31.01.2025

Открытие электромагнетизма кратко: Открытие электромагнетизма / Великие события, которые изменили мир

Содержание

6.3. Электромагнетизм. Электромагнитная индукция — Энергетика: история, настоящее и будущее

6.3. Электромагнетизм. Электромагнитная индукция

Как правило, начиная со времен Гильберта ученые стали выводить законы природы из своих экспериментов. Так как никакой связи между магнитом и заряженным проводником не замечалось, то долгое время считалось, что никакой связи между электрическими и магнитными явлениями не существует. Поэтому, когда в 1802 году итальянский физик Джованни Романьози (1761–1835) заметил, что находящаяся вблизи проводника, по которому течет ток, магнитная стрелка изменяет свое направление, то он совершенно не оценил значения своего наблюдения.

В 1883 году в Вене проводилась электрическая выставка. На ней датчане выставили маленький компас. Незаметная вещь лежала в стороне от основного потока посетителей. А по справедливости следовало бы этот компас поместить в центр выставки, так как от него берет свое начало вся электротехника.

Вторично в начале 1820 года первооткрыватель электромагнетизма датский физик Ганс Христиан Эрстед сделал открытие совершенно нового электрического явления, заключавшегося в том, что при прохождении тока через проводник вокруг него образуется магнитное поле.

На одной из своих лекций по физике он решил продемонстрировать студентам отсутствие связи между электричеством и магнетизмом, включив электрический ток вблизи магнитной стрелки. По словам одного из слушателей, Эрстед был совершенно ошарашен, увидев, как магнитная стрелка после включения тока начала совершать колебания. Эрстед сумел отказаться от своих прежних воззрений (и это является его большой заслугой) и случайное наблюдение принять за экспериментально установленный факт.

Соединив длинным проводом полюсы гальванической батареи, Эрстед протянул провод горизонтально и параллельно подвешенной свободно магнитной стрелке. Как только включали ток, стрелка немедленно отклонялась, стремясь стать перпендикулярно к направлению провода. При изменении направления тока стрелка отклонялась в другую сторону (рис. 6.5, 6.6). Своими опытами Эрстед доказал, что ток производит в окружающем его пространстве маг- нитное действие. Результаты исследования Эрстед изложил в своем знаменитом мемуаре «О воздействии электрического конфликта на магнитную стрелку». В этой работе «электрическим конфликтом» был назван электрический ток.

Ганс Христиан Эрстед (1777–1851) известен своими трудами по электричеству, акустике, молекулярной физике. Поступив в Копенгагенский университет, он изучает медицину, физику, астрономию, философию, поэзию. В 1806 году становится профессором Копенгагенского университета. 

Эта небольшая, всего в пять страниц, работа Эрстеда в том же году была издана в Копенгагене на шести языках. Сами опыты его были повторены осенью 1820 года швейцарским естествоиспытателем де ля Ривом на съезде естествоиспытателей в Женеве. На этом съезде присутствовал член Парижской академии наук Араго, который по возвращении на заседании академии показал опыт Эрстеда, где его впервые увидел Андре Ампер. До конца 1820 года Араго провел ряд исследований, из которых наиболее важным было открытие в 1824 году явления увлечения медного диска вращающимся вблизи него магнитом. Это явление, названное «магнетизмом вращения», долгое время оставалось лишь эффектным физическим опытом. Позднее оно послужило основой многих практических изобретений и, в частности, электродвигателя переменного тока.

Открытие взаимодействия между током и магнитом было важным шагом на пути утверждения идеи единства сил природы и стало началом новой эпохи в учении об электричестве и магнетизме. Это взаимодействие сыграло важную роль в развитии техники физического эксперимента. Ведь по отклонению магнитной стрелки можно было судить о силе проходящего вблизи нее электрического тока.

Сообщение Эрстеда поразило его современников. Каждый, кто имел в своем распоряжении компас и простейший источник тока, стремился собственными глазами увидеть загадочное отклонение магнитной стрелки. В августе 1820 года еще относительно молодой и не вполне опытный, но ставший впоследствии великим, английский физик Майкл Фарадей повторил эти опыты, убедившись, что Эрстед прав: протекание тока в проводе неизбежно вызывало отклонение размещенной поблизости магнитной стрелки. Но правильно истолковать результаты опытов Эрстеда было суждено не Фарадею, а французскому физику Андре Амперу, узнавшему об опытах Эрстеда на месяц позже Фарадея. Этот «докучливый умник Ампер» опередил всех, создав всего за две недели свою стройную теорию образования магнетизма за счет электричества.

Рис. 6.5. Эрстед демонстрирует отклонение магнитной стрелки под действием электрического тока (по рисунку Р.Шторха)

Рис. 6.6. Отклонение магнитной стрелки под действием тока

В том же 1820 году Ампер выступает с сообщением о новом явлении – взаимодействии двух проводников, по которым течет ток, и устанавливает закон этого взаимодействия (позднее названный законом Ампера). В этом сообщении ученый делает вывод, что «все магнитные явления сводятся к чисто электрическим эффектам». Согласно гипотезе Ампера, любой магнит содержит внутри себя множество круговых электрических токов, действием которых и объясняются магнитные силы.

В течение очень короткого времени он выполнил ряд важных исследований, блестяще подтверждавших его мысли. Позднее все полученные результаты были систематизированы Ампером в его книге «Теория электродинамических явлений, выведенная исключительно из опыта», опубликованной в 1826 году.

Андре Мари Ампер (1775–1836) Проводя детство и отрочество в поместье своего отца, Ампер основательно изучил все 20 томов энциклопедического словаря, издававшегося Д’Аламбером и Дидро. К 12 годам Ампер самостоятельно разобрался в основах высшей математики – дифференциальном исчислении, научился интегрировать, а в возрасте 13 лет уже представил свои первые работы по математике в Лионскую академию! Именно Амперу принадлежит заслуга введения в науку терминов «электростатика», «электродинамика», «электродвижущая сила», «напряжение», «гальванометр», «электрический ток» и даже… «кибернетика».

Ампер не только догадался, что при изучении магнитного взаимодействия нужно прежде всего исследовать взаимодействие электрических токов, но сам тут же занялся экспериментальными исследованиями этого взаимодействия. В частности, Ампер экспериментально установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкиваются, если токи имеют противоположные направления. Сила, с которой магнитное поле действует на проводник с током (сила Ампера), пропорциональна длине проводника, величине тока, проходящего по нему, и зависит от ориентации проводника в магнитном поле.

Направление вектора силы Ампера определяется правилом левой руки, в соответствии с которым необходимо расположить левую руку так, чтобы четыре пальца указывали направление тока в проводнике, а вектор магнитной индукции входил бы в ладонь перпендикулярно. Тогда большой палец, отогнутый под прямым углом в плоскости ладони, будет указывать направление вектора силы Ампера.

Прошло еще два года, и Ампер открыл магнитный эффект катушки с током. «Всякий проводник с током, – писал Ампер, – создает вокруг себя магнитное поле, силовые линии которого образуют круги, концентричные относительно средней линии проводника и лежащие в плоскостях, нормальных к элементам проводника». Магнитное действие электрического тока еще более усиливается, когда проводящая проволока скручена в несколько параллельных колец, изолированных друг от друга. Такую форму проводника Ампер предложил назвать соленоидом.

Соленоид Ампера (рис. 6.7) представляет собой полное подобие магнита. Поместив его концы S 1 и S 2 в сосуды с ртутью таким образом, чтобы весь соленоид мог свободно вращаться вокруг вертикальной

оси, проходящей через S 1 и S 2, и, пропустив через него ток, Ампер установил, что он, как обыкновенный магнит, установится по осевому направлению в плоскости магнитного меридиана. Если приблизить к соленоиду магнит, то одним концом соленоид будет к нему притягиваться, а от другого отталкиваться, причем направление притягивания и отталкивания зависит от направления тока в соленоиде.

 

Рис. 6.9. Электромагнит

Рис. 6.7. Соленоид Ампера

Рис. 6.8. Соленоид с железнім сердечником

Установленное Ампером соотношение между током и магнитом навело его на мысль искать причину магнетизма в возникновении молекулярных гальванических токов, обтекающих каждую частицу магнитного тела. Металлический стержень, будучи помещен внутрь спирально скрученной изолированной проволоки (рис. 6.8), значительно увеличивает действие последней на магнит или на другой проводник с током. Сам стержень при этом также намагничивается, образуя южный и северный полюсы. По правилу, установленному Ампером, северный полюс образуется на том конце стержня, который будет слева у наблюдателя, перемещающегося по направлению тока и обращенного лицом к магнитному стержню. Следуя этому правилу, можно определить, что у стержня на рис. 6.8 южный полюс будет находится слева, а северный – справа.

Экспериментируя с различными материалами, Ампер установил, что мягкое железо теряет весь магнетизм сразу после прекращения тока, а сталь, наоборот, сохраняет магнитные свойства долгое время после прекращения тока. Еще лучший

эффект достигается с использованием электромагнитов – железных стержней, окруженных проволочной спиральной обмоткой, по которой пропускается электрический ток (рис. 6.9).

Пока продолжается циркуляция тока, им можно пользоваться как обыкновенным магнитом. При этом ток должен быть пропущен в направлении, указанном стрелками. Сила магнита возрастает с увеличением числа витков обмотки и величины протекающего по ней тока. На рис. 6.10 представлен один из образцов промышленных электромагнитов, представляющих собой два вертикальных железных цилиндрических сердечника, укрепленных на горизонтальном железном основании. Каждый из сердечников окружен тремя обмотками с отдельными выводами, благодаря которым можно применять последовательное, параллельное или смешанное соединение обмоток.

Рис. 6.10. Промышленный электромагнит

Явление электромагнетизма было совершенно новой областью, которой начали заниматься физики-исследователи. Наиболее выдающиеся открытия в этой области выпали на долю знаменитого английского физика Майкла Фарадея.

Майкл Фарадей (1791–1867) «Сын кузнеца, подмастерье переплетчика в своей ранней юности, – писал о Фарадее известный русский физик А.Г. Столетов, – Фарадей кончил жизнь членом всех ученых обществ, бесспорно признанным главой физиков своего времени. Никогда со времен Галилея свет не видел стольких поразительных и разнообразных открытий, вышедших из одной головы, и едва ли скоро увидит другого Фарадея».

В 1831 году на лекции в Королевском институте английский физик Майкл Фарадей объясняет открытое им явление электромагнитной индукции. Ученый ясно представляет практическую значимость своего открытия. На вопрос будущего премьер-министра Гладстона, присутствовавшего при объяснении, «Какая же в конце концов от всего этого польза?» Фарадей с достоинством ответил: «Сэр, не лишено возможности, что ещё при моей жизни из всего этого вы будете извлекать налоги». Через несколько дней после открытия электромагнитной индукции Фарадей набрасывает пером на бумаге и строит первый в мире электрогенератор. Очень интересно, что Фарадей изобрел униполярный генератор, то есть наиболее сложный по принципу действия из всех генераторов, известных сегодня. Еще интереснее, что точно такой же по принципу действия генератор Фарадей мог получить еще на 9 лет раньше. Стоило ему самому начать крутить вокруг магнита проволочку своего первого двигателя, а не ждать, пока она закрутится при пропускании тока, и он имел бы электрогенератор! Ведь сейчас каждому школьнику известно, что электродвигатель и электрогенератор обратимы! Но Фарадей не догадался покрутить проволочку вокруг магнитика. ..

Одержимый идеями о неразрывной связи и взаимовлиянии сил природы, Фарадей безуспешно пытался каким-то образом показать, что раз уж с помощью электричества Ампер мог создавать магниты, точно так же с помощью магнитов можно создавать электричество. Логика его была проста: механическая работа легко переходит в тепло и, наоборот, тепло можно преобразовать в механическую работу (скажем, в паровозе). Если с помощью электричества получают магнетизм, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставил перед собой и Ампер в Париже, но он вскоре решил, что задача безнадежна.

Блестящее мастерство Фарадея-экспериментатора и его одержимость дали результат – через 11 лет после опытов Эрстеда. 17 октября 1831 года он, быстро вдвигая железный сердечник в катушку, убедился в том, что в какой-то момент в цепи катушки возникает ток. Будь прибор Фарадея не на виду у него или у его ассистента в тот самый момент, когда он вставлял сердечник, неизвестно, сколько времени ему пришлось бы биться над своей задачей.

Интересно, что до Фарадея абсолютно такие же опыты проводил Ампер. Чтобы избежать ошибок, связанных с сотрясением приборов, и Фарадей, и Ампер поместили измерительный прибор в отдельную комнату. Разница, казалось бы, была очень небольшой: Ампер сначала вдвигал сердечник, а потом следовал в соседнюю комнату посмотреть, не появился ли ток. Пока Ампер шел из комнаты в комнату, ток, который возникает лишь во время вдвигания железного сердечника в катушку, то есть во время изменения магнитного поля во времени, уже успокаивался, и Ампер, перейдя в соседнюю комнату, убеждался в том, что «никакого эффекта нет». Фарадей же работал с ассистентом. Можно снова и снова повторять: «И от этих случайных обстоятельств зависело великое открытие!».

Исследования Ампера доказали, что катушка, по которой шел ток от гальванической батареи, обладает свойствами магнита. И Фарадей понял, что задача «превратить в электричество магнетизм» уже решена. Он взял железное кольцо, обмотал его в двух местах медной проволокой, изолированной от кольца, одну обмотку включил в цепь с гальваническим источником, а другую соединил с гальванометром. В момент, когда он пускал ток по одной обмотке, магнитная стрелка гальванометра внезапно отклонялась. Значит, в соединенной с ним обмотке проходил в этот момент ток. Фарадею удалось даже впервые получить искру индукционного тока, сблизив концы проволоки разомкнутой обмотки.

В результате опытов Фарадей обнаружил, что когда движущийся проводник пересекает силовые линии магнитного поля, в проводнике под действием электромагнитной индукции наводится электродвижущая сила (э.д.с.), вызывающая ток в цепи, в которую входит этот проводник. Он первым ввел представление о магнитных силовых линиях, совокупность которых составляет магнитное поле как физическую реальность. Наведенная э.д.с. меняется прямо пропорционально скорости движения, числу проводников, а также напряжённости магнитного поля. Иначе говоря, наведенная э.д.с. прямо пропорциональна скорости движения проводника и количеству силовых линий, пересекаемых проводником в единицу времени. Таким образом, опыты Фарадея показали, что электромагнитная индукция возникает как в неподвижном проводнике, находящемся в переменном магнитном поле, так и в проводнике, который перемещается в постоянном магнитном поле. Им было доказано, что наведение тока имеет место только при движении проводника поперек магнитных силовых линий. Отсюда вытекала возможность генерирования электрического тока при перемещении замкнутого проводника в поле магнита.

Правильно поняв открытое им явление, Фарадей поставил другой решающий опыт. Он поместил между полюсами сильного магнита медный диск, который можно было вращать от руки. При вращении диска в нем возникал электрический ток, шедший от центра к периферии. С помощью металлических проводников, скользящих по диску в центре и на окружности, ток отводился во внешнюю цепь. Так Фарадей осуществил «превращение магнетизма в электричество».

Дальнейшие исследования электромагнитной индукции привели к установлению закона о направлении индуктированного тока. Этот закон был сформулирован в 1832 г. русским академиком Э.Х. Ленцем. Он давал возможность предсказывать направление наведенного тока и, кроме того, позволил Ленцу установить важный для электротехники принцип – обратимость генераторного и двигательного режимов электрической машины.

Исследования М. Фарадея и работы Э. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле, больших токов получить нельзя. Более эффективным способом является намотка провода на большую катушку или изготовление катушки в виде барабана. Катушку затем насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды или пара. Так, в сущности, и устроен современный генератор электрического тока, который относится к механическим источникам электрического тока и активно используется человечеством в настоящее время.

Генераторы электрического тока на заводе, расположенном в маленьком городе Йолотан, в современном Туркменестане на реке Мургаб. На турбинах видны метки, указывающие на то, что они были произведены в Венгрии (из наследия Сергея Михайловича Прокудина-Горского, ок. 1907–1915. Цифровое цветное изображение. Отдел эстампов и фотографий, библиотека Конгресса США).

Открытие электромагнитной индукции. Жизнь и творчество Майкла Фарадея

Похожие главы из других работ:

Бесконтактные двигатели

2.3 Схема электромагнитной системы линейного бесконтактного двигателя

Для повышения стабильности момента и угловой скорости в пределах оборота применяют специальные схемы модуляции тока в обмотках статора.

В настоящее время крупными сериями выпускаются только бесконтактные микродвигатели…

Джеймс Максвелл

Первое открытие

Если раньше отец изредка брал Джеймса на свое любимое развлечение — заседания Эдинбургского королевского общества, то теперь посещения этого общества…

Индукционная плавка металла

Явление электромагнитной индукции

Электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г…

Исследования по электро- и магнитостатике. Развитие электродинамики.

Открытие электромагнетизма

В XVIII в. электричество и магнетизм считались хотя и похожими, но все же имеющими различную природу явлениями. Правда, были известны некоторые факты, указывающие на существование как будто бы связи между магнетизмом и электричеством…

Кварковая модель строения элементарных частиц

2.2.2 ОТКРЫТИЕ В — КВАРКА

История открытия нового кварка b аналогична истории открытия кварка с. В 1977 г. в Батавии (США) был открыт новый мезон, обозначенный через ?. Он возникал при бомбардировке мишени из меди и свинца пучком протонов с энергией 400 ГэВ…

Моделирование и получения планарных волноводов в градиентных PPLN

1.1 Основные оптические эффекты, приводящие к волноводному распространению электромагнитной волны

Основным свойством оптического волновода является способность каналировать электромагнитную энергию оптического диапазона. В лучевом приближении это свойство волновода иллюстрирует рис…

Распространение волн в диспергирующих средах

4. Дисперсия при распространении электромагнитной волны в диэлектрике

Пусть Р = Np = Ner — объемная поляризация среды, где N — объемная плотность молекул, r — смещение. Колебания молекул под действием внешнего электрического поля описываются моделью Друде-Лоренца (гармонический осциллятор)…

Становление взглядов на природу света

1.3 Открытие Планка

В 1900 году Макс Планк высказал идею, которая впоследствии перевернула казавшиеся незыблемыми представления ученых о характере физических законов и открыла новую эру в физике.

Вся классическая физика строится…

Экспериментальное исследование явления электромагнитной индукции и практическое его применение

1.1 История открытия явления электромагнитной индукции

Высказывания синьоров Нобили и Антинори из журнала «Antologia».

Господин Фарадей недавно открыл новый класс электродинамических явлений. Он представил об этом мемуар Лондонскому королевскому Обществу, но этот мемуар до сих пор еще не опубликован…

Экспериментальное исследование явления электромагнитной индукции и практическое его применение

1.2 Современная теория электромагнитной индукции

Взаимная связь электрических и магнитных полей была установлена английским физиком М. Фарадеем. Электрические токи создают вокруг себя магнитное поле…

Экспериментальное исследование явления электромагнитной индукции и практическое его применение

2. Экспериментальное исследование явления электромагнитной индукции

Экспериментальное исследование явления электромагнитной индукции и практическое его применение

2.2 Исследование зависимости ЭДС электромагнитной индукции от скорости движения постоянного магнита проводилось таким образом

Вначале вводили постоянный магнит с малой скоростью и фиксировали значение ЭДС по показаниям вольтметра, затем скорость увеличивали через равные промежутки времени и данные записывали в таблицу №1. ..

Экспериментальное исследование явления электромагнитной индукции и практическое его применение

3. Практическое применение явления электромагнитной индукции

Электромагнитная совместимость технических средств

2. Основные этапы проведения работ по определению электромагнитной обстановки

Работы по определению ЭМО на энергообъекте включает в себя следующие этапы:

-получение исходных данных об энергообъекте для проведения работ;

-экспериментально-расчетное определение ЭМО на объекте;

-определение соответствия между уровнями…

Электромагнитные волны. Момент импульса электромагнитных волн

4. Момент импульса электромагнитной волны

Если на среду падает циркулярно поляризованная волна, то она вызывает круговое движение зарядов, т.е. передает зарядам вещества момент импульса.

Пусть вектор E электромагнитная волна, распространяющаяся вдоль оси Z (рис.3)…

Открытие явления электромагнитной индукции кратко.

Открытие электромагнитной индукции и самоиндукции и первые электромагнитные устройства

>> Открытие электромагнитной индукции

Глава 2. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электростатическое поле создается неподвижными заряженными частицами, а магнитное поле — движущимися, т. е. электрическим током . Теперь познакомимся с электрическими и магнитными полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, — это теснейшая взаимосвязь между электрическим и магнитным полями. Оказалось, что изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле — магнитное . Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно наблюдается на самом деле. Не существовало бы ни радиоволн, ни света.

§ 8 ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

В 1821 г. М. Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий сделан основоположником представлений об электромагнитном поле М. Фарадеем, который был уверен в единой природе электрических и магнитных явлений. Благодаря этому он и сделал открытие, вошедшее в основу устройства генераторов всех электростанции мира, превращающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальванические элементы, аккумуляторы и пр., — дают ничтожную долю вырабатываемой электрической энергии.)

Электрический ток, рассуждал М. Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока? Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: движущийся магнит , или меняющееся во времени магнитное поле, может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем получить электрический ток в катушке с помощью магнита пытался швейцарский физик Колладон. В ходе работы он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, куда Колладон вводил магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром, а кого-нибудь попросить заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Содержание урока



конспект урока

опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика


задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации



аудио-, видеоклипы и мультимедиа

фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения



рефераты

статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие



Совершенствование учебников и уроков
исправление ошибок в учебнике

обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей



идеальные уроки

календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки


Электромагнитная индукция
— это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока
используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока

.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко
.

Вихревые токи
возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции
демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем
. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика
— одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла
явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

Ответ:

Следующим важным шагом в развитии электродинамики после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции английский физик Майкл Фарадей (1791 — 1867).

Фарадей, будучи еще моло дым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил злектричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если “электричество создает магнетизм” , то и наоборот, “магнетизм должен создавать электричество”. И вот еще в 1823 г. он записал в своем дневнике: “Обратить магнетизм в электричество”. В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи, и, наконец, в 1831 г. он решил ее — открыл явление электромагнитной индукции.

во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке.

Затем Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток.

наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит.

Открытие Фарадея привлекло внимание многих физиков, которые также стали изучать особенности явления электромагнитной индукции. На очереди стояла задача установить общий закон электромагнитной индукции. Нужно было выяснить, как и от чего зависит сила индукционного тока в проводнике или от чего зависит значение электродвижущей силы индукции в проводнике, в котором индуцируется электрический ток.

Эта задача оказалась трудной. Она была полностью решена Фарадеем и Максвеллом позже в рамках развитого ими учения об электромагнитном поле. Но ее пытались решить и физики, которые придерживались обычной для того времени теории дальнодействия в учении об электрических и магнитных явлениях.

Кое-что этим ученым удалось сделать. При этом им по могло открытое петербургским академиком Эмилием Христиановичем Ленцем (1804 — 1865) правило для нахождения направления индукционного тока в разных случаях электромагнитной индукции. Ленц сформулировал его так: “Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении”.

Это правило очень удобно для определения направления ицдукционного тока. Им мы пользуемся и сейчас, только оно сейчас формулируется несколько иначе, с упогребпением понятия электромагнитной индукции, которое Ленц не использовал.

Но исторически главное значение правила Ленца заключалось в том, что оно натолкнуло на мысль, каким путем подойти к нахождению закона электромагнитной индукции. Дело в том, что в атом правиле устанавливается связь между электромагнитной индукцией и явлением взаимодействии токов. Вопрос же о взаимодействии токов был уже решен Ампером. Поэтому установление этой связи на первых порах дало возможность определить выражение электродвижущей силы индукции в проводнике для ряда частных случаев.

В общем виде закон электромагнитной индукции, как мы об этом сказали, был установлен Фарадеем и Максвеллом.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Созданию первого реле предшествовало изобретение в 1824 г. англичанином Стардженом электромагнита — устройства, преобразующего входной электрический ток проволочной катушки, намотанной на железный сердечник, в магнитное поле, образующееся внутри и вне этого сердечника. Магнитное поле фиксировалось (обнаруживалось) своим воздействием на ферромагнитный материал, расположенный вблизи сердечника. Этот материал притягивался к сердечнику электромагнита.

Впоследствии эффект преобразования энергии электрического тока в механическую энергию осмысленного перемещения внешнего ферромагнитного материала (якоря) лег в основу различных электромеханических устройств электросвязи (телеграфии и телефонии), электротехники, электроэнергетики. Одним из первых таких устройств было электромагнитное реле, изобретенное американцем Дж. Генри в 1831 г.

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений .

Есть нечто символическое в том, что в год рождения М. Фарадея (1791 г.) был опубликован трактат Луиджи Гальвани с первым описанием нового физического явления — электрического тока, а в год его смерти (1867 г.) была изобретена «динамомашина» — самовозбуждающийся генератор постоянного тока, т.е. появился надежный, экономичный и удобный в эксплуатации источник электрической энергии. Жизнь великого ученого и его неповторимая по своим методам, содержанию и значению деятельность не только открыли новую главу физики, но и сыграли решающую роль в рождении новых отраслей техники: электротехники и радиотехники.

Вот уже более ста лет многие поколения учащейся молодежи на уроках физики и из многочисленных книг узнают историю замечательной жизни одного из самых знаменитых ученых, члена 68 научных обществ и академий. Обычно имя М. Фарадея связывают с самым значительным и потому наиболее известным открытием — явлением электромагнитной индукции, сделанным им в 1831 г. Но еще за год до этого, в 1830 г. за исследования в области химии и электромагнетизма М.Фарадей был избран почетным членом Петербургской Академии наук, членом же Лондонского Королевского общества (Британской академии наук) он был избран еще в 1824 г. Начиная с 1816 г., когда увидела свет первая научная работа М. Фарадея, посвященная химическому анализу тосканской извести, и по 1831 г., когда стал публиковаться знаменитый научный дневник «Экспериментальные исследования по электричеству», М. Фарадеем было опубликовано свыше 60 научных трудов.

Огромное трудолюбие, жажда знаний, прирожденный ум и наблюдательность позволили М. Фарадею достичь выдающихся результатов во всех тех областях научных исследований, к которым обращался ученый. Признанный «король экспериментаторов» любил повторять: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы».

Каждое исследование М. Фарадея отличалось такой обстоятельностью и настолько согласовывалось с предыдущими результатами, что среди современников почти не находилось критиков его работ.

Если исключить из рассмотрения химические исследования М. Фарадея, которые в своей области также составляли эпоху (достаточно вспомнить об опытах сжижения газов, об открытии бензола, бутилена), то все прочие его работы, на первый взгляд иногда разрозненные, как мазки на полотне художника, взятые вместе, образуют изумительную картину всестороннего исследования двух проблем: взаимопревращений различных форм энергии и физического содержания среды.

Рис. 2.11. Схема «электромагнитных вращений» (по рисунку Фарадея)

1, 2
— чаши с ртутью; 3
— подвижный магнит; 4
— неподвижный магнит; 5, 6
— провода, идущие к батарее гальванических элементов; 7 — медный стержень; 8
— неподвижный проводник; 9
— подвижный проводник

Работам М. Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Ампера, Био, Савара, проведенных в 1820 г., стало известно не только об электромагнетизме, но и о своеобразии взаимодействий тока и магнита: здесь, как уже отмечалось, действовали не привычные для классической механики центральные силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно проводнику. М. Фарадей поставил перед собой вопрос: не стремится ли магнит к непрерывному движению вокруг проводника стоком? Опыт подтвердил гипотезу. В 1821 г. М. Фарадей дал описание физического прибора, схематически представленного на рис. 2.11. В левом сосуде с ртутью находился стержневой постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде стержень магнита был неподвижен, а проводник с током, свободно подвешенный на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Поскольку в этом опыте впервые фигурирует магнитоэлектрическое устройство с непрерывным движением, то вполне правомерно начать именно с этого устройства историю электрических машин вообще и электродвигателя в частности. Обратим также внимание на ртутный контакт, нашедший впоследствии применение в электромеханике.

Именно с этого момента, судя по всему, у М. Фарадея начинают складываться представления о всеобщей «взаимопревращаемости сил». Получив при помощи электромагнетизма непрерывное механическое движение, он ставит перед собой задачу обратить явление или, по терминологии М. Фарадея, превратить магнетизм в электричество.

Только абсолютная убежденность в справедливости гипотезы о «взаимопревращаемости» может объяснить целеустремленность и настойчивость, тысячи опытов и 10 лет напряженного труда, затраченного на решение сформулированной задачи. В августе 1831 г. был сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была изложена сущность явления электромагнитной индукции.

Рис. 2.12. Иллюстрация опыта Араго («магнетизма вращения»)

1
— проводящий немагнитный диск; 2
— стеклянное основание для крепления оси диска

В качестве примера, характеризующего ход мыслей ученого и формирование его представлений об электромагнитном поле, рассмотрим исследование М. Фарадеем явления, получившего тогда название «магнетизма вращения». За много лет до работ М. Фарадея мореплаватели замечали тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В 1824 г. Д.Ф. Араго (см. § 2.5) описал явление «магнетизма вращения», удовлетворительно объяснить которое ни он, ни другие физики не могли. Сущность явления состояла в следующем (рис. 2.12). Подковообразный магнит мог вращаться вокруг вертикальной оси, а над его полюсами находился алюминиевый или медный диск, который также мог вращаться на оси, направление вращения которой совпадало с направлением вращения оси магнита. В состоянии покоя никаких взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить возможность увлечения диска потоками воздуха, магнит и диск были разделены стеклом.

Открытие электромагнитной индукции помогло М. Фарадею объяснить явление Д.Ф. Араго и уже в самом начале исследования записать: «Я надеялся сделать из опыта г-на Араго новый источник электричества».

Практически одновременно с М. Фарадеем электромагнитную индукцию наблюдал выдающийся американский физик Джозеф Генри (1797–1878 гг.). Нетрудно себе представить переживания ученого, будущего президента американской Национальной академии наук, когда он, собираясь опубликовать свои наблюдения, узнал о публикации М. Фарадея. Год спустя Д. Генри открыл явление самоиндукции и экстратоки, а также установил зависимость индуктивности цепи от свойств материала и конфигурации сердечников катушек. В 1838 г. Д. Генри изучал «токи высшего порядка», т.е. токи, индуцированные другими индуцированными токами. В 1842 г. продолжение этих исследований привело Д. Генри к открытию колебательного характера разряда конденсатора (позднее, в 1847 г., это открытие повторил выдающийся немецкий физик Герман Гельмгольц) (1821–1894 гг.).

Обратимся к главным опытам М. Фарадея. Первая серия опытов закончилась экспериментом, демонстрировавшим явление «вольта-электрической» (по терминологии М. Фарадея) индукции (рис. 2.13, а
— г). Обнаружив возникновение тока во вторичной цепи 2
при замыкании или размыкании первичной 1
или при взаимном перемещении первичной и вторичной цепей (рис. 2.13, в),
М. Фарадей поставил эксперимент для выяснения свойств индуцированного тока: внутрь спирали б,
включенной во вторичную цепь, помещалась стальная игла 7 (рис. 2.13, б),
которая намагничивалась индуцированным током. Результат говорил о том, что индуцированный ток подобен току, получаемому непосредственно от гальванической батареи 3.

Рис. 2.13. Схемы основных опытов, приведших к открытию электромагнитной индукции

Заменив деревянный или картонный барабан 4,
на который наматывались первичная и вторичная обмотки, стальным кольцом (рис. 2.13, г), М. Фарадей обнаружил более интенсивное отклонение стрелки гальванометра 5.
Данный опыт указывал на существенную роль среды в электромагнитных процессах. Здесь М. Фарадей впервые применяет устройство, которое можно назвать прототипом трансформатора.

Вторая серия опытов иллюстрировала явление электромагнитной индукции, возникавшее при отсутствии источника напряжения в первичной цепи. Исходя из того, что катушка, обтекаемая током, идентична магниту, М. Фарадей заменил источник напряжения двумя постоянными магнитами (рис. 2.13, д)
и наблюдал ток во вторичной обмотке при замыкании и размыкании магнитной цепи. Это явление он назвал «магнитоэлектрической индукцией»; позднее им было отмечено, что никакой принципиальной разницы между «вольта-электрической» и «магнитоэлектрической» индукцией нет. Впоследствии оба эти явления были объединены термином «электромагнитная индукция». В заключительных экспериментах (рис. 2.13, е, ж)
демонстрировалось появление индуцированного тока при движении постоянного магнита или катушки с током внутри соленоида. Именно этот опыт нагляднее других продемонстрировал возможность превращения «магнетизма в электричество» или, точнее выражаясь, механической энергии в электрическую.

На основе новых представлений М. Фарадей и дал объяснение физической стороны опыта с диском Д.Ф. Араго. Кратко ход его рассуждений можно изложить следующим образом. Алюминиевый (или любой другой проводящий, но немагнитный) диск можно представить себе в виде колеса с бесконечно большим числом спиц — радиальных проводников. При относительном движении магнита и диска эти спицы-проводники «перерезают магнитные кривые» (терминология Фарадея), и в проводниках возникает индуцированный ток. Взаимодействие же тока с магнитом было уже известно. В истолковании М. Фарадея обращает на себя внимание терминология и способ объяснения явления. Для определения направления индуктированного тока он вводит правило ножа, перерезающего силовые линии. Это еще не закон Э.Х. Ленца, для которого свойственна универсальность характеристики явления, а только попытки каждый раз путем подробных описаний установить, будет ли ток протекать от рукоятки к кончику лезвия или наоборот. Но здесь важна принципиальная картина: М. Фарадей в противовес сторонникам теории дальнодействия, заполняет пространство, в котором действуют различные силы, материальной средой, эфиром, развивая эфирную теорию Л. Эйлера, находящегося, в свою очередь, под влиянием идей М.В. Ломоносова.

М. Фарадей придавал магнитным, а затем при исследовании диэлектриков и электрическим силовым линиям физическую реальность, наделял их свойством упругости и находил очень правдоподобные объяснения самым различным электромагнитным явлениям, пользуясь представлением об этих упругих линиях, похожих на резиновые нити.

Прошло более полутора столетий, а мы до сих пор не нашли более наглядного способа и схемы объяснения явлений, связанных с индукцией и электромеханическими действиями, чем знаменитая концепция фарадеевских линий, которые и поныне нам представляются вещественно ощутимыми.

Из диска Д.Ф. Араго М. Фарадей действительно сделал новый источник электричества. Заставив вращаться алюминиевый или медный диск между полюсами магнита, М. Фарадей наложил на ось диска и на его периферию щетки.

Таким образом была сконструирована электрическая машина, получившая позднее наименование униполярного генератора.

При анализе работ М. Фарадея отчетливо проявляется генеральная идея, которая разрабатывалась великим ученым всю его творческую жизнь. Читая М. Фарадея, трудно отделаться от впечатления, что он занимался только одной проблемой взаимопревращений различных форм энергии, а все его открытия совершались между делом и служили лишь целям иллюстрации главной идеи. Он исследует различные виды электричества (животное, гальваническое, магнитное, термоэлектричество) и, доказывая их качественную тождественность, открывает закон электролиза. При этом электролиз, как и вздрагивание мышц препарированной лягушки, служил первоначально лишь доказательством того, что все виды электричеств проявляются в одинаковых действиях.

Исследования статического электричества и явления электростатической индукции привели М. Фарадея к формированию представлений о диэлектриках, к окончательному разрыву с теорией дальнодействия, к замечательным исследованиям разряда в газах (открытие фарадеева темного пространства). Дальнейшее исследование взаимодействия и взаимопревращения сил привели его к открытию магнитного вращения плоскости поляризации света, к открытию диамагнетизма и парамагнетизма. Убежденность во всеобщности взаимопревращений заставила М. Фарадея даже обратиться к исследованию связи между магнетизмом и электричеством, с одной стороны, и силой тяжести, с другой. Правда, остроумные опыты Фарадея не дали положительного результата, но это не поколебало его уверенности в наличии связи между этими явлениями.

Биографы М. Фарадея любят подчеркивать тот факт, что М. Фарадей избегал пользоваться математикой, что на многих сотнях страниц его «Экспериментальных исследований по электричеству» нет ни одной математической формулы. В связи с этим уместно привести высказывание соотечественника М. Фарадея великого физика Джеймса Кларка Максвелла (1831–1879 гг.): «Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков».

«Математичность» мышления Фарадея можно иллюстрировать его законами электролиза или, например, формулировкой закона электромагнитной индукции: количество приведенного в движение электричества прямо пропорционально числу пересеченных силовых линий. Достаточно представить себе последнюю формулировку в виде математических символов, и мы немедленно получаем формулу, из которой очень быстро следует знаменитое d?/dt, где? — магнитное потокосцепление.

Д.К. Максвелл, родившийся в год открытия явления электромагнитной индукции, очень скромно оценивал свои заслуги перед наукой, подчеркивая, что он лишь развил и облек в математическую форму идеи М. Фарадея. Максвеллову теорию электромагнитного поля по достоинству оценили ученые конца XIX и начала XX в., когда на почве идей Фарадея — Максвелла начала развиваться радиотехника.

Для характеристики прозорливости М. Фарадея, его умения проникать в глубь сложнейших физических явлений важно напомнить здесь, что еще в 1832 г. гениальный ученый рискнул предположить, что электромагнитные процессы носят волновой характер, причем магнитные колебания и электрическая индукция распространяются с конечной скоростью.

В конце 1938 г. в архивах Лондонского Королевского общества было обнаружено запечатанное письмо М. Фарадея, датированное 12 марта 1832 г. Оно пролежало в безвестности более 100 лет, а в нем были такие строки:

«Некоторые результаты исследований… привели меня к заключению, что на распространение магнитного воздействия требуется время, т.е. при воздействии одного магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным.

Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха, т.е. я намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку, и является наиболее вероятным объяснением световых явлений.

По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции. Эти воззрения я хочу проверить экспериментально, но так как мое время занято исполнением служебных обязанностей, что может вызвать продление опытов … я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие за собой определенной датой…» .

Поскольку эти идеи М. Фарадея оставались неизвестными, нет никаких оснований отказывать великому его соотечественнику Д.К. Максвеллу в открытии этих же идей, которым он придал строгую физико-математическую форму и фундаментальное значение.

Из книги
Удивительная механика
автора

Гулиа Нурбей Владимирович

Открытие древнего гончара
Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.В небольшой гончарной мастерской, с виду

Из книги
Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний]
автора

Красник Валентин Викторович

Обеспечение электромагнитной совместимости устройств связи и телемеханики
Вопрос. Как выполняются устройства связи и телемеханики?Ответ. Выполняются помехозащищенными со степенью, достаточной для обеспечения их надежной работы как в нормальных, так и аварийных

Из книги
Секретные автомобили Советской Армии
автора

Кочнев Евгений Дмитриевич

Семейство «Открытие»
(КрАЗ-6315/6316)
(1982 – 1991 гг.)
В феврале 1976 года вышло секретное Постановление Совмина и ЦК КПСС о разработке на основных советских автозаводах семейств принципиально новых тяжелых армейских грузовиков и автопоездов, выполненных по требованиям

Из книги
Шелест гранаты
автора

Прищепенко Александр Борисович

5. 19. За что любят постоянные магниты. Самодельный прибор для измерения индукции поля. Другой прибор, избавляющий от мучений с расчетом обмотки
Огромным преимуществом магнитов было то, что постоянное во времени поле не нуждалось в синхронизации со взрывными процессами и

Из книги
Новые источники энергии
автора

Фролов Александр Владимирович

Глава 17 Капиллярные явления
Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же

Из книги
Металл Века
автора

Николаев Григорий Ильич

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА
ХОББИ СВЯЩЕННИКА
Семь металлов древности, а также сера и углерод — вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он

Из книги
История электротехники
автора

Коллектив авторов

1. 3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА
Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике

Из книги
История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника)
автора

Шнейберг Ян Абрамович

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ
Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого

Из книги
автора

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов .В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь

Из книги
автора

3. 5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и

Из книги
автора

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации
Открытие действия «электрического конфликта» на магнитную стрелкуВ июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра


Закон электромагнитной индукции – это формула, поясняющая образование ЭДС в замкнутом контуре проводника при изменениях напряжённости магнитного поля. Постулат объясняет работу трансформаторов, дросселей и прочих изделий, обеспечивающих сегодня развитие техники.

История Майкла Фарадея

Майкла Фарадея забрали из школы вместе со старшим братом, послужил поводом – дефект речи. Первооткрыватель электромагнитной индукции картавил, раздражая учительницу. Та дала денег, дабы купили палку и высекли потенциального клиента логопеда. Причём старшему брату Майкла.

Будущий светило науки был поистине любимцем судьбы. На протяжённости жизненного пути он, при должной настойчивости, находил помощь. Брат с презрением вернул монету, сообщив об инциденте матери. Семья не считалась богатой, и отец, талантливый ремесленник, с трудом сводил концы с концами. Братья рано стали искать работу: семья жила на милостыню с 1801 года, Майклу в ту пору шёл десятый год.

С тринадцати Фарадей поступает в книжную лавку разносчиком газет. Через весь город едва-едва успевает по адресам на противоположных концах Лондона. Ввиду прилежности хозяин Рибо дарует Фарадею место ученика переплётчика на семь лет бесплатно. В давнюю пору человек с улицы платил мастеру за процесс приобретения ремесла. Как и Георгу Ому умение механика, Фарадею в будущем процесс переплётного дела пригодился в полной мере. Большую роль сыграл факт, что Майкл скрупулёзно читал книги, попадающие к нему в работу.

Фарадей пишет, что одинаково охотно верил трактату миссис Марсет (Беседы о химии) и сказкам Тысячи и одной ночи. Желание стать учёным сыграло в этом деле важную роль. Фарадей избирает два направления: электричество и химию. В первом случае основным источником знаний служит Британская энциклопедия. Пытливый ум требует подтверждения написанного, юный переплётчик постоянно проверяет знания на практике. Фарадей становится опытным экспериментатором, что сыграет ведущую роль при исследовании электромагнитной индукции.

Напомним, что речь идёт об ученике без собственного дохода. Старший брат и отец посильно оказывали помощь. Начиная с химических реактивов и заканчивая сборкой электростатического генератора: для опытов нужен источник энергии. Одновременно Фарадей умудряется посещать платные лекции естествознания и скрупулёзно заносит знания в блокнот. Потом переплетает заметки, пользуясь приобретёнными навыками. Срок ученичества заканчивается в 1812 году, Фарадей начинает искать работу. Новый хозяин не столь покладист, и, несмотря на перспективу сделаться наследником дела, Майкл на пути к открытию электромагнитной индукции.

Научный путь Фарадея

В 1813 году судьба улыбается учёному, давшему миру представление об электромагнитной индукции: удаётся попасть на место секретаря к сэру Хампфри Дэви, недолгий период знакомства в будущем сыграет роль. Фарадею невыносимо исполнять долее обязанности переплётчика, он пишет письмо Джозефу Бэнксу, тогдашнему президенту Королевского научного общества. О характере деятельности организации расскажет факт: Фарадей получил место, называемое старший прислужник: помогает лекторам, вытирает пыль с оборудования, следит за транспортировкой. Джозеф Бэнкс игнорирует послание, Майкл не унывает и пишет Дэви. Ведь прочих научных организаций нет в Англии!

Дэви относится с большим вниманием, поскольку лично знаком с Майклом. Не будучи одарён от природы умением говорить – вспомним про школьный опыт – и излагать мысли письменно, Фарадей берет специальные уроки для развития необходимых навыков. Опыты тщательно систематизирует в блокноте, мысли излагает в кружке друзей и единомышленников. К моменту знакомства с сэром Хампфри Дэви достигает недюжинного мастерства, тот ходатайствует о принятии новоиспечённого учёного на вышеупомянутую должность. Фарадей рад, а изначально фигурировала идея назначить будущего гения мыть посуду…

По воле рока Майкл вынужден слушать лекции на разные темы. Помощь профессорам требовалась лишь периодически, в остальном допускалось находиться в аудитории и слушать. Учитывая, сколько стоит образование в Гарварде, это стало неплохим досугом. Через полгода блестящей работы (октябрь 1813 года) Дэви приглашает Фарадея в путешествие по Европе, война окончена, нужно оглядеться. Это стало хорошей школой первооткрывателю электромагнитной индукции.

По возвращении в Англию (1816 год), Фарадей получает звание лаборанта и публикует первую работу по исследованию известняка.

Исследования электромагнетизма

Явление электромагнитной индукции заключается в наведении ЭДС в проводнике под действием изменяющегося магнитного поля. Сегодня на этом принципе работают приборы, начиная трансформаторами и заканчивая варочными панелями. Первенство в области отдано Гансу Эрстеду, 21 апреля 1820 года заметившему действие замкнутой цепи на стрелку компаса. Подобные наблюдения публиковались в виде заметок Джованни Доменико Романьози в 1802 году.

Заслуга датского учёного в привлечении к делу многих видных учёных. Итак, замечено, что стрелка отклоняется проводником с током, и осенью упомянутого года появился на свет первый гальванометр. Измерительный прибор на ниве электричества стал большим подспорьем многим. Попутно высказывались различные точки зрения, в частности, Волластон огласил, что неплохо заставить проводник с током вращаться непрерывно под действием магнита. В 20-е годы XIX века вокруг указанного вопроса царила эйфория, до этого магнетизм и электричество считались независимыми явлениями.

Оенью 1821 года задумку воплотил в жизнь Майкл Фарадей. Утверждают, что тогда на свет появился первый электрический двигатель. 12 сентября 1821 года в письме Гаспару де ла Риву Фарадей пишет:

«Я выяснил, что притяжения и отталкивания магнитной стрелки проводом с током — детская забава. Некая сила станет вращать непрерывно магнит под действием электрического тока. Я построил теоретические выкладки и сумел реализовать на практике».

Письмо к де ла Риву не стало случайностью. По мере становления на научном поприще Фарадей обрёл немало сторонников и единственного непримиримого противника… сэра Хампфри Дэви. Экспериментальная установка объявлена плагиатом идеи Волластона. Примерная конструкция:

  1. Серебряная чаша заполнена ртутью. Жидкий металл обладает хорошей электропроводностью и служит подвижным контактом.
  2. На дне чаши находится лепёшка воска, куда одним полюсом воткнут стержневой магнит. Второй возвышается над поверхностью ртути.
  3. С высоты свисает провод, подключённый к источнику. Конец его погружен в ртуть. Второй провод — возле края чаши.
  4. Если пропускать через замкнутую цепь постоянный электрический ток, провод начинает описывать по ртути круги. Центром вращения становится постоянный магнит.

Конструкцию называют первым в мире электрическим двигателем. Но эффект электромагнитной индукции ещё не проявляется. Налицо взаимодействие двух полей, не более. Фарадей, кстати, не остановился, и сделал чашу, где провод неподвижный, а магнит двигается (образуя поверхность вращения – конус). Доказал, что нет принципиальной разницы между источниками поля. Потому индукция называется электромагнитной.

Немедленно Фарадея обвинили в плагиате и травили несколько месяцев, о чем он с горечью писал доверенным друзьям. В декабре 1821 года состоялась беседа с Волластоном, казалось, инцидент исчерпан, но… чуть позже группа учёных возобновила нападки, главой оппозиции стал сэр Хампфри Дэви. Смысл основных претензий заключался в противостоянии идее принятия Фарадея в члены Королевского общества. Это тяжким грузом давило на будущего открывателя закона электромагнитной индукции.

Открытие закона электромагнитной индукции

На время Фарадей, казалось, оставил идею исследований на ниве электричества. Сэр Хампфри Дэви был единственным, кто бросил шар против кандидатуры Майкла. Возможно, бывший ученик не хотел расстраивать покровителя, бывшего на тот момент президентом общества. Но постоянно терзала мысль о единстве природных процессов: если электричество удалось превратить в магнетизм, нужно попробовать сделать обратное.

Эта идея зародилась — по некоторым сведениям — в 1822 году, и Фарадей постоянно носил с собой кусок железняка, напоминавшего, служившего «узелком на память». С 1825 года, являясь полноправным членом Королевского общества, Майкл получает должность начальника лаборатории и немедленно совершает нововведения. Персонал теперь раз в неделю собирается на лекции с наглядными демонстрациями приборов. Постепенно вход становится открытым, даже дети получают возможность опробовать новое. Эта традиция положила начало знаменитым пятничным вечерам.

Целых пять лет занимался Фарадей оптическим стеклом, группа не достигла больших успехов, но практические результаты имелись. Произошло ключевое событие – обрывается жизнь Хампфри Дэви, постоянно противившегося опытам с электричеством. Фарадей отклоняет предложение о новом пятилетнем контракте и начинает теперь уже в открытую исследования, которые привели прямиком к магнитной индукции. Согласно литературе серия длилась 10 дней, неравномерно раскиданных в период с 29 августа по 4 ноября 1831 года. Фарадей описывает собственную лабораторную установку:

Из мягкого (с сильными магнитными свойствами) железа круглого сечения диаметром 7/8 дюйма я изготовил кольцо с внешним радиусом 3 дюйма. Фактически получился сердечник. Три первичные обмотки отделялись друг от друга хлопчатобумажной тканью и портняжным шнуром, чтобы удавалось объединить в одну или употреблять раздельно. Длина медного провода в каждой составляет 24 фута. Качество изоляции проверено при помощи элементов питания. Вторичная обмотка состояла из двух сегментов, по 60 футов длиной каждый, отстояла от первичной на расстояние.

От источника (предположительно элемент Волластона), имевшего в составе 10 пластин, площадью по 4 квадратных дюйма каждая, подавалось питание на первичную обмотку. Концы вторичной закорочены куском провода, в трёх футах от кольца вдоль цепи размещалась стрелка компаса. При замыкании источника питания намагниченная игла немедленно приходила в движение, и через интервал возвращалась на первоначальное место. Очевидно, что первичная обмотка вызывает отклик во вторичной. Сейчас бы сказали, что магнитное поле распространяется по сердечнику и наводит ЭДС на выходе трансформатора.

Моя Энергия: Андре-Мари Ампер

/ Популярная энергетика / Жизнь замечательных энергетиков / Андре-Мари Ампер

Джеймс Максвелл назвал Ампера «Ньютоном электричества». В честь ученого единица силы электрического тока названа «ампером», а соответствующие измерительные приборы — «амперметрами».

Краткая биография

Андре-Мари Ампер родился 22 января 1775 года во французском городе Лионе. Его отец Жан-Жак Ампер вместе торговал со своими братьями лионскими шелками. Мать Жанна Сарсе была дочерью успешного торговца.

Детство ученого прошло в небольшом семейном поместье Полемье в окрестностях Лиона. Мальчик получил домашнее образование. Очень быстро он обучился чтению, письму и математике. К 14 годам способный Андре-Мари не только прочитал 28 толстых томов французской «Энциклопедии» , но и представил в Лионскую академию свои первые работы по математике. Эта наука интересовала его больше всех остальных дисциплин.

После смерти отца, гильотинированного за сочувствие мятежникам во время Великой французской буржуазной революции, Ампер был вынужден искать средства к существованию. Сперва был репетитором в Политехнической школе в Париже, затем занимал кафедру физики в Бурке, а с 1805 года — кафедру математики в парижской Политехнической школе.

В 1799 году Ампер женился на Катрин Каррон. Вскоре у них родился сын, названный в честь своего дедушки — Жан-Жаком. В будущем он станет известным филологом, историком французской литературы.

Ампер умер 10 июня 1836 года от воспаления легких в Марселе.

Изобретения и открытия

Время расцвета научной деятельности Ампера приходится на 1814 – 1824 годы и связано, главным образом, с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики.

Практически до 1820 года основные интересы ученого сосредоточивались на проблемах математики, механики и химии. Вопросами физики в то время он занимался очень мало: известны лишь две работы этого периода, посвященные оптике и молекулярно-кинетической теории газов. Что же касается математики, то именно в этой области он достиг результатов, которые и дали основание выдвинуть его кандидатуру в академию по математическому отделению.

Классиком науки, всемирно известным ученым Ампер стал благодаря своим исследованиям в области электромагнетизма.

В 1820 году датский физик Г.Х. Эрстед обнаружил, что вблизи проводника с током отклоняется магнитная стрелка. Так было открыто замечательное свойство электрического тока — создавать магнитное поле. Ампер подробно исследовал это явление. Новый взгляд на природу магнитных явлений возник у него в результате целой серии экспериментов и изобретения ряда новых приборов. Уже в конце первой недели напряженного труда он сделал открытие не меньшей важности, чем Эрстед — открыл взаимодействие токов.

Ученый обнаружил, что магнитное поле Земли влияет на движущиеся проводники с током, открыл взаимодействие между электрическими токами, сформулировал закон этого явления (закон Ампера), развил теорию магнетизма, предложил использовать электромагнитные процессы для передачи сигналов.

В 1822 Ампером был открыт магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Также им было предложено усиливать магнитное поле с помощью железного сердечника, помещаемого внутрь соленоида.

В механике ему принадлежит формулировка термина «кинематика».

В 1830 году ввел в научный оборот термин «кибернетика».

Награды и звания

  • Член многих академий наук, в частности иностранный почетный член Петербургской Академии наук (1830).
  • Его имя внесено в список величайших ученых Франции, помещенный на первом этаже Эйфелевой башни.

Интересный факт

Однажды известный физик и математик Ампер шел по улице и высчитывал что-то в голове. Вдруг он увидел перед собой черную доску, такую же, как в аудитории. Обрадовавшись, он подбежал к ней, достал кусочек мела, который всегда имел при себе, и начал писать формулы. Доска, однако, сдвинулась с места. Ампер, не осознавая того, что делает, последовал за ней. Доска набирала скорость. Ампер побежал. Очнулся он только тогда, когда услышал неудержимый смех прохожих. Но теперь ученый заметил, что доска, на которой он писал формулы, — это задняя стенка черной кареты.


Самые выдающиеся открытия человечества в области физики


Самые выдающиеся открытия человечества в области физики

1. Закон падения тел (1604)

 

Галилео Галилей

Галилео Галилей опроверг почти 2000 летнее аристотелевское убеждение, что тяжелые тела падают быстрее, чем легкие, доказав, что все тела падают с одинаковой скоростью.

2. Закон всемирного тяготения (1666)

Исаак Ньютон

Исаак Ньютон приходит к выводу, что все объекты во Вселенной, от яблок до планет оказывают гравитационное притяжение (воздействие) друг на друга.

3. Законы движения (1687)

Исаак Ньютон меняет наше представление о Вселенной, сформулировав три закона для описания движения объектов.

1. Движущийся объект остается в движении, если внешняя сила воздействует на него.
2. Соотношение между массой объекта (m), ускорение (а) и приложенной силой  (F) F = mа.
3. Для каждого действия есть равная и противоположная реакция (противодействие).

4. Второй закон термодинамики (1824 — 1850)

Ученые, работающие над повышением эффективности паровых машин, развили теорию понимания преобразование тепла в работу. Они доказали, что поток тепла от более высоких к более низким температурам, заставляет паровоз (или иной механизм) двигаться, уподобляя процессу потока воды, который вращает мельничное колесо.
Их работа приводит к трем принципам: тепловые потоки необратимы от горячего к холодному телу, тепло не может быть полностью преобразовано в другие формы энергии, а также системы становятся все более неорганизованными с течением времени.

5. Электромагнетизм (1807 — 1873)

Ханс Кристиан Эстед

Новаторские эксперименты выявили связь между электричеством и магнетизмом и систематизированы в системе уравнений, которые выражают их основные законы.
В 1820 году датский физик Ханс Кристиан Эрстед говорит студентам о возможности того, что электричество и магнетизм связаны между собой. Во время лекции, эксперимент показывает правдивость его теории перед всем классом.

6. Специальная теория относительности (1905)

Альберт Энштейн

Альберт Эйнштейн отвергает основные предположения о времени и пространстве, описывая, что часы идут медленнее и расстояние искажается, если скорость приближаются к скорости света.

7. E = MC2 (1905)

Или энергия равна массе, умноженной на квадрат скорости света. Знаменитая формула Альберта Эйнштейна доказывает, что масса и энергия являются различными проявлениями одного и того же, и, что очень небольшое количество массы может быть преобразовано в очень большое количество энергии. Самый глубокий смысл этого открытия является то, что ни один объект с любой массой, отличной от 0 никогда не может двигаться быстрее скорости света.

8. Закон Квантового Скачка (1900 — 1935)

Макс Планк

Альберт Энштейн

Вернер Гейзенберг

Эрвин Шредингер

Закон, для описания поведения субатомных частиц, описали Макс Планк, Альберт Эйнштейн, Вернер Гейзенберг и Эрвин Шредингер. Квантовый скачок определяется как изменение электрона в атоме из одного энергетического состояния в другое. Это изменение происходит сразу, а не постепенно.

9. Природа света (1704 — 1905)

Томас Янг

Исаак Ньютон

Альберт Энштейн

Результаты экспериментов Исаака Ньютона, Томаса Янга и Альберта Эйнштейна приводит к пониманию того, что такое свет, как он себя ведет, и как он передается. Ньютон использует призму для разделения белого света на составляющие цвета, а другая призма смешивала цветной свет в белый, доказывая, что цветной свет, смешиваясь, образует белый свет. Было установлено, что свет представляет собой волну, и что длина волны определяет цвет. Наконец, Эйнштейн признает, что свет всегда движется с постоянной скоростью, независимо от скорости измерителя.

10. Открытие нейтрона (1935)

Джеймс Чедвик

Джеймс Чедвик обнаружил нейтроны, которые вместе с протонами и электронами составляют атом вещества. Это открытие существенно изменило модель атома и ускорило ряд других открытий в атомной физике.

 

11. Открытие сверхпроводников (1911 — 1986)

Неожиданное открытие, что некоторые материалы не имеют никакого сопротивления электрическому току при низких температурах, обещали революцию в промышленности и технике. Сверхпроводимость возникает в самых разнообразных материалах при низких температурах, включая простые элементы, такие как олово и алюминий, различные металлические сплавы и некоторые керамические соединения.

12. Открытие кварков (1962)

Мюррей Гелл-Манн

Мюррей Гелл-Манн предположил существование элементарных частиц, которые в совокупности образуют составные объекты, такие как протоны и нейтроны. Кварк имеет свой заряд. Протоны и нейтроны содержат три кварка.

13. Открытие ядерных сил (1666 — 1957)

Открытия основной силы, действующие на субатомном уровне, привело к пониманию, что все взаимодействия во Вселенной являются результатом четырех фундаментальных сил природы — сильных и слабых ядерных сил, электромагнитных сил и гравитации.

Все эти открытия сделаны учеными, которые посвятили свою жизнь науке. В то время диплом MBA на заказ передать на написание кому-то было невозможно, только систематический труд, упорство, наслаждение своим стремлением — позволило им стать знаменитыми.

Похожие статьи:

Великие открытия в физике (для оформления стенда «День физики»)

Великие открытия в физике (для оформления стенда «День физики»)

  1. Закон падающего тела

  2. Всемирное тяготение

  3. Законы движения

  4. Второй закон термодинамики

  5. Электромагнетизм

  6. Теория относительности

  7. E=mc2

  8. Квантовая теория

  9. Природа света

  10. Нейтрон

  11. Сверхпроводники

  12. Кварк

  13. Ядерные силы

  1. Закон падающего тела

На протяжении более двух тысяч лет люди считали, что тяжелые предметы падают быстрее легких. Эта классическая мудрость основывалась на наблюдениях древнегреческого философа Аристотеля. Люди верили ему, потому что его мысли казались правильными.

Но в 17 веке Галилео Галилей решил проверить закон Аристотеля. По легенде он сбрасывал в Пизанской башни шары разной массы.

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

 

  1. Всемирное тяготение

Это открытие свершилось благодаря сэру Исааку Ньютону, который родился в Англии в год смерти Галилея.

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.

Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Ньютон предположил, что Луна, пытаясь лететь по прямой линии в космосе мимо Земли, постоянно притягивается ей. Из-за этого Луна вращается вокруг Земли. Но и сама Луна притягивает Землю при помощи собственной гравитации. Ньютон открыл закон всемирного тяготения.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

 

  1. Законы движения

Ньютон для многих является олицетворением самой физики, ведь он, помимо прочего, открыл три закона движения, что стало его вторым великим открытием. Это законы, которые объясняют движение любого физического предмета.

Возьмем, например, хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

 

  1. Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.

Среди тех, кто занимался этим вопросом, был немецкий ученый Рудольф Клаузиус. В 1865 году он сформулировал Второй закон термодинамики. Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия, объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

 

  1. Электромагнетизм

Дамба Гувера – одно из величайших инженерных достижений современности. Ее высота 221 м, а масса 6,6 миллионов тонн. 17 генераторов вырабатывают электричество мощностью 3 миллиона лошадиных сил, и создается оно благодаря магнитному полю.

Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

В 1831 году переплетчик, интересующийся электричеством, по имени Майкл Фарадей, стал первым, кто смог запустить этот процесс в обратном направлении. Он использовал движущееся магнитное поле для создания электричества.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физиком Джеймсом Клерком Максвеллом, который использовал их, чтобы еще лучше понять принципы электромагнетизма. Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

 

  1. Теория относительности

В 1905 году случился переворот в мире науки, произошло величайшее открытие. Молодой неизвестный ученый, работающий в бюро патентов в швейцарском городе Берн, сформулировал революционную теорию. Его звали Альберт Эйнштейн.

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.

В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

Он осознал, что теория Ньютона, согласно которой время и пространство неизменны, была неправильной, если ее применить к скорости света. С этого и началась формулировка того, что он назвал теорией относительности.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов». Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

Через несколько месяцев после опубликования теории относительности Эйнштейн сделал следующее великое открытие: самое известное уравнение всех времен.

 

  1. E=mc2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c2. Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

 

  1. Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

В субатомном мире атомы и их составляющие существуют согласно совсем иным законам, нежели крупные материальные тела. Немецкий ученый Макс Планк описал эти законы в своей квантовой теории.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри, например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах.

Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик Эрвин Шредингер, наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Вскоре Макс Борн, коллега Эйнштейна, сделал революционный шаг: он задался вопросом – если вещество является волной, то что в ней меняется? Борн предположил, что меняется вероятность определения положения тела в данной точке.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

 

  1. Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.

Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Однако, существовала и альтернативная теория, согласно которой свет был волной. Ученый Томас Юнг смог доказать некоторые волновые свойства света.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга. И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света, т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

 

  1. Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.

О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века Эрнест Резерфорд провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром.

Благодаря открытию Резерфорда, ученые узнали о том, что атом состоит из ядра, протонов и электронов. Эту картину довершил Джеймс Чедвик – ученик Резерфорда. Он открыл нейтрон.

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Открытие нейтрона стало величайшим научным достижением. В 1939 году группа ученых во главе с Энрико Ферми использовали нейтрон для расщепления атома, открыв дверь в век ядерных технологий.

 

  1. Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники.

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени Хейке Камерлинг-Оннесстал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.

Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называется сверхпроводимостью.

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее.

 

  1. Кварк

Данное открытие – это поиск мельчайших частиц материи во Вселенной.

Сначала был открыт электрон, затем протон, а потом нейтрон. Теперь у науки была новая модель атома, из которых состоит любое тело.

С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Он предполагал, что нейтрон или протон не являются элементарными частицами, как думали многие, а состоят из еще более мелких частиц – кварков – в необычными свойствами.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка.

 

  1. Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера. Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки.

Итак, у нас есть четыре силы фундаментального взаимодействия: гравитация (gravity), электромагнетизм (electromagnetism), ядерное притяжение(weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.

Открытие электромагнитной индукции сделало возможным появление. К истории открытия явления электромагнитной индукции

История открытия электромагнитной индукции. Открытия Ганса Кристиана Эрстеда и Андре Мари Ампера показали, что электричество обладает магнитной силой. Влияние магнитных явлений на электрические было открыто Майклом Фарадеем. Ганс Кристиан Эрстед Андре Мари Ампер

Майкл Фараде́й () «Превратить магнетизм в электричество»- записал он в своём дневнике в 1822 году. Английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской Академии Наук (1830).

Описание опытов Майкла Фарадея На деревянный брусок намотаны две медные проволоки. Одна из проволок была соединена с гальванометром, другая – с сильной батареей. При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра

Описание опытов Майкла Фарадея Другой опыт заключался в регистрации всплесков тока на концах катушки, внутрь которой вставлялся постоянный магнит. Такие всплески Фарадей назвал «волнами электричества»

ЭДС индукции ЭДС индукции, вызывающая всплески тока («волны электричества») зависит не от величины магнитного потока, а от скорости его изменения.

1. Определить направление линий индукции внешнего поля В (выходят из N и входят в S). 2.Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то Ф>0, если выдвигается, то Ф
0, если выдвигается, то Ф
0, если выдвигается, то Ф
0, если выдвигается, то Ф 0, если выдвигается, то Ф

3. Определить направление линий индукции магнитного поля В, созданного индукционным током (если Ф>0, то линии В и В направлены в противоположные стороны; если Ф
0, то линии В и В направлены в противоположные стороны; если Ф
0, то линии В и В направлены в противоположные стороны; если Ф
0, то линии В и В направлены в противоположные стороны; если Ф 0, то линии В и В направлены в противоположные стороны; если Ф

Вопросы Сформулируйте закон электромагнитной индукции. Кто является основоположником этого закона? Что такое индукционный ток и как определить его направление? От чего зависит величина ЭДС индукции? Принцип действия каких электрических аппаратов основан на законе электромагнитной индукции?

Электромагнитная индукция
— это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока
используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока

.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко
.

Вихревые токи
возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции
демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем
. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика
— одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла
явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

В учебнике физики для IX класса дан краткий экскурс в историю открытия рассматриваемого закона. Обзор целесообразно дополнить. Речь идет о фундаментальном законе природы, и нужно раскрыть все его стороны в процессе становления. Рассказ о процессе поисков закона Фарадеем особенно поучителен, и здесь не нужно- жалеть времени.
Майкл Фарадей родился в 1791 г. в окрестностях Лондона в семье кузнеца. Отец не имел средств для платы за учебу, и Фарадей в 13 лет был вынужден начать изучение переплетного дела. К счастью, он попал в ученики к владельцу книжного магазина. Любознательный мальчик жадно читал, причем нелегкую литературу. Его привлекали статьи по естественным наукам в Британской энциклопедии, он штудировал «Беседы о химии» Марсе. В 1811 г. Фарадей начал посещать общедоступные лекции по физике известного лондонского педагога Тэтума.
Поворотным в жизни Фарадея был 1812 г. Клиент владельца книжного магазина, член Королевского института Дэнс рекомендовал юноше прослушать лекции знаменитого химика Гэмфрн Дэви . Фарадей последовал доброму совету; он жадно слушал и тщательно конспектировал. По совету того же Дэнса он обработал записи и послал их Дэви, присоединив просьбу о предоставлении возможности исследовательской работы. В 1813 г. Фарадей получил место лаборанта в химической лаборатории Королевского института, которой руководил Дэви.
Вначале Фарадей — химик. Он быстро становится на путь самостоятельного творчества, и самолюбию Дэви приходится часто страдать от успехов ученика. В 1820 г. Фарадей узнает об открытии Эрстеда, и с этих пор его мысли поглощают электричество и магнетизм. Он начинает свои знаменитые экспериментальные исследования, приведшие к преобразованию физического мышления. В 1823 г. Фарадей был избран членом Лондонского Королевского общества, а затем назначен директором физической и химической лабораторий Королевского института. В стенах этих лабораторий были совершены величайшие открытия. Жизнь Фарадея, внешне монотонная, поразительна по творческому напряжению. О нем свидетельствует трехтомный: труд «Экспериментальные исследования по электричеству», в котором отражен шаг за шагом творческий путь гения.
В 1820 г. Фарадей ставит принципиально новую проблему: «превратить магнетизм в электричество». Это было вскоре после открытия магнитного действия токов. В опыте Эрстеда электрический ток действует, на магнит. Поскольку, согласно Фарадею, все силы природы взаимопревращаемы, можно, наоборот, магнитной силой возбудить электрический ток.
Фарадей ожижает газы, производит тонкие химические анализы, открывает новые химические свойства веществ. Но мысль его неотступно занята поставленной проблемой. В 1822 г. он описывает попытку обнаружить «состояние», обусловленное течением тока: «поляризовать луч света от лампы путем отражения и попытаться обнаружить, не окажет ли деполяризующее действие вода, расположенная между полюсами, вольтовой батареи в стеклянном сосуде. ..» Фарадей надеялся таким образом получить какую-нибудь информацию о свойствах тока. Но опыт не дал ничего. Далее следует 1825 год. Фарадей публикует статью «Электромагнитный ток (под влиянием магнита)», в которой высказывает следующую мысль. Если ток действует на магнит, то он должен испытывать, противодействие. «По разным соображениям, — пишет Фарадей,- было сделано предположение, что приближение полюса сильного магнита будет уменьшать электрическийток». И он описывает опыт, реализующий эту идею.
В дневнике от 28 ноябряря 1825 г. описан аналогичный опыт. Батарея гальванических элементов соединялась проводом. Параллельно этому проводу располагался другой (провода разделялись двойным слоем бумаги), концы которого присоединялись к гальванометру. Фарадей рассуждал, по-видимому, так. Если ток есть движение электрической жидкости и это движение действует на постоянный магнит — совокупность токов (по гипотезе Ампера), то движущаяся жидкость в одном проводнике должна заставить двигаться неподвижную — в другом, и гальванометр должен зафиксировать ток. «Разные соображения», о которых писал Фарадей при изложении первого опыта, сводились к тому же, только там ожидалась реакция движущегося в проводнике электрического флюида со стороны молекулярных токов постоянного магнита. Но опыты дали отрицательный результат.
Решение пришло в 1831 г., когда Фарадей предположил, что индукция должна возникнуть при и нестационарном процессе. Это была ключевая мысль, приведшая к открытию явления электромагнитной индукции.
Возможно, что к идее изменения тока заставило обратиться сообщение, полученное из Америки. Известие пришло от американского физика Джозефа Генри (1797 — 1878).
В юные годы Генри не проявлял ни исключительных способностей, ни интереса к науке. Вырос он в нищете, был батраком на ферме, актером. Так же, как и Фарадей, он занимайся самообразованием. Учиться начал с 16 лет в академии города Олбани. За семь месяцев он усвоил столько знаний, что получил место учителя в сельской школе. Затем Генри работал у профессора химии Бека в качестве лекционного ассистента. Работу он совмещал с учебой в академии. После окончания курса Генри был назначен инженером и инспектором на канале Эри. Через несколько месяцев он оставил эту выгодную должность, приняв приглашение на должность профессора математики и физики в Олбани. В это время английский изобретатель Вильям Стерджен (1783 — 1850) сообщил о своем изобретении подковообразного магнита, способного поднять стальное тело весом до четырех килограммов.
Генри увлекся электромагнетизмом. Он сразу же нашел способ увеличить подъемную силу до тонны. Достичь этого удалось новым в то время приемом: вместо изоляции тела магнита изолировался провод. Открылся способ создания многослойных обмоток. Еще в 1831 г. Генри показал возможность построения электродвигателя, изобрел электромагнитное реле, и с его помощью демонстрировал передачу электрических сигналов на расстояние, предвосхитив изобретение Морзе (телеграф Морзе появился в 1837 г.).
Подобно Фарадею Генри поставил перед собой задачу получить электрический ток с помощью магнита. Но это была постановка задачи изобретателя. И поиски направлялись голой интуицией. Открытие произошло за несколько лет до опытов Фарадея. Постановка ключевого опыта Генри изображена на рисунке 9. Здесь все так же, как показывается до сих пор. Только гальваническому элементу мы предпочитаем более удобный аккумулятор, а вместо крутильных весов пользуемся гальванометром.
Но Генри не сообщил об этом опыте никому. «Мне следовало напечатать это раньше,- говорил он сокрушенно своим друзьям,- Но у меня было так мало времени! Хотелось свести полученные результаты в какую-то систему»
(курсив мой.- В.
Д.). И отсутствие регулярного образования и еще более — утилитарно- изобретательский дух американской науки сыграли плохую роль. Генри, конечно, не понял и не почувствовал глубины и важности нового открытия. В противном случае он, конечно, оповестил бы ученый мир о величайшем факте. Умолчав об индукционных опытах, Генри сразу же послал сообщение, когда ему удалось поднять электромагнитом целую тонну.
Именно это сообщение и получил Фарадей. Возможно, оно послужило последним звеном в цепи умозаключений, приведших к ключевой идее. В опыте 1825 г. два провода отделялись бумагой. Индукция должна была быть, но не обнаруживалась вследствие слабости эффекта. Генри показал, что в электромагните эффект резко усиливается при применении многослойной обмотки. Следовательно, индукция должна возрасти, если индуктивное действие будет передаваться по большой длине. В самом деле, магнит — собрание токов. Возбуждение намагничивания в стальном стержне при пропускании тока по обмотке есть индукция тока током. Она усиливается, если путь тока по обмотке становится длиннее.
Такова возможная цепь логических умозаключений Фарадея. Вот полное описание первого успешного опыта: «Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были проложены в виде спирали между витками первой обмотки, причем металлический контакт был везде устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая — с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинками. При замыкании контакта наблюдалось внезапное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей».
Таков был первый опыт, давший положительный результат после десятилетних поисков. Фарадей устанавливает, что при замыкании и размыкании возникают индукционные токи противоположных направлений. Далее он переходит к изучению влияния железа на индукцию.
«Из круглого брускового, мягкого железа было сварено кольцо; толщина металла была равна семи-восьми дюймам, а наружный диаметр кольца — шести дюймам. На одну часть этого кольца было намотано три спирали, каждая из которых содержала около двадцати четырех футов медной проволоки толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга и наложены одна на другую… Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А
(рис. 10). На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, образовавших спираль В,
которая имела одинаковое направление со спиралями А,
но была отделена от них на каждом конце на протяжении примерно полудюйма голым железом.
Спираль В
соединялась медными проводами с гальванометром, помещенным на расстоянии трех футов от кольца. Отдельные спирали А
соединялись конец с концом так, что образовали общую спираль, концы которой были соединены с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, притом значительно сильнее, чем это наблюдалось выше, при пользовании в десять раз более мощной спиралью без железа».
Наконец, Фарадей производит опыт, с которого до сих пор обычно начинают изложение вопроса об электромагнитной индукции. Это было точное повторение опыта Генри, изображенного на рисунке 9.
Задача, поставленная Фарадеем в 1820 г., была решена: магнетизм был превращен в электричество.
Вначале Фарадей различает индукцию тока от тока (ее он называет «вольта-электрическая индукция» и тока от магнита («магнито-электрическая индукция»). Но затем он показывает, что все случаи подчиняются одной общей закономерности.
Закон электромагнитной индукции охватил и другую группу явлений, которая получила впоследствии название явлений самоиндукции. Фарадей назвал новое явление так: «Индуктивное влияние электрического тока на самого себя».
Вопрос этот возник в связи со следующим фактом, сообщенным Фарадею в 1834 г. Дженкиным. Факт этот заключался в следующем. Две пластины гальванической батареи соединяются проволокой небольшой длины. При этом никакими ухищрениями экспериментатору не удается получить от этой проволоки электрического удара. Но если взять вместо проволоки обмотку электромагнита, то всякий раз при размыкании цепи ощущается удар. Фарадей писал: «Одновременно наблюдается другое, давно известное ученым явление,
а именно: в месте разъединения проскакивает яркая электрическая искра» (курсив мой — В. Д.).

Фарадей начал обследование этих фактов и вскоре открыл ряд новых сторон явления. Ему понадобилось немного времени, Чтобы установить «тождественность явлений с явлениями индукции». Опыты, которые до сих пор демонстрируются и в.средней, и в высшей школе при объяснении явления самоиндукции, были поставлены Фарадеем в 1834 г.
Независимо аналогичные опыты были поставлены Дж. Генри, однако, как и опыты по индукции, они своевременно не были опубликованы. Причина та же: Генри не нашел физической концепции, охватывающей разнообразные по форме явления.
Для Фарадея самоиндукция была фактом, осветившим дальнейший путь поисков. Обобщая наблюдения, он приходит к заключениям большого принципиального значения. «Не подлежит сомнению, что ток в одной части провода может действовать путем индукции на другие части того же самого провода, находящиеся рядом… Именно это и создает впечатление, что ток действует на самого себя».
Не зная природы тока, Фарадей тем не менее точно указывает на суть дела: «Когда ток действует путем индукции нарядом с ним расположенное проводящее вещество, то, вероятно, он действует на имеющееся в этом проводящем веществе электричество,- все равно, находится ли последнее в состоянии тока или же оно неподвижно; в первом случае он усиливает или ослабляет ток, смотря по его направлению во втором — создает ток».
Математическое выражение закона электромагнитной индукций дал в 1873 г. Максвелл в «Трактате по электричеству и магнетизму». Только после этого он стал основой количественных расчетов. Так что закон электромагнитной индукции следует называть законом Фарадея-Максвелла.
Методические замечания
. Известно, что возбуждение индукционного тока в проводнике, движущемся в постоянном магнитном поле, и в неподвижном проводнике, который находится в переменном магнитном поле, подчиняется одному и тому же закону . Для Фарадея и Максвелла это было очевидно, поскольку они представляли себе линии магнитной индукции как реальные образования в эфире. При включении и выключении тока или изменениях силы тока вокруг проводников, составляющих цепь, линии магнитной индукции перемещаются. При этом они пересекают саму цепь, обусловливая явление самоиндукции. Если около цепи с изменяющимся током находится какой-либо проводник, то линии магнитной индукции, пересекая его, возбуждают ЭДС электромагнитной индукции.
Материализация силовых линий электрического поля и линий магнитной индукции стали достоянием истории. Однако было бы ошибочно придавать силовым линиям лишь формальный характер. Современная физика считает, что силовая линия электрического поля и линия магнитной индукции- это геометрическое место точек, в которых данное поле имеет состояние, отличное от состояния в других точках. Это состояние определяется значениями векторов и
в этих точках. При изменениях поля векторы и
изменяются, соответственно изменяется, конфигурация силовых линий. Состояние поля может перемещаться в пространстве со скоростью света. Если проводник находится в поле, состояние которого изменяется, в проводнике возбуждается ЭДС.

Случай, когда поле постоянно, а проводник перемещается в этом поле, не описывается теорией Максвелла. Впервые на это обратил внимание Эйнштейн. Его основополагающая, работа «К электродинамике движущихся тел» как раз и начинается с обсуждения недостаточности теории Максвелла в этом пункте. Явление возбуждения ЭДС в проводнике, движущемся е постоянном магнитном поле, может быть включено в рамки теории электромагнитного поля, если ее дополнить принципом относительности и принципом постоянства скорости света.

В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.
Открытие Фарадея
Не случайно первый и самый важный шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле — Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Вскоре после открытия Эрстеда он писал: «…представляется весьма необычным, чтобы, с одной стороны, всякий электрический ток сопровождался магнитным действием соответствующей интенсивности, направленным под прямым углом к току, и чтобы в то же время в хороших проводниках электричества, помещенных в сферу этого действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех привели Фарадея к открытию, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальва-нические элементы, аккумуляторы, термо- и фотоэлементы — дают ничтожную долю вырабатываемой электрической энер-гии.)
Долгое время взаимосвязь электрических и магнитных явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.
Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа» 1831 г. Редкий случай, когда столь точно известна дата нового замечательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.
«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп-чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая — с сильной батареей, состоящей из 100 пар пластин… При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмо- Рис. 5.1
тря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».
Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит — это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение одного месяца Фарадей опытным путем открыл все существен- ные особенности явления электромагнитной индукции. Оста-валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.
Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони-зывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5.3).
Фарадей не только открыл явление, но и первым сконструировал несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил откло-
В
\

\
\
\
\
\
\
\L

S нение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.
В проводящем замкнутом контуре возникает электрический ток, если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Это явление называется электромагнитной индукцией.

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений .

Есть нечто символическое в том, что в год рождения М. Фарадея (1791 г.) был опубликован трактат Луиджи Гальвани с первым описанием нового физического явления — электрического тока, а в год его смерти (1867 г.) была изобретена «динамомашина» — самовозбуждающийся генератор постоянного тока, т.е. появился надежный, экономичный и удобный в эксплуатации источник электрической энергии. Жизнь великого ученого и его неповторимая по своим методам, содержанию и значению деятельность не только открыли новую главу физики, но и сыграли решающую роль в рождении новых отраслей техники: электротехники и радиотехники.

Вот уже более ста лет многие поколения учащейся молодежи на уроках физики и из многочисленных книг узнают историю замечательной жизни одного из самых знаменитых ученых, члена 68 научных обществ и академий. Обычно имя М. Фарадея связывают с самым значительным и потому наиболее известным открытием — явлением электромагнитной индукции, сделанным им в 1831 г. Но еще за год до этого, в 1830 г. за исследования в области химии и электромагнетизма М.Фарадей был избран почетным членом Петербургской Академии наук, членом же Лондонского Королевского общества (Британской академии наук) он был избран еще в 1824 г. Начиная с 1816 г., когда увидела свет первая научная работа М. Фарадея, посвященная химическому анализу тосканской извести, и по 1831 г., когда стал публиковаться знаменитый научный дневник «Экспериментальные исследования по электричеству», М. Фарадеем было опубликовано свыше 60 научных трудов.

Огромное трудолюбие, жажда знаний, прирожденный ум и наблюдательность позволили М. Фарадею достичь выдающихся результатов во всех тех областях научных исследований, к которым обращался ученый. Признанный «король экспериментаторов» любил повторять: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы».

Каждое исследование М. Фарадея отличалось такой обстоятельностью и настолько согласовывалось с предыдущими результатами, что среди современников почти не находилось критиков его работ.

Если исключить из рассмотрения химические исследования М. Фарадея, которые в своей области также составляли эпоху (достаточно вспомнить об опытах сжижения газов, об открытии бензола, бутилена), то все прочие его работы, на первый взгляд иногда разрозненные, как мазки на полотне художника, взятые вместе, образуют изумительную картину всестороннего исследования двух проблем: взаимопревращений различных форм энергии и физического содержания среды.

Рис. 2.11. Схема «электромагнитных вращений» (по рисунку Фарадея)

1, 2
— чаши с ртутью; 3
— подвижный магнит; 4
— неподвижный магнит; 5, 6
— провода, идущие к батарее гальванических элементов; 7 — медный стержень; 8
— неподвижный проводник; 9
— подвижный проводник

Работам М. Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Ампера, Био, Савара, проведенных в 1820 г., стало известно не только об электромагнетизме, но и о своеобразии взаимодействий тока и магнита: здесь, как уже отмечалось, действовали не привычные для классической механики центральные силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно проводнику. М. Фарадей поставил перед собой вопрос: не стремится ли магнит к непрерывному движению вокруг проводника стоком? Опыт подтвердил гипотезу. В 1821 г. М. Фарадей дал описание физического прибора, схематически представленного на рис. 2.11. В левом сосуде с ртутью находился стержневой постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде стержень магнита был неподвижен, а проводник с током, свободно подвешенный на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Поскольку в этом опыте впервые фигурирует магнитоэлектрическое устройство с непрерывным движением, то вполне правомерно начать именно с этого устройства историю электрических машин вообще и электродвигателя в частности. Обратим также внимание на ртутный контакт, нашедший впоследствии применение в электромеханике.

Именно с этого момента, судя по всему, у М. Фарадея начинают складываться представления о всеобщей «взаимопревращаемости сил». Получив при помощи электромагнетизма непрерывное механическое движение, он ставит перед собой задачу обратить явление или, по терминологии М. Фарадея, превратить магнетизм в электричество.

Только абсолютная убежденность в справедливости гипотезы о «взаимопревращаемости» может объяснить целеустремленность и настойчивость, тысячи опытов и 10 лет напряженного труда, затраченного на решение сформулированной задачи. В августе 1831 г. был сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была изложена сущность явления электромагнитной индукции.

Рис. 2.12. Иллюстрация опыта Араго («магнетизма вращения»)

1
— проводящий немагнитный диск; 2
— стеклянное основание для крепления оси диска

В качестве примера, характеризующего ход мыслей ученого и формирование его представлений об электромагнитном поле, рассмотрим исследование М. Фарадеем явления, получившего тогда название «магнетизма вращения». За много лет до работ М. Фарадея мореплаватели замечали тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В 1824 г. Д.Ф. Араго (см. § 2.5) описал явление «магнетизма вращения», удовлетворительно объяснить которое ни он, ни другие физики не могли. Сущность явления состояла в следующем (рис. 2.12). Подковообразный магнит мог вращаться вокруг вертикальной оси, а над его полюсами находился алюминиевый или медный диск, который также мог вращаться на оси, направление вращения которой совпадало с направлением вращения оси магнита. В состоянии покоя никаких взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить возможность увлечения диска потоками воздуха, магнит и диск были разделены стеклом.

Открытие электромагнитной индукции помогло М. Фарадею объяснить явление Д.Ф. Араго и уже в самом начале исследования записать: «Я надеялся сделать из опыта г-на Араго новый источник электричества».

Практически одновременно с М. Фарадеем электромагнитную индукцию наблюдал выдающийся американский физик Джозеф Генри (1797–1878 гг.). Нетрудно себе представить переживания ученого, будущего президента американской Национальной академии наук, когда он, собираясь опубликовать свои наблюдения, узнал о публикации М. Фарадея. Год спустя Д. Генри открыл явление самоиндукции и экстратоки, а также установил зависимость индуктивности цепи от свойств материала и конфигурации сердечников катушек. В 1838 г. Д. Генри изучал «токи высшего порядка», т.е. токи, индуцированные другими индуцированными токами. В 1842 г. продолжение этих исследований привело Д. Генри к открытию колебательного характера разряда конденсатора (позднее, в 1847 г., это открытие повторил выдающийся немецкий физик Герман Гельмгольц) (1821–1894 гг.).

Обратимся к главным опытам М. Фарадея. Первая серия опытов закончилась экспериментом, демонстрировавшим явление «вольта-электрической» (по терминологии М. Фарадея) индукции (рис. 2.13, а
— г). Обнаружив возникновение тока во вторичной цепи 2
при замыкании или размыкании первичной 1
или при взаимном перемещении первичной и вторичной цепей (рис. 2.13, в),
М. Фарадей поставил эксперимент для выяснения свойств индуцированного тока: внутрь спирали б,
включенной во вторичную цепь, помещалась стальная игла 7 (рис. 2.13, б),
которая намагничивалась индуцированным током. Результат говорил о том, что индуцированный ток подобен току, получаемому непосредственно от гальванической батареи 3.

Рис. 2.13. Схемы основных опытов, приведших к открытию электромагнитной индукции

Заменив деревянный или картонный барабан 4,
на который наматывались первичная и вторичная обмотки, стальным кольцом (рис. 2.13, г), М. Фарадей обнаружил более интенсивное отклонение стрелки гальванометра 5.
Данный опыт указывал на существенную роль среды в электромагнитных процессах. Здесь М. Фарадей впервые применяет устройство, которое можно назвать прототипом трансформатора.

Вторая серия опытов иллюстрировала явление электромагнитной индукции, возникавшее при отсутствии источника напряжения в первичной цепи. Исходя из того, что катушка, обтекаемая током, идентична магниту, М. Фарадей заменил источник напряжения двумя постоянными магнитами (рис. 2.13, д)
и наблюдал ток во вторичной обмотке при замыкании и размыкании магнитной цепи. Это явление он назвал «магнитоэлектрической индукцией»; позднее им было отмечено, что никакой принципиальной разницы между «вольта-электрической» и «магнитоэлектрической» индукцией нет. Впоследствии оба эти явления были объединены термином «электромагнитная индукция». В заключительных экспериментах (рис. 2.13, е, ж)
демонстрировалось появление индуцированного тока при движении постоянного магнита или катушки с током внутри соленоида. Именно этот опыт нагляднее других продемонстрировал возможность превращения «магнетизма в электричество» или, точнее выражаясь, механической энергии в электрическую.

На основе новых представлений М. Фарадей и дал объяснение физической стороны опыта с диском Д.Ф. Араго. Кратко ход его рассуждений можно изложить следующим образом. Алюминиевый (или любой другой проводящий, но немагнитный) диск можно представить себе в виде колеса с бесконечно большим числом спиц — радиальных проводников. При относительном движении магнита и диска эти спицы-проводники «перерезают магнитные кривые» (терминология Фарадея), и в проводниках возникает индуцированный ток. Взаимодействие же тока с магнитом было уже известно. В истолковании М. Фарадея обращает на себя внимание терминология и способ объяснения явления. Для определения направления индуктированного тока он вводит правило ножа, перерезающего силовые линии. Это еще не закон Э.Х. Ленца, для которого свойственна универсальность характеристики явления, а только попытки каждый раз путем подробных описаний установить, будет ли ток протекать от рукоятки к кончику лезвия или наоборот. Но здесь важна принципиальная картина: М. Фарадей в противовес сторонникам теории дальнодействия, заполняет пространство, в котором действуют различные силы, материальной средой, эфиром, развивая эфирную теорию Л. Эйлера, находящегося, в свою очередь, под влиянием идей М.В. Ломоносова.

М. Фарадей придавал магнитным, а затем при исследовании диэлектриков и электрическим силовым линиям физическую реальность, наделял их свойством упругости и находил очень правдоподобные объяснения самым различным электромагнитным явлениям, пользуясь представлением об этих упругих линиях, похожих на резиновые нити.

Прошло более полутора столетий, а мы до сих пор не нашли более наглядного способа и схемы объяснения явлений, связанных с индукцией и электромеханическими действиями, чем знаменитая концепция фарадеевских линий, которые и поныне нам представляются вещественно ощутимыми.

Из диска Д.Ф. Араго М. Фарадей действительно сделал новый источник электричества. Заставив вращаться алюминиевый или медный диск между полюсами магнита, М. Фарадей наложил на ось диска и на его периферию щетки.

Таким образом была сконструирована электрическая машина, получившая позднее наименование униполярного генератора.

При анализе работ М. Фарадея отчетливо проявляется генеральная идея, которая разрабатывалась великим ученым всю его творческую жизнь. Читая М. Фарадея, трудно отделаться от впечатления, что он занимался только одной проблемой взаимопревращений различных форм энергии, а все его открытия совершались между делом и служили лишь целям иллюстрации главной идеи. Он исследует различные виды электричества (животное, гальваническое, магнитное, термоэлектричество) и, доказывая их качественную тождественность, открывает закон электролиза. При этом электролиз, как и вздрагивание мышц препарированной лягушки, служил первоначально лишь доказательством того, что все виды электричеств проявляются в одинаковых действиях.

Исследования статического электричества и явления электростатической индукции привели М. Фарадея к формированию представлений о диэлектриках, к окончательному разрыву с теорией дальнодействия, к замечательным исследованиям разряда в газах (открытие фарадеева темного пространства). Дальнейшее исследование взаимодействия и взаимопревращения сил привели его к открытию магнитного вращения плоскости поляризации света, к открытию диамагнетизма и парамагнетизма. Убежденность во всеобщности взаимопревращений заставила М. Фарадея даже обратиться к исследованию связи между магнетизмом и электричеством, с одной стороны, и силой тяжести, с другой. Правда, остроумные опыты Фарадея не дали положительного результата, но это не поколебало его уверенности в наличии связи между этими явлениями.

Биографы М. Фарадея любят подчеркивать тот факт, что М. Фарадей избегал пользоваться математикой, что на многих сотнях страниц его «Экспериментальных исследований по электричеству» нет ни одной математической формулы. В связи с этим уместно привести высказывание соотечественника М. Фарадея великого физика Джеймса Кларка Максвелла (1831–1879 гг.): «Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков».

«Математичность» мышления Фарадея можно иллюстрировать его законами электролиза или, например, формулировкой закона электромагнитной индукции: количество приведенного в движение электричества прямо пропорционально числу пересеченных силовых линий. Достаточно представить себе последнюю формулировку в виде математических символов, и мы немедленно получаем формулу, из которой очень быстро следует знаменитое d?/dt, где? — магнитное потокосцепление.

Д.К. Максвелл, родившийся в год открытия явления электромагнитной индукции, очень скромно оценивал свои заслуги перед наукой, подчеркивая, что он лишь развил и облек в математическую форму идеи М. Фарадея. Максвеллову теорию электромагнитного поля по достоинству оценили ученые конца XIX и начала XX в., когда на почве идей Фарадея — Максвелла начала развиваться радиотехника.

Для характеристики прозорливости М. Фарадея, его умения проникать в глубь сложнейших физических явлений важно напомнить здесь, что еще в 1832 г. гениальный ученый рискнул предположить, что электромагнитные процессы носят волновой характер, причем магнитные колебания и электрическая индукция распространяются с конечной скоростью.

В конце 1938 г. в архивах Лондонского Королевского общества было обнаружено запечатанное письмо М. Фарадея, датированное 12 марта 1832 г. Оно пролежало в безвестности более 100 лет, а в нем были такие строки:

«Некоторые результаты исследований… привели меня к заключению, что на распространение магнитного воздействия требуется время, т.е. при воздействии одного магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным.

Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха, т.е. я намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку, и является наиболее вероятным объяснением световых явлений.

По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции. Эти воззрения я хочу проверить экспериментально, но так как мое время занято исполнением служебных обязанностей, что может вызвать продление опытов … я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие за собой определенной датой…» .

Поскольку эти идеи М. Фарадея оставались неизвестными, нет никаких оснований отказывать великому его соотечественнику Д.К. Максвеллу в открытии этих же идей, которым он придал строгую физико-математическую форму и фундаментальное значение.

Из книги
Удивительная механика
автора

Гулиа Нурбей Владимирович

Открытие древнего гончара
Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.В небольшой гончарной мастерской, с виду

Из книги
Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний]
автора

Красник Валентин Викторович

Обеспечение электромагнитной совместимости устройств связи и телемеханики
Вопрос. Как выполняются устройства связи и телемеханики?Ответ. Выполняются помехозащищенными со степенью, достаточной для обеспечения их надежной работы как в нормальных, так и аварийных

Из книги
Секретные автомобили Советской Армии
автора

Кочнев Евгений Дмитриевич

Семейство «Открытие»
(КрАЗ-6315/6316)
(1982 – 1991 гг.)
В феврале 1976 года вышло секретное Постановление Совмина и ЦК КПСС о разработке на основных советских автозаводах семейств принципиально новых тяжелых армейских грузовиков и автопоездов, выполненных по требованиям

Из книги
Шелест гранаты
автора

Прищепенко Александр Борисович

5. 19. За что любят постоянные магниты. Самодельный прибор для измерения индукции поля. Другой прибор, избавляющий от мучений с расчетом обмотки
Огромным преимуществом магнитов было то, что постоянное во времени поле не нуждалось в синхронизации со взрывными процессами и

Из книги
Новые источники энергии
автора

Фролов Александр Владимирович

Глава 17 Капиллярные явления
Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же

Из книги
Металл Века
автора

Николаев Григорий Ильич

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА
ХОББИ СВЯЩЕННИКА
Семь металлов древности, а также сера и углерод — вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он

Из книги
История электротехники
автора

Коллектив авторов

1. 3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА
Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике

Из книги
История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника)
автора

Шнейберг Ян Абрамович

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ
Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого

Из книги
автора

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов .В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь

Из книги
автора

3. 5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и

Из книги
автора

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации
Открытие действия «электрического конфликта» на магнитную стрелкуВ июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра

Фарадей и электромагнитная теория света

Майкл Фарадей (22 сентября 1791 — 25 августа 1867), вероятно, наиболее известен своим открытием электромагнитной индукции, своим вкладом в электротехнику и электрохимию или тем, что он был ответственным за введение концепции поля в физику для описать электромагнитное взаимодействие. Но, возможно, не так хорошо известно, что он также внес фундаментальный вклад в электромагнитную теорию света .

В 1845 году, всего 170 лет назад, Фарадей открыл, что магнитное поле влияет на поляризованный свет — явление, известное как магнитооптический эффект или эффект Фарадея. Точнее, он обнаружил, что плоскость колебаний луча линейно поляризованного света, падающего на кусок стекла, поворачивается, когда магнитное поле прикладывается в направлении распространения луча. Это было одно из первых указаний на то, что электромагнетизм и свет связаны. В следующем году, в мае 1846 года, Фарадей опубликовал статью «Мысли о лучевых вибрациях» , пророческую публикацию, в которой он предположил, что свет может быть вибрацией электрических и магнитных силовых линий.

Майкл Фарадей (1791-1867) / Кредиты: Википедия

Случай Фарадея не является обычным в истории физики: хотя его образование было очень базовым, законы электричества и магнетизма в гораздо большей степени обязаны экспериментальным открытиям Фарадея, чем любому другому ученому. Он открыл электромагнитной индукции , что привело к изобретению динамо-машины, предшественника электрического генератора. Он объяснил электролиз с точки зрения электрических сил, а также ввел такие понятия, как поле , и силовые линии, , которые не только были фундаментальными для понимания электрических и магнитных взаимодействий, но и легли в основу дальнейших достижений в физике.

Майкл Фарадей родился в Южном Лондоне в скромной семье. Единственное базовое формальное образование, которое он получил в детстве, заключалось в чтении, письме и арифметике. Он бросил школу, когда ему было тринадцать, и начал работать в переплетной мастерской. Его страсть к науке пробудилась после описания электричества , которое он прочитал в экземпляре Британской энциклопедии , который он связывал, после чего он начал экспериментировать в импровизированной лаборатории. Фарадей был принят на работу 1 марта 1813 г. в качестве лаборанта Гемфри Дэви в Королевский институт в Лондоне, где он был избран членом в 1824 г. и где проработал до своей смерти в 1867 г., сначала помощником Дэви, затем его сотрудником и, наконец, , после смерти Дэви, как его преемник.Фарадей произвел на Дэви такое впечатление, что, когда последнего спросили о его величайшем открытии, Дэви ответил: «Моим величайшим открытием был Майкл Фарадей». В 1833 году он стал первым фуллерианским профессором химии в Королевском институте. Фарадей также известен как великий популяризатор науки. В 1826 году Фарадей учредил в Королевском институте пятничные вечерние беседы, которые являются каналом общения между учеными и мирянами. В следующем году он запустил «Рождественские лекции для молодежи», которые теперь ежегодно транслируются по национальному телевидению, серию, цель которой — представить науку широкой публике.Сам Фарадей читал многие из этих лекций. Оба они продолжаются и по сей день.

Майкл Фарадей читает рождественскую лекцию в Королевском институте в 1856 году / Кредиты: Википедия

Фарадей сделал свое первое открытие электромагнетизма в 1821 году. ток на магните был круговым. Как он объяснил много лет спустя, провод был окружен бесконечным рядом круговых концентрических силовых линий , которые он назвал магнитным полем тока. Он взял за отправную точку работу Эрстеда и Ампера о магнитных свойствах электрических токов и в 1831 году получил электрический ток от изменяющегося магнитного поля, явление, известное как электромагнитная индукция . Он обнаружил, что когда через катушку пропускают электрический ток, в соседней катушке генерируется еще один очень короткий ток. Это открытие стало важной вехой в развитии не только науки, но и общества , и сегодня оно используется для производства электроэнергии в больших масштабах на электростанциях.Это явление открывает кое-что новое об электрических и магнитных полях. В отличие от электростатических полей, создаваемых покоящимися электрическими зарядами, циркуляция которых по замкнутому пути равна нулю (консервативное поле), циркуляция электрических полей, создаваемых магнитными полями, происходит по замкнутому пути, отличному от нуля. Эта циркуляция, соответствующая индуцированной электродвижущей силе, равна скорости изменения магнитного потока, проходящего через поверхность, границей которой является проволочная петля ( закон индукции Фарадея ).Фарадей изобрел первый электродвигатель, первый электрический трансформатор, первый электрический генератор и первую динамо-машину, так что Фарадея без всякого сомнения можно назвать отцом электротехники .

Фарадей отказался от теории жидкости для объяснения электричества и магнетизма и ввел понятия поля и силовых линий , отойдя от механистического объяснения природных явлений, таких как ньютоновские действия на расстоянии. Введение Фарадеем концепции поля в физику, возможно, является его самым важным вкладом и было описано Эйнштейном как великое изменение в физике , потому что оно дало электричеству, магнетизму и оптике общую структуру физических теорий.Однако силовые линии Фарадея не были приняты до тех пор, пока несколько лет спустя не появился Джеймс Клерк Максвелл.

Как отмечалось в начале этой статьи, другим и, возможно, менее известным эффектом, открытым Фарадеем, было влияние магнитного поля на поляризованный свет, явление, известное как эффект Фарадея или магнитооптический эффект . Пытливый ум Фарадея не довольствовался простым открытием связи между электричеством и магнетизмом. Он также хотел определить, влияют ли магнитные поля на оптические явления. Он верил в единство всех сил природы, в особенности света, электричества и магнетизма. 13 сентября 1845 г. он обнаружил, что плоскость поляризации линейно поляризованного света поворачивается, когда этот свет проходит через материал, к которому приложено сильное магнитное поле в направлении распространения света. Фарадей написал в параграфе № 7504 своего « молочного завода »:

.

«Сегодня работал с магнитными силовыми линиями, проводя их по разным телам (прозрачным в разных направлениях) и одновременно пропуская через них поляризованный луч света (…) производилось воздействие на поляризованный луч, и, таким образом, магнитное было доказано, что сила и свет имеют отношение друг к другу».

Это, безусловно, было первым четким указанием на то, что магнитная сила и свет связаны друг с другом, а также показало, что свет связан с электричеством и магнетизмом. В отношении этого явления Фарадей также написал в том же абзаце:

«Этот факт, скорее всего, окажется чрезвычайно плодотворным и очень ценным для исследования обоих состояний естественной силы».

Он не ошибся. Этот эффект является одним из краеугольных камней электромагнитной теории света.

Вращение поляризации из-за эффекта Фарадея / Кредиты: адаптировано из Википедии

В выступлении Королевского института в пятницу вечером, произнесенном в апреле 1846 года , Фарадей предположил, что свет может быть некоторой формой возмущения, распространяющегося вдоль силовых линий . Правда в том, что именно в эту пятницу Чарльз Уитстон должен был выступить с докладом о своем хроноскопе. Однако в последнюю минуту у Уитстона случился приступ страха перед сценой, и поэтому Фарадей выступил с речью Уитстона. Так как он закончил раньше времени, он заполнил оставшиеся минуты, раскрыв свои мысли о природе света . Рассуждение Фарадея было опубликовано в том же году в Философском Журнале под названием Мысли о Лучевых Вибрациях . Фарадей даже осмелился подвергнуть сомнению существование светоносного эфира — научная ересь в то время — который должен был быть средой для распространения света, как изящно описал Френель в своей волновой теории света.Он предположил, что свет может быть результатом не колебаний эфира, а колебаний физических силовых линий. Фарадей пытался исключить эфир, но оставил вибрации. Почти извиняющимся тоном Фарадей заканчивает свою статью, заявляя:

.

«Я думаю, что я сделал много ошибок на предыдущих страницах, потому что даже мне самому мои мысли по этому поводу кажутся лишь тенью спекуляции ».

Однако эта идея Фарадея была воспринята с большим скептицизмом и всеми отвергнута до тех пор, пока в 1865 году не была опубликована статья Максвелла под названием Динамическая теория электромагнитного поля . В этой статье Максвелл не только описывает свою основополагающую электромагнитную теорию света — одну из вех, отмечаемых в 2015 году, — но также приписывает идеи, которые в конечном итоге легли в основу его теории, размышлениям Фарадея о лучевых вибрациях . На странице 466 своей статьи со скромностью, которая всегда отличала Максвелла, он ссылается на статью Фарадея 1846 года следующим образом:

«Концепция распространения поперечных магнитных возмущений за исключением нормальных четко изложена профессором Фарадеем в его «Мыслях о лучевых колебаниях».Электромагнитная теория света, предложенная им [Фарадеем], по существу такая же, как та, которую я начал развивать в этой статье, за исключением того, что в 1846 году не было данных для вычисления скорости распространения».

И на странице 461 своей статьи 1865 года Максвелл также ссылается на магнитооптический эффект, заявляя:

«Фарадей обнаружил, что когда плоскополяризованный луч пересекает прозрачную диамагнитную среду в направлении магнитных силовых линий, создаваемых соседними магнитами или токами, плоскость поляризации начинает вращаться».

Всего Майкл Фарадей цитируется шесть раз и трижды упоминается в статье Максвелла 1865 года. Однако это неудивительно, учитывая, что большая часть работ Максвелла основана на работах Фарадея, а Максвелл математически смоделировал большинство открытий Фарадея в области электромагнетизма в теорию, которую мы знаем сегодня.

Электромагнитные волны, о существовании которых Фарадей размышлял в 1846 году в своих размышлениях о лучевых колебаниях , и которые были математически предсказаны Максвеллом в 1865 году, были наконец получены в лаборатории Герцем в 1888 году.Остальное уже история. Ясно, что Максвелл открыл дверь в физику двадцатого века, но не менее ясно и то, что Фарадей дал Максвеллу некоторые ключи, которыми он пользовался.

В 1676 году Ньютон отправил своему сопернику Гуку письмо, в котором писал: «Если я и видел дальше, то только стоя на плечах гигантов» (*). Двести пятьдесят лет спустя, во время одного из визитов Эйнштейна в Кембридж, Великобритания, кто-то заметил: «Вы сделали великие дела, но вы стоите на плечах Ньютона». Эйнштейн ответил: «Нет, я стою на плечах Максвелла».Если бы кто-нибудь сказал то же самое Максвеллу, он, вероятно, сказал бы, что стоит на плечах Фарадея .

(*) Хотя эта фраза интерпретируется некоторыми авторами как саркастическое замечание, направленное на горбатую внешность Гука, в настоящее время эта фраза обычно используется в положительном ключе. Комментарий Ньютона — это заявление о том, что наука представляет собой серию постепенных достижений, досягаемость которых строится на ранее достигнутых (см., например, книгу Стивена Хокинга под названием « На плечах гигантов »).

Аугусто Белендес

Профессор прикладной физики Университета Аликанте (Испания) и член Испанского королевского физического общества

Библиография

  • А. Диас-Хеллин, Фарадей: El gran cambio en la Física (Нивола. Мадрид, 2001).
  • Ордоньес, В. Наварро и Х. М. Санчес Рон, Historia de la ciencia (Espasa Calpe. Madrid, 2013).
  • Форбс и Б. Махон, Фарадей, Максвелл и электромагнитное поле: как два человека произвели революцию в физике (Prometheus Books.Нью-Йорк, 2014).
  • Зайонц, Ловля света: история переплетения света и разума (издательство Оксфордского университета, Нью-Йорк, 1995)
  • Хокинг, На плечах гигантов: великие труды по физике и астрономии (Running Press. Филадельфия, 2002)
  • Мансурипур, Классическая оптика и ее приложения (издательство Кембриджского университета, Кембридж, 2002 г.)

 

Открытие электромагнетизма — электричество и альтернативная энергия

  • Наконечники копий фазы Хлодвига, используемые в современной Альберте.

    наконечника копья фазы Хлодвига представляют собой старейшую технологию охоты в Альберте, да и во всей Северной Америке. Эти рифленые зазубренные каменные наконечники прикреплялись к кости или деревянному древку и использовались для охоты на огромную добычу, такую ​​как мамонты и мастодонты.
    Источник: Отдел управления историческими ресурсами, Археологическая служба

    .

  • Технология Atlatl (копьеметатель) появляется в современной Альберте.

    Atlatl использовались ранними охотниками для увеличения скорости их стрелкового оружия.Копья или дротики, брошенные атлатлом, могли нанести животному сокрушительные раны, позволяя охотнику убить животное с безопасного расстояния.
    Источник: предоставлено Head-Smashed-In Buffalo Jump

  • Технологии лука и стрел достигают современной Альберты.

    Технологии лука и стрел в Северной Америке, по-видимому, сначала развивались в Арктике, а затем распространились на юг по всему континенту. Лук и стрелы идеально подходили для использования на широких просторах Великих равнин и получили широкое распространение в регионе.
    Источник: предоставлено Head-Smashed-In Buffalo Jump

  • На территории современной Альберты начинается «Конная революция».

    лошади были завезены в Северную Америку испанскими колонистами в шестнадцатом веке. Из испанской колонии Нью-Мексико лошади распространились по Северной Америке, достигнув современной Альберты в 1730-х годах. Принятие лошади оказало значительное влияние на модели охоты и транспорта коренных народов равнин.
    Источник: Королевский музей Альберты

  • Национальный парк Скалистых гор создан правительством Канады.

    Одной из главных достопримечательностей нового парка стали природные горячие источники. Роскошный отель Banff Springs, построенный Канадской тихоокеанской железной дорогой в 1888 году, перекачивал воду из горячих источников в бассейны и процедурные кабинеты. Туристы стекались к этому месту, чтобы воспользоваться предполагаемой лечебной силой воды.
    Источник: Музей канадских Скалистых гор Уайта, v263-na-3562

    .

  • Компания Calgary Water Power Company открывает первую гидроэлектростанцию ​​в Альберте.

    Компания принадлежала предпринимателю Питеру Принсу, который также руководил компанией Eau Claire & Bow River Lumber Company. С 1894 по 1905 год компания была основным поставщиком электроэнергии в Калгари.
    Источник: Архивы Гленбоу, NA-4477-44

  • Город Эдмонтон покупает Edmonton Electric Lighting Company.

    Решение в пользу государственной собственности было принято после неоднократных сбоев в работе частной коммунальной службы.Эдмонтон был первым крупным городским центром в Канаде, у которого была собственная электроэнергетическая компания.
    Источник: Архив Гленбоу, NC-6-271

  • Создана Калгарийская энергетическая компания.

    Основателя компании Макса Эйткена изначально привлекал этот регион своим огромным гидроэнергетическим потенциалом. Компания станет крупнейшей коммунальной компанией Канады, принадлежащей инвесторам. В 1981 году компания сменила название на TransAlta Utilities Corporation, чтобы лучше отразить ее региональный охват.
    Источник: Фото предоставлено TransAlta

  • На водопаде Хорсшу открылась первая гидроэлектростанция в Альберте.

    Плотина Хорсшу-Фолс, принадлежащая и управляемая Calgary Power, была первой из двух подобных сооружений, построенных в системе реки Боу-Ривер до Первой мировой войны. Вторая гидроэлектростанция начала работу у водопада Кананаскис в 1913 году.
    Источник: Glenbow Archives NA-3544-28

  • Начало эксплуатации ГЭС «Призрак»

    На момент постройки это массивное сооружение было крупнейшей гидроэлектростанцией в Альберте.Электростанция «Призрак» более чем удвоила количество электроэнергии, вырабатываемой Calgary Power, которая уже была основным поставщиком энергии в провинции.
    Источник: Архивы Гленбоу, NA-5663-44

  • В Спрингбэнке создана первая Ассоциация электрификации сельских районов (REA) в Альберте.

    В течение следующих двух десятилетий в провинции будет создано в общей сложности 416 REA. Эти организации будут играть решающую роль в распространении электричества в сельской местности Альберты.
    Источник: Архивы Гленбоу, NA-4160-20

  • Избиратели Альберты узко отвергли предложение о государственной собственности на электроэнергетические предприятия.

    Провинциальные выборы 1948 г. включали плебисцит по вопросу о владении электроэнергетическими компаниями в Альберте. Сельские районы в основном проголосовали за государственную собственность, в то время как городские избиратели (особенно на юге Альберты) поддержали сохранение частной собственности. В конце концов, голосование было очень близким: государственная собственность проиграла всего 151 голосом.
    Источник: изображение предоставлено Peel’ Prairie Provinces, цифровой инициативой библиотек Университета Альберты

    .

  • Ветряная электростанция Коули-Ридж начинает работу недалеко от Пинчер-Крик.

    Cowley Ridge была первой коммерческой ветровой электростанцией в Канаде. Всего в 1993-94 годах было установлено пятьдесят две ветряные турбины. В 2000 году проект был расширен за счет добавления пятнадцати новых (и гораздо более мощных) турбин.
    Источник: Фото предоставлено TransAlta

  • Солнечное сообщество Drake Landing открывается недалеко от Окотокса, Альберта.

    Drake Landing — первое полностью интегрированное солнечное сообщество в Северной Америке. Эта отмеченная наградами инициатива использует технологию солнечного отопления, чтобы обеспечить население большей частью потребностей в отоплении и горячей воде.
    Источник: Wikimedia Commons/CA-BY-SA-3.0

  • Город Эдмонтон объявляет о запуске проекта «Биотопливо из отходов».

    Проект по переработке отходов в биотопливо будет превращать мусор в биотопливо путем извлечения углерода из отходов.Проект включает Центр передовых энергетических исследований, открытый в 2012 году.
    Источник: Фото предоставлено Enerkem

  • Ханс Кристиан Эрстед — Биография, факты и фотографии

    Жил с 1777 по 1851 год.

    Ганс Христиан Эрстед начал новую научную эпоху, когда обнаружил, что электричество и магнетизм связаны. Он экспериментально показал, что электрический ток, протекающий по проводу, может двигать соседний магнит.Открытие электромагнетизма подготовило почву для возможного развития нашего современного мира, основанного на технологиях. Эрстед также открыл химическое соединение пиперин и впервые выделил алюминий.

    Объявления

    Начало

    Ганс Кристиан Эрстед (по-датски Ørsted) родился в маленьком городке Рудкёбинг на острове Лангеланд, Дания, 14 августа 1777 года. Его отцом был Серен Кристиан Эрстед, фармацевт, а матерью Карен Хермандсен.

    Ганс и его младший брат Андерс получили образование благодаря сочетанию домашнего обучения и частных репетиторов — немецкий производитель париков научил братьев бегло говорить по-немецки. Андерс стал премьер-министром Дании.

    • В 12 лет Ганс начал помогать отцу в аптеке и увлекся химией.
    • В 16 лет он сдал вступительный экзамен в Копенгагенский университет.
    • В 19 лет, в 1796 году, он получил диплом фармаколога.
    • В возрасте 22 лет, в 1799 году, он получил степень доктора философии. Сегодня большинство наград Ph.D. (доктор философии) не созданы для изучения философии, но Ганс Христиан Эрстед был — философия природы Иммануила Канта. Как мы увидим, это помогло сформировать его взгляд на мир.

    Жизнь Эрстеда в контексте

    жизни Эрстеда и жизни связанных с ним ученых и математиков.

    Наука Ганса Христиана Эрстеда

    К 1800 году Эрстед был управляющим аптекой.В этом году началась научная революция. Алессандро Вольта сообщил подробности о своей батарее, открыв новые возможности для химиков и физиков: батарея Вольты впервые позволила им производить стабильный поток электричества, и, к счастью, материалы, необходимые для ее создания, были легко получены.

    Эрстед погрузился в новую науку и в 1801 году опубликовал научную статью с описанием изобретенной им новой батареи. Он также описал, как рассчитать количество протекающего электрического тока, измерив скорость образования газа, когда электричество расщепляет воду на водород и кислород.

    Датское правительство финансировало Эрстеда для продолжения его образования в других европейских странах – с 1801 по 1803 год он провел в Германии и Франции.

    В Германии на него повлияли идеи философа Фридриха Шеллинга, который считал, что вся природа едина. Довольно грандиозно Шеллинг считал, что ученые должны стремиться найти теорию, лежащую в основе всей природы, а не использовать эксперименты для изучения отдельных частей природы.

    «…все явления соотносятся в одном абсолютном и необходимом законе, из которого все они могут быть выведены.”

    Фридрих Шеллинг, 1775 – 1854

    Верке, III

     

    Эрстед впитал большую часть философии науки Шеллинга, но не согласился с его пренебрежением к экспериментальной работе — будучи фармацевтом, Эрстед узнал, насколько мощным инструментом может быть экспериментирование. Однако он разделял энтузиазм Шеллинга по поводу единства природы.

    «Наша физика, таким образом, не была бы больше набором фрагментов о движении, о тепле, о воздухе, о свете, об электричестве, о магнетизме и кто знает о чем еще, но мы включили бы всю вселенную в одну систему.”

    Ханс Кристиан Эрстед

    Materialen zu einer Chemie des Neunzehnten Jahrhunderts, 1803

     

    В немецком городе Йена Эрстед познакомился и подружился с немецким физиком Иоганном Вильгельмом Риттером. У них был общий интерес к электричеству. Риттер также был в восторге от философии Шеллинга о лежащей в основе гармонии природы — в частности, он был убежден, что электричество и магнетизм тесно связаны.

    Профессор Эрстед Педагог

    После того, как он вернулся из путешествия, правительство Дании финансировало Эрстеда для продолжения его исследовательской работы.В 1806 году в возрасте 29 лет он стал профессором физики Копенгагенского университета. Он был прекрасным лектором, и студенты стекались к нему на занятия. Иногда он читал лекции по пять часов в день — очень большая нагрузка. В дополнение к чтению лекций он создал лаборатории физики и химии для исследований и обучения.

    Открытие электромагнетизма

    Знаменитый эксперимент Эрстеда, показывающий, что электричество и магнетизм связаны, был проведен во время лекции 21 апреля 1820 года, когда Эрстеду было 42 года.

    В ходе эксперимента он пропускал через провод электрический ток, который приводил в движение близлежащую стрелку магнитного компаса.

    Эрстед держит провод над магнитной стрелкой, закрепленной на оси. Стрелка отклоняется, когда по проводу проходит электрический ток.

    Оригинальные записи Эрстеда. Он показывает, как электрический ток, протекающий по проводу, заставляет вращаться намагниченную стрелку компаса.

    В течение следующих нескольких месяцев Эрстед провел еще несколько экспериментов, обнаружив, что электрический ток создает круговой магнитный эффект вокруг себя.

    Эрстед показал, что электрический ток создает вокруг себя круговой магнитный эффект.

    Эрстед объявил о своем открытии 21 июля 1820 года в статье, состоящей из четырех страниц на латыни, которая вскоре была переведена на большинство основных европейских языков. Английская статья Эрстеда называлась «Эксперименты по влиянию электрического тока на магнитную стрелку ».

    К сентябрю 1820 года Франсуа Араго демонстрировал электромагнитный эффект французской научной элите во Французской академии, что почти сразу же побудило Андре-Мари Ампера сделать следующие шаги в истории электромагнетизма.

    Точно так же, как изобретение Вольтой батареи открыло новые горизонты в физике и химии, открытие Эрстедом связи между электричеством и магнетизмом вызвало революцию в физике, которая привела нас в современный цифровой мир.

    «Эрстед искал связь между этими двумя великими силами природы. Об этом свидетельствуют его прежние сочинения, и я, ежедневно общавшийся с ним в 1818–1819 годах, могу заявить на основании собственного опыта, что мысль об открытии этой все еще таинственной связи постоянно занимала его ум.”

    Йохан Георг Форчхаммер, 1794 – 1865

    Химик и геолог

     

    Награды

    Британское Королевское общество наградило Эрстеда медалью Копли 1820 года, высшей наградой в области науки, за открытие электромагнетизма. Предыдущими лауреатами премии были Бенджамин Франклин и Алессандро Вольта. Французская академия прислала Эрстеду 3000 золотых франков.

    Был ли Эрстед первым?

    Иногда утверждают, что электромагнетизм на самом деле был открыт итальянским юристом (и энтузиастом физики) Джаном Доменико Романьози.

    В 1802 году две итальянские газеты опубликовали сообщения Романьози о магнитной стрелке, отклонившейся возле построенной им батареи.

    Сегодня, глядя на его метод, становится ясно, что в эксперименте Романьози не использовалась полная электрическая цепь, поэтому электрический ток не мог течь. Без тока не могло бы быть никакого электромагнитного эффекта.

    Стрелка в опыте Романьози, вероятно, отклонялась за счет накопления статических электрических зарядов на игле, которая двигалась в результате взаимного отталкивания одинаковых электрических зарядов.

    Итак, Эрстед был первым.

    Химия Эрстеда и выделение алюминия

    Несмотря на то, что Эрстед был профессором физики, с его фармакологическим образованием его привлекала химия.

    Сначала он отверг концепцию Антуана Лавуазье об использовании химических элементов как средстве рационализации и понимания химии. Эрстед хотел чего-то большего в гармонии с идеями Фридриха Шеллинга о том, что «все должно подчиняться единому закону природы».

    Он также стремился увязать химию с идеями философа Иммануила Канта, труды которого он с энтузиазмом изучал для своей докторской диссертации. Кант считал, что материю можно бесконечно делить (т. е. не существует атомов) и что вся материя состоит из двух фундаментальных противодействующих сил, находящихся в равновесии друг с другом.

    На какое-то время это побудило молодого профессора Эрстеда продвигать причудливые теории венгерского химика Якоба Йозефа Винтерла, который считал, что вся химия может быть понята противоборствующими силами двух веществ — Андрония (принцип кислотности) и Thelycke (принцип щелочности).Винтерл считал, что эти вещества более фундаментальны, чем элементы.

    «Основополагающие принципы теплоты, которые играют свою роль в щелочах и кислотах, в электричестве и в свете, являются также принципами магнетизма, и, таким образом, мы имеем единство всех сил… и таким образом прежние физические науки объединяются в одну объединенную физику. ».

    Ханс Кристиан Эрстед

    Materialen zu einer Chemie des Neunzehnten Jahrhunderts, 1803

     

    Однако оказалось, что Андрония и Телик не существуют.

    Отказавшись от идей Винтерла, Эрстед внес ряд важных вкладов в химию.

    В 1819 году он открыл пиперин, химическое соединение, отвечающее за сильный, острый вкус черного перца.

    Его самым значительным вкладом было первое в истории выделение элемента алюминия. В 1825 году он сообщил:

    кусок металла, который по цвету и блеску чем-то напоминает олово.

    Он получил алюминий, восстановив хлорид алюминия амальгамой калия и ртути.

    Мысленные эксперименты

    Сегодня, когда мы слышим слова Мысленный эксперимент , мы часто думаем об известных мысленных экспериментах Альберта Эйнштейна, которые привели его к его теории относительности.

    Мысленный эксперимент заключается в том, чтобы спросить: «Что, если…?» а потом логически продумать последствия.

    На самом деле Эрстед был первым, кто использовал немецкий термин, ставший известным благодаря Эйнстену: Gedankenexperiment .

    Другой известный Ганс Кристиан

    Ганс Христиан Эрстед подружился с датским писателем Гансом Христианом Андерсоном еще до того, как писатель стал знаменитым.Эрстед стал поборником сказок Андерсона, помогая их опубликовать в 1835 году.

    Некоторые личные данные и конец

    В 1814 году Эрстед женился на Ингер Биргитте Баллум, дочери пастора, и в последующие годы у пары родились три сына и четыре дочери.

    Ганс Христиан Эрстед умер в возрасте 73 лет 9 марта 1851 года в Копенгагене после непродолжительной болезни.

    Похоронен на кладбище Ассистенс в пригороде Копенгагена Норребро. Это также место последнего упокоения физика Нильса Бора, писателя Ганса Христиана Андерсена и философа Зёрена Кьеркегора.

    Объявления

    Автор этой страницы: The Doc
    Изображения, обработанные в цифровом виде и раскрашенные на этом веб-сайте. © Все права защищены.

    Цитировать эту страницу

    Пожалуйста, используйте следующую ссылку в соответствии с MLA:

     «Ганс Христиан Эрстед». Известные ученые. Сайт известных ученых. 26 сентября 2015 г. Интернет.
    . 

    Опубликовано FamousScientists.org

    Дополнительная литература
    Роберт С.Stauffer
    Предположение и эксперимент на фоне открытия Эрстедом электромагнетизма
    Isis Vol. 48: p33-50, март 1957 г.

    Эндрю Каннингем, Николас Джардин
    Романтизм и науки
    Архив CUP, 28 июня 1990 г.

    Роберт Д. Пуррингтон
    Физика в девятнадцатом веке
    Издательство Университета Рутгерса, 1997

    Сандро Стрингари и Роберт Р. Уилсон
    Романьози и открытие электромагнетизма
    Ренд. Фис. Акк.Линчеи с. 9, Том 11, стр. 115-136, 2000

    Роберто де Андраде Мартинс
    Романьози и столб Вольты: ранние трудности в интерпретации вольтового электричества
    Новая Вольтиана: исследования Вольты и его времен, Павия / Милан, Università degli Studi di Pavia, Vol. 3, стр. 81-102, 2001

    Электромагнетизм

    В начале 19 века было модно экспериментировать с новым
    развитая батарея, и с магнитами.В одной из версий истории Эрстеда он был
    готовится прочитать лекцию об электричестве и магнетизме 21 апреля 1820 года.
    На столе у ​​него были разложены батареи, провода, магнитные компасы и другое оборудование.
    для различных демонстраций.

    Он хотел проверить свою батарею, чтобы убедиться, что она работает.
    Он сделал это, просто замкнув клеммы отрезком провода.Если
    батарея была
    Хорошо, провод нагревался от мощности, которую он рассеивал.

    НЕ ПРОВЕРЯЙТЕ ЭТО ДОМА

    Для Эрстеда было совершенно безопасно замыкать клеммы своей батареи.
    Батарея не пострадала, а энергия, выделяемая проводом, не повредила ему.Короткое замыкание современного аккумулятора может быть небезопасно. В зависимости от технологии батареи,
    батарея может нагреться, загореться или даже взорваться в случае короткого замыкания.
    Современные батареи
    во многих отношениях лучше, чем у Эрстеда, но многие из них гораздо опаснее.

    Когда Эрстед проверил свою батарею, провод оказался
    возле компаса.Это то же устройство, которое используется для навигации. Это маленький магнит
    внимательно
    балансируется на стержне. Он может легко вращаться, чтобы выровняться с местным магнитным полем.
    поле Земли.
    Эрстед заметил, что стрелка компаса слегка двигается.
    когда он коснулся провода к аккумулятору, а потом он отодвинулся, когда он отключил
    батарея.Устранив некоторые другие возможные причины прогиба, он правильно

    пришел к выводу, что это был электрический ток, который сделал
    ход иглы.

    Электрический ток заставляет магнитный компас двигаться

    Открытие Эрстеда быстро и широко распространилось.Много людей
    были батареи, провода и компасы, так что они могли легко воспроизвести его результаты.
    Это привело к взрыву открытий, теорий и устройств, таких как
    электромагнит, амперметр, двигатели, генераторы и трансформаторы. Когда Максвелл объединил
    многие
    из этих идей он обнаружил недостающую часть математической головоломки.
    Это позволило ему показать, что электричество связано не только с магнетизмом, но и с
    зажечь.Он также показал, как теоретически возможно генерировать электромагнитные волны.
    волны (радиоволны), которые могут распространяться в пространстве. Исследование радиоволн
    и свет в конечном итоге привели к теории относительности. Это принесло все на круги своя,
    в виде
    теория относительности показывает, что электрические и магнитные силы не просто связаны, но
    в
    по факту одно и то же.

    Электромагнитная теория – обзор

    Частицы в электромагнитных полях

    Мы изучаем нерелятивистское движение частицы в электромагнитном поле. Обсуждение деталей основы электромагнитной теории в той мере, в какой это важно для наших целей, представлено ниже. Поля механики и электродинамики связаны силой Лоренца ,

    (1.70)F→=e(E→+x→˙×B→),

    , который выражает влияние электромагнитных полей на движение.В этом смысле она носит аксиоматический характер и проверена широко и с большой точностью. Из теории электромагнитных полей нам потребуются два дополнительных знания, а именно, что электрические и магнитные поля
    Е→ и
    B→ можно вывести из потенциалов
    ϕ(x→,t) и
    A→(x→,t) как

    E→=-∇→ϕ-∂A→∂t

    и

    Б→=∇→×А→.

    Подробнее о том, почему это действительно так, можно узнать ниже. Таким образом, в терминах потенциалов ϕ и
    A→, сила Лоренца (уравнение1.70) становится

    (1.71)F→=e(-∇→ϕ-∂A→∂t+x→˙×(∇→×A→)).

    Таким образом, k -я составляющая силы равна

    (1.72)Fk=e(-∂ϕ∂xk-∂Ak∂t+(x→˙×(∇→×A→))k).

    Однако, используя общий антисимметричный тензор ε ijk и Кронекер δ ij , мы видим, что

    (1,73)(x→˙×(∇→×A→))k=Σijk,jɛix˙i(∇→×A→)j=Σi,jɛijkx˙iΣl,mɛlmj∂Am∂xl=Σi,j, l,mɛkijɛlmjx˙i∂Am∂xl=Σi,j,l,m(ɛkij)2(δklδim-δkmδil)x˙i∂Am∂xl=Σi,j(ɛkij)2(x˙i∂Ai∂xk- x˙i∂Ak∂xi)=Σi(x˙i∂Ai∂xk-x˙i∂Ak∂xi)=∂∂xk(x→˙⋅A→)-(x→˙⋅∇→)Ak.

    С другой стороны, полная производная по времени от A k равна

    (1,74)dAkdt=∂Ak∂t+(x→˙⋅∇→)Ak.

    Таким образом, уравнение. (1.73) можно переписать как

    (1,75)(x→˙×(∇→×A→))k=∂∂xk(x→⋅⋅A→)-dAkdt+∂Ak∂t.

    Подставляя уравнение (1.75) в уравнении (1.72), получаем для k -ю компоненту силы

    (1.76)Fk=e(-∂∂xk(ϕ-x→˙⋅A→)-dAkdt).

    Хотя сначала это кажется более сложным, теперь на самом деле проще угадать лагранжиан; на самом деле частичное
    ∂/∂xk предполагает, что
    ϕ-x→⋅A→ — член, отвечающий за силу.Однако из-за зависимости от скорости также присутствует вклад
    d/dt(∂/∂x˙k); это, к счастью, дает только требуемый термин
    dAk/dt в уравнении (1.76). Условия м
    x→⋅⋅ можно произвести, как и раньше, и в сумме мы приходим к

    (1,77)L(x→,x→˙,t)=12mx→˙2-eϕ(x→,t)+eA→(x→,t)⋅x→˙.

    Действительно,
    d/dt(∂L/∂x˙k)-∂L/∂xk=0 для всех
    k=1,2,3 эквивалентно
    Fk=mx¨k для всех k = 1,2,3, и, следовательно, уравнения Лагранжа дают правильный закон силы Лоренца.

    Стоит посмотреть, что произойдет, если мы рассмотрим движение ансамбля нерелятивистских взаимодействующих частиц в электромагнитном поле, где силы взаимодействия
    F→ji,i≠j, выводятся из потенциалов
    Vji=Vji(|x→i-x→j|).Из предыдущих примеров мы подталкиваем к попытке

    (1,78)=Σi=1N12mix→˙i-Σi=1Neiϕi(x→i,t)+Σi=1NeiA→i(x→i,t)⋅x→˙i-12Σi≠j=1NVji.

    Действительно, в этом случае
    d/dt(∂L/∂x˙i,k)-∂L/∂xi,k=0 эквивалентно
    mix¨i,k=Fi,k+Σj≠iFji,k и, следовательно,

    (1.79)ddt∂L∂x˙i,k-∂L∂xi,k=0 для всех k=1,2,3

    эквивалентно

    (1.80)mix→¨i=F→i+Σj≠iF→ji,

    , которые снова дают правильные уравнения движения для i -й частицы.

    Теперь переходим к релятивистскому движению .В этом случае мы ограничиваем наше обсуждение движением одиночной частицы. Ситуация для ансамбля гораздо более тонкая по целому ряду причин. Во-первых, потенциалы взаимодействия должны включать эффекты запаздывания. Во-вторых, релятивистски движущиеся частицы также создают сложные магнитные поля; поэтому взаимодействие не просто выводится из скалярных потенциалов. На самом деле дело настолько сложное, что до конца не изучено, и существует даже, казалось бы, парадоксальных ситуаций, в которых частицы, взаимодействуя релятивистски, продолжают ускоряться, набирая энергию запредельно (Parrott, 1987; Rohrlich, 1990).

    В качестве первого шага рассмотрим релятивистское движение частицы под действием сил, производных только от потенциалов. Уравнение движения имеет вид

    (1,81)F→=ddt(mx→˙1-x→˙2/c2).

    Пытаемся найти лагранжиан
    L(x→,x→˙) такой, что
    ∂L/∂x˙k дает
    mx→˙k/1-x→˙2/c2 и
    ∂L/∂xk дает k -ю составляющую силы, F k , для K = 1,2,3. Позволять

    (1,82)L(x→,x→˙,t)=−mc21-x→˙2/c2-V(x→,t).

    Дифференцируя L по х к , к = 1,2,3, получаем

    (1.83)∂L∂xk=-∂V∂xk=Fk.

    Дифференциация L по отношению к
    x˙k, k = 1,2,3, получаем

    (1.84)∂L∂x˙k=-mc2(12)(1-x→⋅2c2)-1/2(-2x˙kc2)=mx˙k1-x→˙2/c2

    Таким образом, Уравнения Лагранжа дают правильное уравнение движения.

    Далее мы изучаем релятивистское движение частицы в полном электромагнитном поле . Основываясь на предыдущем опыте, мы ожидаем, что нам просто нужно объединить члены, которые приводят к силе Лоренца, с теми, которые приводят к релятивистской версии члена ускорения Ньютона, и, следовательно, мы вынуждены попытаться

    (1.85)L=-mc21-x→˙2/c2+ex→˙⋅A→-eϕ,

    , где ϕ — скалярный потенциал электрического поля и
    A→ — векторный потенциал магнитного поля. Поскольку последнее слагаемое не способствует
    d/dt(∂L/∂x˙k), проверка того, что лагранжиан действительно правильный, следует так же, как и в предыдущих примерах.

    4 способа, которыми Майкл Фарадей произвел революцию в мире

    Родившемуся в одной из самых жестких классовых систем в истории, Майклу Фарадею не суждено было стать влиятельным человеком.На рубеже 19-го века он провел свое детство в убогой лондонской квартире, имея мало возможностей и не имея формального образования, кроме начальной школы.

    Но отсутствие родословной не помешало Фарадею стать одним из самых влиятельных ученых мира. В 14 лет он начал учиться в местном магазине, где научился переплетному делу. Собрав книги днем, он читал их ночью, жаждущий разгадать загадку электричества. К 21 году Фарадей продолжил свое дело — и, как назло, покупатель дал ему билет, чтобы увидеть, как ведущий ученый Хамфри Дэви демонстрирует чудо электричества.Фарадей и не подозревал, что это станет поворотным моментом в его жизни и жизни общества в целом.

    Восхищенный лекцией Дэви, Фарадей переплел книгу, в которой красноречиво были написаны теории ученого. Этот жест произвел впечатление на Дэви, и он нанял молодого Фарадея в качестве своего ученика. Остальное, как говорится, уже история. Вот лишь несколько причин, по которым Фарадей сделал наш мир таким, какой он есть сегодня.


    Пройди тест: Какой курс программирования мне подходит?


    1. Он открыл электромагнитную индукцию

    До того, как Фарадей появился на сцене, ученые знали об электричестве, хотя и мало что сделали для его практического использования.Возьмем, к примеру, Джованни Альдини, который в 1803 году отправился в турне по Европе, чтобы казнить труп электрическим током на глазах у публики. Электричество было такой таинственной силой в то время, что большинство неспециалистов считали его родственным магии больше, чем что-либо еще.

    Фарадей изменил все это, когда в 1831 году открыл электромагнитную индукцию. Благодаря своим новаторским экспериментам он обнаружил, что, помещая проводник в изменяющееся магнитное поле, он создает напряжение на проводнике. Проще говоря? Он нашел способ вызвать электрический ток, и это открытие позже было применено ко многим устройствам, которые мы используем сегодня.

    Спасибо, мистер Фарадей.

    К 40 годам Фарадей изобрел электродвигатель, трансформатор и генератор. Без открытия электромагнитной индукции у нас не было бы беспроводной передачи энергии и звукоснимателей для электрогитары. Правильно: вы можете благодарить сладкий, сладкий звук Джими Хендрикса в немалой степени благодаря открытиям Фарадея. В общем, Фарадей превратил электричество из простого развлечения в практическое и широкое применение.

    2.Его изобретения преобразили дом, ферму и фабрику

    Забудьте о том модном холодильнике, который по прихоти производит три разных вида кубиков льда. До появления электричества, которое можно было использовать, почти каждый аспект человеческой жизни функционировал иначе, чем сейчас. Люди во времена Фарадея обходились дома масляными лампами, деревянными ящиками для льда и угольными печами у сухих раковин.

    Открытия Фарадея также произвели революцию в работе мелких фермеров практически во всех мыслимых отношениях.Электричество устранило ручной труд, такой как откачка воды, так что сельские семьи больше не тратили часы своего дня на то, чтобы носить воду для скота или в дом. Автоматизированные системы для таких задач, как доение коров, не давали фермерам калечить руки, а угроза возгорания амбаров из-за опрокинутых масляных ламп во время утренней дойки уменьшилась.

    И хотя промышленная революция уже шла полным ходом, когда родился Faraway, хлопкоочистительные машины и механические ткацкие станки ушли в прошлое, как чудеса, подобно швейным машинам и телеграфу, изменили способы работы и общения людей.От сотовых телефонов до кондиционеров — современные удобства, которые мы теперь принимаем как должное, когда-то были всего лишь фантазией без неустанного удивления и любопытства Фарадея, питающих их.

    3. Он посвятил свою жизнь обучению других

    Подобно тому, как Фарадей восхищался лекциями Дэви, у него также было желание распространить это благоговение на детей и будущих ученых. Как он однажды сказал: «Лектор должен дать слушателям полное основание полагать, что все его силы направлены на их удовольствие и наставление.Фарадей понимал не только важность преподавания, но и энтузиазма и любви, стоящих за ним. Исходя из того, что он был человеком, у которого почти не было формального образования, его приверженность образованию была не чем иным, как экстраординарной.

    Фарадей начал ежегодные лекции и демонстрации для детей, которые продолжаются с 1865 года по сегодняшний день, и такие выдающиеся ученые, как Джулиан Хаксли, Дэвид Аттенборо, Карл Саган и Сьюзан Гринфилд, продолжали передавать эстафету. На протяжении всей своей жизни, даже во время борьбы с деменцией и депрессией на протяжении десятилетий, преданность Фарадея постоянно раздвигала границы науки — и с тех пор мир никогда не был прежним.

    4. Он выступал против лженауки, свирепствовавшей в Англии в то время

    Подобно викторианскому предку научного парня Билла Ная, Фарадея тревожил тот факт, что, несмотря на значительный научный прогресс, общественность все больше увлекалась спиритизмом. Домашние сеансы стали обычным явлением; люди утверждали, что могут разговаривать с умершими родственниками; появились призраки; столы вращались, а предметы летали. Ясновидящие и медиумы выступали на сценах перед огромными толпами.Несколько выдающихся ученых даже приветствовали спиритуализм как новую физику. Фарадей видел во всем этом отказ от своих усилий по созданию более научно грамотного общества.

    Несмотря на то, что Фарадей, как известно, избегал публичного внимания, он считал своим долгом разоблачать обман спиритуалистов посредством лекций и демонстраций. Одним из таких трюков было «переворачивание стола». Получив письмо за письмом, приписывая его духам, электричеству, магнетизму или любому другому количеству сил, Фарадей решил продемонстрировать, что за этим явлением не стоят никакие сверхъестественные силы.Перед аудиторией «очень почтенных» людей Фарадей построил чувствительный индикаторный рычаг на столешнице, чтобы показать, что поворот стола не был результатом сверхъестественных сил, а просто непреднамеренным механическим давлением человеческих рук — он повернулся, потому что люди ожидали . его повернуть и неосознанно заставили себя.


    Хотите внести свой вклад в технологии? Научиться программировать — это один из способов начать работу! Попробуйте наш бесплатный семинар по программированию или изучите Ruby и JavaScript бесплатно уже сегодня.Тогда решите для себя: стоит ли обучаться программированию?

    Если вы думаете о новой карьере, но не знаете, как финансировать свой учебный курс, прочитайте «Как оплатить учебный курс по кодированию» или посетите страницу «Обучение и финансирование».  

    Максвелл и Герц

     

    Ученые и электромагнитные волны:

    Максвелл и
    Герц

    Около 150 лет назад Джеймс Клерк Максвелл , англичанин
    ученый, разработал научную теорию для объяснения электромагнитного
    волны.Он заметил, что электрические поля и магнитные поля могут
    соединяются вместе, образуя электромагнитные волны. Ни электрическое
    поля (подобно статическому электричеству, которое возникает, когда вы третесь ногами о
    ковер), ни магнитное поле (например, то, которое удерживает магнит на
    ваш холодильник) пойдут куда угодно сами по себе. Но, Максвелл
    обнаружил, что ИЗМЕНЯЮЩЕЕСЯ магнитное поле вызывает ИЗМЕНЯЮЩЕЕСЯ
    электрическое поле и наоборот.

    Джеймс Клерк Максвелл

    Электромагнитная волна существует, когда изменяющееся магнитное поле вызывает
    изменяющееся электрическое поле, которое затем вызывает другое изменяющееся магнитное
    поле и так далее до бесконечности.В отличие от СТАТИЧЕСКОГО поля волна не может существовать.
    если только он не движется. После создания электромагнитная волна будет
    продолжаться вечно, пока не будет поглощено материей.

    Генрих Герц , немецкий физик, применил теории Максвелла
    к производству и приему радиоволн. То
    единица частоты радиоволны — один цикл в
    второй — назван герцем, в честь Генриха
    Герц.

    Герц доказал существование радиоволн в конце 1880-х годов.Он
    использовали два стержня в качестве приемника и искровой разрядник в качестве приемника.
    антенны. Там, где поднимались волны, проскакивала искра. Герц
    показал в своих экспериментах, что эти сигналы обладают всеми
    свойства электромагнитных волн.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *