доходит до металлических сплавов, их физические свойства могут улучшить основной металл в таких областях, как прочность, долговечность, устойчивость к условиям окружающей среды и электрические применения.

Например, латунь — сплав меди — также используется для проведения электричества. Его получают путем добавления примерно 30% цинка к чистой меди. Хотя электрическая и теплопроводность латунного сплава составляет всего 28% от меди, его немагнитные свойства делают его идеальным для электрических и электронных клемм и соединителей.

Нержавеющая сталь

Нержавеющая сталь разных сортов, хотя и не известна своей электропроводностью, находит важное применение в электротехнике. Типы 304 и 316 являются наиболее распространенными марками, используемыми в электротехнической промышленности из-за их превосходной устойчивости к коррозии. Электрические шкафы для настенного и напольного монтажа, а также отдельно стоящие распределительные коробки изготавливаются из нержавеющей стали.

Quest-Tech знает, что выбор подходящего металла для работы может иметь решающее значение, будь то электричество или другие требования.Мы специализируемся на производстве металлических компонентов и сборочных конструкций, и мы готовы ответить на любые ваши вопросы и помочь вам принять правильное решение. Хотите использовать Quest-Tech для своего следующего проекта? Свяжитесь с нами сегодня!

Алюминий Vs. Электропроводность стали | Sciencing

В физике термин «проводимость» имеет несколько значений. Для металлов, таких как алюминий и сталь, это обычно относится к передаче тепловой или электрической энергии, которая имеет тенденцию быть тесно коррелированной в металлах, поскольку слабосвязанные электроны, обнаруженные в металлах, проводят как тепло, так и электричество.

Теплопроводность

Теплопроводность, способность материала проводить тепло, обычно измеряется в ваттах на кельвин на метр. («Ватт» — это единица мощности, обычно определяемая как вольты, умноженные на амперы, или джоули энергии в секунду. «Кельвин» — это абсолютная единица измерения температуры, где нулевой кельвин — это абсолютный ноль). Материалы с хорошей теплопроводностью быстро передают большое количество тепла, например, быстро нагревающееся медное дно кастрюли. Плохие теплопроводники медленно переносят тепло, например, прихватка для духовки.

Электропроводность

Электропроводность, способность материала проводить ток, обычно измеряется в сименсах на метр. («Сименс» — это единица электропроводности, определяемая как 1, деленная на Ом, где Ом — это стандартная единица электрического сопротивления). Для электромонтажа и подключения предпочтительны хорошие электрические проводники. Плохие проводники, называемые изоляторами, создают безопасный барьер между током под напряжением и окружающей средой, например, виниловая изоляция удлинительного шнура.

Электропроводность алюминия

Чистый алюминий имеет теплопроводность около 235 Вт на кельвин на метр и электропроводность (при комнатной температуре) около 38 миллионов сименс на метр. Алюминиевые сплавы могут иметь гораздо более низкую проводимость, но редко такую ​​низкую, как у железа или стали. Радиаторы электронных компонентов изготавливаются из алюминия, так как металл обладает хорошей теплопроводностью.

Электропроводность в углеродистой стали

Углеродистая сталь имеет гораздо более низкую проводимость, чем алюминий: теплопроводность около 45 Вт на кельвин на метр и электропроводность (при комнатной температуре) около 6 миллионов сименов на метр.

Электропроводность в нержавеющей стали

Нержавеющая сталь имеет гораздо более низкую проводимость, чем углеродистая сталь: теплопроводность около 15 Вт на кельвин на метр и электропроводность (при комнатной температуре) около 1,4 миллиона сименов на метр.

Электропроводность и проводящие элементы

Электропроводность относится к способности материала передавать энергию. Существуют разные типы проводимости, включая электрическую, тепловую и акустическую проводимость.Самый электропроводящий элемент — серебро, за ним следуют медь и золото. Серебро также имеет самую высокую теплопроводность среди всех элементов и самый высокий коэффициент отражения света. Хотя это лучший проводник, медь и золото чаще используются в электротехнике, потому что медь дешевле, а золото имеет гораздо более высокую коррозионную стойкость. Поскольку серебро тускнеет, это менее желательно для высоких частот, потому что внешняя поверхность становится менее проводящей.

Что касается , почему серебро является лучшим проводником, ответ заключается в том, что его электроны движутся свободнее, чем электроны других элементов.Это связано с его валентностью и кристаллической структурой.

Большинство металлов проводят электричество. Другие элементы с высокой электропроводностью — это алюминий, цинк, никель, железо и платина. Латунь и бронза — это электропроводящие сплавы, а не элементы.

Таблица проводимости металлов

Этот список электропроводности включает сплавы, а также чистые элементы. Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер.В порядке от наибольшей до наименее проводящей:

  1. Серебро
  2. Медь
  3. Золото
  4. Алюминий
  5. Цинк
  6. Никель
  7. Латунь
  8. Бронза
  9. Железо
  10. Платина
  11. Углеродистая сталь
  12. Нержавеющая сталь
  13. Свинец

Факторы, влияющие на электропроводность

Определенные факторы могут повлиять на то, насколько хорошо материал проводит электричество.

  • Температура: Изменение температуры серебра или любого другого проводника изменяет его проводимость.Как правило, повышение температуры вызывает тепловое возбуждение атомов и снижает проводимость при одновременном увеличении удельного сопротивления. Взаимосвязь линейная, но при низких температурах она нарушается.
  • Примеси: Добавление примесей в проводник снижает его проводимость. Например, чистое серебро не так хорошо проводит дирижирование, как чистое серебро. Окисленное серебро — не такой хороший проводник, как чистое серебро. Примеси препятствуют потоку электронов.
  • Кристаллическая структура и фазы: Если в материале есть разные фазы, проводимость будет немного снижаться на границе раздела и может отличаться от одной структуры от другой.Способ обработки материала может повлиять на то, насколько хорошо он проводит электричество.
  • Электромагнитные поля: Проводники генерируют собственные электромагнитные поля, когда через них проходит электричество, причем магнитное поле перпендикулярно электрическому полю. Внешние электромагнитные поля могут создавать магнитосопротивление, которое может замедлять ток.
  • Частота: Число циклов колебания, которое переменный электрический ток совершает в секунду, представляет собой его частоту в Герцах.Выше определенного уровня высокая частота может вызвать протекание тока вокруг проводника, а не через него (скин-эффект). Поскольку нет колебаний и, следовательно, частоты, скин-эффект не возникает при постоянном токе.

Как работают электрические проводники

Когда вы думаете о термине проводник, вы думаете обо всем, что проводит электричество через что-то, часто это провода. Электрические провода могут быть сделаны из меди или алюминия, оба из которых проводят электричество, но медь является гораздо лучшим проводником, чем алюминий, и более безопасным вариантом.Когда электричество течет из одной точки в другую через что-то вроде электрического провода, это называется проводимостью. Тогда провод будет называться проводником.

Что такое дирижер?

Проводник — это все, через что могут протекать электрические токи. Металлы обычно являются лучшими проводниками, потому что они не повреждаются при контакте с электричеством. Например, технически вы можете быть проводником, но в процессе вы получите удар током.

Точно так же большие проводники, по которым энергия передается от подстанций к отдельным домам, называются служебными проводниками. Не забывайте служебные входные провода, которые питают ваш электросчетчик и электрические разъединители. Оттуда проводники питают электрическую панель и отдельные провода, называемые ответвленными цепями, переключателями питания и розетками в вашем доме.

Громоотводы и соединенные с ними провода, идущие по всей длине крыши вашего дома к заземляющему стержню во дворе, являются проводником, то есть путем к земле, если в ваш дом попадет молния.Идея состоит в том, чтобы безвредно отвести путь молнии к земле вместо того, чтобы ваш дом попадал прямо в дом.

Вы когда-нибудь волочили ноги по полу, а затем касались кого-то еще, только чтобы шокировать его или ее? Это пример проведения электричества. Иногда статическое электричество накапливается в вашем теле, пока вы не дотронетесь до чего-то заземленного, например, другого человека.

Хорошие проводники и плохие проводники

Некоторые предметы, например, пластик, резина или дерево, не являются хорошими проводниками.Эти элементы изолируют или изолируют поток и являются не очень хорошими проводниками. Эти предметы часто используются для отделения предметов от электрических компонентов, чтобы снизить проводимость. Однако в случае с деревом возможно, что влажное дерево может проводить ток, поэтому будьте осторожны.

Некоторые из лучших проводников и наиболее часто используемые типы — это медные и алюминиевые провода, называемые проводниками. Медь на сегодняшний день является отраслевым стандартом, хотя в последние годы в домах использовалась алюминиевая проволока, что привело к неблагоприятным результатам.Для экономии средств домовладельцев в домах использовалась алюминиевая проволока. Будучи гораздо более мягким проводом, он имеет большее сопротивление, чем медный провод, и склонен к нагреву под нагрузкой. Тогда проблема заключается в том, что провод в разъеме или гайке провода может ослабнуть и стать потенциальной опасностью возгорания.

Использование проводника

Проводники используются для систем заземления и молниезащиты, чтобы немедленно направить освещение на потенциал земли и вдали от вашего дома. Они используются в качестве защитного канала для заземления опасного электричества.Если горячий провод попадет на землю, сработает автоматический выключатель или перегорит предохранитель. Это встроенная мера безопасности, присутствующая в сегодняшней проводке, что делает ее намного безопаснее, чем это было много лет назад. Помните, что всего 50 лет назад при электромонтаже не было заземляющего провода в целях безопасности.

Не забывайте о низковольтной проводке, которая используется для таких вещей, как проводка дверного звонка, которая проходит между дверным звонком и кнопкой дверного звонка. Существует также проводка термостата, которая контролирует отопление и охлаждение в вашем доме.Если у вас стереосистема, от стереосистемы к динамикам идет проводка динамиков. У телевизоров есть кабель с центральным проводом и заземляющим экраном, который охватывает внутреннюю оболочку кабеля. Это лишь некоторые из множества низковольтных проводников.

В следующий раз, когда вы услышите термин «проводник», убедитесь, что провода в вашем доме подключены правильно, так что они являются проводниками, а вы — нет.

Электропроводность материалов — Blue Sea Systems

Считаете эту статью полезной?
Подпишитесь на нашу рассылку новостей!

Различия в электропроводности различных материалов, используемых в морских электротехнических изделиях, часто недостаточно понятны.Предположения об электропроводности материала, поскольку он похож на другой проводящий материал с известной допустимой допустимой нагрузкой, могут привести к плачевным результатам.

Возможно, наиболее распространенной формой этой ошибки является замена меди в электрических устройствах медью из латуни или бронзы. Латунь только на 28% проводит меньше меди. Некоторые виды бронзы имеют такую ​​же проводимость, как медь, на 7%!

Медь — это стандарт, по которому оцениваются электрические материалы, а значения проводимости выражаются в единицах измерения относительно меди.Эти рейтинги часто обозначаются как «28 МАКО». IACS — это аббревиатура от Международного стандарта на отожженную медь, а число перед «IACS» — это процент проводимости материала по отношению к меди, которая считается 100% проводящей. Это не означает, что медь не имеет сопротивления (100% проводимость в абсолютном смысле), а скорее, что это стандарт, по которому измеряются другие материалы. Чем выше% IACS, тем выше проводимость материала. Этот стандарт относится к чистой, «стандартной» меди с удельным сопротивлением 1.7241 мкм-см при 20 ° C (68 ° F).

Вооружившись этими знаниями, интересно изучить значения проводимости IACS некоторых распространенных материалов.

Bronze
Материал IACS% Электропроводность
Серебро 105
Медь 100
Золото 70 9022 9022 902 902 902 902 902 70 9022 9022 902 902 22
цинк 27
латунь 28
железо 17
олово 15
15
Никель Алюминий Бронза 7
Сталь от 3 до 15

Возможно, самый интересный факт, показанный на этой диаграмме, — это то, насколько низкими являются материалы из медных сплавов по относительной проводимости.Можно легко предположить, что сплавы, такие как латунь и бронза, поскольку они в основном состоят из меди, обладают почти такой же проводимостью, как и медь. Это не тот случай. Небольшие процентные содержания олова, алюминия, никеля, цинка и фосфора, которые составляют эти сплавы, ухудшают электрические характеристики полученного сплава до гораздо большего процента, чем их процентное содержание в составе сплава.

Из этого, однако, не следует делать вывод, что латунь никогда не должна использоваться в электрических устройствах.Бывают случаи, когда превосходные характеристики латуни при растяжении и механической обработке делают ее лучшим выбором, чем медь, при условии, что площади поперечного сечения увеличиваются пропорционально для достижения проводимости, которую медная деталь будет иметь при применении. Однако среди материалов, обычно используемых в электротехнике, медь уступает только серебру.

6.5: Металлы — химия LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Что такое металлы?
  2. Свойства металлов
  3. Объяснение свойств металлов
  4. Резюме
  5. Узнать больше
  6. Авторы и авторства

Когда вы думаете о металлах, думаете ли вы о твердых объектах, таких как железные гвозди и золотые украшения? Если это так, вы можете удивиться, узнав, что блестящая жидкость, вытекающая из пипетки на фотографии ниже, также является металлом.Он называется ртутью, и это единственный металл, который обычно существует на Земле в виде жидкости. Что такое металлы и каковы их свойства? Читай дальше что бы узнать.

Рисунок \ (\ PageIndex {1} \) : Жидкая ртуть.

Что такое металлы?

Металлы — это элементы, которые могут проводить электричество. Это один из трех классов элементов (два других класса — неметаллы и металлоиды). Металлы на сегодняшний день являются крупнейшими из трех классов. Фактически, большинство элементов — это металлы.Все элементы в левой части и в середине таблицы Менделеева, кроме водорода, являются металлами. Есть несколько различных типов металлов, в том числе щелочные металлы в группе 1 периодической таблицы, щелочноземельные металлы в группе 2 и переходные металлы в группах с 3 по 12. Большинство металлов являются переходными металлами.

Свойства металлов

Элементы одного класса имеют определенные общие черты. Помимо проведения электричества, многие металлы обладают рядом других общих свойств, в том числе перечисленных ниже.

  • Металлы имеют относительно высокие температуры плавления. Это объясняет, почему все металлы, кроме ртути, являются твердыми при комнатной температуре.
  • Большинство металлов являются хорошими проводниками тепла. Вот почему для изготовления кастрюль и сковородок используются такие металлы, как железо, медь и алюминий.
  • Металлы обычно блестящие. Это потому, что они отражают большую часть падающего на них света. Изображенная выше ртуть очень блестящая.
  • Большинство металлов пластичны. Это означает, что из них можно придать длинные и тонкие формы, как алюминиевые электрические провода на рисунке ниже.
  • Металлы обычно податливы. Это означает, что их можно формовать в тонкие листы, не ломаясь. Примером может служить алюминиевая фольга, также изображенная на рисунке ниже.

Рисунок \ (\ PageIndex {2} \): Алюминий, как и большинство металлов, пластичен и пластичен.

Объяснение свойств металлов

Чтобы понять, почему металлы могут проводить электричество, рассмотрим в качестве примера металлический литий. Ниже смоделирован атом лития. Посмотрите на электроны лития. На первом уровне энергии находятся два электрона.Этот энергетический уровень может содержать только два электрона, поэтому он полностью заполнен литием. Второй энергетический уровень — отдельная история. Он может содержать максимум восемь электронов, но в литии он имеет только один. Полный внешний энергетический уровень — это наиболее стабильное расположение электронов. Литию необходимо получить семь электронов, чтобы заполнить свой внешний энергетический уровень и сделать его стабильным. Литию гораздо проще отказаться от одного электрона на уровне энергии 2, оставив его с полным внешним энергетическим уровнем (теперь уровень 1). Электричество — это поток электронов.Поскольку литий (как и большинство других металлов) легко отдает свой «лишний» электрон, он является хорошим проводником электричества. Эта тенденция отдавать электроны также объясняет другие свойства металлов, таких как литий.

Рисунок \ (\ PageIndex {3} \): Модель атома лития.

Сводка

  • Металлы — это элементы, которые могут проводить электричество. Большинство элементов — металлы.
  • Все металлы, кроме ртути, являются твердыми при комнатной температуре. Многие металлы блестящие, пластичные и податливые.Большинство из них также являются хорошими проводниками тепла.
  • Электричество — это поток электронов. Атомы металлов имеют тенденцию отдавать электроны, что объясняет, почему они являются хорошими проводниками электричества. Склонность отдавать электроны также объясняет многие другие свойства металлов.

Узнать больше

По следующему URL-адресу щелкните любой из металлов в интерактивной периодической таблице. Прочтите предоставленную информацию о выбранном вами металле, а затем сделайте плакат, демонстрирующий его структуру, свойства и использование.

Авторы и авторство

  • Фонд CK-12 Шэрон Бьюик, Ричард Парсонс, Тереза ​​Форсайт, Шонна Робинсон и Жан Дюпон.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *