30.11.2024

Разность потенциалов в физике это: 30. Потенциал. Разность потенциалов. Потенциальность электрического поля. Работа электрического поля.

Содержание

Разность потенциалов электрического поля в физике

Разность потенциалов электрического поля

Потенциал электростатического поля в данной точке численно равен работе, которую совершают силы поля при перемещении единичного положительного заряда из данной точки в бесконечность.
То есть

где — потенциал, — работа, — положительный заряд.

Потенциал — величина скалярная. Потенциал считается положительным, если перемещение положительного единичного заряда из данной части поля в бесконечность совершается силами поля, и отрицательным, если силы поля препятствуют такому перемещению.

Поскольку работа в силовом поле равна разности потенциальных энергий двух точек поля, между которыми осуществляется перемещение, то

Работа равна разности энергий конечной и начальной точек, взятой с противоположным знаком: Потенциальная энергия точки в бесконечности принята равной нулю: — потенциальная энергия рассматриваемой точки поля. Выбор нулевого уровня потенциала произволен, так как физический смысл имеет не сам потенциал, а разность потенциалов, или напряжение поля.

Разность потенциалов (напряжение) между двумя точками поля равна отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

(3.3)

Поскольку работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, совершаемую полем по перемещению единичного заряда.

Если имеется несколько точечных зарядов, то потенциал поля в некоторой точке пространства определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в этой точке:

(3.4)

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, для любых точек которой разность потенциалов равна нулю. Это значит, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряжённости электрического поля перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.
Вектор напряжённости (как и сила ) перпендикулярен эквипотенциальным поверхностям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.

В однородном электрическом поле напряжённость во всех точках одинакова, и работа по перемещению заряда параллельно на расстояние между двумя точками с потенциалами и равна:

(3.5)

или

(3.6)

Таким образом, напряжённость поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.

Единицей напряжения (разности потенциалов) является вольт. Согласно формуле (3. 3), Разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.

Эта лекция взята со страницы лекций по всем темам предмета физика:

Предмет физика

Возможно эти страницы вам будут полезны:

Потенциал электростатического поля и разность потенциалов

Потенциал электростатического поля и разность потенциалов

Подробности
Просмотров: 590

«Физика — 10 класс»

Обладает ли электрическое поле энергией? В чём это выражается?

Как рассчитать энергию поля?

В механике взаимное действие тел друг на друга характеризуют силой и потенциальной энергией. Электростатическое поле, осуществляющее взаимодействие между зарядами, также характеризуют двумя величинами. Напряжённость поля — это силовая характеристика. Теперь введём энергетическую характеристику — потенциал.

Потенциал поля.

Работа любого электростатического поля при перемещении в нём заряженного тела из одной точки в другую также не зависит от формы траектории, как и работа однородного поля.

На замкнутой траектории работа электростатического поля всегда равна нулю.

Поле, работа которого по перемещению заряда по замкнутой траектории всегда равна нулю, называют потенциальным.

Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.

Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула А = — (Wп2 — Wп1) справедлива для любого электростатического поля. Но только в случае однородного поля потенциальная энергия выражается формулой (14.14).

Потенциальная энергия заряда в электростатическом поле пропорциональна заряду. Это справедливо как для однородного поля (см. формулу (14.14)), так и для неоднородного. Следовательно, отношение потенциальной энергии к заряду не зависит от помещённого в поле заряда.

Это позволяет ввести новую количественную характеристику поля — потенциал, не зависящую от заряда, помещённого в поле.

Для определения значения потенциальной энергии, как мы знаем, необходимо выбрать нулевой уровень её отсчёта. При определении потенциала поля, созданного системой зарядов, как правило, предполагается, что потенциал в бесконечно удалённой точке поля равен нулю.

Потенциалом точки электростатического поля называют отношение потенциальной энергии заряда, помещённого в данную точку, к этому заряду.

Согласно данному определению потенциал равен:

Из этой формулы следует, что потенциал поля неподвижного точечного заряда q в данной точке поля, находящейся на расстоянии r от заряда, равен:

Напряжённость поля — векторная величина. Она представляет собой силовую характеристику поля, которая определяет силу, действующую на заряд q в данной точке поля. А потенциал φ — скаляр, это энергетическая характеристика поля; он определяет потенциальную энергию заряда q в данной точке поля.

Если в примере с двумя заряженными пластинами в качестве точки с нулевым потенциалом выбрать точку на отрицательно заряженной пластине (см. рис. 14.31), то согласно формулам (14.14) и (14.15) потенциал однородного поля в точке, отстоящей на расстоянии d от неё, равен:

Разность потенциалов.

Подобно потенциальной энергии, значение потенциала в данной точке зависит от выбора нулевого уровня для отсчёта потенциала, т. е. от выбора точки, потенциал которой принимается равным нулю.

Изменение потенциала не зависит от выбора нулевого уровня отсчёта потенциала.

Так как потенциальная энергия Wn = дчр, то работа сил поля равна:

А = — (Wп2 — Wп1) = -q(φ2 — φ1) = q(φ1 — φ2) = qU.         (14.17)

Здесь

U = φ1 — φ2 —         (14.18)

разность потенциалов, т. е. разность значений потенциала в начальной и конечной точках траектории.

Разность потенциалов называют также напряжением.

Согласно формулам (14.17) и (14.18) разность потенциалов между двумя точками оказывается равной:

Если за нулевой уровень отсчёта потенциала принять потенциал бесконечно удалённой точки поля, то потенциал в данной точке равен отношению работы электростатических сил по перемещению положительного заряда из данной точки в бесконечность к этому заряду.

Единица разности потенциалов.

Единицу разности потенциалов устанавливают с помощью формулы (14.19). В Международной системе единиц работу выражают в джоулях, а заряд — в кулонах.

Разность потенциалов между двумя точками численно равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом (В): 1 В = 1 Дж/1 Кл.

Выразим единицу разности потенциалов через основные единицы СИ. Так как

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электростатика — Физика, учебник для 10 класса — Класс!ная физика


Что такое электродинамика —
Электрический заряд и элементарные частицы. Закон сохранения заряд —
Закон Кулона. Единица электрического заряда —
Примеры решения задач по теме «Закон Кулона» —
Близкодействие и действие на расстоянии —
Электрическое поле —
Напряжённость электрического поля. Силовые линии —
Поле точечного заряда и заряженного шара. Принцип суперпозиции полей —
Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» —
Проводники в электростатическом поле —
Диэлектрики в электростатическом поле —
Потенциальная энергия заряженного тела в однородном электростатическом поле —
Потенциал электростатического поля и разность потенциалов —
Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности —
Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» —
Электроёмкость. Единицы электроёмкости. Конденсатор —
Энергия заряженного конденсатора. Применение конденсаторов —
Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Элеком37, Потенциал. Разность потенциалов. Напряжение. физика.

Потенциал. Разность потенциалов. Напряжение.


Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом
поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал — скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:
потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно
бесконечно удаленной точки вычисляется следующим образом:

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r ≥ R (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала.
Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

В этих формулах:

          φ – потенциал электрического поля.
          ∆φ – разность потенциалов.
          W – потенциальная энергия заряда во внешнем электрическом поле.
          A – работа электрического поля по перемещению заряда (зарядов).
          q – заряд, который перемещают во внешнем электрическом поле.
          U – напряжение.
          E – напряженность электрического поля.
          d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Принцип суперпозиции потенциала

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.



Потенциал и разность потенциалов. Связь между напряженностью электрического поля и разностью потенциалов. Конденсаторы. | Поурочные планы по физике 8 класс

Потенциал и разность потенциалов. Связь между напряженностью электрического поля и разностью потенциалов. Конденсаторы.


Рис. 12. Схема изменения потенциалов катода анода Еа и разности потенциалов У — Е — Еа после замыкания гальванической пары