19.01.2025

Схема магнето зажигания: Зажигание от магнето | ЖЕЛЕЗНЫЙ-КОНЬ.РФ

Содержание

Системы зажигания от магнето

Магнето — это электромагнитная машина, которая вырабатывает ток низкого напряжения, преобразует его в ток высокого напряжения и распределяет по свечам зажигания. Работая без постороннего источника электрической энергии, магнето объединяет в себе генератор переменного тока низкого напряжения, прерыватель, конденсатор и трансформатор тока высокого напряжения с распределителем (в магнето одноцилиндрового двигателя распределителя тока нет).

На тракторных двигателях наибольшее распространение получило магнето с неподвижными обмотками и вращающимся магнитом. Магнето бывают правого и левого вращения, а по числу искр за один оборот ротора они делятся на двухискровые, четырехискровые и шестиискровые.

Магнето с вращающимся магнитом имеет неподвижный П-образный магнитопровод (рис. 181), между полюсными наконечниками которого вращается двухполюсный или многополюсный магнит 1. В верхней части магнитопровода установлен сердечник магнитопровода с первичной и вторичной обмотками, которые образуют трансформатор тока высокого напряжения. Один из концов первичной обмотки присоединяют к сердечнику, т. е. к массе, а второй — к неподвижной изолированной клемме пе-рывателя 3. Вторичная обмотка одним концом соединяется с первичной обмоткой и через нее с массой, а вторым — с зажимом свечи зажигания.

Магнит находится в корпусе магнето и приводится во вращение от коленчатого вала двигателя. На одном валу. Общие сведения с магнитом находится кулачок прерывателя 3. Параллельно контактам пре- Для проворачивания коленчатого ва-рывателя подключен конденсатор, ла двигателя в период пуска применяет-уменьшающий искрение в контактах пре- ся стартер, питаемый от аккумулятор-рывателя и увеличивающий напряжение ной батареи. Стартер представляет со-во вторичной обмотке. бой электродвигатель постоянного тока Первичная обмотка и вращающийся последовательного возбуждения с мехамагнит образуют в магнето генератор низмом привода и включающим уст-переменного тока низкого напряжения, ройством.

У стартера обмотка возбуждения соединена последовательно с обмоткой якоря. Электродвигатели такого типа развивают максимальный пусковой момент при торможении якоря. Это качество необходимо в начальный период вращения двигателя при пуске, когда момент сопротивления вращения имеет также максимальную величину. Обмотки якоря и обмотки возбуждения стартера обладают минимальным сопротивлением, так как имеют незначительную длину и большое сечение. При включении стартера или полном торможении якоря величина пускового тока у стартеров различного типа достигает 300—800 А. По мере возрастания частоты вращения коленчатого вала крутящий момент, а вместе с ним и мощность, развиваемая стартером, уменьшаются. Мощность стартера зависит от типа и размеров двигателя и может достигать кВт.

Системы зажигания автомобиля

Автомобильный мотор еще в первых своих модификациях представлял собой сложную конструкцию, состоящую из ряда систем, работающих воедино. Одним из основных компонентов любого бензинового мотора является система зажигания. Об ее устройстве, разновидностях и особенностях мы сегодня и поговорим.

Система зажигания

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.

Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.

Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.

Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом. Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия. Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.

Простейшая схема

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.

Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Система контактного зажигания двигателей Д4 – Д5

Катушки индуктивности

Схема зажигания от магнето

Как и в двигателях Д6 и Д8, также и в Д5 и Д5 используется классическое зажигание от магнето. Для него не нужен аккумулятор, энергия (электро движущая сила) вырабатывается при быстром поворачивании магнита (насаженного на коленчатый вал двигателя) в «рамке» из трансформаторного железа, на которую намотаны катушки (рамка в сборе, с катушками, называется также «подковой»). Катушки важны, они преобразовывают ЭДС в собственно искру. Хоть с виду катушка на «подкове» и одна, на самом деле их там две – низковольтная, которая собственно и выдаёт энергию, она намотана из относительно толстого провода, и высоковольтная, которая низкое напряжение преобразует в высоковольтную искру, которую, собственно, и видно на свече. Провод высоковольтной катушки достаточно тонкий, перемотать её в домашних условиях не так уж просто. В двигателе Д8 высоковольтная катушка – выносная, крепится снаружи, но в Д4 и 5 – она встроена, намотана на «подкову». Первичная, низковольтная обмотка индукционной катушки Д4-5 изготовлена из проволоки диаметром 0,64 мм и имеет 160 витков. У высоковольтной обмотки 8000 витков при диаметре проволоки 0,06 мм, причём каждый слой витков отделяется от ниже лежащего изолирующим слоем из стекловолокна.

Слабое место моторов Д4-5 — катушка зажигания, обмотки высоковольтной катушки замыкаются друг с другом, или вообще теряется проводимость. Результат — «слабая искра». Нормальная искра между контактами свечи — синяя, видимо толстая, чем толще, тем лучше. Если искра красноватая, рыжая — нехорошо, возможно, её не хватит, чтобы зажечь смесь.

Чтобы надёжно проверить катушку зажигания приборным методом, оные приборы нужны такие, которые в сервисах и гаражах не встречается. Обычным тестером (или лампочкой с батарейкой) можно разве что проверить, нет ли в ней обрыва, и нет ли замыкания на «массу». Для этого провод, который выходит из катушки, отсоединяем от контакта и конденсатора, и смотрим контакт между проводом и латунным лепестком, он должен быть. Также должен быть контакт между лепестком и «массой». Разница между сопротивлением «вывод провода-масса» и «лепесток-масса» есть, но простеньким тестером почти неразличима. Если там, где надо — контакт есть, то-есть нет обрыва провода, то проверить, работает ли катушка, можно только экспериментальным путём — установив на заведомо исправный двигатель с отрегулированным карбюратором и попробовав его завести. К сожалению, из-за пробоев между витками катушки, которые нельзя увидеть и замерить в гараже, бывает и так, что искра на воздухе, на свече даже — есть, видна, синяя (правда, тонкая), но бензомасляную смесь в цилиндре, под давлением — всё равно не зажигает.

Катушка зажигания без обрыва, нормальная:

Магнит:

От того, насколько сильный магнит , как хорошо он «притягивает», зависит и то, какую энергию выдаст магнето. Иногда, хоть и редко, магнит размагничивается (от весьма сильного нагрева, например), что приводит к «слабой искре».

Магнит в моторе Д4-5 посажен на коленвал на шпонку, повернуть его (исправный) на валу невозможно. Сбитый, шатающийся магнит на двигателе Д4 (в отличие от Д6) встречается крайне редко, и сам практически не ломается. Если не планируется полная разборка двигателя на части — снимать магнит нет никакой необходимости! Также шпонкой на нужный угол фиксируется и кулачок прерывателя, так что существует теоретическая возможность сняв магнит, посадить его на вал неправильной стороной.

Магнит, вращаясь, вырабатывает энергию, которая и проскакивает искрой в зазоре свечи. Чтобы искра проскакивала в нужный момент (это важно для того, чтобы двигатель работал), в системе зажигания двигателей Д есть контактная группа, т.н. «контактики».

Контактная группа

Кулачок (неровный валик) насаженный поверх магнита на коленвалу, разжимает контакты, надавливая на молоточек прерывателя (коричневая деталька, которая выступом скользит по кулачку). В момент размыкания контактов, когда кулачок, повернувшись толстой частью, отжимает молоточек с подвижным контактом, и проскакивает искра на свече. Поэтому, регулируя зажигание смотрят, когда контакты разжимаются.

Конденсатор в системе нужен для того, чтобы контакты не слишком искрили и не обгорали.

Высоковольтный провод и наконечники

На выходе высоковольтной катушки (латунный язычок с торца «подковы») уже идёт высокое напряжение (8000-12000 В), которое стремиться «перескочить» на массу, поэтому от этого язычка идёт толстый и хорошо изолированный высоковольтный провод. Простой провод вместо специального работать если и будет, то не так хорошо. Вообще без провода, с неподсоединённым к свече наконечником, или с не соединённой с «массой» свечой – ездить весьма вредно для двигателя, высокое напряжение, «искра», всё равно вырабатывается, и, не имея возможности пройти по предусмотренному пути, ищет другие проходы, прожигая изоляцию катушек, портя зажигание!

Провод, также, по моему опыту — не годится современный автомобильный. То ли он подразумевает куда большее напряжение, то ли ещё что, но мне кажется, что с классическим металлическим — работает устойчивей, чем с современным высоковольтным проводом.

Ещё момент, связанный с проводом — стандартные Советские наконечники на высоковольтный провод содержат «подавительное сопротивление», резистор аж на 10 килоом. Оно там включено, чтобы подавлять электромагнитные помехи, создаваемые системой зажигания. Но, во-первых, современные приборы не так уж и чувствительны к помехам, и во-вторых, на преодоление сопротивления уходит энергия, и «искра слабее». Так что общая рекомендация — вынуть сопртивление. Для этого захватываем «утконосами» винт, который ввинчивается в середину провода, и выкручиваем его. Можно ВД-40 предварительно пшикнуть. Затем вынимаем резистор (чёрный цилиндрик) и родную пружинку, и заменяем её более длинной пружинкой, например, от авторучки.

Соответственно, если задача, наоборот, защитится от помех — то резистор в цепь добавляем, можно ещё экранировать сам провод (использовать коаксиальный, скажем), вернуть на место (найти, согнуть схожий) металлический кожушок на наконечник провода.

Свеча зажигания

В инструкции к двигателю Д4 рекомендуется использование свечи А11, с короткой резьбой. Свечу с длинной резьбой, «автомобильную» без переходника применять нельзя! Кроме рекомендованной А11 без особых негативных последствий можно применять и А14. Признак правильно подобранной свечи — после сотни пройденных километров изолятор светло-коричневого или светло-серого цвета.

Иностранные аналоги А11 и А14 — N19 и N17 для Brisk, W8 и W9 для Bosch, B5 и B6 для NGK. Если первые цифры-буквы в индексе свечи соответствующего производителя другие — то эта свеча не совсем подходит для Д4 и Д5. Для Д6 и Д8 допустимо применение свечей и с большим калильным числом, но именно Д4 с родным цилиндром — достаточно сильно дефорсированный, его «родная» свеча — А11.

Зазор на свече (расстояние между элктродами свечи) рекомендован около 0,5 мм., но из-за слабости высоковольтной катушки Д4 зазор можно чуть уменьшить, до 0,3. скажем. Это — 2-3 бритвенных лезвия.

При использовании некачественного масла (особенно отработанного масла. которое быстро портит двигатель и свечу) электроды могут засорится продуктами неполного сгорания (в случае с «отработкой» — ещё и проводящими продуктами, так как она содержит металлические частицы). Обжигать свечу на огне нельзя, так риск испортить свечу куда больше, чем возможность её почистить. От чрезмерной температуры потрескается керамика внутри, и из-за трещин свеча выйдет из строя намного раньше. Свечу промываем в ацетоне, чистим щёткой, можно — мягкой проволочной. Но опять же, как правило — хватает просто несколько раз провести между контактами тряпочкой.

Обеспечение чистоты проводов и контактов

Общая рекомендация про вообще всякие провода и контакты — держать их в чистоте! В наконечниках высоковольтного провода не должно быть абсолютно никакой ржавчины, масла, грязи. Также и сами «контактики» у магнита тоже рекомендуется протереть тщательно спиртом, ацетоном или чем-то подобным. Слой масла с частичками металла — проводит, энергия теряется, результат — «слабая искра». Ещё аспект, на что стоит обратить внимание, чистя систему зажигания — неподвижный контакт должен быть изолирован от «массы». Если от него отсоединить вывод катушки и конденсатора — то контакта с «массой» не должно быть.

Ещё на что стоит обратить внимание в связи с обеспечением чистоты и надёжности — тот конец высоковольтного провода. что прилегает к «лепестку» выхода, должен выглядеть так:

то-есть стержнёк, вставляющийся в центр провода, и пружинка, прижимающаяся к лепестку. Разлохмаченные и замасленные жилки — недопустимы, искра по ним может, и пройдёт, но часть её энергии, нужная для поджигания смеси, уйдёт на преодоление нечёткого контакта в этом пучке.

Контакты, те, что размыкает кулачок — нельзя чистить наждачной бумагой, они должны как можно плотнее друг к другу прилегать, быть совершенно плоскими, и если уж чистить — то мелким-мелким надфилем, проводя его между зажатыми контактами. А проводя гибкой наждачкой — только закруглим края, сделав контакт выпуклым, ухудшив прилегание. К слову, по-настоящему требующие такой жёсткой чистки, обгоревшие контакты на двигателях Д — большая редкость, в подавляющем большинстве случаев хватает просто протереть тряпочкой, смоченной в ацетоне или спирте.

В собранном виде — тестером или лампочкой удостоверьтесь, что от латунного лепестка и до центрального электрода свечи — совершенно чёткий и надёжный контакт, чистое соединение.

Настройка зажигания

Искра должна проскакивать в нужный момент, чтобы зажжённая искрой смесь смогла дольше всего давить на поршень. Этот момент (когда должна проскочить искра) — когда поршень немного не дошёл до верхней мёртвой точки — точки, после которой он начнёт опускаться. Немного раньше надо зажечь потому, что бензо-масляно-воздушная смесь в цилиндре не взрывается мгновенно, а горит с некоторой не такой уж большой скоростью. Соответственно, момент зажигания надо подобрать так, чтобы максимально разгорелось, когда поршень начнёт идти вниз. Это и есть «опережение зажигания». В двигателе Д5 угол опережения постоянный, т. е. при работе двигателя его величина не изменяется.

Опережение зажигания выражается либо в градусах угла поворота коленчатого вала, либо в миллиметрах хода поршня относительно в. м. т. В двигателях Д5 и Д6 опережение зажигания по углу поворота коленчатого вала равно 30°, что соответствует 3,5 мм хода поршня до верхней мёртвой точки.

На практике это выражается в том, что настраивая зажигание, надо добиться того, что контакты размыкаются тогда, когда поршень не дошёл 3,5 мм до верхней точки.

Определить момент, когда контакты размыкаются, можно двумя способами: 1) точнее подключить тестер или лампочку через контакты, когда погаснет — они и разомкнулись; 2) но можно и вставить между ними тоненькую, папиросную бумажку — когда бумажка выпадет, тогда контакты и разомкнулись. NB! Если смотреть со стороны зажигания — коленвал крутится по часовой стрелке.

Осталось замерить, когда же поршень в тех самых 3,5 мм до ВМТ. Проще всего это сделать специальным приборчиком, который вворачивается в свечное отверстие. Но можно и штангенциркулем, или же совсем просто — любым стержнем. Выкрутив свечу, по центру опускаем в цилиндр стержень. Медленно крутим коленвал, пока стержень выталкивает. Когда перестаёт выталкивать — в ВМТ, делаем на стержне отметку на уровне среза цилиндра. Затем стержень вытаскивем, и отмечаем на нём 3,5 миллиметра ниже отметки ВМТ.

Затем, руководствуясь рисунками ниже по тексту, добиваемся того, чтобы контакты размыкались в тот момент, когда риска на стержне (3,5 мм до ВМТ) как раз показывается на срезе цилиндра, благо на Д4 и Д5 это увидеть несложно.

Настройка зажигания Д4

Настройка зажигания Д5

Электронное зажигание

Конструктивно обусловленные проблемы с зажиганием Д4 и Д5 можно решить радикально — установив катушку и электронный блок конденсаторного зажигания от китайского аналога, КД. Размер магнита и посадочные места катушки — полностью совпадают. Угол посадки магнита (расположение шпонки) — менять не надо, всё совпадает и работает.

Также отмечено, что, регулируя зажигание, в те периоды, когда контакты разомкнуты — стоит добится того, чтобы зазор при разомкнутых контактах не был слишком большим (больше 0,5-0,8 мм), иначе может уменьшится мощность пробивающей искры.

Типичные неисправности зажигания:

1. Закоптило/залило свечу (переобогащённая смесь) и искры в ней нет. Лечение: прочистить (залитую — вымыть в ацетоне или в бензине без масла и высушить (можно немного, осторожно подогреть), закопчённую — чистить механически, зубочисткой и металл. щёткой, хотя иногда промывка ацетоном тоже помогает) или заменить свечу на чистую.

2. Испортился резистор в уголке. Починка -з аменить резистор на новый, если вам важна помехозащищённость, или (проще и надёжней) вообще убрать его, заменив на пружинку. В полевых условиях, если уголок не раскручивается а другого нет, непосредственно прицепить высоковольтный провод к свече без уголка. Как только появится возможность — вернуть наконечник, просто примотанный провод склонен отваливаться.

3. Закоротило либо провод прерывателя/конденсатора либо высоковольтный на массу (найти и устранить короткое замыкание)

4. В прерывателе разболтались заклёпки и он коротит на землю. (либо срезать заклёпки, делать новые прокладки и собирать на винтах, либо менять прерыватель. Идея повернуть контакт так, чтобы не коротило — плохая, опять закоротит)» Спорно, применимо ли это к Д5.

5. Исчез контакт между катушкой-прерывателем конденсатором (отвинтился винт или резьбу срезало, винт улетел или обломало чей-то вывод — восстановить контакт. Если срезало резьбу, винт фиксировать гайкой). Такое случается часто — см. раздел про чистку контактов.

6. Пробило катушку или конденсатор (это лечится только заменой. Но сначала надо убедиться, что это именно так. Отдельное слово по пробою и обрыву катушки — для двигателей Д4, Д5, Д6 (т.е. без внешней катушки) можно, если штатная первичка цела, прицепить внешнюю катушку. )

7. Оборвало катушку или конденсатор (в общем-то то же, что и для пробоя. Одно НО: для двигателей Д4-6 есть шанс, что вторичку оборвало у высоковольтного вывода. Тогда КРАЙНЕ АККУРАТНО снимаем изоляцию с катушки, находим обрыв и заново собираем, крайне качественно изолируя. Например, »’Новичок»’ после такого тщательно замотал катушку лакотканью, а поверх — тканью, пропитанной эпоксидкой (до герметичности всей катушки))

8. Замаслило прерыватель (неисправен сальник) (заменить сальник, промыть и высушить прерыватель). Также для чистоты пространства отсека зажигания — хорошо в угол положить чистую и сухую ватку, она будет вбирать масло.

9. Развинтились винты крепления прерывателя и он всегда замкнут. (настроить прерыватель, хорошо завинтить винты, подложив под них гровер) См. раздел «Настройка зажигания».

10. Срезало шпонку между коленвалом и магнитом или кулачком.

11. При сборке Д4-Д5 магнит был перевёрнут (перевернуть обратно). Иагнит несимметричный, хоть таким и кажется, и правильный способ установки (например, верхняя сторона) на нём никак не помечен. Но при неправильной установке зажигание работать не будет!) Поэтому если уж очень надо снять магнит — пометьте внешнюю сторону.

Сергей Sbech



Обсуждение статьи «Система контактного зажигания двигателей Д4 – Д5»

Зажигание бензопилы Урал | Новости в строительстве

Зажигание бензопилы Урал является  довольно простым устройством , но достаточно надежным в работе.О том как отремонтировать систему зажигания бензопилы своими силами поговорим немного ниже.Система зажигания бензопилы Урал -2Т Электрон, состоит из магнето бесконтактного типа ЭМ-1,провода зажигания, маховика, изолятора с помехоподавляющим устройством и свечи зажигания.

Фото-1.Принципиальная электрическая схема магнето.

 

 

Электрическая схема магнето

На фото-1 вы можете посмотреть принципиальную электрическую схему магнето бензопилы Урал:- ЭМ-1.

 

 

 

 

 

 

Фото-2.Устройство магнето ЭМ-1 бензопилы Урал-2Т Электрон.

Внешний вид магнето ЭМ-1 бензопилы Урал-2Т Электрон.

Магнето бензопилы состоит из генераторной катушки-1,управляющей катушки-2,высоковольтного трансформатора-3,основания магнето-4,ВВТ -высоковольтного вывода-5,Риски установочного угла опережения-6,электронного блока-7,конденсатора-8.Полупроводниковые элементы бесконтактного магнето ЭМ-1 (тиристор,конденсатор и резистор,а также пять диодов) смонтированы в камере основания магнето и залиты специальным герметизирующим компаундом.

Таким образом, магнето работает как одно целое и в случае выхода из строя одного из установленных элементов, ремонту не подлежит.Просто выбрасывается и на его место устанавливают новое магнето.

Рекомендуем почитать статьи на эту тему на сайте http://stroivagon.ru :

1.Бензопила Урал ремонт и эксплуатация.

2.Устройство карбюратора бензопилы Урал.

 

3. Стартер бензопилы Урал

Зажигание бензопилы Урал,принцип работы магнето ЭМ-1.

Магнето ЭМ-1 обеспечивает на свече начало искрообразования при частоте вращения маховика бензопилы 400-600 оборотов в минуту.Поэтому магнето проверяется на искрообразование только с помощью установленного стартера. С помощью стартера  осуществляется вращение коленчатого вала двигателя бензопилы. При этом необходимо знать и учитывать при проверке, магнето бензопилы вырабатывает искру у которой температура значительно выше температуры искры вырабатываемой контактным магнето.

При этом искра при ярком солнечном свете трудно просматривается.Также необходимо знать и учитывать тот факт, что магнето бензопилы нормально работает при температуре корпуса магнето до 85 градусов.В случае превышения температуры корпуса, магнето может выходит из строя.По этому в процессе использования бензопилы, целесообразно делать перерывы в работе,которые обеспечивают охлаждение магнето.

Магнето ЭМ-1 устанавливается в картере бензопилы на двух шпильках и крепится с помощью гаек (смотри фото-2).В случае когда магнето выходит из строя его следует заменить на новый.При этом установку угла опережения зажигания проводят следующим образом: против риски-6 на магнето ставят риску 6 на картере бензопилы (смотри фото-2).Искра в свече зажигания,то есть между ее электродами  появляется в момент когда поршень бензопилы не доходит до В.М.Т. на 3.66 мм.

Появление искры соответствует углу поворота коленчатого вала бензопилы на 29 градусов до В.М.Т.,который и является в действительности углом опережения зажигания.Поэтому, при проведение ремонтных или регламентных работ а также извлечения магнето ЭМ-1,указанные риски всегда следует совместить.

Зажигание бензопилы Урал, извлечение маховика

 

Маховик бензопилы является четырехполюсным и устанавливается на коленчатом вале двигателя бензопилы.

Фото-3.Четырехполюсный маховик бензопилы.

Внешний вид четырехполюсного маховика бензопилы.

На коленчатом вале фиксируется шпонкой и крепится гайкой.Храповик крепится в ступице маховика и служит для пуска двигателя.Рассмотрим случай как необходимо извлечь маховик для того чтобы добраться до магнето и отремонтировать.Маховик извлекается очень просто и легко с помощью храповика,но как это сделать покажу немного ниже.

 

 

Фото-3.1.Блокируем вращение коленчатого вала.

 

 

Блокируем вращение коленчатого вала.

Для того чтобы извлечь маховик, необходимо открутить сперва храповик.Храповик вращается вместе с коленчатым валом, поэтому прежде чем его откручивать, следует заблокировать вращение коленчатого вала.Вращение коленчатого вала блокируем со стороны установки ведущей муфты.

 

 

 

 

 

 

Фото-4.Вставляем в храповик шайбу.

 

 

Способ извлечения храповика

Следующим нашим шагом после блокировки коленчатого вала является извлечение храповика.Далее в храповик вставляем обыкновенную шайбу и закручиваем храповик обратно.

 

 

 

 

Фото-5.Закручиваем храповик с установленной шайбой обратно.

 

 

Использование гаечного ключа для закручивания храповика

Для закручивания храповика блокируем вращение коленчатого вала и используем гаечный ключ.Одновременно с закручиванием храповика происходит и само извлечение маховика с коленчатого вала.Маховик извлекается только таким способом,то есть с помощью храповика!

 

 

 

 

Фото-6.Извлечение маховика.

 

 

Извлечение маховика с коленчатого вала

Извлекаем маховик и принимаемся далее за ремонт магнето.Как я уже говорил немного выше,магнето не ремонтируется, поэтому его извлекают и выбрасывают.А на его место устанавливают новый и совмещают риски.

Продолжение статьи Бензопила Урал

 

 

 

 

 

 

*****

РЕКОМЕНДУЕМ выполнить перепост статьи в соцсетях!

*****

Система зажигания от магнето высокого напряжения

СИСТЕМА ЗАЖИГАНИЯ ОТ МАГНЕТО ВЫСОКОГО НАПРЯЖЕНИЯ  [c. 96]

Система зажигания от магнето высокого напряжения  [c.97]

В том случае, когда система зажигания питается от магнитоэлектрической машины (генератора переменного тока), в которой также происходит и преобразование тока низкого напряжения в ток высокого напряжения, такую систему называют зажиганием от магнето высокого напряжения.  [c.61]












Источниками при батарейном зажигании являются аккумуляторная батарея и генератор. В систему зажигания, кроме источников тока, входят запальные свечи, провода, индукционная катушка и распределитель с приспособлением для регулирования момента зажигания. При зажигании от магнето высокого напряжения система состоит из магнето, проводов и запальных свечей.  [c.172]

Газовые двигатели работают с повышенной степенью сжатия, поэтому система зажигания для обеспечения надежной искры должна развивать напряжение до 25 ООО В. В газовых двигателях применяется зажигание от аккумуляторных батарей и магнето. Преимущественное распространение имеет система зажигания от магнето. Применяют две схемы зажигания от магнето низкого напряжения с индукционными катушками (рис. 84, а) и от магнето высокого напряжения без индукционных катушек (рис. 84, б).  [c.195]

Система зажигания от магнето отличается от батарейной системы зажигания тем, что все приборы, кроме проводов высокого напряжения и свечей зажигания, скомпонованы в одном агрегате — магнето. Ток в первичной цепи создается переменным магнитным потоком, возникающим в сердечнике катушки зажигания. Размыкание контактов первичной цепи происходит в тот момент, когда сила тока в этой цепи достигает максимума.  [c.166]

Описанная схема электрооборудования на постоянном токе является типичной и широко применяется в автомобилях, тракторах и тяжелых мотоциклах. В сельскохозяйственных тракторах малой и средней мощности и частично в малолитражных мотоциклах применяется упрощенная схема с генератором переменного тока без аккумуляторной батареи и стартера. В этом случае зажигание осуществляется от магнето высокого напряжения, а генератор переменного тока выполняется с возбуждением от постоянных магнитов и питает несколько ламп. Такая система отличается высокой надежностью действия, но работает только при вращающемся двигателе и имеет худшие характеристики, чем описанная выше традиционная система постоянного тока.  [c.9]

Система зажигания — батарейная или от магнето высокого напряжения типа СС-6.  [c.70]

В газовых двигателях достаточно широкое распространение получила система зажигания от электрической искры, получаемой от магнето высокого напряжения или от батарейной системы.  [c.172]












Конструктивно система зажигания от магнето отличается от системы батарейного зажигания тем, что псе приборы системы, кроме проводов высокого напряжения и свечей зажигания, скомпонованы в одном агрегате — магнето.[c.174]

Система зажигания. В двигателе применяется система зажигания от магнето, состоящая из двух магнето, 28 свечей зажигания и экранированных проводов высокого напряжения.  [c.202]

Система зажигания должна обеспечивать на электродах свечи высокое напряжение (не менее 12 ООО В) на всех режимах работы двигателя. В зависимости от источника питания системы подразделяются на системы батарейного зажигания и системы зажигания от магнето.  [c.122]

Система зажигания от магнето представляет собой магнитоэлектрическую машину небольших габаритов — магнето высокого напряжения, в котором источник переменного электрического тока, трансформатор (индукционная катушка), прерыватель и распределитель выполнены в одном агрегате. Магнето характеризуется более надежной и долговечной работой, но конструкция его сложна и дороже батарейной системы зажигания.  [c.122]

Система зажигания от магнето, так же как и система батарейного зажигания, создает в определенные моменты импульсы тока высокого напряжения, вызывающие проскакивание искры между электродами свечей. В отличие от системы батарейного зажигания, система зажигания магнето не нуждается в постороннем источнике тока, так как ток вырабатывается магнето, имеющим механический привод от двигателя. Магнето вырабатывает в первичной цепи ток низкого напряжения (первичный ток) и в момент зажигания превращает его в ток высокого напряжения (вторичный ток).  [c.238]

В системах зажигания от магнето имеются те же элементы, что и при батарейном зажигании распределитель тока высоко о напряжения, прерыватель с конденсатором, но вместо трансформатора-бобины применяется магнето, являющееся также источником тока-вместо аккумуляторной батареи.  [c.462]

Наиболее распространенной системой зажигания является электромагнитное зажигание с источником тока от магнето. В этом случае система зажигания состоит из индукционного магнето высокого напряжения и пускового ускорителя с ручным опережением зажигания, из  [c.214]

Принцип работы магнето такой же, как и батарейного зажигания, только ток в первичной обмотке магнето получается не от постороннего источника, а от электромагнитной индукции. В магнето высокого напряжения магнитная система, обмотки, прерыватель и распределитель объединены в один компактный аппарат. Магнето в противоположность батарейному зажиганию дает нормальное напряжение (свыше 10 ООО в) лишь начиная со 100—120 об/мин., при дальнейшем увеличении числа оборотов напряжение, развиваемое магнето, увеличивается.  [c.174]

Источником тока является магнитоэлектрический генератор (с возбуждением от постоянного магнита), от которого магнето получило свое название. Трансформирование тока, индуктированного в первичной обмотке трансформатора, в ток высокого напряжения и подвод последнего к свечам производится по такой же схеме, как и в системе батарейного зажигания, поэтому рабочий процесс магнето и батарейного зажигания имеет много общего.  [c.201]

Система зажиганиия от магнето состоит из двух магнето, 28 свечей зажигания и экранированных проводов высокого напряжения. Установка на двигателе двух магнето и двух свечей в каждом цилиндре обеспечивает максимальную надежность двигателя. Две свечи в каждом цилиндре уменьшают также склонность двигателя к детонации.  [c.285]

Система зажигания от магнето. Эта система итличается от батарейного зажигания тем, что ток для создания гскры на запальных свечах подводится не от батареп. а от магнето. Но напряжению магнето бывают низкого напряжения и высокого напряжения. В любом магнето различают магнитную цепь, состо- щую из магнита, полюсных наконечников (башмаков), магнитопро— ода, сердечника, катушки (якоря), п электрическую, состояш,ую нз  [c.219]












Искра возникает между электродами зажигательной свечи, устанавливаемой в головке цилиндра двигателя. Для возникновения искры необходимо к электродам свечи подвести высокое напряжение, обеспечивающее искровой разряд между электродами в требуемый момент. Высокое напряжение создается в специальном трансформаторе, в котором ток низкого напряжения преобразуется в ток высокого напряжения. В зависимости от источника тока низкого напряжения различают батарейную систему зажигания и систему зажигания от магнето. 6 первом случае трансформатором является катушка зажигания, включаемая во внешнюю цепь общей системы электрооборудования двигателя. Во втором случае все элементы, потребные для получения высокого напряжения, объединяются в одно целое особой магнито-электрической машиной, называемой магнето высокого напряжения. В обоих случаях для своевременного образования высокого напряжения требуется применение п р е-рывателя в цепи первичного тока. Кроме того, для подведения высокого напряжения в определенной последовательности  [c.393]

Рабочие цилиндры и верхняя часть картера отлиты в одном блоке. Втулки рабочих цилиндров — чугунные, вставные. Цилиндры имеют общую съемную головку. Коленчатый вал — цельнокованный, стальной. Шатун — штампованный, облегченного сечения. Вкладыш нижней головки шатуна — стальной, покрытый свинцовистой бронзой. Поршень отлит из алюминиевого сплава и снабжен компрессионными и маслосборными кольцами. Поршневой палец — плавающего типа. Распределительный вал приводится во вращение от коленчатого вала цилиндрическими шестернями. Газ и воздух к смесителю подаются по отдельным патрубкам. Система зажигания — магнето высокого напряжения, приводимое в движение от коленчатого вала двигателя через промежуточную шестерню.  [c.62]

Система зажигания имеет своеобразную компоновку. Для воспламенения газовоздушной смеси в цилиндре на каждой крышке двигателя расположено по две неразборные, экранированные свечи зажигания с индукционными катушками, предназначенными для преобразования импульсов тока низкого напряжения в импульсы высокого напряжения И создания разряда между электродами свечи. Такая компоновка системы зажйга-ния позволяет использовать низковольтные источники электрической энергии, что устраняет возможность искрения и возникновения пожара или взрыва. Ток низкого напряжения в зависимости от комплектации системы зажигания подводится к индукционным катушкам от двух низковольтных магнето или от бесконтактной тиристорной системы, состоящей из датчика-генератора и коммутатора, являющихся источниками импульсов низкого напряжения и распределителями их по цилиндрам согласно порядку работы двигателя.[c.275]

Система электрооборудования мотоблоков Мепол-Терра в качестве источника энергии имеет магдино типа Бош , расположенное на верхнем носке коленчатого вала двигателя. Для питания приборов световой сигнализации в магдино устанавливается индукционная катушка освещения. Катушка зажигания и катушка освещения располагаются на статоре магдино и повернуты друг относительно друга на 180 Первичная и вторичная обмотки системы зажигания помещены на металлическом сердечнике, заканчивающемся полюсными наконечниками. Аналогично выполнена и обмотка освещения. В момент, когда два постоянных магнита маховика находятся над полюсными наконечниками катушки зажигания, два других постоянных магнита располагаются над полюсными наконечниками обмотки освещения. При вращении магнето постоянные магниты обходят указанные обмотки, индуктируя в первичной обмотке катушки зажигания и обмотке освещения переменный ток низкого напряжения. При этом из-за наличия четырех магнитов и высокой частоты вращения коленчатого вала (4800 мин» ) достигается обеспечение приборов освещения практически постоянным по напряжению током. Подача напряжения на свечу зажигания осуществляется от катушки зажигания.  [c.124]


Система зажигания на бензопиле: схема работы, проверка, регулировка

Отдельный класс цепных пил в качестве силового агрегата использует бензиновые двигатели. Они обязательно оборудуются системой зажигания, отвечающей за своевременное воспламенение топливовоздушной смеси в цилиндрах посредством электрического разряда, пробивающего пространство между электродами свечей. От того, в какой момент возникает искра, зависит правильность работы мотора. Проверке технического состояния системы зажигания приобретенной бензиновой пилы следует уделить особое внимание. В специализированных магазинах оборудование продается в работоспособном виде, но если настройка оказалась сбитой, выставить зажигание на бензопиле можно и самостоятельно.

Устройство и принцип работы системы зажигания бензопилы

Стандартная система зажигания карбюраторного мотора состоит из:

  • магнето;
  • свечи зажигания;
  • электрокабеля, соединяющего их между собой;
  • клавиши отключения двигателя.

Схема зажигания бензопилы «Урал»

Магнето представляет собой вид генератора переменного тока, который снабжает электроэнергией свечи зажигания. Он состоит из неподвижной обмотки катушки индуктивности и постоянного магнита, закрепленного на маховике, вращающемся вместе с коленвалом бензинового мотора. Движущееся магнитное поле создает в низковольтной обмотке электродвижущую силу, которая преобразуется трансформатором в напряжение с потенциалом, достаточным для получения искры.

У контактных магнето первый вывод высоковольтной обмотки подключен к свече зажигания, а второй через механический выключатель – на землю. В определенный момент специальный элемент конструкции разводит контакты, что приводит к резкому повышению напряжения в сети и проскоку искры в межэлектродном пространстве свечи.

Для предотвращения перегрева и окисления контактов прерывателя в электрическую схему подключается конденсатор.

Схема зажигания бензопилы с бесконтактным магнето основана на работе управляющей катушки, играющей роль регулятора подачи напряжения. В электронный блок входят также диод, конденсатор и тиристор, пропускающий ток с напряжением определенной величины. При его открытии конденсатор интенсивно разряжается, образуя ток в витках первичной обмотки, который индуктируется в высоковольтное напряжение, дающее пробой на свече зажигания, установленной в цилиндре. Электрическая сеть работает в импульсном режиме в такт с поворотом коленчатого вала и поступательным движением цилиндров.

Угол опережения зажигания

Механическое устройство и заводская установка магнето обеспечивают совпадение времени разряда свечи с оптимальным положением движущегося поршня. Для четырехтактных бензиновых двигателей проскок искры должен происходить еще до прихода поршня в верхнюю мертвую точку — это объясняется тем, что процесс полного возгорания топливовоздушной смеси занимает определенное время. Скорость движения деталей двигателя сопоставима со скоростью воспламенения топлива, поэтому поршень с момента проскока искры до момента создания горящими газами экстремально высокого давления успевает пройти некоторый путь.

Для каждого двигателя существует угол опережения зажигания. Он равен выраженному в градусах повороту кривошипа с момента пробоя в межэлектродном пространстве свечи зажигания до момента, когда поршень окажется в верхней мертвой точке. Этот показатель зависит от многих параметров, включая конструктивные особенности двигателя и свойства топливной смеси.

На практике при массовом изготовлении двигателя на заводе индивидуальная регулировка зажигания каждого изделия не производится, а выставляются соответствующие метки на вращающихся деталях, которые должны быть совмещены при монтаже.

В каких случаях требуется настройка зажигания? Существуют основные симптомы сбоя в работе системы:

  • не заводится двигатель;
  • мотор работает, но с заметными перебоями;
  • наблюдается снижение мощности инструмента.

В этих случаях не следует торопиться обращаться в сервисный центр. Попробуйте сначала отрегулировать зажигание самостоятельно.

Порядок проверки и настройки правильной работы двигателя

Наиболее уязвимым элементом карбюраторного двигателя является свеча. Она же позволяет судить о вероятных причинах неисправности отдельных агрегатов бензинового мотора. Рекомендуется следующий порядок действий.

  1. Демонтировать свечу и произвести ее осмотр. Сухая свеча с легким коричневым оттенком электродов может считаться исправной.

    Нагар на свече зажигания

  2. При обнаружении следов топлива на свече следует проверить работу карбюратора, который дает в цилиндр избыточное количество бензина, заливая его. Наличие темного налета свидетельствует о вероятных изменениях в геометрии цилиндра или поршня.
  3. Если внешний вид свечи не выявил отклонений от нормы, проверяют работоспособность электрической схемы. Сначала высоковольтный кабель, подающий напряжение на свечу, подносят с небольшим зазором к цилиндру и приводят в движение шнур стартера. При этом должна возникать искра пробоя. Ее отсутствие может говорить о неисправности кабеля. В этом случае его проверяют тестером и меняют на исправный, если обнаружится его надлом или повреждение изоляции.
  4. В случае исправности высоковольтного кабеля следует проверить катушку зажигания и провод, идущий к кнопке отключения. Если визуальный осмотр не выявил явных повреждений, надо прозвонить катушку зажигания, сравнив показания тестера с характеристиками, указанными в инструкции по эксплуатации бензопилы. При обнаружении неисправности придется заменить весь блок на аналогичный.

Катушка зажигания бензопилы

В процессе установки на двигатель нового электрического модуля следует настроить зазор магнето. Оптимальное расстояние между маховиком и катушкой зажигания составляет для большинства бензопил 0,2-0,4 мм.

Зазор между магнето и маховиком

Для верности рекомендуется внимательно изучить документацию на приобретенную модель и следовать требованиям изготовителя.

При столь малом зазоре использовать для прямого измерения доступный измерительный инструмент не удастся. На практике для пилы Хускварна применяют шаблон в виде прокладки, вырезанной из тонкого и гибкого листового материала необходимой толщины. Его зажимают в пространстве между маховиком и катушкой при ее установке, а затем вытягивают наружу.

Чтобы не требовалось прибегать к регулировке зажигания, эксплуатируйте инструмент аккуратно, избегая ударов. В частности, это касается бензопил с электронными чипами в системе зажигания, так как они очень чувствительны к механическим повреждениям.

Ремонт магнето трактора нет искры

Регулировка и ремонт тракторного магнето

Источник и распределитель тока – вот как можно назвать магнето. Соответствующие разновидности тока применяются внутри карбюраторных двигателей, чтобы горючая смесь получала зажигание. Фактически благодаря данному механизму механическая энергия преобразовывается в электрическую. Тракторное магнето часто идёт в комплекте с ДВС.

Как работает магнето

Схема устройства будет иметь следующее описание:

  1. Напротив башмаков магнитопроводов располагаются полюсные наконечники от ротора.
  2. Трансформаторный сердечник способствует тому, что силовые линии из магнитов начинают замыкаться.
  3. Когда во время вращения магнит находится в 90-градусном положении – главным элементом становится зазор между наконечниками, башмаками.
  4. Обязательно пересечений линий магнита с витками обмоток у трансформатора. Электродвижущая сила благодаря этому приобретает индукцию. Зажигание в процессах тоже используется.

ЭДС воздействует на устройство так, что при использовании замкнутых контактов у трансформаторного сердечника появляется магнитный поток. В результате размыкания цепи из первичной её разновидности ток исчезает. Из-за этого магнитное поле резко сокращается.

Индукция ЭДС до 25 000 Вольт происходит при использовании вторичной обмотки. Самоиндукция у ЭДС до 300 В появится, только если размыкать контакты от первичной обмотки. Цепь первичного типа пускает самоиндукционный тон, из-за которого магнитный ток исчезает медленнее. Для таких ситуаций характерно снижение ЭДС для вторичной цепи.

Детали часто начинают обгорать при появлении искр у контактов. Подключение конденсатора к конструкции проводится с целью избежать подобных последствий. Тогда между контактами искра отсутствует у магнето, что это – описано выше.

Ротор легко повернуть в положение на 90 градусов. После первичную цепь размыкают прерывателем. Такой момент получил название абриса магнето.

Схема устройства

Характерно расположение трансформаторной части внутри магнето на трактор. Деталь напрессовывается на валу, способствует созданию тока с высоким напряжением. Ещё одна важная часть конструкции – ротор, постоянно выполняющий функцию постоянного магнита с вращением на двух подшипниках. Кулачок закрепляется спереди на роторном вале. На задней части располагается так называемый поводок. Как работает каждая часть, понять просто.

Когда устройство магнето монтируется на двигателе, предполагается вхождение провода в паз шестерни. Корпус закрывается соответствующей крышкой, которую используют в качестве базы для установки контактов от прерывателя, выводов у обмоток трансфоратора. Легкосъёмной крышкой закрывается и сам прерыватель.

Первичную обмотку обязательно присоединять к подвижному контакту, у которого присутствует изоляция от корпуса. Другой конец присоединяется к контакту, который остаётся неподвижным. Вторичная обмотка тоже должна соединяться со вторичной, одним из концов. Зажигательная свеча работает на центральном электроде, который соединяется с другим концом. С корпусом магнето и пускача также соединён боковой электрод свечи.

Настройка магнето

У каждого устройства свои особенности работы. Их требуется учитывать, когда настраивается механизм.

Для мотоблоков

Когда мотоблоки должны работать бесперебойно, применение тракторных магнето станет оптимальным решением. М-151 либо М-137А – допустимые варианты устройств, которые можно устанавливать в любых условиях. Монтаж производится на двигателе, с помощью фланцевых соединений. Достаточно использовать три маленькие шпильки.

М-151 – это двухдисковая разновидность, в которой присутствуют следующие компоненты:

  1. Ускоритель пуска.
  2. Кожух, снабжаемый распределителем.
  3. Пластина прерывателя.
  4. Трансформаторная часть.
  5. Крыша.
  6. Часть с ротором.
  7. Корпус.

Достаточная скорость передаётся к ротору благодаря пусковому ускорителю. Для этого применяются отдельные импульсы. Пуск и постоянное вращение двигателя приводят к появлению сильной искры.

Подобное устройство позволяет решить проблему, связанную с недолговечностью аккумуляторной части, которой снабжаются мотоблоки. Если заранее купить специальные переходники – воплотить идею в реальность будет проще. Конструкцию создают самостоятельно либо заказывают, обратившись в специализированные мастерские. Переходник создаётся при помощи автогена. Используется стальной лист с диаметром до 230 мм. Принцип работы из-за этого не меняется.

В случае с тракторами МТЗ

М 124-Б1 – разновидность устройств, которая обычно дополняет именно трактора. Магнето вращается вправо, 27 градусам при этом равен угол, при котором зажигание опережается. Полумуфта пускача ПД-10 приводит механизм в движение.

Двухконтактное магнето вместе с любыми разновидностями включает следующие узлы:

  1. Трансформаторный.
  2. Прерывательный.
  3. Роторный.

Роторная часть участвует при создании переменного тока. После энергия направляется к трансформатору, чтобы напряжение повысилось до максимального уровня. Один из последних этапов представляет собой передача тока прерывателю. Из-за этого снижается сила. Происходит уменьшение магнитного тока. Разряд-искра создаётся в электродах свечей, горячая смесь снабжается соответствующим зажиганием. Легко разобраться в том, как отрегулировать устройство.

 

Диагностика технического состояния

Диагностика проводится при выполнении следующего порядка действий:

  1. Первый этап – подведение высоковольтного кабеля к выводу с напряжением.
  2. На расстоянии около 0,5-0,7 сантиметров от корпуса устройства постоянно удерживается второй конец кабеля.
  3. Сохранение положения у провода. Далее идёт резкий поворот ротора по ходу вращения. Искра должна проскакивать в результате такого движения, если всё в порядке, магнето отрегулирован правильно. Если же искра отсутствует либо слишком слабая – велика вероятность того, что установка требует проведения проверки по неисправностям. При необходимости – проводится регулировка.
Часто встречающиеся неисправности, их ремонт

Вот лишь некоторые проблемы, с которыми владельцы магнето могут встречаться чаще всего:

  1. Сбои при искрообразовании. У такой ситуации несколько причин, способов устранения неполадки. К возможным проблемам относят: контакты подгорают, окисляются; регулировка по зазору нарушается; износилась рычажная подушка у прерывателя; конденсаторный элемент оказался пробитым. Если элемент вышел из строя, то проводится его полная замена. Когда проблема в зазорах – проводят их дополнительную регулировку. Контакты также меняются либо зачищаются полностью. Как настроить магнето, рассказывается и дальше.
  2. Полное отсутствие искры. Часто это происходит из-за того, что оборвалась трансформаторная проводка, произошло замыкание на массу либо пробился изоляционный слой, которым снабжается высоковольтный кабель. При появлении проблем с трансформатором узел подлежит обязательной замене. Можно устранить само замыкание либо поменять кабель, когда возникает пробой у изоляции.
  3. Пробитый конденсатор – наиболее вероятная причина появления слишком слабой искры. В этом случае деталь тоже подлежит обязательной замене.
Свеча и бронепровод

Рекомендуется отказаться от колпачков, применяемых для бронепроводов. Лучше использовать зажим типа «крокодил».

Сам бронепровод тоже требует дополнительной проверки. Это касается двух элементов:

  • Крепление в посадочном гнезде.
  • Цоколь под свечу.

Полная зачистка провода с каждого из концов на 2 миллиметра – отличный повод проведения проверки и ремонта. Можно проверить, используя другой бронепровод вместо того, что установлен изначально. Если свеча неисправна – её тоже меняют, ремонт детали не проводится.

Конденсатор

Он нужен, чтобы контакты не обгорали слишком сильно. Состоит из двух обкладок и изоляции, роль которой обычно играет фольга. Всё скатывается в один рулончик, размещается внутри корпуса. В некоторых случаях при повреждении корпус конденсаторы можно отрегулировать на наждаке. Важно, чтобы конструктивные части не перегревались в процессе работы. Настройка магнето после этого не поможет.

Иногда рекомендуется ставить сразу два конденсатора, тогда работа механизмов будет надёжнее и стабильнее.

О контактах прерывателя

Если они стали неисправными, первая рекомендация – зачистка поверхности при помощи специальной плоской абразивной пластины. Работа без проблем выполняется и плоским напильником, у которого мелкая насечка. Зачистка наждачной, стеклянной бумагой не даст необходимого результата. Контакты слишком быстро изнашиваются, ровную поверхность в этом случае не получить.

Контакты время от времени тоже требуют зачистки от налёта, регулирования зазоров между деталями. Главное – не потерять ни одну часть при разборке. Пружина контактов подлежит при неисправности либо выправляется в обратную сторону.

Катушка или трансформатор

Легко проводить ремонт магнето трактора для таких деталей. Эта же часть двигателя редко выходит из строя, она может бесперебойно проработать на протяжении длительного срока. Если же деталь пришла в негодность – то надо её заменить, на точно такую же, но рабочую модель.

Ротор

Главное – чтобы он не крошился, не разбивался в процессе эксплуатации. Время от времени ротор способен размагничиваться. Если деталь действительно оказалась испорченной, то её меняют. Главное – не забыть удалить осколки металла, иногда они остаются внутри корпуса магнето. Отдельного осмотра и смазки требуют подшипники.

Заключение

В работе каждого механизма время от времени происходят сбои. Но ничего страшного не произойдёт, если вовремя справиться с проблемой. Первые шаги – снятие крышки, проверка на наличие повреждённых проводов, изоляции с дефектами. Загрязнения корпуса, его замасленность – популярные причины сбоев в работе. Достаточно потратить некоторое время, чтобы разобраться с проблемами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ремонт магнето от А до Я: диагностируем, чиним и настраиваем узел самостоятельно

Для осуществления запуска силового агрегата необходимо качественное воспламенение горючей смесь, для чего используется высоковольтный заряд. Именно такой заряд позволяет выдавать магнето. Подробнее о том, какой принцип действия этого устройства и в каких случаях необходим ремонт магнето, вы сможете узнать из этой статьи.

Перед тем, как проверить катушку и отрегулировать ее, давайте разберемся в принципе работы узла. При вращении магнита происходит возбуждение тока в первичной обмотке, которая замкнута с помощью контактов прерывательного устройства. В тот момент, когда сила тока на первичном участке достигает максимального значения, на прерывательном механизме происходит размыкание контактов. Соответственно, это приводит к разрыву первичного тока.

В итоге исчезает и магнитное поле, создающееся с помощью первичного тока. Из-за изменения магнитного поля на вторичном участке цепи происходит образование высоковольтного напряжения. Это напряжение может пробить целый зазор между электродами свечи. Когда ротор магнето продолжает вращаться, это приводит к появлению новой искры.

Раритетное магнето для автомобилей 1920-1930 г.в.

Диагностика технического состояния узла

Что касается диагностики, то она осуществляется следующим образом:

  1. Сначала необходимо подключить высоковольтный кабель к выводу напряжения.
  2. Второй конец кабеля следует удерживать на расстоянии около 0.5-0.7 см от корпуса устройства.
  3. В таком положении провода необходимо резко провернуть ротор по ходу вращения. Если магнето отрегулированное, то в результате поворота ротора между контактом провода и корпусом должна проскочить искра. Если она отсутствие или же слишком слабая, еле заметная, вероятнее всего, устройство нужно проверить на предмет неисправностей и, при необходимости, отрегулировать.

Характерные неисправности и способы их устранения

Теперь рассмотрим основные неисправности магнето:

  1. Сбои в искрообразовании. Причин может быть несколько, как и способов их решения. Это окисление или подгорание контактов, нарушение регулировки зазора, износ подушки рычага прерывательного устройства, пробитый конденсаторный элемент. Вышедшие из строя элементы подлежат замене, а разрегулируемые зазоры следует отрегулировать. Если проблема в контактах, их нужно поменять или зачистить.
  2. Отсутствие искры. Причина может заключаться в обрыве проводки трансформатора, замыкании на массу либо пробое изоляционного слоя на высоковольтном кабеле. Если проблема в трансформаторе, то узел меняется, если замыкание — то его следует устранить, а если причина заключается в пробое изоляции, то кабель нужно просто поменять.
  3. Если же искра слишком слабая, то вероятнее всего, причина заключается в пробитом конденсаторе, который также надо будет поменять.
Фотогалерея «Устройство механизма»

1. Устройство магнето М24-А1 2. Устройство магнето с неподвижным магнитом

Инструкция по разборке и сборке магнето

Чтобы произвести ремонт магнето, его нужно демонтировать и разобрать, для этого выполните следующие действия:

  1. Сначала устройство снимается с силового агрегата.
  2. Узел нужно тщательно очистить от пыли, а также следов моторной жидкости, если они имеются. Магнето будет грязным, поэтому его надо очистить. Нельзя допустить, чтобы грязь попала на внутренние элементы при разборке устройства.
  3. Следующим этапом будет разбор. Используя торцевой ключ, необходимо выкрутить гайку, которая фиксирует автомат опережения зажигания. Демонтируйте этот элемент, после чего извлеките шпонку из паза.
  4. Затем защелку немного отвести в сторону, после чего сможете демонтировать крышку прерывательного узла. Для снятия следует открутить еще четыре болтика, которые ее фиксируют.
  5. Когда крышка будет демонтирована, ротор можно извлечь из самого корпуса.
  6. Завершающим этапом будет откручивание шпилек, которые фиксируют трансформаторный узел. Сделав это, трансформатор можно извлечь из корпуса. Таким образом, вы получили доступ к составляющим элементам магнето. Теперь осуществляется ремонт механизма с заменой всех вышедших из строя компонентов. Для дальнейшей сборки и установки магнето все действия, описанные выше, нужно будет повторить в обратной последовательности.

Особенности регулировки

Регулировка магнето осуществляется, если узел не может выполнять возложенные на него функции, при этом все элементы механизма целый. Настройка магнето производится путем измерения зазора между контактами прерывательного узла, при этом коленчатый вал мотора следует поворачивать за маховик. Вал проворачивается до того момента, пока расхождение контактов будет наибольшим. Отрегулируем зазор путем отпущения болта, фиксирующего контактную стойку и поворота стойку отверстий, которая установлена в прорези эксцентрика.

Когда зазор отрегулирован, необходимо протестировать механизм — это позволит определить правильность проведенного процесса. Если все сделали правильно, то сбоев в искрообразовании удастся избежать.

 Загрузка …

Видео «Подробная инструкция по ремонту и настройке магнето»

Была ли эта статья полезна?Статья была полезнаПожалуйста, поделитесь информацией с друзьями

Характерные износы и неисправности магнето и их устранение

  • размагничивание ротора
  • замыкание обмоток
  • неисправность конденсатора
  • пробой деталей токособирающих и распределительных устройств
  • не­исправности прерывателя, ускорителя или муфты опе­режения
  • износ шарикоподшипников и посадочных мест
  • повреждение отдельных деталей
  • нарушение контактов в первичной цепи
  • размагничивание
  • повреждение резьбы
  • прогиб вала
  • износ посадочных мест под подшипники
  • действие магнитного потока
  • создаваемого трансформатором
  • перегрев
  • сотрясения и удары

Посадочные места под шарикоподшипники восста­навливают накаткой с последующей шлифовкой. Про­гиб вала ротора устраняют правкой.

Намагниченность ротора определяют магнитомером МД-4. Намагничивают ротор на специальном приборе НА-5ВИМ постоянным током.

Неисправности конденсатора:

  • обрыв выводов
  • про­бой
  • плохие контакты корпуса конденсатора с массой и изолированного проводника с клеммой прерывателя

Эти неисправности определяют на приборе проверки зажигания (ППЗ) или же при помощи контрольной лампы. Контрольная лампа, соединенная последова­тельно с конденсатором и подключенная к сети пере­менного тока напряжением 220 В, не горит при исправ­ном конденсаторе, но после отключения конденсатора от сети при шунтировании появляется искра. При обры­ве в конденсаторе лампа не горит, а конденсатор не заряжается. При пробое конденсатора лампа горит. Поврежденный конденсатор заменяют.

Неисправности распределителя:

  • износ или поломка скользящих угольных контактов
  • ослабление или поломка пружин
  • замасливание или поломка скользящих контактов распределителя
  • трещины в изолирующей части барабана распределителя и крышках

Электрическую прочность этих деталей проверяют напряжени­ем 12…16 кВ. Для проверки состояния распределителя можно использовать контрольно-испытательный стенд КИ-968.

Неисправности прерывателя:

  • обгорание или окисление контактов
  • замыкание изолированного контакта на корпус
  • биение кулачка
  • изменение зазора в контактах
  • поломка пружины подвижного контакта

Окислению контактов способствует неисправность конденсатора. При необходимости контакты зачищают мелкой стек­лянной шкуркой. Изношенные вольфрамовые контакты заменяют новыми. Нормальный зазор между контакта­ми должен быть в пределах 0,2…0,25 мм. Дефектные усилительные пружины контактов заменяют новыми.

Прочность изоляции изолированного контакта про­веряют на пробой под напряжением 380 В.

Неисправности трансформатора магнето:

  • повреждение изоляции
  • замыкание и обрывы обмоток, приводящие к нарушению искрообразования
  • забоины и ржавчина на опорных поверхностях сердечника

Обрывы в обмотках проверяют при помощи контрольной лампы. При отсутствии наружных повреждений транс­форматор магнето проверяют на бесперебойность иск­рообразования на стенде КИ-968.

Перед испытанием отремонтированного магнето проверяют правильность сборки, наличие и затяжку крепежных деталей, плавность вращения ротора и искрообразование при вращении от руки.

В собранном магнето проверяют и регулируют угол поворота ротора от нейтрального положения до момен­та размыкания контактов прерывателя, зазор между контактами прерывателя и усилие, передаваемое пру­жиной на контакты прерывателя. У магнето проверяют также бесперебойность искрообразования, состояние высоковольтной изоляции, правильность чередования искр и характеристику пускового ускорителя или муф­ты опережения зажигания.

Магнето, или в поисках искры

как найти искру с магнето бензотриммера EFCOLEO

Магнето -это магнитоэлектрический генератор переменного тока, создающий электрические разряды между электродами свечи зажигания для воспламенения рабочей смеси в цилиндрах двигателей внутреннего сгорания.

Работа магнето основана на принципе электромагнитной индукции.

Сущность индукции заключается в следующем: когда магнитное поле пересекается замкнутым проводником, в этом проводнике возникает электрический ток. Когда электрический ток проходит по проводнику, вокруг этого проводника возникает магнитное поле.

Магнитное поле — пространство вокруг какого-либо магнита, в котором проходят магнитные силовые линии (или магнитный поток). Линии эти расположены гуще между полюсами магнита.

Переменный ток может быть возбужден в проводнике при быстрой перемене направления пересекающего его магнитного потока, например, при поворачивании магнита вокруг проволочной катушки. На этом принципе основана работа магнето с вращающимся магнитом.

Когда магнит вращается, магнитный поток, проходящий через стержень, изменяется по величине и направлению; в результате в обмотке возникает электрический ток, сначала в одном направлении, а затем в другом.

Конденсатор служит для улучшения работы магнето. При наличии конденсатора образуется сильная искра, без него — слабая.

Конденсатор присоединен параллельно контактам прерывателя, для того чтобы ослабить искрообразование, возникающее при прерывании первичного тока на контактах прерывателя.

Как работает магнето?

Когда магнит вращается, он возбуждает ток и первичной обмотке, замкнутой накоротко контактами прерывателя.

Когда сила тока в первичной цепи достигает своего максимума, контакты прерывателя размыкаются. Первичный ток из-за этого мгновенно прерывается. Магнитное поле, которое было создано первичным током, также исчезает. Это внезапное изменение магнитного поля возбуждает во вторичной цепи ток высокого напряжения, способный пробить зазор между электродами соответствующей свечи. Дальнейшее вращение ротора магнето вызывает образование новой искры и т. д.

Как проверить техническое состояние магнето?

В процессе повседневной эксплуатации работоспособность магнето можно проверить так: подключите высоковольтный провод к выводу высокого напряжения и держите другой конец провода на расстоянии 5-7 мм от корпуса магнето, резко поверните ротор по ходу вращения. При этом правильно собранное и отрегулированное магнето при резком поворачивании ротора должно дать искру, обеспечивающую пробой вышеуказанного промежутка. Если же искры нет или она слабая — проверьте исправность магнето и изоляции провода.

ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

НеисправностиВероятная причинаУстранение неисправностей
1. Перебой искрообразованияЗамаслились или подгорели контактыОчистить контакты замшей, смоченной в чистом бензине или зачистить напильником контакты, если они подгорели
 Разрегулировался зазор между контактамиОтрегулировать зазор
 Износилась подушка рычага прерывателяЗаменить рычаг прерывателя новым Отрегулировать зазор
 Разрегулировался абрисОтрегулировать зазор
 Пробит конденсаторЗаменить конденсатор
Магнето не дает искрыОбрыв первичной или вторичной цепи трансформатораЗаменить трансформатор
 Замыкание на массу первичной цепиУстранить замыкание
 Пробой изоляции высоковольтного проводаЗаменить провод
3. Магнето дает слабую искруПробит конденсаторЗаменить конденсатор

Разборка и сбока магнето. — снимите магнето с двигателя; — очистите его от пыли и масла и разберите его в следующем порядке: — отверните торцевым ключом гайку крепления автомата опережения зажигания, снимите его и выньте шпонку из паза; — отведите в сторону защелку, снимите крышку прерывателя; — отверните четыре винта, крепящие крышку, снимите крышку; — выньте ротор магнето из корпуса;

— отверните шпильки крепления трансформатора, выньте из корпуса трансформатор.

Сборку магнето произведите в обратном порядке.

Чтобы заменить контакты прерывателя действуйте так:

— отведите в сторону защелку, снимите крышку прерывателя; — отверните винт крепления соединительного проводника; — отверните винт крепления пластины прерывателя к крышке магнето, снимите пластину прерывателя; — отверните винт крепления пружины прерывателя; — снимите замковую шайбу с оси подушки рычага, снимите с оси рычаг с подушкой в сборе;

— отверните винт крепления контактной стойки, снимите с оси контактную стойку.

Сборку прерывателя произведите в обратном порядке.

Удачных поисков! Но проще поменять магнето на новый или отдать в сервисную службу (при наличии гарантии это можно сделать бесплатно).

Полезный совет?

Ремонт магнето для мотоблока МТЗ 05, 06, 12. Магнето М 151, М 137, 13.3728, нет искры.

На мотоблок МТЗ в разный период времени устанавливались разные типы двигателей. Рассмотрим три основных варианта: УД 15, 25, Honda GX 270. В советское время на мотоблоки МТЗ устанавливались двигателя УД. На двигатель УД 15 устанавливались одноискровое магнето левого вращения М 137А с пусковым ускорителем, так же сегодня можно купить и установить магнето М 124Б.

На двигатель УД 25 устанавливалось двухискровое магнето левого вращения М 151 с пусковым ускорителем либо электронное магнето 13.3728.

Встречаются интересные варианты, двигатель УД 25 с экранированным зажиганием. Установлено магнето М135 и это ошибка, двигатель будет запускаться, но работать будет не устойчиво на одном цилиндре.

На УД 25 иногда можно встретить магнето М149А1, так же как и М135 на двухцилиндровом двигателе оно работать не будет. 

В дело в том, что эти две модели предназначены для двигателей где поршни первого и второго цилиндра на коленвале расположены в разных плоскостях, когда поршень первого цилиндра вверху, поршень второго соответственно внизу. В двигателях УД 25 поршни находятся в одной плоскости и ходят одновременно вверх и вниз. Магнето М135 и М149 будет работать на одноцилиндровом двигателе УД 15, для двигателя УД 25 они не пригодны.

Так же на одноцилиндровом УД 15 можно встретить магнето М25Б1 с интересной полумуфтой.

Не лишним будет напомнить, что в таких магнето важно регулярно обслуживать контакты и выставлять зазор.

На двигатель Хонда GX 270 установлен модуль зажигания.

Технически, самое простое решение, реализовано в двигателях Хонда и их аналогах. На маховике установлен магнит, во время вращения магнит проходит между полюсами модуля, тем самым вырабатывая электрический ток для создания искры между электродами запальной свечи, система стабильна и надежна.

Ремонтопригодность на высоте. Для замены модуля зажигания демонтируем ручной стартер и кожух маховика.

Модуль крепится двумя болтами. Маховик снимать необязательно.

Важно выставить правильный зазор между модулем и маховиком, проверьте в инструкции каким должен быть зазор в вашем двигателе.

Собираем все в обратной последовательности.

Часто спрашивают — можно ли на одноцилиндровый двигатель УД 15 установить электронную магнето 13.3728. Да, на УД 15 можно установить электронное магнето 13.3728. Скажу больше, двигатель УД 15 комплектовался с завода магнето 13.3728. Важно, в один из выходов, вместо одного высоковольтного провода, поставить пружину и закрыть металлической заглушкой так, чтобы один из двух выходов был замкнут на корпус.

Так выглядит родная заглушка с пружинкой.

Только в этом случае на втором выходе будет искра. Если один из выходов в вашем магнето замкнут на корпус, но искры нет, тогда возможно нет привода с шестерни регулятора через промежуточную муфту на ротор магнето, соответственно ротор не вращается. Демонтируйте магнето и проверьте ее отдельно от двигателя.

Если искра есть, но слабая, либо двигатель запускается, но после прогрева глохнет, вероятно не исправен электронный блок. Так же проверьте болты которые прижимают электронный блок и катушку, они обеспечивают массу, без массы двигатель будет работать неустойчиво. Искры может не быть по нескольким причинам. В данном магнето вышел из строя зарядный трансформатор (катушка),  обмотка катушки проверяется тестером.

Катушка клиента отправляется в перемотку, и потребитель получает услугу по привлекательной цене в день обращения.

При сборке магнето важно обеспечить надежное соединение всех деталей с корпусом, трансформатор и электронный блок должны быть надежно прижаты штатными болтами.

Клемма остановки двигателя должна пройти сквозь корпус через диэлектрик, внутри пластмассовая втулка, снаружи текстолитовая шайба.

Когда разбираете магнето обязательно зарисовывайте либо фотографируйте схемы подключения проводов.

Собираем магнето, проверяем искру. Замкните один из выходов, во второй установите высоковольтный провод, вращайте ротор в левую сторону, проверьте искру на обоих выводах.

Магнето М151 немного сложнее чем 13.3728. Рассмотрим на конкретном примере. Симптомы — плохой запуск, неустойчивая работа. Причиной плохого запуска является муфта установленная на роторе, заводом здесь предусмотрен ускоритель. Пусковой ускоритель предназначен для того чтобы придать ротору магнето большую скорость вращения при запуске двигателя. С помощью ускорителя обеспечивается достаточно мощная искра от магнето при медленном вращении коленвала.

Проверяйте наличие шпонки на роторе, правильно установите ускоритель.

Проверяем магнето внутри, смотрим стоит ли шестерня на шпонке, правильно ли выставлены метки, смотрим зазор и состояние контактов.

Зазор великоват, выставляем зазор, чистим контакты, проверяем искру на катушке.

Искра отличная. Проверяем бегунок и крышку. Все в порядке.

Собираем, проверяем искру.

Устанавливаем магнето на двигатель. Для этого выставляем поршни в ВМТ. 

Если нет возможности на маховике увидеть метки, тогда выкрутите свечу и вращая за шкив поднимите поршни в ВМТ. Устанавливаем промежуточную муфту на шестерню регулятора.

На роторе магнето выставляем муфту отверстием вверх.

На магнето с ускорителем, вращаем муфту ускорителя влево до щелчка.

Устанавливаем магнето в корпус регулятора оборотов, важно точно попасть в паз на промежуточной муфте. Не прилагайте чрезмерное усилие, если все сделать правильно, установка магнето не займет много времени. Прижимаем магнето тремя гайками через шайбу.  

На электронном магнето 13.3728 порядок установки высоковольтных проводов не имеет значение. На магнето М151 нужно правильно установить высоковольтный провод для первого и второго цилиндра, проще всего установить провода в произвольном порядке, если двигатель не запускается поменяйте провода местами.

Всем Удачи.

Автор — Василий Мартысевич.

Свет от магнето – реально! Часть 1: Диагностика, ремонт и настройка магнето — Мужик в доме.Ру

Более года я собирал информацию с разных источников на эту тему. Что только не слышал. И бред это, и вовсе не реально. Другие же отвечали тем же бредом (типа итак светит) – школота! Пока сам не наткнулся на одного человека в интернете, у которого руки поистине золотые. Переписывались мы с ним достаточно долго ввиду того, что опыта как у автоэлектрика у меня практически нет, и для того, чтобы информацию предоставить для вас, я должен был ей сам обладать на все 100%.

Итак, приступим. Для переделки магнето нужно будет настроить и оттестировать имеющуюся (об этом часть 1 статьи), затем ее немного модернизировать (об этом часть 2 статьи) и только потом приступить к электронике, позволяющей добыть свет от данного узла (об этом часть 3 статьи). Эта переделка не будет стоить вам практически ничего. Результат – будет лупить искра как в электрошокере! И плюс к этому – свет! Прежде чем ваять что-то из имеющегося у вас магнето, давайте попробуем понять принцип ее работы.

Схема зажигания от магнето: 1 – магнит; 2 – якорь; 3 – индукционная катушка; 4 – выключатель зажигания; 5 – свеча зажигания; 6 – конденсатор; 7 – прерыватель

Магнето устроено просто и состоит из источника электрического тока, представляющего собой небольшой магнитоэлектрический генератор, вырабатывающий ток низкого напряжения, который при помощи индукционной катушки трансформатора преобразуется в ток высокого напряжения. Магнитное силовое поле у магнето образуется постоянным магнитом. Устанавливаемые на мотоциклах магнето имеют вращающийся магнит и неподвижную индукционную катушку — трансформатор. При вращении магнита его полюса вращаются между стоек трансформатора, благодаря чему магнитные силовые линии, меняясь по силе и по направлению, проходят через стойки и сердечник индукционной катушки и то исчезают, то вновь появляются. За счет этого в первичной обмотке индуцируется ток низкого напряжения. В момент размыкания контактов прерывателя первичная цепь разрывается и во вторичной обмотке индуцируется ток высокого напряжения.

Сооружение испытательного стенда

Проверим имеющуюся магнето на работопригодность и как следует отрегулируем. Для обеспечения эффективности выполняемой работы для магнето нужно будет сконструировать привод. Будем делать настольный испытательный стенд. Для проведения данной операции нам потребуется:

  • Реверсивная дрель со специальным кронштейном для установки ее на поверхность стола (верстака)
  • Ключ- трубка или головка на 11мм (Одиннадцать!)
  • Отвертка крестовая
  • Отвертка плоская

Прикрутите специальный кронштейн к поверхности стола. В него вставьте реверсивную дрель и закрепите ее. Если кронштейна не имеется, то понадобится помощник, чтоб пускать дрель в движение. И то этой помощи может не хватить. Так что лучше вооружитесь данным кронштейном. При помощи рычага направления вращения дрели установите ее вращение по часовой стрелке (если мы держим дрель за рукоятку, патрон должен вращаться по часовой). Выставьте на дрели минимальные обороты.

Снимите магнето с корпуса двигателя вместе с бронепроводом и свечой. Снимите с магнето бабочку (лопасть, при помощи которой она приводится в движение двигателем). Для этого воспользуйтесь ключом на 11мм в виде трубки или воспользуйтесь головкой на 11. Открутите крепежную гайку бабочки магнето и, не потеряв шпонку, снимите бабочку. Далее магнето зажмите в патрон дрели за ее конический вал (откуда вы сняли только что бабочку). Под корпус магнето при необходимости нужно подложить брусок, чтобы предотвратить ее проворачивание относительно оси вращения. Уточните, что вращаться магнето будет в нужном направлении, если вы включите дрель (указатель направления хода движения высечен на корпусе магнето).

И помните! Не допускайте высоких оборотов и не относите бронепровод от корпуса магнето более чем на 10мм – это грозит выходу из строя высоковольтной обмотки катушки! И подолгу не крутите! Только кратковременно!

При включении дрели вал магнето начинает вращаться и приводить конструкцию в рабочее состояние. Прислоните свечу к корпусу магнето и посмотрите, насколько качественная искра образуется на электродах свечи. Если искра слабая, попробуйте отсоединить свечу, снимите с бронепровода наконечник. Зачистите конец бронепровода на 2мм. При включенной дрели смотрите, поднося к корпусу магнето, насколько эффективна искра. Пробуйте поменять обороты на более высокие (приближенные к оборотам двигателя мото). На моем магнето без усовершенствований искра прошивает 7-10 мм! Искра должна быть бело-голубой, без проскоков. Вырабатывается с характерным потрескивающим звуком. Если с этим у вас все в порядке, можете сразу переходить к Части 2 статьи.

Если вас не устраивает работа магнето (искра слабая, искра проскакивает, искра через раз, при повышении оборотов искра вообще пропадает), будем настраивать магнето.

Диагностика и настройка магнето

Для проведения данной процедуры вам потребуется:

  • Наждачная бумага (нулевка) и плоский надфиль
  • Солидол
  • Отвертка крестовая
  • Отвертка плоская
  • Электрический зажим типа «Крокодил» мини
  • При необходимости – новый бронепровод (авто, силикон) и новая свеча А17В
  • При необходимости — лак для ногтей, изолента
  • При необходимости — новый конденсатор 0,17-0,25мкФ

Итак, если вас не устроила работа магнето, детали, на которые следует обратить внимание: провода, свеча, конденсатор, контакты и катушка. Можете периодически извлекать магнето из стенда. Первое, с чего начните – это осмотр конструкции магнето. Снимите крышку. Нет ли случайно поврежденных проводов и их изоляции, излишней грязи или замасленности в корпусе, следов дробления металла устройства? Ровно ли прилегают контакты в процессе вращения друг к другу, и образуется ли между ними зазор равный 0,7-1,0мм? Можете воспользоваться подсветкой и лупой.

Свеча и бронепровод

Первое – колпачок бронепровода. Советую от таких (см. фото) вообще отказаться. Поставьте электрический зажим «крокодил» мини. Он отражен на фото в заголовке статьи.

Второе, с чего обычно начинают проверку магнето, это бронепровод: его крепление в посадочном гнезде магнето и цоколь под свечу. Простым способом проверить провод является зачистка с обоих концов любого автомобильного провода зажигания, подходящего по своей длине, примерно на 2 мм с каждого конца. Я использую силиконовый от неоновых ВВ трансформаторов (с неоновой рекламы). Вставьте такой провод вместо существующего, закрепите один его конец в гнезде магнето, второй поднесите к корпусу (массе) примерно на 5 мм. Если от второго зачищенного конца бронепровода или от крокодила высекается искра на массу с расстояния 5 мм – это удовлетворительно.

Если неполадка устранена, замените бронепровод на другой, рабочий. Еще раз проверьте запуск со свечой. Свечу на массу. Присоедините к ней бронепровод. Установите зазор свечи между электродами 0,4-0,6 мм. Запускайте стенд. Без перебоев должна быть искра сильная, светлая, голубого цвета от бокового электрода на центральный. Искра не должна бить на изолятор, вбок, высекаться «через раз». Если у вас все в порядке, переходите к Части 2. Если нет, то…

…проверяем свечу зажигания

Неисправности зажигательных свечей проявляются в виде ослабления или полного исчезновения искрообразования.

Неисправности зажигательной свечи могут быть обнаружены при наружном осмотре:

  1. красновато-коричневый налет образуется обычно на юбках свечей, которые длительное время находятся в работе. Этот налет не следует путать с нагаром, он не мешает нормальной работе свечи, поэтому его очищать не следует;
  2. белый налет образуется на юбках слишком «горячих» свечей, работавших без уплотнительных прокладок под корпусом свечи, а также при неплотном их завертывании в головку, большом зазоре между электродами и работе двигателя на бедной горючей смеси и слишком позднем зажигании;
  3. сухой темный нагар (копоть) образуется при работе двигателя на переобогащенной горючей смеси, особенно на холостом ходу продолжительное время. Надо отрегулировать карбюратор, применить более «горячие» свечи, а перед длительной стоянкой с целью самоочищения свечей от нагара дать двигателю поработать 1—2 минуты на повышенных оборотах;
  4. масляный липкий нагар образуется при чрезмерной смазке, повышенном проценте масла в топливе (на двухтактных двигателях), изношенных поршневых кольцах (на четырехтактных двигателях), перебоях в системе зажигания, а также в результате неоднократных попыток запустить двигатель. При замасленных свечах сильно затрудняется пуск двигателя;
  5. отложение свинца на изоляторе свечи происходит при пользовании этилированным бензином. Отложение свинца прекращает искрообразования свечи;
  6. трещина в изоляторе свечи приводит к короткому замыканию в свече и полному прекращению искрообразования, она возникает в результате удара изолятора, а также перегрева свечи.

Исправность свечи проверяется на искру. Для этого надо свечу подсоединить к проводу высокого напряжения и положить ее корпусом на массу так, чтобы был надежный контакт. Запустить механизм вращения. Если искры не будет, то это при исправной системе зажигания указывает на неисправность свечи. Неисправную свечу необходимо заменить.

Конденсатор

Конденсатор предохраняет контакты прерывателя от быстрого обгорания, а также повышает напряжение во вторичной обмотке индукционной катушки. Конденсатор состоит из двух обкладок (полос алюминиевой фольги) и изоляции в виде двух полос тонкой парафинированной бумаги. Все это скатано в виде рулончика и помещено в цилиндрический металлический корпус. Одна обкладка соединена с корпусом конденсатора, другая — с его изолированным выводом. Таким образом, конденсатор прост по устройству, но зачастую малейшая его неисправность приносит много хлопот водителю.

Неисправности конденсатора:

  • повреждение изоляции обкладок;
  • обрыв соединений обкладок с корпусом или изолированным выводом;
  • утечка электрического тока.

Повреждение изоляции обкладок приводит к прекращению работы зажигания, а обрыв соединений обкладок с корпусом или выводом ведет к потере емкости. При неисправном конденсаторе возникает сильное искрение на контактах прерывателя. Искра между электродами зажигательной свечи ослабевает.

Утечка электрического тока приводит к ослаблению искры, двигатель работает с перебоями.

Если при работающей магнето на контактах наблюдается искра (а ее не должно быть), то замените конденсатор на другой, заведомо рабочий. Если тяжело его купить в магазине, воспользуйтесь обычным автомобильным. Емкость его должна быть в пределах 0,17-0,25мкФ. Ненужный крепеж автомобильного конденсатора легко отламывается плоскогубцами. Иногда, приходится корпус конденсатора подровнять на наждаке. Не перегревайте его в данном процессе. Иногда мне приходилось даже ставить и второй конденсатор. Так контакты не подгорают, искры между ними нет.  Подключаю оба параллельно. Корпус автомобильного конденсатора крепил к корпусу магнето (это уже кто как сможет), а провод от конденсатора подсоединял на общую клемму, туда же, где подсоединен и основной конденсатор. Единственный минус этого – выступающий наружу конденсатор, который в процессе эксплуатации легко задеть, сломать. Пробуйте бронепроводом на массу. Выдает ток? Все хорошо? Переходите к части 2 статьи. Если нет, идем далее.

Контакты прерывателя

Неисправности прерывателя:

  • замаслены или пригорели контакты прерывателя;
  • отпаялась одна из вольфрамовых пластинок контактов;
  • отсутствует или нарушен установленный зазор между контактами;
  • повреждена или касается масса шинки, подводящая ток низкого напряжения к прерывателю;
  • неправильно установлен кулачок прерывателя или втулка (но об этом позже).

Пригоревшие контакты необходимо зачистить плоской абразивной пластинкой или плоским напильником с мелкой (бархатной) насечкой. Не рекомендуется зачищать контакты наждачной или стеклянной бумагой, так как от них не получается гладкой поверхности, а контакты с неровной поверхностью быстро изнашиваются вследствие усиленного их подгорания. Отпаявшуюся вольфрамовую пластинку молоточка надо припаять, зазор между контактами проверить и отрегулировать, поврежденную шинку исправить или заменить.

Опытные владельцы старых ВАЗов знают, что первая причина отказа системы зажигания – контакты. С них всегда начинался осмотр. Потом уже все остальное. Так и в данном случае. Контакты должны плотно прилегать друг к другу, когда выступ эксцентрика их не толкает. Поверхности контактов не должны быть выпуклыми, подгоревшими. А когда эксцентрик их размыкает, максимальный зазор должен составлять 1-1,5 мм.

Подрегулировать этот зазор можно, слегка ослабив верхний винт их крепления вращением нижнего регулировочного винта. Не забудьте закрепить заново верхним. Снимите контакты, при этом не потеряв стопорное кольцо с вала, на котором они стоят. Зачистите контакты от налета. Если есть выемки на поверхности контактов – это следствие их подгорания в процессе работы. Обточить всю поверхность до исчезновения выемок. Если зачищать придется много, можно воспользоваться сначала боковой поверхностью наждака, затем «заполировать» поверхность более тонкими абразивами.

Лучше контакты, конечно, заменить на новые. Но я их в магазинах не встречал (для магнето). Зачищать контакты можно ровно столько, сколько еще существует на них вольфрамовая напайка. Пока ее не сточите – пользуйтесь. Установите контакты на место, зафиксируйте их на валу стопорным кольцом. Установите нужный зазор.

Бывает, на низких и средних оборотах магнето работает хорошо, а на высоких оборотах искра идет в разнос, выдает перебои. Тут верное средство – смотреть пружину контактов (металлическая узкая полоска, загнутая полумесяцем). Выправьте ее слегка в обратную сторону. Пружина в таких случаях не дает должного отпора на высоких оборотах и кулачки не всегда или вообще не успевают размыкаться. Вращайте на стенде магнето и подносите конец бронепровода массе. Как искра? Если все отлично, переходите к части 2 статьи. Если не помогло, идем далее. Осмотрите провода. Оголенные можно обмазать лаком для ногтей или заизолировать. Осмотрите пайки. Если требуется, подпаяйте.

Катушка (трансформатор)

Как правило, катушка не ремонтируется. И она, как правило, реже всего выходит из строя и нуждается в замене. Но все же катушка катушке рознь! Бывает, что от одной ток как молния, с другой нет.

И никогда не выкидывайте заведомо нерабочую катушку! С нее еще много чего можно сделать для вашего мотоцикла! Например, освещение! Но об этом — Часть 3.

В самом начале данной части статьи мы ознакомились с устройством катушки. Она имеет две обмотки: низковольтную (намотана первичной на сердечник и имеет около 400 витков) и высоковольтную (вторичная, намотана поверх первичной и имеет около 18000 витков). Основная беда такой катушки – образование КЗ (короткозамкнутых витков) в высоковольтной обмотке. Это и приводит катушку в негодность. Замените катушку. Или давайте будем усовершенствовать магнето, чтоб никогда больше не сталкиваться с проблемой данной катушки! ( Об этом часть 2).

Пока рассмотрим версию, что вы заменили катушку на другую. Зачистите медный контакт катушки нулевкой. Осмотрите провод и места пайки. Если требуется – подпаяйте. Собирайте магнето и опять на стенд! Установите все нужные зазоры, о которых мы говорили. Запускайте! Искра должна быть! Меняйте обороты вращения! Сейчас все должно быть отлично, но может быть еще один вариант…

… ротор (вращающийся магнит)

Осмотрите ротор магнето. Он не должен быть раскрошен, разбит в процессе эксплуатации. Еще говорят о том, что он может время от времени размагнититься. И о том, что его можно заново намагнитить. Но об этом я не знаю, если честно. Замените ротор, если так все плохо. Удалите осколки металла в корпусе магнето, осмотрите и смажьте подшипники. Люфт подшипников (тем более их нерабочесть) может приводить к разрушению механики магнето и, естественно, к выдаче недостаточного тока.

Внимание! Это важно!

Регулировка эксцентрика

Для настройки искрообразования (силы тока) магнето нужно вращать ослабленный эксцентрик (кулачок) относительно его вала и добиваться наибольшей мощности тока.

Стенд: дрель вращается, конец зачищенного бронепровода при этом подносим к корпусу магнето на расстояние 5мм. Если ток недостаточный или его вообще нет – сейчас приступим к настройке кулачка (он же эксцентрик). Останавливаем дрель. Кулачок крепится на валу одним винтом с шайбой в центре вала.

Ослабляем винт. Вставив отвертку в пазы кулачка, поворачиваем кулачок относительно его оси на валу примерно на 1мм по часовой стрелке. Закрепляем кулачок винтом. Включаем дрель. Смотрим на искру. Она должна быть на расстоянии 5-7 мм до корпуса. Выключаем дрель.

Данную процедуру нужно повторять до тех пор, пока вы не получите наилучший результат. На полную настройку эксцентрика у меня уходит от 20 мин до часа. Но это стоит того! При достижении наилучшего результата, на этом смонтированном стенде можно еще подрегулировать силу тока путем подстройки размера зазора контактов, подбора конденсатора. При условии, что контакты не сгорели, ровные и гладкие, а конденсатор и катушка рабочие, искра будет как молния!

Автор:   Алексей Перевалов

Группа ВКонтакте: http://vk.com/tmz_engine

Принцип работы системы зажигания магнето поршневого двигателя самолета

Магнето, особый тип генератора переменного тока с приводом от двигателя, использует постоянный магнит в качестве источника энергии. За счет использования постоянного магнита (основного магнитного поля), катушки с проволокой (концентрированные отрезки проводника) и относительного движения магнитного поля в проводе генерируется ток. Сначала магнето вырабатывает электроэнергию за счет двигателя, вращающего постоянный магнит и индуцирующего ток в обмотках катушки.Когда ток протекает через обмотки катушки, он создает собственное магнитное поле, которое окружает обмотки катушки. В нужное время этот ток прекращается, и магнитное поле разрушается во втором наборе обмоток в катушке, и генерируется высокое напряжение. Это напряжение, используемое для образования дуги в зазоре свечи зажигания. В обоих случаях присутствуют три основные вещи, необходимые для выработки электроэнергии, чтобы создать высокое напряжение, которое заставляет искру прыгать через зазор свечи зажигания в каждом цилиндре.Работа магнето синхронизирована с двигателем, поэтому искра возникает только тогда, когда поршень находится в правильном ходе за определенное число градусов коленчатого вала до положения поршня в верхней мертвой точке.

Магнетосистема высокого напряжения может быть разделена в целях обсуждения на три отдельные цепи: магнитные, первичные электрические и вторичные электрические цепи.

Магнитная цепь

Магнитная цепь состоит из постоянного многополюсного вращающегося магнита, сердечника из мягкого железа и полюсных башмаков.[Рисунок 1] Магнит прикреплен к двигателю самолета и вращается в зазоре между двумя полюсными башмаками, создавая магнитные силовые линии (поток), необходимые для создания электрического напряжения. Полюса магнита расположены в чередующейся полярности, так что поток может проходить от северного полюса через сердечник катушки и обратно к южному полюсу магнита. Когда магнит находится в положении, показанном на рисунке 1А, количество магнитных силовых линий, проходящих через сердечник катушки, максимально, потому что два магнитно противоположных полюса точно выровнены с полюсными башмаками.

Рис. 1. Магнитный поток при трех положениях вращающегося магнита течь по часовой стрелке через магнитную цепь и слева направо через сердечник катушки. Когда магнит перемещается от положения полного регистра, величина потока, проходящего через сердечник катушки, начинает уменьшаться.Это происходит из-за того, что полюса магнита удаляются от полюсных башмаков, что позволяет некоторым линиям потока пройти более короткий путь через концы полюсных башмаков.

Чем дальше магнит перемещается от положения полного регистра, тем больше линий магнитного потока замыкается накоротко через концы полюсных башмаков. Наконец, в нейтральном положении 45° от положения полного регистра все линии потока замыкаются накоротко, и поток не проходит через сердечник катушки. [Рисунок 1B] По мере того, как магнит перемещается из полного регистра в нейтральное положение, количество линий потока через сердечник катушки уменьшается таким же образом, как постепенное уменьшение потока в магнитном поле обычного электромагнита.

Нейтральное положение магнита — это когда один из полюсов магнита находится по центру между полюсными башмаками магнитной цепи. Когда магнит перемещается из этого положения по часовой стрелке, линии потока, которые были закорочены через концы полюсных башмаков, снова начинают течь через сердечник катушки. Но на этот раз линии потока проходят через сердечник катушки в противоположном направлении. [Рисунок 1C] Поток магнитного потока меняется на противоположный, когда магнит выходит из нейтрального положения, потому что северный полюс вращающегося постоянного магнита находится напротив правого полюсного башмака, а не слева.[Рисунок 1A]

Когда магнит снова перемещается в общей сложности на 90°, достигается другое полное положение регистра с максимальным магнитным потоком в противоположном направлении. Перемещение магнита под углом 90° показано на рисунке 2, где кривая показывает, как плотность потока в сердечнике катушки без первичной катушки вокруг сердечника изменяется при вращении магнита.

Рисунок 2. Изменение плотности потока при вращении магнита он перемещается в нейтральное положение на 45°.Пока магнит движется через нейтральное положение, магнитный поток меняет направление и начинает увеличиваться, как показано кривой под горизонтальной линией. В положении 90° достигается другое положение максимального потока. Таким образом, для одного оборота на 360° четырехполюсного магнита имеется четыре положения максимального потока, четыре положения нулевого потока и четыре реверсирования потока.

Это обсуждение магнитной цепи демонстрирует, как вращающийся магнит влияет на сердечник катушки. Он подвергается воздействию увеличивающегося и уменьшающегося магнитного поля и смены полярности каждые 90° перемещения магнита.

Когда катушка провода как часть первичной электрической цепи магнето намотана вокруг сердечника катушки, на нее также влияет переменное магнитное поле.

Первичная электрическая цепь

Первичная электрическая цепь состоит из набора точек контакта прерывателя, конденсатора и изолированной катушки. [Рисунок 3] Катушка состоит из нескольких витков толстого медного провода, один конец которого заземлен на сердечник катушки, а другой конец — на незаземленную сторону точек прерывателя.[Рисунок 3] Первичная цепь замыкается только тогда, когда незаземленная точка прерывателя соприкасается с заземленной точкой прерывателя. Третий блок в цепи, конденсатор (конденсатор), подключается параллельно точкам прерывателя. Конденсатор предотвращает возникновение дуги в точках размыкания цепи и ускоряет разрушение магнитного поля вокруг первичной катушки.

Рис. 3. Первичная электрическая цепь высоковольтного магнето

Первичный выключатель замыкается примерно в полном положении регистра.Когда точки прерывателя замыкаются, первичная электрическая цепь замыкается, и вращающийся магнит индуцирует ток в первичной цепи. Этот поток тока создает собственное магнитное поле, направленное таким образом, что препятствует любому изменению магнитного потока в цепи постоянного магнита.

Пока в первичной цепи протекает индуцированный ток, он препятствует уменьшению магнитного потока в сердечнике. Это соответствует закону Ленца, который гласит: «Индуцированный ток всегда течет в таком направлении, что его магнетизм противодействует движению или изменению, вызвавшему его.Таким образом, ток, протекающий в первичной цепи, удерживает поток в сердечнике на высоком значении в одном направлении до тех пор, пока вращающийся магнит не успеет повернуться через нейтральное положение до точки, находящейся на несколько градусов за нейтралью. Это положение называется положением E-gap (E означает эффективность).

Если магнитный ротор находится в положении Е-зазора, а первичная катушка удерживает магнитное поле магнитной цепи с противоположной полярностью, можно получить очень высокую скорость изменения потока путем размыкания точек первичного прерывателя. Размыкание точек прерывателя останавливает ток в первичной цепи и позволяет магнитному ротору быстро изменить направление поля через сердечник катушки. Эта внезапная реверсия потока вызывает высокую скорость изменения потока в сердечнике, который пересекает вторичную катушку магнето (намотанную и изолированную от первичной катушки), индуцируя во вторичной обмотке импульс высоковольтного электричества, необходимый для зажигания свеча зажигания. По мере того, как ротор продолжает вращаться примерно до полного положения регистра, точки первичного прерывателя снова замыкаются, и цикл повторяется для зажигания следующей свечи зажигания в порядке зажигания.Последовательность событий теперь можно рассмотреть более подробно, чтобы объяснить, как возникает состояние экстремального магнитного напряжения.

Когда точки прерывателя, кулачок и конденсатор подключены к цепи, как показано на рис. 4, действие, происходящее при вращении магнитного ротора, показано кривой графика на рис. 5. В верхней части (A) рис. 5 , показана исходная кривая статического потока магнитов. Под кривой статического потока показана последовательность открытия и закрытия точек прерывателя магнето.Обратите внимание, что время открытия и закрытия точек прерывателя определяется кулачком прерывателя. Точки закрываются, когда через сердечник катушки проходит максимальное количество потока, и размыкаются в положении после нейтрали. Поскольку на кулачке четыре выступа, точки прерывателя замыкаются и размыкаются в одном и том же отношении к каждому из четырех нейтральных положений магнита ротора. Также интервалы открытия и закрытия точек примерно равны.

Кривые магнитного потока

Начиная с положения максимального потока, отмеченного 0° в верхней части рисунка 5, происходит последовательность событий, описанная в следующих параграфах.

Когда магнитный ротор поворачивается в нейтральное положение, величина магнитного потока через сердечник начинает уменьшаться. [Рисунок 5D] Это изменение потокосцепления индуцирует ток в первичной обмотке. [Рисунок 5C] Этот индуцированный ток создает собственное магнитное поле, которое препятствует изменению потокосцеплений, индуцирующих ток.Без тока, протекающего в первичной катушке, поток в сердечнике катушки уменьшается до нуля, когда магнитный ротор поворачивается в нейтральное положение, и начинает увеличиваться в противоположном направлении (пунктирная кривая статического потока на рисунке 5D). Но электромагнитное действие первичного тока предотвращает изменение потока и временно удерживает поле вместо того, чтобы позволить ему измениться (результирующая линия потока на рисунке 5D).

В результате процесса удерживания в магнитной цепи возникает очень высокое напряжение к тому моменту, когда ротор магнита достигает положения, при котором точки прерывателя вот-вот разомкнутся.Точки прерывателя в разомкнутом состоянии работают вместе с конденсатором, прерывая протекание тока в первичной обмотке, вызывая чрезвычайно быстрое изменение потокосцепления. Высокое напряжение во вторичной обмотке разряжается через зазор в свече зажигания, воспламеняя топливно-воздушную смесь в цилиндре двигателя. Каждая искра фактически состоит из одного пикового разряда, после которого происходит серия малых колебаний.

Они продолжают возникать до тех пор, пока напряжение не станет слишком низким для поддержания разряда.Ток протекает во вторичной обмотке в течение времени, необходимого для полного разряда искры. Энергия или напряжение в магнитной цепи полностью рассеивается к моменту замыкания контактов для образования следующей искры. Узлы прерывателя, используемые в высоковольтных магнитных системах зажигания, автоматически размыкают и замыкают первичную цепь в нужное время в зависимости от положения поршня в цилиндре, на который подается искра зажигания. Прерывание первичного тока осуществляется через пару контактных точек прерывателя, изготовленных из сплава, устойчивого к точечной коррозии и прогоранию.

Большинство точек прерывания, используемых в системах зажигания самолетов, относятся к бесшарнирному типу, в котором одна точка прерывателя является подвижной, а другая неподвижной. [Рис. 6] Подвижная точка прерывателя, прикрепленная к листовой пружине, изолирована от корпуса магнето и соединена с первичной катушкой. [Рисунок 6] Точка стационарного выключателя заземлена на корпус магнето для замыкания первичной цепи, когда точки замкнуты, и может быть отрегулирована таким образом, чтобы точки могли размыкаться в нужное время.

Толкатель кулачка представляет собой блок из микарты или аналогичного материала, который перемещается по кулачку и перемещается вверх, отталкивая подвижный контакт прерывателя от неподвижного контакта каждый раз, когда выступ кулачка проходит под толкателем. Войлочная масленка расположена на нижней стороне металлического пружинного листа для смазки и предотвращения коррозии кулачка.

Кулачок, приводящий в действие прерыватель, может приводиться в движение напрямую от вала ротора магнето или через зубчатую передачу от вала ротора. В большинстве больших радиальных двигателей используется компенсированный кулачок, который предназначен для работы с конкретным двигателем и имеет по одному кулачку для каждого цилиндра, приводимого в действие магнето. Кулачки кулачка зашлифованы на станке с неравными интервалами, чтобы компенсировать эллиптическую траекторию шарнирных шатунов. Этот путь вызывает изменение положения верхней мертвой точки поршня от цилиндра к цилиндру в зависимости от вращения коленчатого вала.Компенсированный кулачок с 14 лепестками вместе с некомпенсированным кулачком с двумя, четырьмя и восемью кулачками показан на рис. 7. неравное расстояние между компенсированными выступами кулачка, хотя и обеспечивает одинаковое относительное положение поршня для воспламенения, вызывает небольшое изменение положения Е-зазора вращающегося магнита и, следовательно, небольшое изменение импульсов высокого напряжения, генерируемых магнето. .Поскольку расстояние между каждым кулачком соответствует конкретному цилиндру конкретного двигателя, скомпенсированные кулачки маркируются, чтобы показать серию двигателя, расположение главных стержней, кулачок, используемый для синхронизации магнето, направление вращения кулачка и спецификация E-зазора в градусах после нейтрального положения магнита. В дополнение к этим меткам на поверхности кулачка прорезана ступенька, которая при совмещении с метками на корпусе магнето помещает вращающийся магнит в положение E-зазора для синхронизирующего цилиндра.Поскольку точки прерывания должны начать размыкаться, когда вращающийся магнит перемещается в положение E-зазора, совмещение выступа на кулачке с метками на корпусе обеспечивает быстрый и простой способ установить точное положение E-зазора для проверки и регулировки. точки разрыва.

Вторичная электрическая цепь

Вторичная цепь содержит вторичные обмотки катушки, ротор распределителя, крышку распределителя, провод зажигания и свечу зажигания. Вторичная катушка состоит из обмотки, содержащей примерно 13 000 витков тонкого изолированного провода; один конец которого электрически заземлен на первичную катушку или на сердечник катушки, а другой конец соединен с ротором распределителя.Первичная и вторичная обмотки заключены в непроводящий материал. Затем вся сборка крепится к опорным башмакам с помощью винтов и зажимов.

Когда первичная цепь замкнута, ток, протекающий через первичную обмотку, создает магнитные силовые линии, которые пересекают вторичные обмотки, создавая электродвижущую силу. Когда ток первичной цепи прекращается, магнитное поле, окружающее первичные обмотки, разрушается, в результате чего вторичные обмотки пересекаются силовыми линиями.Сила напряжения, наводимого во вторичных обмотках, при прочих равных условиях определяется числом витков провода. Поскольку большинство высоковольтных магнето имеют много тысяч витков провода во вторичной обмотке катушки, во вторичной цепи генерируется очень высокое напряжение, часто достигающее 20 000 вольт. Наведенное во вторичной обмотке высокое напряжение направляется на распределитель, состоящий из двух частей: вращающейся и неподвижной. Вращающаяся часть называется ротором распределителя, а неподвижная часть называется блоком распределителя.Вращающаяся часть, которая может иметь форму диска, барабана или пальца, изготовлена ​​из непроводящего материала со встроенным проводником. Стационарная часть состоит из блока, также изготовленного из непроводящего материала, содержащего клеммы и клеммные колодки, к которым крепится проводка вывода зажигания, соединяющая распределитель со свечой зажигания. Это высокое напряжение используется для перекрытия воздушного зазора электродов свечи зажигания в цилиндре для воспламенения топливно-воздушной смеси.

По мере того, как магнит перемещается в положение Е-зазора для №.1 и точки прерывателя просто разделены или разомкнуты, ротор распределителя совмещается с электродом № 1 в блоке распределителя. Вторичное напряжение, индуцируемое при размыкании точек прерывателя, поступает на ротор, где образует дугу небольшого воздушного зазора к электроду № 1 в блоке.

Поскольку распределитель вращается с половиной частоты вращения коленчатого вала на всех четырехтактных двигателях, блок распределителя имеет столько электродов, сколько цилиндров двигателя, или столько электродов, сколько цилиндров обслуживает магнето.Электроды расположены по окружности вокруг распределительного блока, так что при вращении ротора замыкается цепь к другому цилиндру и свече зажигания каждый раз, когда палец ротора совмещается с электродом в распределительном блоке. Электроды блока распределителя нумеруются последовательно в направлении движения ротора распределителя. [Рис. 8]

Рис. 8. Соотношение между номерами клемм распределителя и номерами цилиндров

Номера распределителей представляют собой порядок зажигания магнето, а не номера цилиндров двигателя.Электрод-распределитель с маркировкой «1» подключается к свече зажигания в цилиндре №1; электрод-распределитель с маркировкой «2» ко второму цилиндру для воспламенения; электрод распределителя с маркировкой «3» к третьему цилиндру, который должен воспламениться, и так далее.

На рис. 8 палец ротора распределителя совмещен с электродом распределителя, обозначенным «3», который запускает цилиндр № 5 девятицилиндрового радиального двигателя. Поскольку порядок воспламенения девятицилиндрового радиального двигателя 1-3-5-7-9-2-4-6-8, третий электрод в порядке зажигания магнето служит электроду № 1. 5 цилиндр.

Поскольку узлы магнето и распределителя подвержены резким перепадам температуры, при их проектировании учитываются проблемы образования конденсата и влаги. Влага в любой форме является хорошим проводником электричества. Если он поглощается непроводящим материалом в магнето, таким как блоки распределителя, пальцы распределителя и корпуса катушек, он может создавать паразитный электрический проводящий путь. Ток высокого напряжения, который обычно проходит через воздушные зазоры распределителя, может вспыхнуть через влажную изолирующую поверхность на землю, или ток высокого напряжения может быть неправильно направлен к какой-либо свече зажигания, отличной от той, которая должна зажигаться.Это состояние называется перекрытием и обычно приводит к пропуску зажигания в цилиндре. Это может вызвать серьезное состояние двигателя, называемое преждевременным зажиганием, которое может повредить двигатель. По этой причине змеевики, конденсаторы, распределители и роторы распределителей навощены, чтобы влага на таких узлах стояла отдельными каплями и не образовывала полного контура для перекрытия.

Вспышка может привести к образованию нагара, который проявляется в виде тонкой карандашной линии на блоке, поперек которого возникает вспышка. Углеродный след возникает из-за того, что электрическая искра сжигает частицы грязи, содержащие углеводородные материалы.Вода в углеводородном материале испаряется во время пробоя, оставляя углерод для формирования проводящего пути для тока. Когда влаги больше нет, искра продолжает следовать по углеродной дорожке к земле. Это предотвращает попадание искры на свечу зажигания, поэтому цилиндр не срабатывает.

Магнето нельзя герметизировать, чтобы предотвратить попадание влаги внутрь устройства, потому что магнето подвержен изменениям давления и температуры на высоте. Таким образом, адекватные дренажи и надлежащая вентиляция снижают тенденцию к перекрытию и отслеживанию нагара.Хорошая циркуляция магнето также гарантирует, что коррозионно-активные газы, образующиеся при нормальном дуговом разряде в воздушном зазоре распределителя, такие как озон, будут унесены. В некоторых установках герметизация внутренних компонентов магнето и других различных частей системы зажигания необходима для поддержания более высокого абсолютного давления внутри магнето и предотвращения перекрытия из-за полета на большой высоте. Этот тип магнето используется с двигателями с турбонаддувом, которые работают на больших высотах. Перекрытие становится более вероятным на больших высотах из-за более низкого атмосферного давления, из-за чего электричеству легче преодолевать воздушные промежутки.За счет повышения давления внутри магнето поддерживается нормальное давление воздуха, а электричество или искра удерживаются в соответствующих областях магнето, даже если окружающее давление очень низкое.

Даже в магнето под давлением воздух может проходить через корпус магнето и выходить из него. Подавая больше воздуха и позволяя небольшому количеству воздуха выходить для вентиляции, магнето остается под давлением. Независимо от используемого метода вентиляции, вентиляционные отверстия или клапаны должны быть свободны от препятствий. Кроме того, воздух, циркулирующий через компоненты системы зажигания, не должен содержать масла, поскольку даже незначительное количество масла на деталях зажигания приводит к перекрытию и следам нагара.

Провод зажигания направляет электрическую энергию от магнето к свече зажигания. Жгут зажигания содержит изолированный провод для каждого цилиндра, который обслуживает магнето в двигателе. [Рисунок 9] Один конец каждого провода подключается к распределительному блоку магнето, а другой конец подключается к соответствующей свече зажигания.Провода жгута зажигания служат двойному назначению. Он обеспечивает путь проводника высокого напряжения к свече зажигания. Он также служит экраном для блуждающих магнитных полей, которые окружают провода, поскольку по ним на мгновение протекает ток высокого напряжения. Направляя эти магнитные силовые линии на землю, жгут проводов зажигания снижает электрические помехи бортовому радио и другому электрически чувствительному оборудованию.

Рисунок 9. Жгут зажигания высокого напряжения

Магнето — это устройство, излучающее высокочастотное излучение (радиоволны) во время работы. Волновые колебания, возникающие в магнето, неконтролируемы, охватывают широкий диапазон частот и должны быть экранированы. Если бы провода магнето и зажигания не были экранированы, они образовали бы антенны и улавливали бы случайные частоты от системы зажигания. Свинцовый экран представляет собой оплетку из медной сетки, которая окружает провод по всей длине.Свинцовая защита предотвращает излучение энергии в окружающее пространство.

Емкость – это способность накапливать электростатический заряд между двумя проводящими пластинами, разделенными диэлектриком. Свинцовая изоляция называется диэлектриком, что означает, что она может накапливать электрическую энергию в виде электростатического заряда. Примером накопления электростатической энергии в диэлектрике является статическое электричество, хранящееся в пластиковой расческе для волос. Когда вокруг провода зажигания размещается экран, емкость увеличивается за счет сближения двух пластин.В электрическом отношении провод зажигания действует как конденсатор и обладает способностью поглощать и накапливать электрическую энергию. Магнето должно производить достаточно энергии, чтобы зарядить емкость, вызванную проводом зажигания, и иметь достаточно энергии, оставшейся для зажигания свечи.

Емкость провода зажигания увеличивает электрическую энергию, необходимую для обеспечения искры через зазор свечи. Для зажигания вилки с экранированным выводом требуется больший первичный ток магнето. Эта емкостная энергия разряжается в виде огня через зазор свечи после каждого зажигания свечи.Путем изменения полярности во время обслуживания путем поворота заглушек на новые места износ заглушек выравнивается по электродам. В самом центре провода зажигания находится высоковольтный носитель, окруженный силиконовым изоляционным материалом, который окружен металлической сеткой или экраном, покрытым тонким силиконовым каучуковым покрытием, которое предотвращает повреждение от перегрева двигателя, вибрации или погодных условий.

Типичный провод зажигания показан в разрезе на рис. 10. Провода зажигания должны быть проложены и закреплены правильно, чтобы избежать горячих точек на выхлопе и точках вибрации, когда провода прокладываются от магнето к отдельным цилиндрам.Провода зажигания обычно всепогодного типа, жестко соединены с распределителем магнето и прикреплены к свече зажигания с помощью резьбы. Экранированная клемма свечи зажигания с проводом зажигания доступна с всепогодной гайкой провода зажигания диаметром 3/4 дюйма и диаметром 5/8 дюйма. [Рис. 11] Для заглушки 5/8–24 требуется ключ на 3/4 на свинцовой гайке, а для заглушки 3/4–20 требуется ключ на 7/8 на свинцовой гайке. Во всепогодной конструкции диаметром 3/4 дюйма используется клеммное уплотнение, обеспечивающее лучшую изоляцию клеммной колодцы.Это рекомендуется, потому что свинцовый конец свечи зажигания полностью защищен от влаги.

Рисунок 10. Ведущий зажигание
Рисунок 11. Зажигание зажигания зажигания

старший радиальный двигатель жгута зажигания коллектор, сформированный для установки вокруг картера двигателя с гибкими расширениями, заканчивающимися на каждой свече зажигания.Типичный высоковольтный жгут зажигания показан на рис. 12. Многие старые системы зажигания для однорядных радиальных двигателей используют систему с двойным магнето, в которой правый магнето подает электрическую искру на передние свечи в каждом цилиндре, а левый магнето поджигает задние свечи.

Рис. 12. Жгут проводов зажигания девятицилиндрового двигателя, установленный на принадлежностях

Все узлы системы зажигания самолета управляются выключателем зажигания.Тип используемого переключателя зависит от количества двигателей на самолете и типа используемого магнето. Однако все переключатели выключают и включают систему практически одинаково. Выключатель зажигания отличается по крайней мере в одном отношении от всех других типов выключателей: когда ключ зажигания находится в выключенном положении, цепь замыкается через выключатель на массу. В других электрических переключателях положение «выключено» обычно разрывает или размыкает цепь.

Выключатель зажигания имеет одну клемму, подключенную к первичной электрической цепи между катушкой и контактными точками прерывателя.Другая клемма переключателя подключена к наземной конструкции самолета. Как показано на рис. 13, есть два способа замыкания первичной цепи:

  1. Через замкнутый выключатель на землю и
  2. Через замкнутый выключатель зажигания на землю
переключатель в выключенном положении

На рис. 13 показано, что первичный ток не прерывается, когда контакты прерывателя разомкнуты, так как остается путь к земле через замкнутый или выключенный выключатель зажигания. Поскольку первичный ток не останавливается при размыкании точек контакта, не может быть внезапного коллапса магнитного поля первичной катушки и высокого напряжения, индуцируемого во вторичной катушке, чтобы зажечь свечу зажигания.

По мере того, как магнит вращается за пределы электрического зазора (E-зазора), происходит постепенное разрушение основного магнитного поля. Но этот пробой происходит так медленно, что индуцированное напряжение слишком низкое, чтобы зажечь свечу зажигания. Таким образом, когда ключ зажигания находится в выключенном положении при замкнутом выключателе, точки контактов так же полностью закорочены, как если бы они были удалены из цепи, и магнето не работает.

Когда ключ зажигания находится в открытом положении, прерывание первичного тока и быстрое разрушение магнитного поля первичной обмотки снова контролируются или вызываются размыканием контактов прерывателя. [Рисунок 14] Когда ключ зажигания находится во включенном положении, он абсолютно не влияет на первичную цепь.

стартер.Когда на двигателе используется пусковой вибратор, коробка, которая излучает пульсирующий постоянный ток (DC), переключатель зажигания / стартера используется для управления вибратором и точками замедления. Эта система подробно объясняется далее в этой главе. Некоторые пусковые выключатели зажигания имеют функцию «нажми на заправку» во время пускового цикла. Эта система позволяет дополнительному топливу впрыскиваться во впускное отверстие цилиндра во время пускового цикла.

Магнето системы высокого напряжения, используемые в авиационных двигателях, бывают одинарного или двойного типа.Конструкция с одним магнето включает в себя распределитель в корпусе с узлом прерывателя магнето, вращающимся магнитом и катушкой. [Рис. 15] Двойное магнето включает два магнето в одном корпусе. Один вращающийся магнит и кулачок являются общими для двух наборов точек прерывателя и катушек. В магнето установлены два отдельных распределительных блока. [Рисунок 16]

Рисунок 15. Magneto Cutaway
Рисунок 16.Двойное магнето с двумя распределителями

Фланцевые магнето крепятся к двигателю фланцем вокруг ведомого конца вращающегося вала магнето. [Рис. 17] Удлиненные прорези в монтажном фланце позволяют регулировать в ограниченном диапазоне, чтобы помочь синхронизировать магнето с двигателем. Некоторые магнето крепятся за фланец и используют зажимы с каждой стороны, чтобы прикрепить магнето к двигателю. Эта конструкция также позволяет регулировать синхронизацию. Установленные на основании магнето используются только на очень старых или антикварных авиационных двигателях.

Сюда входят новые электронные системы, которые контролируют не только зажигание цилиндров. Высокое напряжение создает определенные проблемы с передачей высокого напряжения от магнето внутри и снаружи к свечам зажигания.В первые годы было трудно предоставить изоляторы, которые могли бы удерживать высокое напряжение, особенно на больших высотах, когда давление воздуха было снижено. Еще одно требование к системам высокого напряжения заключалось в том, что все самолеты, оснащенные погодными и радиооборудованием, должны иметь провода зажигания, заключенные в экран, чтобы предотвратить радиопомехи из-за высокого напряжения. Многие самолеты были с турбонаддувом и эксплуатировались на больших высотах. Низкое давление на этих высотах позволит утечке высокого напряжения еще больше.Для решения этих проблем были разработаны системы зажигания низкого напряжения.

С точки зрения электроники система низкого напряжения отличается от системы высокого напряжения. В системе низкого напряжения низкое напряжение генерируется в магнето и поступает на первичную обмотку катушки трансформатора, расположенную рядом со свечой зажигания. Там напряжение повышается до высокого за счет действия трансформатора и подается на свечу зажигания по очень коротким высоковольтным проводам. [Рис. 18]

Рисунок 18.Упрощенная схема системы зажигания низкого напряжения

Система низкого напряжения практически исключает пробой как в распределителе, так и в жгуте, поскольку воздушные зазоры в распределителе устранены за счет использования щеточного распределителя, а высоковольтная напряжение присутствует только в коротких проводах между трансформатором и свечой зажигания.

Хотя определенная утечка тока характерна для всех систем зажигания, она более выражена в радиоэкранированных установках, поскольку металлический канал находится под потенциалом земли и находится близко к проводам зажигания по всей своей длине.Однако в системах с низким напряжением эта утечка значительно снижается, поскольку ток в большей части системы передается с потенциалом низкого напряжения. Хотя провода между катушками трансформатора и свечами зажигания низковольтной системы зажигания короткие, они представляют собой высоковольтный проводник высокого напряжения и подвержены тем же отказам, что и в высоковольтных системах. Системы зажигания низкого напряжения имеют ограниченное применение в современных самолетах из-за отличных материалов и экранирования, доступных для изготовления проводов зажигания высокого напряжения, а также из-за дополнительных затрат на катушку для каждой свечи зажигания с системой низкого напряжения.

Что такое система зажигания от магнето | Как работает система зажигания | Как работает магнето | Что делает магнето

Что означает зажигание от магнето?

Магнето зажигания  – это система зажигания  , в которой магнето  используется [вырабатывает высокое напряжение] для выработки электроэнергии, и, кроме того, это электричество используется в нескольких целях, например, для управления транспортными средствами. В настоящее время это в основном используется в двухколесных транспортных средствах (двигатель Spark Ignition ).

Для чего нужен магнето?

Магнето  – это автономный генератор высокого напряжения, обеспечивающий зажигание двигателя через свечи зажигания. Магнит — отсюда магнето — вращается в непосредственной близости от катушки с проволокой. Когда магнит вращается (или ротор магнита вращается), он создает сильную магнитную силу, которая «сдерживается» первичной катушкой.

Как работает зажигание от магнето?

Магнето  является автономным генератором высокого напряжения, который обеспечивает зажигание двигателя через свечи зажигания.В момент размыкания контактных точек быстрый магнитный поток создает высокое напряжение во вторичной обмотке, которая воспламеняет свечу зажигания, тем самым запуская двигатель.

Каковы основные недостатки системы зажигания от магнето?

Проблемы с запуском из-за низкой скорости вращения при запуске двигателя. Это дороже, если сравнивать с аккумулятором системы зажигания . Возможны пропуски зажигания из-за утечки из-за колебания напряжения в проводке.

Каково назначение магнето в системе зажигания?

Магнето  – это электрический генератор, в котором используются постоянные магниты для выработки переменного тока. Магнето, приспособленные для производства импульсов электричества высокого напряжения, используются в системах зажигания некоторых бензиновых двигателей внутреннего сгорания для подачи энергии на свечи зажигания.

В чем разница между магнето и катушкой?

Магнето — это устройство с приводом от двигателя, состоящее из вращающегося магнита и полюсов возбуждения.Ему не нужна батарея, и он генерирует ток для зажигания свечи зажигания. Катушка — это устройство, используемое в системе зажигания, которое на самом деле представляет собой трансформатор, повышающий напряжение батареи до прибл. 30 000 вольт.

В чем разница между Magneto и дистрибьютором?

Основное различие между магнето и распределителем заключается в том, что магнето является автономным и НЕ требует батареи для получения искры. С другой стороны, для работы распределителя требуется внешний источник питания.

Что такое зажигание от магнето в самолете?

Магнето  – это электрический генератор, в котором используются постоянные магниты для выработки переменного тока. Магнето, которые приспособлены для производства импульсов электричества высокого напряжения, используются в системах зажигания некоторых бензиновых двигателей внутреннего сгорания для подачи энергии на свечи зажигания.

Магнето переменного или постоянного тока?

Магнето  – это электрический генератор, в котором используются постоянные магниты для генерации периодических импульсов переменного тока.В отличие от динамо-машины, магнето не содержит коммутатора для выработки постоянного тока.

Можно ли починить магнето?

Вам также необходимо убедиться, что магнето правильно переустановлено. Возможные варианты устранения этой проблемы: купить новый магнето или отправить магнето в компанию, которая специализируется на реставрации.

Что произойдет, если магнето выйдет из строя?

Если  mag L полностью  выйдет из строя , двигатель будет работать с перебоями и иметь меньшую мощность, а CHT и EGT будут незнакомыми. Если вы переключитесь с Both на mag R, он продолжит работать.

Что вызывает отказ магнето?

Любая дуга вызовет  наконечники выключателя,  из   выход из строя магнето  отказ. Чтобы предотвратить возникновение дуги в точках и вызвать более быстрое и предсказуемое разрушение магнитного поля, вызывающее более сильный всплеск напряжения, в цепь первичной обмотки включен конденсатор.

Как магнето производит электричество?

В то время как электромагнит использует электричества , проходящего через катушку для производства магнита, магнето использует магнитное поле вблизи катушки, называемой якорем, для производства и электрического тока.Затем кулачок разрывает контакт с якорем, и электромагнитное поле восстанавливается для нового импульса электричества.

Как магнето работает с маховиком?

Маховик с двумя сильными магнитами используется для создания магнитного поля вокруг якоря. При каждом обороте в катушках якоря создается электромагнитное поле. Кулачок на электроагрегате создает контакт с якорем, нарушая поле и создавая электрическое напряжение в первичной обмотке.

Магнето — это то же самое, что и дистрибьютор?

Магнето представляет собой комбинацию распределителя и генератора, встроенных в один блок. Он отличается от обычного распределителя тем, что создает собственную энергию искры без внешнего напряжения. Ряд вращающихся магнитов разрушает электрическое поле, что вызывает электрический ток в первичной обмотке катушки.

Нужна ли Магнето батарея?

Нет, поскольку для требуется  нет батарея  или другой источник электроэнергии, магнето представляет собой компактную и надежную автономную систему зажигания, поэтому она по-прежнему используется во многих приложениях авиации общего назначения.

Что делает дистрибьютор на тракторе?

При вращении двигателя кулачок вала распределителя поворачивается до тех пор, пока верхняя точка кулачка не приведет к внезапному разделению точек прерывателя. Мгновенно при размыкании точек (разделении) прекращается протекание тока через первичные обмотки катушки зажигания. Это приводит к коллапсу магнитного поля вокруг катушки.

Как работает система зажигания от магнето в самолетах?

Магнето  является автономным генератором высокого напряжения, обеспечивающим зажигание двигателя через свечи зажигания.Магнит — отсюда магнето — вращается в непосредственной близости от катушки проволоки. Два магнето на большинстве самолетов GA — левое и правое — зажигают одну из двух свечей зажигания на каждом цилиндре.

Какова функция авиационного магнето?

Авиационный магнето  – это электрический генератор с приводом от двигателя, в котором используются постоянные магниты и катушки для выработки высокого напряжения для зажигания свечей зажигания самолета  . Авиационные магнето  используются в поршневых двигателях самолетов и известны своей простотой и надежностью.

Как работают магнето?

Магнето  – это автономный генератор высокого напряжения, обеспечивающий зажигание двигателя через свечи зажигания. Магнит — отсюда магнето — вращается в непосредственной близости от катушки с проволокой. Когда магнит вращается (или ротор магнита вращается), он создает сильную магнитную силу, которая «сдерживается» первичной катушкой.

Что вызывает отказ магнето?

Загрязнение маслом приводит к тому, что таких магнето выходят из строя , а выходят из строя .Моторное масло может попасть в магнето через поврежденный сальник двигателя магнето . Известно, что сальники изнашиваются с возрастом, количеством часов работы и воздействием тепла, включая горячее моторное масло

Как работает магнето?

Для большинства небольших газонокосилок, цепных пил, триммеров и других небольших бензиновых двигателей батарея не требуется. Вместо этого они фактически генерируют энергию для свечи зажигания, используя магнето . Магнето также используются на многих небольших самолетах (например, Cessna 152, показанная в фильме «Как работают самолеты»), потому что они чрезвычайно надежны.

Идея любой системы зажигания состоит в том, чтобы генерировать чрезвычайно высокое напряжение — порядка 20 000 вольт — в нужное время. Напряжение заставляет искру проскакивать через зазор свечи зажигания, и искра воспламеняет топливо в двигателе. Подробнее см. в разделе «Как работают автомобильные двигатели» или «Как работают двухтактные двигатели».

Магнето — это белый блок на следующей фотографии (это магнето для цепной пилы):

Идея магнето проста. По сути, это электрический генератор, настроенный на создание периодических импульсов высокого напряжения, а не постоянного тока.Электрический генератор (или магнето) — это обратная сторона электромагнита (подробности см. в разделе «Как работают электромагниты»). В электромагните есть катушка проволоки вокруг железного стержня (якоря). Когда вы подаете ток на катушку электромагнита (например, с помощью батареи), катушка создает магнитное поле в якоре. В генераторе вы делаете обратный процесс. Вы перемещаете магнит мимо якоря, чтобы создать электрический ток в катушке.

Магнето состоит из пяти частей:

  • Якорь.В приведенном выше магнето якорь имеет форму заглавной буквы «U». Два конца буквы U указывают на маховик.
  • Первичная катушка примерно из 200 витков толстого провода, намотанная на одно плечо U
  • Вторичная катушка примерно из 20 000 витков очень тонкого провода, намотанная на первичную катушку
  • Простой электронный блок управления, который обычно носит название «электронное зажигание» (или набор точек прерывателя и конденсатор)
  • Пара сильных постоянных магнитов, встроенных в маховик двигателя.

Вы можете увидеть два магнита на следующем фото:

Когда магниты пролетают мимо U-образного якоря, они индуцируют магнитное поле в якоре. Это поле индуцирует небольшой ток в первичной и вторичной катушках. Однако нам нужно чрезвычайно высокое напряжение. Поэтому, когда магнитное поле в якоре достигает своего максимума, переключатель в электронном блоке управления размыкается. Этот переключатель разрывает ток через первичную катушку и вызывает всплеск напряжения (примерно 200 вольт).Вторичная катушка, имеющая в 100 раз больше витков, чем первичная, усиливает это напряжение примерно до 20 000 вольт, и это напряжение подается на свечу зажигания.

Многие самоходные газонокосилки оснащены аккумулятором, если они оснащены такими аксессуарами, как фары и электростартер. Тем не менее, в двигателе может использоваться магнето, потому что магнето простое и надежное.

Вы можете узнать больше о магнето по этим ссылкам:

Первоначально опубликовано: 8 мая 2000 г.

Система зажигания магнето – детали, принцип работы, преимущества и недостатки

Двигатель внутреннего сгорания, который имеет некоторые яркие характеристики, такие как высокая скорость и высокое внутреннее сжатие, требует системы, которая обеспечивает очень сильное воспламенение от свечи зажигания, которая используется в качестве источника.

Система зажигания – это система, в которой в качестве источника используется свеча зажигания, где электрическая энергия
поступает на вход свечи зажигания.

Электронная система зажигания

Система зажигания от магнето — это уникальная система зажигания, которая имеет собственный источник для выработки необходимого количества энергии для работы автомобиля или транспортного средства.

  • Основные части
  • Магнето Система зажигания
  • Источник изображения

Вот список деталей, которые используются в ней

  • Магнето
  • Распределитель
  • Свеча зажигания
  • Конденсатор

Также читайте — Как сделать провода свечей зажигания

1.МАГНИТО

Источником энергии в системе зажигания Магнето является Магнето.
Вообще говоря, магнето — это небольшой электрический генератор. Когда магнит вращается двигателем, создается напряжение.

Чем выше скорость вращения, тем больше будет величина напряжения, создаваемого системой.

Магнето не нуждается в каком-либо внешнем источнике питания, таком как батарея, чтобы запустить его, поскольку он является источником для
Генерирования энергии.

В нем два вида обмотки.Он имеет первичную привязку и вторичную привязку.

В дополнение к этому, магнето имеет 3 типа в зависимости от скорости вращения двигателя

  • С вращающимся якорем
  • С вращающимся магнитом
  • С полярным индуктором

Во вращающемся якоре якорь вращается между неподвижным магнитом, тогда как в якоре с вращающимся магнитом якорь неподвижен, а магниты вращаются вокруг якоря.

В полярных индукторах и магнит, и обмотки остаются неподвижными, но напряжение генерируется за счет обращения поля потока с помощью полярных выступов из мягкого железа, называемых индукторами.

2. РАСПРЕДЕЛИТЕЛЬ

Распределитель, который используется в системе зажигания Magneto, используется в многоцилиндровом двигателе.

Многоцилиндровый двигатель используется для регулирования искры в правильной последовательности в свече зажигания.

Всплеск зажигания равномерно распределяется между свечами зажигания.

Существует два типа распределителей

  • Распределитель угольно-щеточного типа
  • Распределитель щелевого типа

В угольных щетках ротор, скользящий по металлическому сегменту, несет угольную щетку, встроенную в крышку распределителя или отформованную из изоляционного материала.

Помогает обеспечить электрическое соединение со свечой зажигания.

В зазорном типе электрод распределителя плеча ротора находится близко к крышке распределителя, но контакт не происходит, что приводит к отсутствию износа электрода.

3. СВЕЧА ЗАЖИГАНИЯ

Свеча зажигания, используемая в этой системе зажигания, имеет два электрода, отделенных друг от друга.

Через него проходит высокое напряжение, которое вызывает генерацию искры и используется для воспламенения рабочей смеси цилиндров, такой как масло.

Используемый в нем электрод представляет собой стальную оболочку и изолятор.

Центральный электрод подключается к источнику питания катушки зажигания и внешней стальной оболочки, которая заземлена, изолируя их обоих.

Между центральным электродом и стальной оболочкой остается небольшой воздушный зазор, где генерируется искра.

Центральный электрод закрывается при возникновении искры, поэтому он изготовлен из сплава с высоким содержанием никеля, который может выдерживать высокие температуры и сопротивление.

4. КОНДЕНСАТОР

Конденсатор, используемый в системе зажигания магнето, представляет собой простой электрический конденсатор, в котором две металлические пластины разделены изоляционным материалом на расстоянии.

Обычно в качестве изоляционного материала используется воздух, но для конкретного технического требования используется какой-либо высококачественный изоляционный материал.

Принцип работы системы зажигания аналогичен принципу работы катушечной или аккумуляторной системы зажигания, за исключением.

То есть магнето используется для производства энергии, а не батареи.

В нем происходят следующие сценарии.

Один конец магнето заземляется через размыкатель контактов и параллельно ему подключается запальный конденсатор.

Контакт прерывателя регулируется кулачком, и когда прерыватель разомкнут, ток протекает через конденсатор и заряжает его.

Это увеличивает напряжение в конденсаторе.

Это повышенное высокое напряжение в конденсаторе будет действовать как ЭДС, создавая искру на правой свече зажигания через распределитель.

На начальном этапе скорость двигателя низкая, и, следовательно, напряжение, генерируемое магнето, низкое, но по мере увеличения скорости вращения двигателя также увеличивается напряжение, генерируемое магнето, и поток тока также уменьшается. вырос.

  • На средней и высокой скорости он более эффективен.
  • Это удобнее, потому что нет батареи.
  • Требуется меньше обслуживания.

Основным преимуществом системы зажигания от магнето по сравнению с другими системами зажигания является то, что она не требует внешнего источника для выработки энергии.

Удалось при низком напряжении и высоком напряжении.

При высоком напряжении огромное количество напряжения генерируется с помощью повышающего трансформатора, который можно использовать для таких двигателей, как двигатель самолета, а низкое напряжение может управлять этим напряжением, пропуская его через самую маленькую часть проводки, что позволяет избежать утечки. слишком.

  • – Проблемы с запуском из-за низкой скорости вращения при запуске двигателя.
  • – дороже по сравнению с аккумуляторной системой зажигания.
  • – Возможны пропуски зажигания из-за утечки из-за перепада напряжения в проводке.

Вот неполный перечень областей применения двигателей, оборудованных системой зажигания от магнето.

  • – Тракторы, горелки и подвесные моторы
  • – Стиральные машины
  • – Грузовики и бетономешалки
  • – Автобусы
  • – Авиационные двигатели
  • – Силовые установки, судовые двигатели и двигатели, работающие на природном газе
  • читать:


    Система зажигания Магнето: определение, функция, компоненты, работа

    Зажигание от магнето — особый тип системы зажигания, обеспечивающий искру в двигателях с искровым зажиганием, таких как бензиновые двигатели.он используется для получения импульсов высокого напряжения для свечей зажигания. Эта система существует уже более 100 лет и до сих пор используется на стационарных и переносных двигателях. Он в основном используется в приложениях, где место для внешней батареи ограничено.

    Сегодня вы познакомитесь с определением, функциями, применением, компонентами, схемой и работой системы зажигания от магнето. вы также познакомитесь с преимуществами и недостатками предложения двигателей с искровым зажиганием.

    Подробнее: Вещи, которые вы должны знать о масляном радиаторе двигателя

    Определение системы зажигания магнето

    Система зажигания от магнето или магнето высокого напряжения — это система зажигания, в которой магнето используется для создания высокого напряжения для выработки электроэнергии. Вырабатываемая электроэнергия в дальнейшем используется для управления транспортными средствами и другими электрическими компонентами системы.

    Магнето представляет собой комбинацию распределителя и генератора, объединенных в единое целое, что отличает его от обычного распределителя, создающего искровую энергию без внешнего напряжения.Существует ряд вращающихся магнитов, которые разрушают электрическое поле, вызывая электрический ток в первичных обмотках катушки. Затем текущий заряд будет умножаться, когда он перейдет на вторичные обмотки катушки. Это связано с тем, что количество обмоток во вторичной цепи во много раз больше, чем в первичной цепи, что затем заставляет магнето с умноженным зарядом производить искру при более высоком напряжении, чем было создано в первичных обмотках.

    В большинстве случаев система магнето может выдавать напряжение до 20 000, что приводит к очень горячей искре, которую может произвести обычный распределитель.

    Функция системы магнето заключается в использовании магнето для подачи тока в систему зажигания, питающую свечу зажигания, которая дополнительно воспламеняет топливно-воздушную смесь в камере сгорания. другую функцию магнетосистемы выполняет свеча зажигания, поскольку тепло может рассеиваться через систему. система также вызывает измерение ионизации в цилиндрах.

    Подробнее: Общие сведения о системе трения и рекуперативного торможения

    Применение системы зажигания от магнето

    Ниже показано применение зажигания от магнето в различных аспектах, поскольку оно генерирует электричество, необходимое для зажигания:

    • Система используется в двухколесных транспортных средствах (двигатели SI.
    • Точно так же, как батарея используется для выработки энергии в системе зажигания батареи, магнето используется для выработки электроэнергии.
    • Наконец, система зажигания от магнето широко используется в тракторах, подвесных моторах, стиральных машинах, судовых двигателях, силовых агрегатах и ​​двигателях, работающих на природном газе.

    Подробнее: Система охлаждения в двигателях внутреннего сгорания

    Компоненты системы зажигания от магнето

    Ниже приведены функциональные компоненты, которые помогают работе системы зажигания от магнето в различных приложениях:

    Магнето:

    Магнето является источником выработки энергии в системе зажигания магнето.Обычно это небольшой генератор, работающий от электричества, поскольку он вырабатывает напряжение при вращении двигателя. Другими словами, чем выше вращение, тем больше напряжение, создаваемое системой. Система не имеет внешнего источника энергии и не нуждается в нем для запуска, само магнето является источником для генерации энергии. Обмотка в системе бывает двух типов: первичное связывание и вторичное связывание.

    В зависимости от оборотов двигателя магнето бывает трех типов;

    • Вращающийся магнит
    • Якорь вращающегося типа
    • Полярный индуктор типа

    Разница между этими тремя заключается только в их источнике вращения. В магнитном типе якорь неподвижен, а магниты вращаются вокруг якоря. В то время как в якорном типе якорь вращается между неподвижным магнитом. Наконец, в полярном индукторе и магнит, и обмотки остаются неподвижными, но напряжение генерируется, когда поле потока меняется на противоположное. Это достигается с помощью полярных выступов из мягкого железа, известных как индукторы.

    Дистрибьютор:

    Компоненты распределителя, используемые в системе зажигания от магнето, также можно найти в многоцилиндровом двигателе.Эти многоцилиндровые двигатели используются для регулирования искры в правильной последовательности в свече зажигания. Это приводит к тому, что всплеск зажигания равномерно распределяется между свечами зажигания.

    Дистрибьюторы бывают двух типов:

    • Зазор и
    • Распределитель угольных щеток.

    Подробнее: Принцип работы нагревательного элемента

    В распределителях щелевого типа электрод плеча ротора находится близко к крышке распределителя, но соприкасается с ней. Это исключает возникновение износа электрода. В то время как в типе угольной щетки, рычаг ротора, скользящий по металлическому сегменту, несет угольную щетку, которая помещена внутри крышки распределителя или формованного изоляционного материала. При этом создается электрическое соединение со свечой зажигания.

    Свеча зажигания:

    Свеча зажигания — это устройство, которое приводится в действие системой зажигания для воспламенения топливно-воздушной смеси в цилиндре. Он имеет два электрода, которые отделены друг от друга, что позволяет проходить через него высокому напряжению.Эти электроды изготовлены из стальной оболочки и изолятора. Центральный электрод крепится к питающей катушке зажигания и внешней стальной оболочке. Он заземлен, изолируя их.

    Читать статью полностью о свече зажигания

    Конденсатор:

    Конденсатор также является компонентом системы зажигания от магнето. это как обычный электрический конденсатор с двумя металлическими пластинами, разделенными изоляционным материалом на расстоянии. В качестве изоляционного материала в этой системе обычно используется воздух, но для выполнения определенных технических требований используется высококачественный изоляционный материал.Функция этого конденсатора заключается в хранении заряда.

    Кулачок:

    Кулачок крепится к северному и южному магниту.

    Размыкатель контактов:

    Этот прерыватель контактов регулируется кулачком, который пропускает ток через конденсатор и заряжает его, когда прерыватель разомкнут.

    Замок зажигания:

    Замок зажигания помогает запускать и выключать систему зажигания автомобиля. он контролирует и устанавливает параллель конденсатора, потому что это помогает предотвратить повреждение слишком большого количества воздуха.

    Подробнее: Все, что вам нужно знать о системе зажигания

    Схема системы зажигания от магнето:

    Принцип работы

    Работа системы зажигания от магнето менее сложна и ее легко понять. Его работа начинается, когда двигатель системы начинает работать, когда затем вращается магнето. Затем магнето создает энергию высокого напряжения. Конец магнето заземляется с одного конца через прерыватель контактов и параллельно к нему присоединен конденсатор.Кулачок помогает регулировать контакт прерывателя и ток через конденсатор и заряжает его, когда прерыватель разомкнут.

    При этом конденсатор действует как зарядное устройство, поскольку первичный ток снижается, а затем уменьшается общее магнитное поле, создаваемое в системе. Это увеличивает напряжение в конденсаторе, которое действует как ЭДС, создавая искру. Это достигается с помощью дистрибьютора.

    Когда скорость двигателя низкая на начальном этапе, напряжение, генерируемое магнето, также низкое.Но как только скорость вращения двигателя увеличивается, генерируемое напряжение также увеличивается. Если это произойдет, поток тока также увеличится.

    Подробнее: Понимание работы антиблокировочной тормозной системы (ABS)

    Посмотреть видео о работе системы зажигания от магнето:

    Преимущества и недостатки системы зажигания от магнето

    Преимущества:

    Ниже приведены преимущества системы зажигания от магнето в различных ее применениях:

    • Требуется меньше обслуживания по сравнению с аккумуляторной системой зажигания.
    • Меньше затрат, так как батарея не используется.
    • Эффективная работа благодаря высокоинтенсивной искре.
    • Электрическая цепь создается магнето.
    • Занимает меньше места.
    • Поскольку батарея не используется, проблем с разрядкой батареи или ошибкой батареи нет.

    Подробнее: Все, что вам нужно знать о гидравлическом прессе

    Недостатки:

    Несмотря на хорошие преимущества системы зажигания от магнето, все же имеют место некоторые ограничения.Ниже приведены недостатки системы в различных приложениях:

    • Плохое качество искры из-за низкой скорости при первом запуске.
    • Возможны пропуски зажигания из-за утечки. Это связано с тем, что может произойти изменение напряжения в проводке.
    • Система дороже по сравнению с другими типами систем зажигания.

    Подробнее: Что нужно знать о двигателях с турбонаддувом

    В заключение следует отметить, что система зажигания от магнето представляет собой большое усовершенствование двигателей с искровым зажиганием и другого оборудования внутреннего сгорания.Мы подробно рассмотрим определение, функцию и компонент системы зажигания. мы также рассмотрели его работу, а также его преимущества и недостатки, где мы сказали, что он требует меньше обслуживания и не использует батарею. Мы также увидели, что он обеспечивает искру низкого качества при первом запуске из-за низкой скорости, которую он испытывает.

    Надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте ваш любимый аспект этой статьи и задайте вопросы. Мы надеемся увидеть вас в следующий раз.Спасибо!

    Магнетосистема высокого напряжения.

    Принцип действия. Первичная электрическая цепь

    Первичная электрическая цепь состоит из набора контактных точек прерывателя, конденсатора и изолированной катушки. [Рисунок 4-5] Катушка состоит из нескольких витков толстого медного провода, один конец которого заземлен на сердечник катушки, а другой конец на незаземленную сторону точек прерывателя. [Рисунок 4-5] Первичная цепь замыкается только тогда, когда незаземленная точка прерывателя соприкасается с заземленной точкой прерывателя.Третий блок в цепи, конденсатор (конденсатор), подключается параллельно точкам прерывателя. Конденсатор предотвращает возникновение дуги в точках размыкания цепи и ускоряет разрушение магнитного поля вокруг первичной катушки.

    Рис. 4-5. Первичная электрическая цепь высоковольтного магнето.

    Первичный выключатель замыкается приблизительно в положении полного регистра. Когда точки прерывателя замыкаются, первичная электрическая цепь замыкается, и вращающийся магнит индуцирует ток в первичной цепи. Этот поток тока создает собственное магнитное поле, направленное таким образом, что препятствует любому изменению магнитного потока в цепи постоянного магнита.

    Пока в первичной цепи протекает индуцированный ток, он препятствует уменьшению магнитного потока в сердечнике. Это соответствует закону Ленца, который гласит: «Индуцированный ток всегда течет в таком направлении, что его магнетизм противодействует движению или изменению, которое его вызвало». (Обзор закона Ленца см. в Техническом справочнике по техническому обслуживанию авиации — Общий справочник, FAA-H-8083-30).Таким образом, ток, протекающий в первичной цепи, удерживает магнитный поток в сердечнике на высоком уровне в одном направлении до тех пор, пока вращающийся магнит не успеет повернуться от нейтрального положения до точки, на несколько градусов выше нейтральной. Это положение называется положением E-gap (E означает эффективность).

    Если магнитный ротор находится в положении Е-зазора, а первичная катушка удерживает магнитное поле магнитной цепи с противоположной полярностью, можно получить очень высокую скорость изменения потока путем размыкания точек первичного прерывателя. Размыкание точек прерывателя останавливает ток в первичной цепи и позволяет магнитному ротору быстро изменить направление поля через сердечник катушки. Эта внезапная реверсия потока вызывает высокую скорость изменения потока в сердечнике, который пересекает вторичную катушку магнето (намотанную и изолированную от первичной катушки), индуцируя во вторичной обмотке импульс высоковольтного электричества, необходимый для зажигания свеча зажигания. По мере того, как ротор продолжает вращаться примерно до полного положения регистра, точки первичного прерывателя снова замыкаются, и цикл повторяется для зажигания следующей свечи зажигания в порядке зажигания.

    Последовательность событий теперь можно рассмотреть более подробно, чтобы объяснить, как возникает состояние экстремального магнитного напряжения.

    Рис. 4-6. Компоненты цепи высоковольтного магнето.

    Когда точки прерывателя, кулачок и конденсатор подключены к цепи, как показано на рис. 4-6, действие, происходящее при вращении магнитного ротора, изображается кривой графика на рис. 4-7. В верхней части (A) рисунка 4-7 показана исходная кривая статического магнитного потока магнитов. Под кривой статического потока показана последовательность открытия и закрытия точек прерывателя магнето.Обратите внимание, что время открытия и закрытия точек прерывателя определяется кулачком прерывателя. Точки закрываются, когда через сердечник катушки проходит максимальное количество потока, и размыкаются в положении после нейтрали. Поскольку на кулачке четыре лепестка, точки прерывателя замыкаются и размыкаются в одном и том же отношении к каждому из четырех нейтральных положений магнита ротора. Также интервалы открытия и закрытия точек примерно равны.

    Рис. 4-7. Кривые магнитного потока.

    Начиная с положения максимального потока, отмеченного 0° в верхней части рисунка 4-7, происходит последовательность событий, описанная в следующих параграфах.

    Когда магнитный ротор поворачивается в нейтральное положение, величина магнитного потока через сердечник начинает уменьшаться. [Рисунок 4-7D] Это изменение потокосцепления индуцирует ток в первичной обмотке. [Рисунок 4-7C] Этот индуцированный ток создает собственное магнитное поле, которое препятствует изменению потокосцеплений, индуцирующих ток. Без тока, протекающего в первичной обмотке, поток в сердечнике катушки уменьшается до нуля, когда магнитный ротор поворачивается в нейтральное положение, и начинает увеличиваться в противоположном направлении (пунктирная кривая статического потока на рис. 4-7D).Но электромагнитное действие первичного тока предотвращает изменение потока и временно удерживает поле вместо того, чтобы позволить ему измениться (результирующая линия потока на рисунке 4-7D).

    В результате процесса удерживания в магнитной цепи возникает очень высокое напряжение к тому моменту, когда ротор магнита достигает положения, при котором точки прерывателя вот-вот разомкнутся. Точки прерывателя в разомкнутом состоянии работают вместе с конденсатором, прерывая протекание тока в первичной обмотке, вызывая чрезвычайно быстрое изменение потокосцепления.Высокое напряжение во вторичной обмотке разряжается через зазор в свече зажигания, воспламеняя топливно-воздушную смесь в цилиндре двигателя. Каждая искра фактически состоит из одного пикового разряда, после которого происходит серия малых колебаний.

    Они продолжают возникать до тех пор, пока напряжение не станет слишком низким для поддержания разряда. Ток протекает во вторичной обмотке в течение времени, необходимого для полного разряда искры. Энергия или напряжение в магнитной цепи полностью рассеивается к моменту замыкания контактов для образования следующей искры.Узлы прерывателя, используемые в высоковольтных магнитных системах зажигания, автоматически размыкают и замыкают первичную цепь в нужное время в зависимости от положения поршня в цилиндре, на который подается искра зажигания. Прерывание первичного тока осуществляется через пару контактных точек прерывателя, изготовленных из сплава, устойчивого к точечной коррозии и прогоранию.

    Большинство точек прерывания, используемых в системах зажигания самолетов, относятся к бесшарнирному типу, в котором одна точка прерывателя является подвижной, а другая неподвижной.[Рис. 4-8] Подвижная точка прерывателя, прикрепленная к листовой пружине, изолирована от корпуса магнето и соединена с первичной катушкой. [Рис. 4-8] Точка стационарного выключателя заземлена на корпус магнето для замыкания первичной цепи, когда точки замкнуты, и может быть отрегулирована таким образом, чтобы точки могли размыкаться в нужное время.

    Рис. 4-8. Отбойный молоток бесшарнирного типа и кулачок.

    Другой частью узла прерывателя является толкатель кулачка, который подпружинен против кулачка металлической пластинчатой ​​пружиной.Толкатель кулачка представляет собой блок из микарты или аналогичного материала, который перемещается по кулачку и перемещается вверх, отталкивая подвижный контакт прерывателя от неподвижного контакта каждый раз, когда выступ кулачка проходит под толкателем. Войлочная масленка расположена на нижней стороне металлического пружинного листа для смазки и предотвращения коррозии кулачка.

    Кулачок, приводящий в действие прерыватель, может приводиться в движение напрямую от вала ротора магнето или через зубчатую передачу от вала ротора. В большинстве больших радиальных двигателей используется компенсированный кулачок, который предназначен для работы с конкретным двигателем и имеет по одному кулачку для каждого цилиндра, приводимого в действие магнето.Кулачки кулачка зашлифованы на станке с неравными интервалами, чтобы компенсировать эллиптическую траекторию шарнирных шатунов. Этот путь вызывает изменение положения верхней мертвой точки поршня от цилиндра к цилиндру в зависимости от вращения коленчатого вала. Компенсированный кулачок с 14 лепестками вместе с некомпенсированным кулачком с двумя, четырьмя и восемью лепестками показан на Рисунке 4-9.

    Рис. 4-9. Типовые блоки прерывателей.

    Неравное расстояние между компенсированными кулачками, хотя и обеспечивает одинаковое относительное положение поршня для воспламенения, вызывает небольшое изменение положения E-зазора вращающегося магнита и, следовательно, небольшое изменение импульсов высокого напряжения, генерируемых магнето. .Поскольку расстояние между каждым кулачком соответствует конкретному цилиндру конкретного двигателя, скомпенсированные кулачки маркируются, чтобы показать серию двигателя, расположение главных стержней, кулачок, используемый для синхронизации магнето, направление вращения кулачка и спецификация E-зазора в градусах после нейтрального положения магнита. В дополнение к этим меткам на поверхности кулачка прорезана ступенька, которая при совмещении с метками на корпусе магнето помещает вращающийся магнит в положение E-зазора для синхронизирующего цилиндра.Поскольку точки прерывания должны начать размыкаться, когда вращающийся магнит перемещается в положение E-зазора, совмещение выступа на кулачке с метками на корпусе обеспечивает быстрый и простой способ установить точное положение E-зазора для проверки и регулировки. точки разрыва.

    Бортмеханик рекомендует

       

    Система зажигания | Объяснение аккумуляторной батареи и системы зажигания от магнето

    Система зажигания

    Для сжигания любого топлива нам нужны две вещи: кислород и тепло.Топливо с низкой температурой самовоспламенения можно сжигать даже под высоким давлением, например дизельное топливо. Но случай бензина или бензина отличается. Здесь нам нужна система зажигания для воспламенения топлива.

    В двигателях с искровым зажиганием степень сжатия ниже, а температура самовоспламенения бензина выше. Следовательно, для воспламенения смеси для инициирования горения необходима система зажигания.

    Требования к системе зажигания

    1. Должен обеспечивать хорошую искру в правильное время.
    2. Он должен эффективно работать на всех оборотах двигателя.
    3. Должен быть легким, эффективным и надежным в эксплуатации.
    4. Он должен быть компактным и простым в обслуживании.
    5. Он должен быть дешевым и удобным в обращении.
    6. Магнитное поле, создаваемое источником напряжения системы зажигания, не должно влиять на радио и телевидение в автомобиле.

    В автомобилях используются в основном два типа систем зажигания.Одна система зажигания от аккумуляторов, а другая система зажигания от магнето.

    Давайте сначала обсудим аккумуляторную систему зажигания

    1. Аккумуляторная система зажигания

    В аккумуляторной системе зажигания батарея используется в качестве источника энергии для свечи зажигания. Эта батарея является перезаряжаемой и получает энергию для подзарядки от генератора переменного тока.

    Этот генератор переменного тока соединен с коленчатым валом двигателя и преобразует его механическую энергию в электрическую.

    Основные компоненты аккумуляторной системы зажигания

    1. Аккумулятор
    2. Замок зажигания
    3. Балластный резистор
    4. Катушка зажигания
    5. Размыкатель контактов
    6. Конденсатор
    7. Дистрибьютор
    8. Свеча зажигания

    Характеристики аккумуляторной системы зажигания

    1. Необходим аккумулятор.Затрудненный запуск двигателя при разряженном аккумуляторе.
    2. Проблема с техническим обслуживанием больше связана с батареей.
    3. Питание для розжига подается от аккумулятора.
    4. Хорошая искра имеется даже при низких оборотах двигателя.
    5. По мере увеличения оборотов двигателя снижается эффективность аккумуляторной системы зажигания.
    6. Занимает больше места.
    7. Обычно используется в легковых и легких коммерческих автомобилях.

    2. Система зажигания магнето

    Система зажигания от магнето использует собственный электрический генератор вместо батареи для получения энергии для электрической искры.В системе зажигания от магнето заменяются все детали аккумуляторной системы зажигания, кроме свечи зажигания.

    Во время работы магнето может генерировать очень высокое напряжение и, следовательно, заменяет собой батарею в качестве внешнего источника энергии.

    По мере увеличения скорости машины напряжение, генерируемое магнето, также увеличивается. Во время запуска машины магнето генерирует очень небольшое напряжение, поэтому в некоторых приложениях для запуска машины используется отдельная батарея.Система зажигания магнето лучше всего подходит для высоких скоростей.

    Характеристики системы зажигания от магнето

    1. Аккумулятор не требуется, поэтому нет проблем с разрядкой аккумулятора.
    2. Проблем с обслуживанием меньше, так как нет батареи.
    3. Энергия для производства искры получается от магнето.
    4. Низкий КПД системы зажигания от магнето на малых оборотах.
    5. По мере увеличения скорости повышается эффективность системы зажигания от магнето.
    6. Занимает меньше места
    7. В основном используется в гоночных автомобилях и двухколесных транспортных средствах.

    Сравнение Magneto и аккумуляторной системы зажигания

    Магнето Система зажигания Батарейная система зажигания
    Обычно используется в двухколесных транспортных средствах и гоночных автомобилях Обычно используется в коммерческих автомобилях
    Не требует подзарядки Аккумулятор необходимо регулярно заряжать
    Компактный Занимает больше места
    Его эффективность увеличивается с частотой вращения двигателя Его эффективность снижается с увеличением оборотов двигателя
    Плохое качество искры на малых оборотах Качество искры хорошее даже на малых оборотах
    Питание для зажигания получается от магнето Питание для зажигания поступает от аккумулятора
    Нет проблем с разрядкой аккумулятора Проблема разрядки аккумулятора
    Аккумулятор отсутствует, поэтому обслуживание аккумулятора не требуется Требуется обслуживание батареи

    Атрибуция изображения (также представлена): Энди Дингли (сканер) – скан из (1911) Mechanical Transport, HMSO, Public Domain, https://commons.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *