20.01.2025

Резистивный делитель: Voltage Divider Calculator

Содержание

Делитель напряжения на резисторах ⋆ diodov.net

Программирование микроконтроллеров Курсы

Рассмотрим, как рассчитать практически любой делитель напряжения на резисторах. Преимущественное большинство радиоэлектронных элементов и микросхем питаются относительно низким напряжением – 3…5 В. А многие блоки питания выдают U = 9 В, 12 В или 24 В. Поэтому для надежной и стабильной работы различных электронных элементов необходимо снижать величину напряжения до приемлемого уровня. В противном случае может наступить пробой радиоэлектронных элементов. Особенно следует уделять внимание микросхемам – наиболее чувствительным элементам к повышенному напряжению.

Структура делителя напряжения

Существуют много способов, как снизить напряжение. Выбор того или другого способа зависит от конкретной задачи, что в целом определяет эффективность всего устройства. Мы рассмотрим самый простой способ – делитель напряжения на резисторах, который, тем не менее, довольно часто применяется на практике, но исключительно в маломощных цепях, что поясняется далее.

Расчет делителя напряжения на резисторах

Чтобы сделать и рассчитать простейший делитель напряжения достаточно соединить последовательно два резистора и подключить их источнику питания. Такая схема очень распространенная и применяется более чем в 90 % случаев.

Схема делителя напряжения

Вход схемы имеет два вывода, а выход – три. При одинаковых значения сопротивлений R1 и R2 выходные напряжения Uвых1 и Uвых2 также равны и по величине вдвое меньше входного Uвх. Причем выходное U можно сниматься с любого из резисторов – R1 или R2. Если сопротивления не равны, то выходное U будет на резисторе большего номинала.

Точное соотношение Uвых1 к Uвых2 рассчитаем, обратившись к закону Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2 определяется отношением напряжения источника питания Uвх к сумме сопротивлений:

Формула силы тока делителя напряжения

Следует обратить внимание, чем больше сумма сопротивлений, тем меньший ток I при том же значении Uвх.

Далее, согласно закону Ома, подставив значение тока, находим Uвых1 и Uвых2:

Расчет делителя напряжения на резисторах

Расчет сопротивления делителя напряжения

Путем подстановки в две последние формулы значение из самой первой формулы, находим значение выходного U в зависимости от входного и сопротивлений двух резисторов:

Формула расчета делителя напряжения на резисторах

Формула делителя напряжения на резисторах

Применяя  делитель напряжения на резисторах, необходимо понимать и помнить следующее:
    1. Коэффициент полезного действия такой схемы довольно низкий, поскольку только часть мощности источника питания поступает к нагрузке, а остальная мощность преобразуется в тепло, выделяемое на резисторах. Чем больше понижается напряжение, тем меньше мощности от источника питания поступит к нагрузке.
  1. Так как нагрузка подключается параллельно к одному из резисторов делителя, то есть шунтирует его, то общее сопротивление цепи снижается и происходит перераспределение падений напряжений. Поэтому сопротивление нагрузки должно быть гораздо больше сопротивления резистора делителя. В противном случае схема будет работать нестабильно с отклонением от заданных параметров.
  2. Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными величинами. В данном случае неважно, будут ли R1 и R2 иметь значение 2 кОм и 1 кОм или 200 кОм и 100 кОм. Однако при более низких значениях сопротивлений можно получить большую мощность на нагрузке, но следует помнить, что и больше мощности преобразуется в тепло, то есть израсходуется невозвратно впустую.

Схема делителя напряжения на резисторах

Схема резисторного делителя напряжения

Также иногда находят применение и более сложные делители напряжений, состоящие из нескольких последовательно соединенных резисторов.

Делитель напряжения на резисторах

Делитель напряжения на переменном резисторе

Схему делителя напряжения на переменном резисторе называют схемой потенциометра. Вращая рукоятку громкости музыкального центра или автомагнитолы, вы таким действием плавно изменяете напряжение, подаваемое на усилитель модности звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже были ранее рассмотрены здесь.

Делитель напряжения на переменном резисторе

При перемещении (вращении) ручки переменного резистора сверху вниз по чертежу происходит плавное изменение U от значения источника питания до нуля.

В звуковой технике главным образом применяются переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человек воспринимает звуки с данной зависимостью. Для регулирования уровня звука одновременно по двум каналам используют сдвоенные переменные резисторы.

Схема делителя напряжения на переменном резисторе

Характеристики переменных резисторов

В качестве делителя напряжения находят применение переменные резисторы, имеющие следующие зависимости сопротивления от угла поворота ручки: логарифмическую, линейную и экспоненциальную. Конкретный тип зависимости применяется для решения отдельной задачи.

Электроника для начинающих

Еще статьи по данной теме

схема и расчёт [Амперка / Вики]

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель
напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе
Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока
к выходу Vout ничего не подключено. А суммарное сопротивление
пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В.
Это простой способ получить несколько различных напряжений в одной схеме, оставив при
этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество
компонентов, которые меняют своё сопротивление в зависимости от внешних условий.
Так термисторы меняют сопротивление от нуля до определённого значения в зависимости
от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего
на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких
компонентов, Vout будет меняться в зависимости от внешних условий, влияющих
на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино,
можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию
на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо
потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin,
R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения
(voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда
её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых
параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки.
И тем ощутимее будут потери,
чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли
бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших
номиналов.

Пропорция сохраняется, Vout не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от
источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если
устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка
на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной
схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень
вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная
нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является
считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка
на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое
самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

расчет, теория и принцип действия

Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.

Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.

В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.

Делитель напряжения

Делитель напряжения.

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.

Последовательное соединение резисторов

Последовательное соединение резисторов

Последовательное соединение.

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее. То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток. Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Интересно почитать: принцип действия и основные характеристики варисторов.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает. Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле: Rобщ = R1 + R2 + R3+…+ Rn.

Последовательное и параллельное соединение резисторов

Последовательное и параллельное соединение резисторов.

Параллельное соединение резисторов

Параллельное соединение резисторов Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку. При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей. Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

Общее сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn. Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них. Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток.

Что такое делитель напряжения и как он используется на резисторах?

Если представить движение воды в трубе, то можно сказать, что вода двигающиеся по одной трубе, равномерно перетекает в несколько отводов, подсоединенных к ней. В нашем случае заряженные электроны, двигающиеся по проводнику, также растекаются на количества предложенных веток в узле.

Каждый вид соединения находится под одинаковым напряжением:

  • U = U1 = U2; Суммарная сила тока равняется суммарному значению тока каждого участка
  • I = I1 + I2; Сопротивление цепи равно сумме величина обратных сопротивлению участка:
  • 1/R = 1/R1 + 17R2 + . . . + 1/Rn; Сила тока пропорциональна сопротивлению каждого участка
  • I1/I2=R2/R1.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток.  R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:

  • Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
  • Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
  • После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
  • Рассчитывают сопротивления полученной схемы.

Смешанное подключение резисторов

Схема смешанного подключения.

Законы Кирхгофа

Первый закон

законы Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю. Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0. В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.

Параллельное и последовательное соединение резисторов, решение задач

подключение резисторов Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно. Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1). Как же правильно определить параллельное и последовательное соединение резисторов?

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.

Материал в тему: описание и область применения подстроечного резистора.

Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом. После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об. = R ц = 1,21 +7+1 =9,21 Ом.

Что такое делитель напряжения и как он используется на резисторах?

Из приведенного алгоритма расчёта видно, как из сложной схемы путем простого математического вычисления и применения правил сокращения резисторов участок становится простой и понятной.

подключение резисторов При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно. На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Почитать материал по теме: что такое SMD резисторы.

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

типы подключений

Типы подключений.

Расчет гасящего резистора

В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. Такое сопротивление называется гасящим.

Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:

  1. Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
  2. Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
  3. Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.

Схема гасящего сопротивления

Схема включения гасящего сопротивления резистора.

Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:

– определяется величина напряжения, которое должно быть погашено:

Uгас = Uист – Uпотр,

Uгас = 120 – 80 = 40в

определяется величина гасящего сопротивления

Rгас = Uгас / I

Rгас = 40 / 0,020 = 2000ом = 2 ком

Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле

P = I2 * Rгас

P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт

Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления.

Практическое применение параллельного и последовательного соединения

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Приведем пример работы делителя напряжения на фоторезисторе. Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Изменение выходного напряжения

Диапазон изменения выходного напряжения.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Более подробно о делителях напряжения можно узнать из скачиваемого файла правила подключения проводников. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.elektroznatok.ru

www.themechanic.ru

www.electrono.ru

www.hightolow.ru

www.sxemotehnika.ru

Как вам статья?Poll Options are limited because JavaScript is disabled in your browser. Предыдущая

РезисторыSMD резисторы: что это такое и для чего используются?

Следующая

РезисторыКак рассчитать резистор для светодиода?

Делитель напряжения | Расчет делителя напряжения

Делитель напряжения – это это цепь, состоящая из двух и более пассивных радиоэлементов, которые соединены последовательно.

Делитель напряжения на резисторах

Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.

делитель напряжения на резисторах

Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.

цепь из двух резисторов

Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.

Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой

общее сопротивление

То есть в нашем случае мы можем записать, что

Делитель напряжения

Как найти напряжение, которое падает на резисторе R2?

Делитель напряжения

Так как ток для обоих резисторов общий, то согласно закону Ома

Делитель напряжения

Подставляем вместо I формулу

Делитель напряжения

и получаем в итоге

формула делителя напряжения

Для другого резистора ситуация аналогичная. На нем падает напряжение

Делитель напряжения

Для него формула запишется

Делитель напряжения

Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.

Делитель напряжения

что и требовалось доказать.

Эта формула также работает и для большого количества резисторов.

делитель напряжения

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

формула делителя напряжения

Как работает делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Делитель напряжения

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Делитель напряжения

Замеряем сопротивление большого резистора R2=52,8 Ом.

Делитель напряжения

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

Делитель напряжения

 

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

делитель напряжения на практике

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Делитель напряжения

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает  напряжение 6,77 Вольт.

Делитель напряжения

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

Сила тока в цепи при последовательном соединении резисторов

Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.

Делитель напряжения

Делитель напряжения

Делитель напряжения

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

потенциометр

Его обозначение на схеме выглядит вот так:

обозначение потенциометра на схеме

Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I2R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

как работает потенциометр

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Делитель напряжения

 

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Делитель напряжения

Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.

Похожие статьи по теме “делитель напряжения”

Делитель тока

Что такое резистор

Что такое напряжение

Блок питания

Делитель напряжения [Амперка / Вики]

Расчёт пропорции

Сила тока, протекающая через резисторы одинакова, т.к. они соединены последовательно, и
по закону Ома может быть рассчитана как:

По тому же закону Ома можно вычислить напряжение Vout, которое падает
на резисторе R2:

Из полученной формулы видно, что чем больше R2 относительно
R1, тем большее напряжение падает на нём.

Считывание резистивных сенсоров

Если вмето R2 использовать не постоянный
резистор, а датчик, который меняет
своё сопротивленивление, Vout будет
зависеть от измеряемого значения.

Микроконтроллер умеет измерять напряжение. Таким образом, мы можем использовать
свойства делителя напряжения для получения показаний от сенсора.

Примеры резистивных датчиков

Термистор

Термистор изменяет своё
сопротивление в зависимости
от собственной температуры

Фоторезистор

Фоторезистор (англ. Light Dependent Resistor или сокращённо LDR) изменяет своё
сопротивление в зависимости
от силы света, попадающего
на его керамическую «змейку»

Потенциометр

Потенциометр ещё называют переменным резистором, триммером. Это делитель из двух
резисторов в одном корпусе. Поэтому у него 3 ноги: питание, выход,
земля.

Соотношение R1 и R2 меняется поворотом ручки.
От 100% в пользу R1 до 100% в пользу R2.

Практикум

Порядок расчета делителей напряжения на резисторе: схемы и формулы

Автор Aluarius На чтение 5 мин. Просмотров 285 Опубликовано

Делитель напряжения на резисторах

Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике, а также, как произвести необходимые расчёты самостоятельно и при помощи программ.

Что такое делитель тока

Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.

Состоит делитель обычно из двух резисторов, параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема, позволяющая понять принцип действия:

Резисторный-делитель-напряжения

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

R=R1*R2/(R1+R2)

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2

Найти общий ток можно, зная закон Ома

закон ома

 

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:

I=U/R

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r – внутреннее сопротивление устройства.

рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу)

 

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:

ток-в-цепи-делителя

 

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

формула

 

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

сопротивление-катушки

 

Расчет делителя напряжения калькулятором онлайн

Калькулятор онлайн — это программа, с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.


Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

ОсвещённостьR1 (кОм)R2(кОм)R2/(R1+R2)U выходное (В)
Яркая5,610,150,76
Тусклая5,670,562,78
Темнота5,6100,673,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

Потенциометр

 

На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.


Резистивные датчики

Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.

Переменный резистор в качестве делителя напряжения

Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение

Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.

Резистивный делитель напряжения. Расчет делителя напряжения на резисторах

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

Самая простая схема — резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

Делитель напряжения на резистивных элементах  

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

Ток при последовательном соединении сопротивлений  

В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

Падение напряжения на первом сопротивлении    Падение напряжения на втором сопротивлении

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное UR2.

Резистивный делитель напряжения

Примеры применения делителя напряжения 

  1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
  2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
  3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

Ограничения при использовании резистивных делителей напряжения

  • Номинал сопротивлений делителя напряжения на резисторах должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки, подключаемой к делителю. В противном случае сопротивление нагрузки уменьшит величину разделенного делителем напряжения.
  • Малые значения сопротивлений, являющихся делителем напряжения, приводят к большим потерям активной мощности. Через делитель протекают большие токи. Необходимо подбирать сопротивления, чтобы они не перегорали и могли рассеять такую величину отдаваемой энергии в окружающую среду.
  • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы, индукционные печи.
  • Снижение КПД схемы за счет потерь на активных элементах делителя напряжения.
  • Для получения точных результатов в делителе напряжения необходимо использовать прецизионные (высокоточные) сопротивления.

Резистивный ВЧ делитель / делитель и сумматор »Электроника

Резистивные ВЧ делители / делители мощности — это простейшая форма делителей / делителей / сумматоров мощности, хотя уровни потерь выше, чем у гибридных версий.


РЧ комбайнер Разветвители и гибриды Включает:
Комбайнер, разветвитель, гибриды
Обзор
Сплиттеры и комбайнеры
Резистивный разветвитель и сумматор
Гибридный сплиттер и сумматор
Делитель и сумматор Wilkinson
Направленный ответвитель


ВЧ делители / делители или сумматоры мощности могут быть очень легко спроектированы и изготовлены с использованием только резисторов.

Резистивные делители / делители / сумматоры мощности дешевы и просты в изготовлении, и они часто используются в недорогих разветвителях телевизионных антенн. Тем не менее у них есть некоторые преимущества, которые означают, что они могут обеспечивать эффективную работу в широком диапазоне частот, сохраняя точное соответствие импеданса.

Достоинства и недостатки сумматора резистивного делителя

Как можно догадаться, резистивные делители и резистивные сумматоры имеют ряд преимуществ и недостатков.Это необходимо учитывать при принятии решения, какую форму разделителя / сумматора использовать или спроектировать в каком-либо оборудовании.

Преимущества резистивного разветвителя

  • Простота: Резистивный разветвитель / сумматор особенно прост, поскольку он состоит только из резисторов. Их можно очень легко сделать внутри схемы, требующей небольшого проектирования и подготовки.
  • Стоимость: Резистивный сумматор / разветвитель, сделанный только из резисторов, стоит очень дешево.
  • Частотная характеристика: При использовании подходящих резисторов и конструктивных технологий частотная характеристика может расширяться в широком диапазоне частот.

Недостатки резистивного разветвителя

  • Loss: При использовании резисторов мощность теряется сверх снижения уровня мощности в результате разделения мощности между несколькими выходами в сплиттере. Для двухстороннего резистивного разветвителя возникают дополнительные потери мощности на 3 дБ по сравнению с уменьшением разделения на 3 дБ (в результате разделения мощности на два направления).
  • Изоляция: Между портами вывода небольшая изоляция.

Основы резистивного делителя делителя

Существует множество различных типов резистивных радиочастотных делителей или разветвителей. Их можно использовать для обеспечения РЧ разделения или деления в любом соотношении, просто выбрав правильные значения резистора и конфигурации.

Резистивные разветвители

также способны обеспечить точное согласование импеданса в широком диапазоне частот при условии использования правильных типов резисторов и методов строительства.Состоящие только из резисторов, они могут легко обеспечить очень хорошее согласование импеданса.

Для резистивных ВЧ делителей мощности / ВЧ резистивных делителей мощности можно использовать множество различных конфигураций.

Трехканальный резистивный делитель / делитель мощности 6 дБ

Одной из наиболее часто встречающихся форм резистивного делителя мощности или делителя мощности является простой трехпозиционный резистивный делитель или делитель. Можно увидеть две конфигурации — звездообразную или треугольную.

С этими простыми формами резистивного делителя мощности или разветвителя любой порт может использоваться как вход, а остальные — как выходы. Выходные сигналы на 6 дБ ниже входного уровня, дополнительные потери на 3 дБ возникают по сравнению со снижением уровня на 3 дБ, которое было бы, если бы использовался «гибридный» разветвитель на основе идеального трансформатора, не несущий диссипативных потерь.

Еще один момент, который следует отметить в отношении этой формы резистивного делителя / разветвителя мощности, заключается в том, что между портами существует изоляция 6 дБ.Этого можно ожидать, исходя из того факта, что потеря входного сигнала также составляет 6 дБ.

Н-линейный резистивный делитель мощности, делитель, сумматор

Можно сделать резистивные делители мощности с любым количеством портов. Очевидно, что снижение мощности будет больше, но во многих случаях можно будет терпеть эти увеличенные потери. Самая простая конструкция основана на звездообразной конфигурации делителя мощности. Это достигается простым подключением большего количества резисторов и портов к точке звезды.

Для любого количества выходов будет N портов — дополнительный порт требуется для входа.

Резистивные делители мощности или делители / сумматоры мощности легко реализовать и использовать при условии компенсации резистивных потерь. Они предлагают широкополосную производительность, дешевы и просты в реализации, и эти факторы делают их очень привлекательными для многих приложений.

Другие важные темы по радио:
Радиосигналы
Типы и методы модуляции
Амплитудная модуляция
Модуляция частоты
OFDM
ВЧ микширование
Петли фазовой автоподстройки частоты
Синтезаторы частот
Пассивная интермодуляция
ВЧ аттенюаторы
RF фильтры
RF циркулятор
Типы радиоприемников
Радио Superhet
Избирательность приемника
Чувствительность приемника
Обработка сильного сигнала приемника

Вернуться в меню тем радио.. .

.

Микроволны101 | Резистивные разветвители мощности

Щелкните здесь, чтобы перейти на нашу главную страницу, посвященную разветвителям и разветвителям

Щелкните здесь, чтобы перейти на нашу страницу, посвященную резистивным ответвителям.

Щелкните здесь, чтобы ознакомиться с резистивным неравномерным разветвителем Криса Оуэна

Щелкните здесь, чтобы ознакомиться с резистивным неравномерным разветвителем Грега Адамса

Новое в декабре 2013 г .: У нас есть информация от Энди о дополнительных степенях свободы с резистивными делителями:

Мы в TEGAM разрабатывали испытательный стенд для усилителя, и у вас была возможность заглянуть на ваш сайт в поисках входов с конструкцией сплиттера.Я был заинтригован подходом Адамса, но мне очень хотелось иметь возможность контролировать затухание на обоих выходных портах. После небольшого возни я придумал калькулятор конструкции разветвителя на два выходных порта, который позволяет вам устанавливать затухание для каждого порта (в практических пределах). Вывод и калькулятор вложены в имена файлов «Два выхода, четыре степени свободы».

На следующем этапе нашей конструкции потребовался разветвитель с двумя равными выходами и третий выход для мониторинга с некоторым «хорошим» соотношением к другим.Это был относительно простой шаг и он обозначен как «Три выхода, четыре степени резкости».

Перейдите в нашу зону загрузки и возьмите Zip-файл, содержащий эти анализы. Спасибо, Энди!

Резистивные разветвители с равным разделением звездочек и треугольников

Если вам нужен неравный раскол, обратите внимание на сплиттеры Оуэна и Адамса (ссылки выше). Используйте разветвитель Owen для максимальной изоляции или разветвитель Adams для максимальной эффективности. Уай и Дельта обеспечивают равное разделение.

Резистивные делители мощности просты для понимания, их можно сделать очень компактными и, естественно, широкополосными, работающими вплоть до нулевой частоты (DC).Их обратная сторона заключается в том, что двусторонний резистивный разветвитель страдает 10xlog (1/2) или 3,0103 дБ от реальных резистивных потерь , в отличие от разветвителя без потерь , как у гибрида. С учетом реальных потерь 3,0103 дБ и разделения мощности 3,0103 дБ чистые потери при передаче мощности, которые вы увидите от входа к одному из двух выходов, составляют 6,0206 дБ для двустороннего резистивного делителя, поэтому их часто называют делителями на 6 дБ. Копать?

Для приложений, где потери критичны, таких как сумматоры усилителей мощности, дополнительные потери резистивного разветвителя являются неприемлемым компромиссом.Но в других случаях, особенно в тестовом оборудовании, где питание находится всего в нескольких шагах от розетки, резистивные разветвители находят свое место.

Для показанных ниже 2-полосных резистивных делителя половина мощности, протекающей через них, тратится на резисторы. Например, сигнал мощностью 1 Вт на порте 1 приведет к появлению двух сигналов мощностью в четверть ватта на портах 2 и 3 (снижение на -6 дБ). Из-за потерь в сети необходимо тщательно учитывать рассеиваемую мощность и номинальную мощность резистора. Вы можете пропустить много ватт через разделитель без потерь, такой как крысиный бегунок или ответвитель.Но ватт может сжечь резистивный делитель. Еще один недостаток в том, что ни один из портов не изолирован друг от друга.

Пришло время для практического правила Microwaves101!

Изоляция резистивного разветвителя равна его вносимым потерям. Трехпортовый разветвитель 6 дБ имеет (в идеале) потери 6,02 дБ от любого порта к любому другому порту (S21 = S31 = S23).

Преимущества резистивных делителей заключаются в размере (он может быть очень маленьким, поскольку содержит только сосредоточенные элементы, а не распределенные элементы), и они могут быть чрезвычайно широкополосными.Действительно, резистивный делитель мощности — единственный разветвитель, работающий до нулевой частоты (DC). Он настолько широкополосный, что мы даже не потрудились сделать для вас график частотной характеристики!

Ниже приведены схемы двух вариантов трехпортовых резистивных разветвителей, «дельта» и «звезда». Указанные значения резистора гарантируют, что сопротивление каждого порта соответствует Z 0 . Эти и многие другие схемы доступны в виде файла Word, который вы можете получить в нашей области загрузки, он называется Electronic_Symbols.док. Вы обнаружите, что он пригодится для создания простых блок-схем в Word, PowerPoint или Excel.

Резистивный разветвитель Delta 6 дБ

Резистивный разветвитель, звезда 6 дБ

Новинка августа 2012 г .: Давайте проанализируем звезду-разветвитель. Во-первых, давайте обозначим все резисторы R1, чтобы мы могли лучше отслеживать ситуацию.

Чтобы все порты совпадали, три резистора должны быть одинаковыми, поэтому мы дали значение R1.2 / (2R 1 + 2Z 0 )

Это может быть решено довольно быстро, чтобы выявить, что Z1 = Z0 / 3, со следующим советом: сначала вычтите R 1 с обеих сторон, затем умножьте обе стороны на 2 * (R 1 + Z 0 ). Вскоре вы обнаружите, что R 1 должен равняться Z 0 /3, чтобы соответствовать трем портам.

Этот даже лучший метод решения для Z0 принадлежит Иоанну:

На самом деле решение даже проще, чем вы предлагаете, если вы заметите, что числитель и знаменатель имеют общий множитель (R1 + Z0)

Zin = R1 + (R1 + Z0) ^ 2 / (2 (R1 + Z0)) = R1 + (1/2) (R1 + Z0) = Z0

Z0 = (3/2) R1 + (1/2) Z0

(1/2) Z0 = 3/2 (R1)

R1 = Z0 / 3

Резистивные разделители N-цепи (равномерные)

Вы можете легко сделать резистивный делитель N-типа из разветвителя Wye.Резистор Delta становится кошмарной сетью для более чем двухстороннего разделения, его нельзя построить в двух измерениях.

Подходящие резисторы для N-портового звездообразного разветвителя находятся по формуле:

R = Z 0 х (N-1) / (N + 1)

Например, трехполюсному разветвителю нужны резисторы Z 0 /2, а четырехканальному разветвителю нужны резисторы 3xZ 0 /5 и так далее.

Эффективность резистивного разветвителя становится все хуже и хуже, чем больше плеч вы разделите.2, в отличие от разделителя без потерь, который изменяется как 1 / N. Таким образом, для четырехпозиционного разветвителя только 1/16 мощности приходится на одну из четырех согласованных нагрузок. Пришло время для еще одного эмпирического правила Microwaves101!

Проще говоря, резистивный разветвитель имеет потери дБ, вдвое превышающие , по сравнению с вносимыми потерями разветвителя без потерь. Таким образом, двухсторонний резистивный разветвитель передает мощность -6,02 дБ на каждое плечо, трехсторонний разветвитель передает -9,54 дБ, четырехсторонний передает -12,04 дБ и т.д. мощность и ничего не передавать на нагрузки!

Частичное рассеяние в резистивном делителе типа звезда

Новинка февраля 2007 года! Мы решили эту алгебраическую задачу для разветвителя звезды, вот она.2)]

Давайте свяжем все вместе. В таблице ниже показаны относительное рассеивание и выходная мощность. «Коэффициент мощности» — это мера эффективности сети, он представляет собой сумму всех выходных мощностей, деленных на входную.

PDissA PDissB или PdissC Надутый Коэффициент мощности
2 33,3% (-4,77 дБ) 8,33% (-10.79 дБ) 25% (-6,02 дБ) 50% (-3,01 дБ)
3 50% (-3,01 дБ) 5,56% (-12,55 дБ) 11,1% (-9,54 дБ) 33,3% (-4,77 дБ)
4 60% (-2,22 дБ) 3,75% (-14,26 дБ) 6,25% (-12,04 дБ) 25% (-6,02 дБ)
5 66,7% (-1,76 дБ) 2,67% (-15,74 дБ) 4% (-13.98 дБ) 20% (-6,99 дБ)
6 71,4% (-1,46 дБ) 1,98% (-17,02 дБ) 2,78% (-15,56 дБ) 16,7% (-7,78 дБ)

Частичное рассеивание в N = 2 Резистивный делитель треугольника

Мы используем дельта-разделитель только для N = 2, он не имеет смысла для разветвителей более высокого порядка, потому что становится трехмерным кошмаром.

Дробное рассеивание в делителе с N = 2 треугольником легко вычислить.Резисторы, включенные последовательно с разделенными портами, рассеивают столько же мощности, сколько и два выхода. Если последовательные резисторы обозначены как «резистор A», а резистор, шунтирующий выходные порты, — «резистор B», то рассеиваемая мощность определяется по формуле:

PDissA PDissB Надутый Коэффициент мощности
2 25% (-6,02 дБ) 0 25% (-6,02 дБ) 50% (-3.01 дБ)

Присылайте нам свои комментарии!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *