Метод измерения - это что такое? Виды и средства измерений. С какой целью применяется метод измерения
Метод измерения - это что такое? Виды и средства измерений :: SYL.ru
Измерение – нахождение значения какой-либо физической величины. Осуществляется этот процесс опытным путем. При этом могут использоваться различные методы и средства измерений. Рассмотрим в статье, какие из них применяются на практике.
Измерение, методы измерений: определения
Результатом процесса является нахождение значения параметра Q. Оно устанавливается, исходя из числового показателя величины (q) и ее единицы (U). Общая формула выглядит так:
Q=qU.
Принципом измерения называют явление либо комплекс феноменов, которые используются в качестве основы процесса. К примеру, масса тела устанавливается с помощью взвешивания с применением силы тяжести, которая пропорциональная весу, а температура – с помощью термоэлектрического эффекта. Методы и средства измерений выбираются в зависимости от характеристик объекта, цели процедуры. Немаловажное значение имеют и возможности исследователя. Метод измерения – комплекс специальных приемов, через которые реализуются принципы процесса. Их группировка производится по различным признакам. Средства измерения имеют метрологические нормированные свойства.
Классификация
Виды и методы измерений различаются, исходя из специфики зависимости исследуемого параметра от времени, типа формулы, условий, влияющих на точность. Существует также классификация по способам выражения результатов процесса. По характеру зависимости искомого параметра от времени выделяют динамическое и статистическое измерения. Последнее предполагается неизменяемость показателя. К таким измерениям относят определение размеров предмета, температуры, постоянного давления и так далее. Динамическими называют процессы нахождения значений, при которых искомый параметр изменяется во времени. К ним относят, например, установление показателя давления при сжатии газа. В зависимости от способа получения результатов различают совместные, косвенные, совокупные, прямые исследования. Рассмотрим их кратко.
Прямые исследования
В ходе таких измерений искомое значение находят из опытных данных. Выразить это можно уравнением
Q=X, в котором:
- Q – искомый параметр;
- Х – показатель, полученный из опытных данных.
Такие измерения выполняются рулеткой либо линейкой, штангенциркулем, микрометром, угломером, термометром и так далее.
Косвенные исследования
В ходе них искомое значение устанавливается по известной зависимости между ним и параметрами, находимыми при прямых измерениях. Уравнение при этом выглядит так:
Q = F(x1, x2 ... xN), в котором:
- Q- искомый показатель;
- F – зависимость;
- x1, x2, … , xN – параметры, полученные прямым измерением.
Таким способом, например, устанавливается объем объекта при заданных геометрических размерах. Методы измерения сопротивления проводников также предполагают применение этого уравнения. Косвенные исследования используются чаще всего тогда, когда прямым способом найти параметр затруднительно или невозможно. На практике возникают ситуации, когда этот прием является единственным. Так, например, находятся размеры внутриатомного или астрономического порядка.
Совокупные исследования
В ходе них используются методы измерения величин, предполагающие повторное нахождение одного или нескольких одноименных параметров при разных их сочетаниях или их мерах. Искомый показатель устанавливается при решении системы уравнений. Они, в свою очередь, составляются по параметрам, полученным при нескольких прямых измерениях.
Рассмотрим пример. Необходимо определить массу отдельных гирь в наборе. То есть, нужно провести калибровку по известному весу одной из них, полученному при прямых измерениях, и сравнить показатели при разных сочетаниях объектов. В наборе присутствуют гири, масса которых 1, 2, 2*, 5, 10, 20 кг. Все они, за исключением третьей, представляют собой образцы разного веса. Гиря со звездочкой имеет параметры, отличающиеся от точного показателя 2 кг. Калибровка заключается в установлении массы каждого предмета по одному образцу, к примеру, по объекту, весом в 1 кг. Нахождение параметра осуществляется в процессе изменения комбинации гирь. Необходимо составить уравнения, в которых цифрами обозначаются массы отдельных объектов. К примеру, 1 образец соответствует весу в 1 кг. В таком случае 1=1об + а; 1+ 1 об = 2 + b; 2* = 2 + с и так далее. Дополнительные массы, которые нужно прибавлять к весу гири, стоящему в правой части или отнимать от нее для уравновешивания, обозначаются а, b, с. При решении системы уравнений можно установить значение массы для каждой гири.
Совместные исследования
Они предполагают измерение двух либо нескольких разноименных параметров одновременно. Это позволяет выявить функциональную зависимость между ними. В качестве примера таких исследований выступает установление длины стержня исходя из его температуры.
Классы
Они устанавливаются в зависимости от условий, определяющих точность показателя. Выделяют следующие классы:
- Измерения максимально допустимой точности, которая может достигаться при существующем техническом уровне. В данный класс включаются все высокоточные оценки. В первую очередь, к ним относят эталонные измерения. Они связаны с максимально вероятной точностью воспроизведения заданных единиц физических значений. К этому классу относят также оценку констант, универсальных, в первую очередь. Примером может выступать нахождение абсолютного показателя ускорения при свободном падении.
- Контрольно-проверочные измерения. Их погрешность с установленной вероятностью не должна быть выше заданного показателя. В данный класс включаются все измерения, которые производятся в лабораториях государственного надзора за выполнением требований техрегламентов, контроля измерительной техники. Такие оценки состояния объектов гарантируют погрешность с некоторой вероятностью, которая не превышает заданного заранее значения.
- Технические измерения, погрешность в которых устанавливается по характеристикам используемых средств. В качестве примера может служить оценка состояния объектов, осуществляемая в производственных условиях на промышленном предприятии, в сфере обслуживания и пр.
Способ отражения результата
По этому признаку различают относительные и абсолютные измерения. Последними называют те, которые базируются на прямых исследованиях одного или нескольких показателей, либо на применении значений констант. К таким исследованиям относят нахождение длины в метрах, показателя силы тока в амперах, ускорения в м/сек. Относительными считаются измерения, в рамках которых искомый показатель сравнивается с одноименным параметром, выступающим в качестве единицы, или принятым за исходный. Так, например, находят диаметр обечайки по количеству оборотов ролика, показатель влажности, которая устанавливается по соотношению объема пара в 1 м3 воздуха к количеству паров, насыщающих его при заданной температуре.
Какие методы измерения чаще всего используют на практике?
Стоит отметить, что в исследованиях применяется два приема. Основные методы измерений – непосредственная оценка и сравнение с мерой. В первом случае искомый параметр находится непосредственно по отсчетной шкале прибора прямого действия – по линейке, манометру, термометру и пр. Второй метод измерения предполагает сравнение искомого показателя с параметром, воспроизводимым мерой. К примеру, чтобы установить диаметр калибра, оптиметр фиксируется на нулевой отметке по блоку концевых значений длины. Результат получают по показателям стрелки, отклоняющейся от 0. Искомый параметр сравнивается с концевыми значениями.
Подтипы
Метод измерения путем сравнения может реализовываться разными способами:
- Противопоставлением. В этом случае искомый показатель и параметр, который воспроизводится мерой, действуют на прибор сравнения одновременно. В результате устанавливается соотношение между значениями.
- Дифференциацией. В этом случае искомый показатель сравнивается с известным значением, воспроизводимым мерой. Такой метод измерения применяется при установлении отклонения контролируемого диаметра заготовки на оптиметре после настройки его на 0.
- Совпадением. В этом случае между искомым показателем и значением, воспроизводимым мерой, устанавливается разность. Она определяется по совпадению отметок периодических сигналов или шкал.
Существуют и другие приемы. Например, нулевой метод измерения. Он предполагает доведения до 0 результирующего эффекта влияния параметров на прибор сравнения. Такой прием используется при измерении сопротивления по мостовой схеме с полным уравновешиванием. По способу получения информации исследования могут быть бесконтактными или контактными.
Дополнительно
В зависимости от используемых средств, различают органолептический, эвристический, экспертный, инструментальный методы измерения. Последний основывается на использовании технических устройств. Они могут быть механическими, автоматическими, автоматизированными. Например, часто используются инструментальные методы измерения уровня давления. Экспертное исследование основывается на мнении группы специалистов. Эвристический метод базируется на интуиции. Органолептические исследования предполагают использование органов чувств. Изучение состояния объекта проводится также комплексными и поэлементными методами. Последний предполагает изучение каждого параметра предмета в отдельности. К примеру, могут оцениваться овальность, огранка цилиндрического вала и пр. Комплексный метод предполагает измерение суммарного показателя, на который влияют отдельные свойства объекта. К примеру, может выполняться исследование радиального биения, находящегося в зависимости от эксцентриситета, овальности и так далее.
Международная система
Она была принята в 1960 г. на XI Генеральной конференции. Система предусматривает перечень семи ключевых единиц измерения. К ним относятся метр, секунда, ампер, моль, килограмм, кельвин, кандела. В системе также предусмотрены две дополнительные единицы - стерадиан, радиан, а также приводятся приставки для образования дольных и кратных параметров. В СИ определены и производные значения. Они образуются при помощи простейших уравнений физических параметров, числовые коэффициенты которых равны 1. Эти значения применяются, например, при определении равномерности в линейной скорости при прямолинейном движении. Допустим, длина пути, который был пройден, v = l/t (м), время, потраченное на это, - t (с). Скорость получится в метрах в секунду. На практике принято использовать сокращение – м/с. Эта единица, таким образом, выражает скорость равномерно и прямолинейно перемещающейся точки, при которой она за секунду продвигается на метр. Аналогично образуются и остальные показатели, в том числе те, коэффициент в которых - не единица.
www.syl.ru
Методы измерений
Прямые измерения, являясь самостоятельными и наиболее распространенными, в то же время служат основой для более сложных видов измерений (косвенных, совокупных и совместных). В связи с этим методы прямых измерений являются общими для всех видов измерений и в дальнейшим будут называться просто методами измерений.
С учетом того, что метод измерений представляет собой совокупность приемов использования принципов и средств измерений, различают два метода измерений:
метод непосредственной оценки;
метод сравнения с мерой (мера-средство измерений, предназначенная для воспроизведения физической величины заданного размера).
Классификационным признаком в таком разделении методов является наличие или отсутствие при измерениях меры.
Метод непосредственной оценки (отсчета) – метод измерения, в котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия (прибор прямого действия – измерительный прибор, в котором сигнал измерительной информации движется в одном направлении, а именно с входа на выход).
Метод сравнения с мерой – метод измерения, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
Методы сравнения в зависимости от наличия или отсутствия при сравнении разности между измеряемой величиной и величиной, воспроизводимой мерой, подразделяют на нулевой и дифференциальный.
Нулевой метод – это метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (прибор сравнения, или компаратор, - измерительный прибор, предназначенный для сравнения измеряемой величины с величиной, значение которой известно).
Дифференциальный метод – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность между измеряемой величиной и известной, воспроизводимой мерой.
Как в нулевом, так и в дифференциальном методе могут быть выделены методы противопоставления, замещения и совпадения.
Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.
Метод замещения – метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.
Метод совпадения – метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.
Для пояснения сущности приведенных определений обратимся к примерам реализации методов измерений.
Метод непосредственной оценки с отчетом показаний по шкале прибора характеризуется тем, что лицу, осуществляющему измерение, не требуется каких либо вычислений, кроме умножения показаний прибора на некоторую постоянную величину, соответствующему данному прибору. Примером данного метода измерений может служить взвешивание груза X на пружинных весах (рис.1). Масса груза здесь определяется на основе измерительного преобразования по значению δ деформации пружины.
Процесс измерения по методу непосредственной оценки характеризуется быстротой, что делает его часто незаметным для практического использования. Однако точность измерения обычно оказывается невысокой из-за воздействия влияющих величин и необходимости градуировки шкал приборов.
Нулевой метод измерения характеризуется равенством воздействий, оказываемых измеряемой величиной и мерой, на прибор, используемый для сравнения. Различают нулевые методы противопоставления, замещения и совпадения. Первые два из этих методов иногда называют соответственно методами полного противопоставления и полного замещения
Примером нулевого метода противопоставления может служить взвешивание груза X на равноплечных весах (рис.2), когда масса груза определяется массой гирь, уравновешивающих воздействие груза на рычаг весов. Состояние равновесия определяется по положению указателя нуль-индикатора, который в этом случае должен находиться на нулевой отметке.
Весы при таком измерении выполняют функцию компаратора. Данный метод используется для измерения самых разнообразных физических величин и, как правило, обеспечивает большую точность измерения, чем метод непосредственной оценки, за счет уменьшения влияния на результат измерения погрешностей средства измерений, которое в данном случае осуществляют только сравнение воздействий, создаваемых измеряемой величиной и мерой.
Недостатком данного метода является необходимость иметь большое число мер, различных значений (т.е. необходимость воспроизводить любое значение известной физической величины без существенного понижения точности). Как правило, это связано с существенными трудностями.
Разновидностью рассмотренного метода является компенсационный метод измерений, применяемый в тех случаях, когда важно измерить физическую величину, не нарушая процесса, в котором она наблюдается. При подключении измерительного устройства, реализующего компенсационный метод, к объекту измерения на этом устройстве создается действие, направленное на встречу действию, создаваемому изучаемым явлением.
При этом создаваемое в измерительном устройстве явление изменяется до тех пор, пока не будет достигнута полная компенсация действия изучаемого явления на измерительное устройство. По размеру физической величины, создающей компенсирующее явление, судят о размере измеряемой физической величины. При условии полной компенсации изучаемое явление протекает в объекте так же, как оно протекает в случае, когда к объекту не подключено измерительное устройство.
Нулевой метод замещения состоит в том, что измеряемая физическая величина и мера последовательно воздействует на измерительный прибор. При этом значение меры подбирают таким, чтобы ее воздействие на измерительный прибор было равно воздействию измеряемой физической величины. На рис. 3 показан пример реализации метода полного замещения для случая измерения массы груза. Здесь на пружинные весы устанавливают груз X и делают отметку A на шкале как результат его взвешивания. При этом показания пружинных весов принципиально можно и не считывать. Затем снимают груз. На чашку устанавливают такой набор гирь, который обеспечивает такую же деформацию пружины, как и груз X. О равенстве деформаций судят по установке стрелки напротив отметки A. Нулевой метод замещения применяется в тех случаях, когда производятся точные измерения параметров, т.к. он позволяет практически исключить влияние изменений характеристик используемого средства измерений (в рассматриваемом случае – изменение характеристик пружины) на результаты измерения.
Нулевой метод совпадения состоит в совпадении сигналов двух периодических процессов, характеристика одного из которых изменяется, а другого – используется в качестве меры. Например, измерение числа оборотов вала с помощью стробоскопа – вал периодически освещается вспышками света, и частоту вспышек подбирают так, чтобы метка, нанесенная на вал, казалась наблюдателю неподвижной.
Дифференциальный метод измерений характеризуется тем, что с помощью измерительного прибора методом непосредственной оценки измеряется разность между измеряемой величиной и величиной, воспроизводимой мерой. Этот метод позволяет получить высокоточные результаты даже при использовании для измерения указанной разности относительно грубых средств измерений. Реализация дифференциального метода возможна только при условии наличия высокоточной меры, близкой по значению к измеряемой величине.
Различают дифференциальные методы противопоставления, замещения и совпадения.
Первые два из них иногда называют методами неполного противопоставления и неполного замещения.
Примером метода неполного противопоставления может служить взвешивание на равноплечих весах, показанных на рис. 4.
Здесь действие грузаX уравновешивается действием гири, служащей мерой, и силой упругой деформации пружины. По существу в данном случае по величине деформации пружины, значение которой может быть отсчитано по шкале, измеряется разность воздействия груза и гири на пружину. Так определяют разность их масс. Массу же груза определяют после взвешивания как сумму массы гири и показаний, считанных по шкале.
Сущность дифференциального метода замещения можно уяснить, рассмотрев пример (рис. 5) взвешивания груза X на пружинных весах в том случае, когда из имеющегося набора гирь не удается составить сочетание, позволяющее добиться такого показания весов, при котором стрелка устанавливается на отметку А, соответствующею показанию весов при установке на них измеряемого груза X. Предположим, что при установке на весы подобранного набора гирь стрелка весов устанавливается на отметке шкалы В. Когда к подобранному набору добавляются гири с наименьшей массой, стрелка устанавливается на отметке шкалы С. В данном случае замещение получается неполным. Для определения массы груза прибегают к интерполяции, с помощью которой по известному значению массы наименьшей гири и числу делений шкалы между отметками В и С рассчитывают значение массы груза и массы подобранного набора гирь, а затем определяют массу груза.
Сущность дифференциального метода совпадения состоит в том, что совпадение сигналов двух периодических процессов является неполным. При этом изменяется характеристика периодического процесса, представляющею собой результат взаимодействия названных выше двух периодических процессов. Результат измерения определяется так же, как во всех дифференциальных методах.
9
studfiles.net
Методы измерений и измерительные средства.
Методы и средства измерений физических величин
Как и чем производят измерения?
В результате измерения определяют числовое значение измеряемой величины, равное отношению измеряемой величины к единице измерения или эталону. В зависимости от конкретных условий, применяемых измерительных средств и приемов их использования измерения могут производиться различными способами или методами. С точки зрения общих приемов получения результатов измерения различают измерения непосредственные, т. е. прямые и косвенные.
Прямые измерения
При прямых измерениях искомая величина определяется непосредственно показаниями прибора или измерительной шкалы инструмента. К прямым измерениям относятся измерения длин линейками, штангенинструментом, микрометрами, широкодиапазонными инкрементными измерительными головками с цифровым отсчетом, высотомерами, измерения углов - угломерами и др.
Косвенные измерения
При косвенных измерениях искомая величина (размер или отклонение) определяется по результатам прямых измерений одной или нескольких величин, связанных с искомой величиной определенной функциональной зависимостью, т. е. после определения косвенных величин, влияющих на искомую, определяют искомую величину, используя математические методы вычислений или преобразований. Примером косвенных измерений могут служить измерения диаметра вала по длине его окружности с помощью рулетки или обкатного ролика, измерения на координатно-измерительных машинах (КИМ), и др. На рисунке представлен пример косвенного измерения диаметра вала с помощью рулетки, при этом измеряется длина окружности и с помощью известной зависимости D = L/π определяется ее диаметр.
Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении. Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др. Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек. Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.
Каждое измерение может производиться абсолютным или относительным методом.
Абсолютный метод измерения
При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.
Относительный метод измерения
Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.
Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений. Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.
Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.
Кроме того, методы измерения делятся на комплексные и дифференцированные.
Комплексный метод измерения
Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта. Комплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия. Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.
Дифференцированный метод измерения
Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий. Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.
Комплексный метод измерения применяется преимущественно при проверке изделий, а дифференцированный метод - при проверке инструментов, настройке станков и при выявлении причин размерного брака изделий.
При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений. Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактным способом.
Контактный метод измерения
Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.
Бесконтактный метод измерения
Бесконтактный метод измерения характеризуется отсутствием измерительного контакта прибора с проверяемым объектом (например, при пневматическом методе измерения, при измерении на проекторах, микроскопах, лазерных приборах, лазерных итерферометрах и т.п.). В последнее время получил большое распространение бесконтактный метод измерения с помощью лазерного сканирования, в том числе 3D сканирования и лазерных триангуляционных измерениях.
***
Измерительные средства
Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:
- меры и калибры;
- универсальные инструменты и приборы, специальные средства измерений - контрольные приспособления, контрольные автоматы, приборы активного контроля;
- координатно-измерительные машины.
Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.
Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия. Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.
Универсальные инструменты и приборы служат для определения значений измеряемой величины. Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.
Классификация средств измерения
Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:
- механические инструменты, снабженные штриховой шкалой и нониусом - штангенинструменты и (штангенциркули, штангенглубиномеры, штангенрейсмасы и др.) и универсальные угломеры;
- электронные штангенинструменты с цифровым отсчетом (штангенциркули, штангенглубиномеры, штангенрейсмасы);
- микрометрические инструменты, основанные на применении микропар (микрометры, микрометрические нутромеры, глубиномеры и др.);
- электронные микрометрические инструменты с цифровым отсчетом (микрометры, нутромеры, глубиномеры и др.);
- механические индикаторы со шкалой и стрелкой;
- электронные индикаторы с цифровым отсчетом;
- оптические приборы (длиномеры, интерферометры, проекторы, микроскопы, лазерные приборы и др.);
- индуктивные приборы;
- широкодиапазонные приборы (емкостные, индуктивные и фотоэлектрические);
- пневмоиндуктивные приборы;
- высотомеры;
- координатно-измерительные машины (КИМ).
Кроме того, существуют специальные приборы - контрольные приспособления, контрольные автоматы и приборы активного контроля, предназначенные для контроля одной или нескольких однотипных деталей после их обработки на станке или в процессе обработки.
По числу одновременно проверяемых размеров приборы разделяются на одномерные и многомерные. По установившейся на производстве терминологии простейшие измерительные средства - калибры, линейки, штангенинструмент, микрометры, уровни - именуются измерительным инструментом.
***
Основные характеристики средств измерения
k-a-t.ru
Методы измерений
1. Измерение физической величины это нахождение значения ФВ опытным путем с помощью специальных технических средств, имеющих нормированные метрологические свойства.
2. Измерение физической величины это процесс сравнения измеряемой величины с известной, принятой за единицу.
Принцип измерений – физическое явление или эффект, положенное в основу измерений.
Метод измерения (ГОСТ 16263-70) - это совокупность приёмов сравнения измеряемой ФВ с ее единицей в соответствии с принципом измерения.
прямые, косвенные, совокупные и совместные.
По способу получения значений измеряемых величин:
Метод непосредственной оценки (измерение с помощью линейки, микрометром, угломером и т.д.).
Метод сравнения с мерой:
метод противопоставления, дифференциальный метод (разностный), нулевой метод, метод совпадений,
В зависимости от измерительных средств, используемых в процессе измерения, различают:
Инструментальный метод, основанный на использовании специальных технических средств, в том числе автоматизированных и автоматических.
Экспертный метод основан на использовании данных нескольких специалистов. Широко применяется в квалиметрии, спорте, искусстве, медицине.
Эвристические измерения основаны на интуиции.
Органолептические измерения основаны на использовании органов чувств человека (осязания, обоняния, зрения, слуха и вкуса).
Контроль - это процесс получения и обработки информации об объекте (параметре детали, механизма, процесса) с целью определения его годности.
Классификация средств измерений
Средство измерения - это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.
1. Меры
2. Измерительные преобразователи.
3. Измерительные приборы
а) по виду преобразования сигнала:
приборы прямого действия (манометр, термометр, амперметр, вольтметр и т. д.)
приборы сравнения (измеряемую величину сравнивают с известной)
б) по способу отсчета:
показывающие, в том числе аналоговые и цифровые
регистрирующие.
в) по виду шкалы:
с равномерной шкалой
с неравномерной
с нулем внутри шкалы, на краю или вне шкалы
г) по метрологическому назначению:
Эталоны предназначены для поверки по ним других средств измерений и рабочих эталонов менее высокой точности.
4. Вспомогательные средства измерений
5. Измерительные установки
6. Измерительные системы
Метрологические характеристики средств измерений
Это технические характеристики средств измерений, оказывающие влияние на результаты и погрешности измерения.
Они устанавливаются ГОСТ 8.009-84 ГСИ. Нормированные метрологические характеристики.
1. Длина деления шкалы - это расстояние между серединами двух соседних отметок штрихов шкалы.
2. Цена деления шкалы - это разность значений величин между двумя соседними отметками шкалы.
3. Градуировочная характеристика - зависимость между значениями величин на выходе и входе СИ.
Например, номинальная статическая характеристика преобразования измерительного преобразователя, номинальное значение однозначной меры, пределы и цена деления шкалы, виды и параметры цифрового кода СИ.
4. Диапазон показаний - область значений шкалы, ограниченная наибольшим и наименьшим значениями измеряемой величины.
5. Диапазон измерений - область значений шкалы, для которой нормированы допускаемые пределы погрешности средства измерения.
6. Чувствительность прибора - отношение изменения сигнала на выходе к изменению сигнала на входе.
S = /; [мм/А]; [мм/В]; [0С/В];
Для шкальных измерительных приборов абсолютная чувствительность численно равна передаточному отношению.
7. Вариация (нестабильность) показаний прибора - алгебраическая разность между показаниями средства измерения в данной точке диапазона при возрастании и убывании величины (погрешность СИ).
8. Стабильность средства измерения - неизменность во времени его метрологических характеристик.
studfiles.net
Принцип и метод измерения. Общие методы измерений. Какие существуют измерительные приборы
Сложно переоценить значимость измерений в жизни современного человека. По мере развития технологий вопрос необходимости в них и вовсе не стоит, но зато на первый план выходят принципы и методы, позволяющие повышать точность замеров. Расширяется и сам спектр областей, в которых задействуются системы и способы измерения. При этом развиваются не только технические и технологические подходы к выполнению данных операций, но и концепции их применения. На сегодняшний день метод измерения представляет собой совокупность техник или приемов, которые позволяют реализовать тот или иной принцип определения искомой величины.
Принципы методов измерений
В основе любого метода измерения лежит определенный физический закон, который, в свою очередь, базируется на том или ином природном явлении. В метрологии физические явления нередко определяются как эффекты, обуславливающие закономерность. Для измерения разных величин применяются конкретные законы. Например, измерение тока производится по эффекту Джозефсона. Это явление, в соответствии с которым сверхпроводящий ток проходит через прослойку диэлектриков, разделяющих сверхпроводники. Для определения характеристик поглощенной энергии применяется уже другой эффект – Пельтье, а для вычисления скорости – закон изменения частоты излучения, открытый Доплером. В более простом примере определения массы объекта используется сила тяжести, которая проявляет себя в процессе взвешивания.
Классификации методов измерения
Обычно применяют два признака разделения методов измерения – по характеру изменения величин в зависимости от времени и по способу получения данных. В первом случае выделяются статистические и динамические методики. Статистические способы измерения характеризуются тем, что получаемый результат не меняется в зависимости от того, в какой момент они применяются. Это могут быть, например, основные методы измерений массы и размеров объекта. Динамические приемы, напротив, изначально допускают возможность колебаний в показателях. К таким методам можно отнести те способы, которые позволяют отслеживать характеристики давления, газа или температуры. Изменения обычно происходят под действием окружающих сред. Существуют и другие классификации методов, обусловленные разницей в точности измерений и условиями проведения операции. Но они, как правило, носят второстепенный характер. Теперь же стоит рассмотреть наиболее популярные методики измерения.
Метод сравнения с мерой
В данном случае измерение происходит за счет сравнения искомой величины со значениями, воспроизводимыми мерой. В качестве примера этого способа можно привести расчет массы с применением весов рычажного типа. Пользователь изначально работает с инструментом, в котором заложены определенные величины с мерами. В частности, используя систему уравновешивания гирями, он может с определенной долей точности зафиксировать и вес объекта. Классический прибор для измерения давления также в некоторых модификациях предполагает определение значения путем сравнения с показаниями в среде, в которой уже действуют изначально известные величины. Другой пример касается измерения напряжения тока. В этом случае, к примеру, характеристики работы компенсатора будут сравниваться с известной электродвижущей силой нормального элемента.
Метод измерений дополнением
Тоже довольно распространенная методика, которая находит применение в самых разных областях. Способ замера величины дополнением также предусматривает наличие искомого значения и определенной меры, которая известна заранее. Только,в отличие от предыдущего способа, непосредственно измерение производится при сравнении не с рассчитываемым значением, а в условиях его же дополнения аналогичной величиной. Как правило, методы и средства измерений по такому принципу чаще используют в работе с физическими показателями характеристик объекта. В некотором смысле с данной методикой схож прием определения величин через замещение. Только в этом случае фактор коррекции обеспечивается не значением, которое аналогично искомой величине, а показаниями эталонного объекта.
Органолептический метод измерения
Это довольно необычное направление метрологии, которое основывается на применении человеческих органов чувств. При этом существуют две категории органолептических измерений. Например, поэлементный способ позволяет оценивать конкретного параметра объекта, не давая полной картины его характеристик и возможных эксплуатационных качеств. Вторая категория представляет комплексный подход, при котором метод измерения с помощью органов чувств дает более полное представление уже о разных параметрах объекта. Важно понимать, что комплексный анализ часто бывает полезен не столько как способ учета целой группы характеристик, сколько как инструмент оценки общей пригодности объекта в плане возможного использования по определенному назначению. Что касается практического применения органолептических способов, то с их помощью можно оценить, например, овальность или качество огранки цилиндрических деталей. В комплексном измерении этим методом можно получить представление о радиальном биении вала, которое как раз обнаружится после анализа той же овальности и характеристик внешней поверхности элемента.
Контактные и бесконтактные методы измерений
Принципы контактного и бесконтактного измерения имеют существенное различие. В случае с контактными приборами производится фиксация величины в непосредственной близости к объекту. Но, поскольку это не всегда возможно по причине наличия агрессивных сред и затрудненного доступа к месту замера, получил распространение и бесконтактный принцип расчета значений. Контактный метод измерения используется в определении таких величин, как масса, сила тока, габаритные параметры и т. д. Однако при измерении экстремально высокой температуры он не всегда возможен.
Бесконтактное измерение может выполняться специальными моделями пирометров и тепловизоров. В процессе работы они не находятся непосредственно в целевой среде замера, а взаимодействуют с ее излучением. В силу целого ряда причин методы измерения температуры по бесконтактному принципу не отличаются высокой точностью. Поэтому их задействуют лишь там, где нужно иметь представление о характеристиках определенных зон или участков.
Приборы измерения
Спектр средств измерения весьма обширен, даже если говорить о конкретной области отдельно. Например, для замера одной лишь температуры используют термометры, пирометры, те же тепловизоры и многофункциональные станции с функциями гигрометра и барометра. Для учета показаний влажности и температуры в комплексе последнее время используются логгеры, оснащенные чувствительными зондами. При оценке атмосферных условий зачастую используется и манометр – это прибор для измерения давления, который может дополняться и датчиками контроля газовых сред. Широкая группа аппаратов представлена и в сегменте средств измерения характеристик электрических цепей. Здесь можно выделить такие приборы, как вольтметр и амперметр. Опять же, как и в случае с метеостанциями, средства для учета параметров электрического поля могут быть универсальными – то есть учитывающими несколько параметров одновременно.
В традиционном понимании измерительный прибор – это инструмент, который дает информацию о той или иной величине, характерной для определенного объекта в данный момент. В ходе выполнения операции пользователь регистрирует показания и в дальнейшем на их основе принимает соответствующие решения. Но все чаще эти же приборы интегрируются в комплекс оборудования с автоматикой, которое на основе тех же зафиксированных показаний самостоятельно принимает решения, например, по коррекции рабочих параметров. В частности, контрольно-измерительные приборы и автоматика оборудования успешно совмещаются в комплексах газопроводных магистралей, в отопительных и вентиляционных системах и т. д. Например, учет давления в трубопроводе даст сигнал автоматической системе о повышении или повышении объемов подачи рабочей среды – воды или того же газа.
Измерения и погрешности
Практически любой измерительный процесс в определенной степени предполагает допущение отклонения в предоставляемых результатах относительно действительных значений. Погрешность может составлять и 0,001%, и 10%, и более. При этом выделяют случайные и систематические отклонения. Случайная погрешность результата измерения характеризуется тем, что она не подчиняется определенной закономерности. И напротив, систематические отклонения от действительных величин отличаются тем, что они сохраняют свои значения даже при многочисленных повторных измерениях.
Заключение
Производители измерительных приборов и узкоспециализированного метрологического оборудования стремятся разрабатывать все более функциональные и в то же время доступные в использовании модели. И это касается не только профессиональной аппаратуры, но и бытовых средств. Например, измерение тока можно осуществлять в домашних условиях с помощью мультиметра, фиксирующего несколько параметров одновременно. Это же можно сказать о приборах, работающих с показаниями давления, влажности и температуры, которые наделяются широким функционалом и современной эргономикой. Правда, если стоит задача регистрации конкретной величины, то эксперты все же рекомендуют обращаться к специальным устройствам, работающим только с целевым параметром. У них, как правило, выше точность замера, которая зачастую имеет решающее значение при оценке рабочих качеств аппаратуры.
fb.ru
2.4. Виды и методы измерений
Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой–либо физической величины.
Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.
По характеру зависимости измеряемой величины от времени измерения разделяются на:
статические, при которых измеряемая величина остается постоянной во времени;
динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.
Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими – измерения пульсирующих давлений, вибраций.
По числу измерений они делятся на однократные и многократные. Однократным называют измерение, выполненное один раз. Многократным называют измерение физической величины одного размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений. Многократное измерение выполняют в случае, когда случайная составляющая погрешности однократного измерения может превысить требуемые по условиям задачи значение. Выполнив ряд последовательных отдельных измерений, получают одно многократное измерение, погрешность которого может быть уменьшена методами математической статистики.
По способу получения результатов измерений их разделяют на:
прямые;
косвенные;
совокупные;
совместные.
Прямые – это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q – искомое значение измеряемой величины, а X – значение, непосредственно получаемое из опытных данных.
При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры).
Косвенные – это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Q = F(x1,x2,…,xn), где Q – искомое значение косвенно измеряемой величины; F – функциональная зависимость, которая заранее известна, x1,x2,…,xn – значения величин, измеренных прямым способом.
Совокупные – это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.
Совместные – это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.
По условиям, определяющим точность результата, измерения делятся на три класса:
измерения максимально возможной точности, достижимой при существующем уровне техники. К этому же классу относятся и некоторые специальные измерения, требующие высокой точности;
контрольно–поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения;
технические измерения, в которых погрешность результата определяется характеристиками средств измерений.
По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.
Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.
Существуют и другие классификации измерений, например, по связи с объектом (контактные и бесконтактные), по условиям измерений (равноточные и неравноточные).
Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.
Принцип измерений – физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.
В настоящее время все измерения в соответствии с физическими законами, используемыми при их проведении, сгруппированы в 13 видов измерений. Им в соответствии с классификацией были присвоены двухразрядные коды видов измерений: геометрические (27), механические (28), расхода, вместимости, уровня (29), давления и вакуума (30), физико–химические (31), температурные и теплофизические (32), времени и частоты (33), электрические и магнитные (34), радиоэлектронные (35), виброакустические (36), оптические (37), параметров ионизирующих излучений (38), биомедицинские (39).
Метод измерений – совокупность приемов использования принципов и средств измерений.
Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Как правило, метод измерений обусловлен устройством средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства. Примерами распространенных методов измерений являются следующие методы:
метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений. Например, взвешивание на циферблатных весах или измерение давления пружинным манометром;
дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Этот метод может дать очень точные результаты. Так, если разность составляет 0,1 % измеряемой величины и оценивается прибором с точностью до 1 %, то точность измерения искомой величины составит уже 0,001 %. Например, при сравнении одинаковых линейных мер, где разность между ними определяется окулярным микрометром, позволяющим ее оценить до десятых долей микрона;
нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Мера – средство измерений, предназначенное для воспроизведения и хранения физической величины. Например, измерение массы на равноплечных весах при помощи гирь. Принадлежит к числу очень точных методов.
метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока на компенсаторе сравнением с известной ЭДС нормального элемента. Результат измерения при этом методе либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры. Существуют различные модификации этого метода: метод измерения замещением (измеряемую величину замещают мерой с известным значением величины, например, при взвешивании поочередным помещением массы и гирь на одну и ту же чашку весов) и метод измерений дополнением (значение измеряемой меры дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению).
Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также размером погрешности.
Погрешность измерений – разность между полученным при измерении и истинным значениями измеряемой величины. Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.
Точность измерений – это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины. Количественно точность можно выразить величиной, обратной модулю относительной погрешности.
Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.
Важнейшей характеристикой качества измерений является их достоверность. Она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.
Сходимость (повторяемость) – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполненных повторно одними и теми же средствами измерений, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.
Воспроизводимость – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполняемых в различных условиях (в различное время, различными средствами и т.д.).
studfiles.net
8. Понятие измерения. Классификация измерений.
Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.
Существует 4 основных вида измерений:
1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .
2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.
3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.
4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.
Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.
9. Метод измерений. Классификация методов измерения.
Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.
Оба эти метода делятся на следующие:
1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)
2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.
3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.
Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.
Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.
studfiles.net
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.