Схема Подключения Треугольник — tokzamer.ru
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.
При этом сам переход от одной схему к другой происходит в автоматическом режиме.
Проконтролировать, в правильную ли сторону крутится вал. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.
подключение двигателя 380 на 220 вольт
Каждый из этих линейных токов равен геометрической разности токов в двух смежных фазах. Труднее гораздо найти определить начало и концы обмоток.
Устройство электромагнитного пускателя: Магнитный пускатель устроен достаточно просто и состоит из следующих частей: 1 Катушка электромагнита 3 Подвижная рама с контактами 4 для подключения питания сети или обмоток 5 Контакты неподвижные для подключения обмоток электродвигателя сети питания. Далее, соединяются V2 и W Опять соединяются последовательно две разные фазы.
Фазные обмотки генератора образуют замкнутый контур с малым внутренним сопротивлением.
Следует помнить, что частотный преобразователь на В, выдает на выходе 3 фазы по В.
Как Вы уже поняли, используя схему переключения обмоток двигателя со звезды на треугольник, мы уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального. При подаче питания на катушку, рама 3 с контактами 4 опускается и замыкает свои контакты на соответствующие неподвижные контакты 5.
подключение мотор колеса звездой и треугольником подробно о нюансах.
Схема подключения звезда-треугольник
Так электромотор прослужит долго и проработает без сбоев. Вид современного реле времени и всех параметров методом внешнего управления контакторами пускателя от автоматических блоков или ручное переключение.
Сегодня производители предлагают уже готовые агрегаты, пуск которых производится через звезду, а работа происходит через треугольник. Важно только то, какое напряжение вы подаёте на обмотки двигателя.
Теперь логичный вопрос: если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках? Маломощные менее 5 кВт , преимущественного бытового назначения, для которых может возникнуть потребность подключения к однофазной сети не у каждого дома есть трёхфазная розетка.
Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.
Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы. Отсюда по аналогии с диаграммой рис.
Рассмотрим на примере, на сколько ошибочные данные утверждения. К тому же агрегат сильно нагревается в процессе работы.
Итак, сначала необходимо соединить перемычками все концы фазных обмоток: U2, V2 и W2.
Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше
Возможные схемы подключения обмоток электродвигателей
И таких схем всего две: звезда и треугольник. В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя.
Этот провод используется для заземления металлических корпусов токоприемников у потребителя. В четырехпроводной трехфазной системе нулевой провод надежно заземлен на электростанции, на ответвлениях сети и через определенные расстояния по линии. Существует оборудование с внутренним соединением концов обмоток.
У каждого конца свое буквенное и числовое обозначение. На самом деле ничего хорошего от этого нет, делать так не нужно.
Схема включения в трехфазную четырехпроводную сеть осветительной В и силовой В нагрузок. Электромотор должен заработать. Использование частотного преобразователя В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения оборотами электродвигателя.
Другие подключения электродвигателя Схем несколько: Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй — к третьему выходу мотора электрического. Приемники, рассчитанные на фазное напряжение В, могут работать в сетях с линейными напряжениями и ?
Схемы подключения электродвигателя. Звезда — треугольник
Каждое соединение имеет свои плюсы и минусы в работе. Для такого подключения потребуется немного более высокое напряжение, чем В из-за частоты тока 60 Гц , но у них там как раз В, что как раз подходит. Рассмотрим на примере, на сколько ошибочные данные утверждения.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте. При соединении концов применяют специально предназначенные для этого перемычки. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Важно только то, какое напряжение вы подаёте на обмотки двигателя. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Из всего выше изложенного можно сделать, следующие выводы: 1.
Определение начала и конца обмоток трехфазного электродвигателя (простой способ)
Выводы обмоток
Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта.
У каждого конца свое буквенное и числовое обозначение. На рисунке 4 приведена схема включения в трехфазную четырехпроводную сеть осветительной и силовой нагрузок.
К тому же агрегат сильно нагревается в процессе работы. Поэтому электродвигатели асинхронного типа со средней и большой мощностью чаще всего подключают по схеме звезда.
Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. При помощи тестера провода прозванивают, чтобы найти катушки. По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму рис.
Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением В подключение звезда , так и в однофазной сети В подключение треугольником через конденсатор. Форму треугольника предает эргономичное размещение соединения обмоток. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании — будет отключаться питание электродвигателя.
К тому же агрегат сильно нагревается в процессе работы. Фазные обмотки генератора образуют замкнутый контур с малым внутренним сопротивлением.
При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. Каминский, г. Сдвиг на такой угол предназначен для создания вращения магнитного поля. Это может произойти из-за неисправного пускателя, или при перекосе фаз когда напряжение в одной из фаз сильно меньше, чем в двух других.
Подключение трехфазного двигателя по схеме звезды и треугольника
Подключение электродвигателя звездой и треугольником: схемы соединений
Автор Aluarius На чтение 4 мин. Просмотров 1.2k. Опубликовано
Питание асинхронных двигателей производится от трехфазной сети переменного тока напряжением 380 вольт. В самом двигателе присутствуют три обмотки из медной проволоки, которые расположены относительно друг друга на 120 градусов. Основная цель такого расположения – создать вращающееся магнитное поле. Все это были прописные истины, о которых знает каждый электрик. Нас же в этой статье будет интересовать схема подключения электродвигателя. И таких схем всего две: звезда и треугольник. Итак, давайте рассмотрим, как можно провести подключение электродвигателя звездой и треугольником.
Выводы обмоток
Начнем статью опять-таки с самого простого и известного. У каждой обмотки есть два конца: начало и конец. То есть, в общем их должно быть шесть. У каждого конца свое буквенное и числовое обозначение. Обратите внимание на рисунок ниже, где показано старое и новое обозначение выводов обмоток электродвигателя.
На фото все четко распределено, но где начало, а где конец, непонятно. Поэтому начало обмоток в старом обозначение это C1, C2 и C3, в новом обозначении U1, V1 и W1. Остальные, соответственно, это концы обмоток.
Все концы обмоток выводятся в клеммную коробку, которая может располагаться сверху двигателя или сбоку. Внутри клеммника концы проводов выводятся таким образом, чтобы их можно было бы соединить любой схемой без перекрещивания. Для чего используются специальные металлические перемычки.
Обратите внимание, что в клеммную коробку может быть выведено или три конца. Или сразу шесть. Если перед вами двигатель с тремя выведенными проводами, то это значит, то внутри мотора в заводских условиях уже сделано подключение звездой. Это первое. Второе – если выведены сразу шесть проводов, то электродвигатель можно подключать и к сети 380 вольт, и к сети напряжением 220 вольт. Кстати, на шильдике так и обозначается: 220/380 V. Но это еще не все. Такая надпись говорит о том, что при подключении к трехфазной сети 380В, соединение концов обмотки надо проводить только схемой звезда.
Подключение звездой
Как правильно провести подключение двигателя звездой? Здесь все просто, главное, ничего не перепутать. Итак, сначала необходимо соединить перемычками все концы фазных обмоток: U2, V2 и W2. А вот к началам обмоток необходимо подать напряжение, то есть, соединить их с проводами трех фаз. Это хорошо видно на фотографии снизу:
Подключение треугольником
Это более сложный тип подключения, поэтому стоит внимательно изучить то, что будет написано ниже. Но перед этим скажем, что в том случае если линейное напряжение в сети составляет 220 вольт, то именно в этом случае оптимальный вариант – провести соединение обмоток электродвигателя треугольником.
- Соединяются между собой U2 и V Понятно, что таким образом соединяются две обмотки двух разных фаз последовательно.
- Далее, соединяются V2 и W Опять соединяются последовательно две разные фазы.
- То же самое, но только с U1 и W
Обратите внимание, что все точки соединения, о которых было сказано выше, являются точками подключения к трехфазной сети. Покажем еще одну фотографию, где электродвигатель подключен треугольников с использованием металлических перемычек.
Подведем итог
Подводя итого статьи – способы подключения электродвигателя: звездой и треугольником, хотелось бы отметить некоторые позиции, которые основаны на опыте эксплуатации электрических моторов.
- Пуск двигателя, обмотки которого соединены звездой, более плавный, да и его работа мягче, что ли. К тому же подключенный такой схемой двигатель легко переносит небольшие перегрузы кратковременного действия.
- Соединенный треугольником электродвигатель обладает большей мощностью и высоким КПД. Но пусковые токи у него обладают максимальными значением. К тому же агрегат сильно нагревается в процессе работы.
Поэтому электродвигатели асинхронного типа со средней и большой мощностью чаще всего подключают по схеме звезда. Сегодня производители предлагают уже готовые агрегаты, пуск которых производится через звезду, а работа происходит через треугольник. При этом сам переход от одной схему к другой происходит в автоматическом режиме. То есть, набрал мотор необходимую скорость вращения вала, тут же переходит от звезды на треугольник.
Запуск электродвигателя по схеме «звезда-треугольник»
Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.
Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени. Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.
Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.
Рисунок 1 — Схема подключения «звезда»
При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:
Uл=Uф⋅3U _л= U _ф cdot sqrt{3}
где:
Uл — напряжение между двумя фазами;
Uф — напряжение между фазой и нейтральным проводом;
Значения линейного и фазного токов совпадают, т. е. Iл = Iф.
При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»
Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:
Iл=Iф⋅3I _л=I _ф cdot sqrt{3}
где:
Iл — линейный ток;
Iф — фазный ток.
Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:
Mn=m⋅U2⋅r2´⋅p2⋅π⋅f((r1+r2´)2+(x1+x2´)2)M _n = { m cdot U^2 cdot acute r_2 cdot p } over { 2 cdot %pi cdot f( ( r _1 + acute r _2 )^2 + ( x_1 + acute x_2 )^2 )}
где:
U — фазное напряжение обмотки статора;
r1 — активное сопротивление фазы обмотки статора
r2 — приведенное значение активного сопротивления фазы обмотки ротора;
x1 — индуктивное сопротивление фазы обмотки статора;
x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора;
m — количество фаз;
p — число пар полюсов.
Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:
Uф=Uл3=3803=220ВU _ф= {U _л} over { sqrt{3} } = {380} over {sqrt{3}} =220В
Фазный ток равен линейному току и равен:
Iф=Iл=UфZ=22010=22AI _ф=I _л= {U _ф} over {Z } = {220} over {10} =22A
После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:
Uф=Uл=380BU _ф=U _л =380B
Iф=UфZ=38010=38AI _ф = {U _ф} over {Z} = {380} over {10}=38A Iл=3⋅Iф=3⋅38=65,8AI _л= sqrt{3} cdot I _ф=sqrt{3} cdot38=65,8A
Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а
значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.
С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.
Рисунок 3 — Временная диаграмма реле времени 80.82
Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы
«звезда-треугольник», в которой используется три электромагнитных пускателя.
Рисунок 4 — Силовая часть схемы «звезда-треугольник»
Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.
Рисунок 5 — Управление схемой «звезда-треугольник»
Разберем алгоритм работы данной схемы:
После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.
Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.
Список использованной литературы:
- ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
- Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
- Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907
Читайте также:
Схема Подключения Звезда Треугольник — tokzamer.ru
Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Из этого вытекает больший срок службы.
Соединение треугольником заключается в последовательном соединении обмоток.
Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно: сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»; затем электродвигатель соединяют по схеме «треугольник».
Соединение звезда и треугольник. Различие между ними
Соединение треугольником заключается в последовательном соединении обмоток. За счет этого происходит уменьшение пускового тока.
Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.
К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом. Поэтому, получается еще один дополнительный нулевой вывод.
Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается.
Рисунки очень хорошо наглядно показывают, как и что должно быть.
Определение начала и конца фазных обмоток асинхронного электродвигателя
Подключение электродвигателя на 380В. Схема пуска звезда-треугольник
Итак, подытожим все вышеописанное. Теперь к проводам, которые их соединяют.
Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках , в чем эффективность той и другой. Классическая схема переключения режимов с реле тока и времени После включения трехфазного автоматического выключателя АВ пускатель готов к работе.
В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной торцевой его части. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.
Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху.
В большинстве случаев набор оборотов занимает до сек.
Также существуют определённые отличия в эргономичности.
Так, К первой фазы подсоединён у Н второй.
как подключить провода трехфазного двигателя в триугольник
Еще по теме: Энергоаудит предприятия
Различия между «звездой» и «треугольником»
Двигатель попросту сгорит, так как при подключении обмоток в треугольник окажется запитанным повышенным напряжением: его рабочее фазное фазное напряжение составляет В, а линейное В. По сути, получается, что напряжение генератора при звезде, равное вольт, преобразуется в вольт, если провести переключение с одного варианта на другой.
Таким выглядит клеммник движка стандартной конфигурации. В трехфазной системе он равняется градусам.
Для удобства чтения, она разделена на две схемы: управления и силовой части. Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда.
При подаче управляющего напряжения срабатывает магнитный пускатель K3 — цепь питания его катушки замыкается нормально замкнутыми контактами реле времени K1 и контактора K2. Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США где линейной напряжение В, а фазное — В при частоте тока 60 Гц , то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится.
При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Если перепутать конец и начало — подключаемая машина не будет работать. Техническая пластина на боковине корпуса движка. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности.
Переключение режимов двигателя: звезда-треугольник
Соединение обмоток звездой и треугольником У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника. Произошёл тут такой случай.
Для чего это необходимо делать? Одновременно с запуском КМ2 при помощи его дополнительного нормально разомкнутого контакта БКМ2 запускается реле времени, контакты которого переключаются, но срабатывания КМ1 не происходит, так как БКМ2 в цепи катушки КМ1 разомкнут. Реле времени, совмещенное с пускателем K1 в этой схеме, работает в цепи управления с небольшими токами, поэтому, может быть заменено обычным реле времени с тремя парами блок-контактов. В ином случае она будет трёхпроводной.
Следовательно, для России линейное напряжение В для такого двигателя надо использовать схему подключения звезда. Поэтому, применяются разные способы, с целью уменьшения пускового тока.
Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше
Соединение обмоток звездой и треугольником
В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.
Начало выводов присоединяют к соответствующим фазам питающей сети. Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели рубильники. Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости мкФ с рабочим напряжением не менее В.
Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат.
В ней нет нулевого провода, его просто некуда подключать. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Однако простота требует жертв.
Читайте дополнительно: Энергетический паспорт предприятия кто должен делать
Соединение «звездой» и его преимущества
Когда в обмотках появляется трех фазное напряжение , на их полюсах происходит образование магнит ных потоков. В общем, подключил он неправильно, потому двигатель и сгорел. Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.
Мягкий пуск двигателя. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1. При цитировании материалов сайта активная гиперссылка на l При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Звезда и треугольник принцип подключения.
Каталог реле и аппаратуры
Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку — вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования. Правда, встречаются иногда экземпляры несколько иной конфигурации.
После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Кроме этого нельзя отрицать тот факт, что когда отключается контактор одного соединения Y, а двигатель еще не набрал нужных оборотов, срабатывает фактор самоиндукции, и в сеть поступает повышенное напряжение, что может вывести из рабочего состояния другое рядом включенное оборудование и приборы. Иными словами, электродвигатель включается по схеме подключения «треугольник». Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом.
Что такое звезда и треугольник в трансформаторе?
Подключение двигателя звезда-треугольник
Хотя в наше время в промышленность уже прочно вошли софтстартеры и частотные преобразователи, до сих пор еще нередко встречаются подключения электродвигателей по схеме звезда-треугольник. Для чего она применяется я расскажу в этой статье.
Я думаю многие читатели знают или хотя бы слышали, что электродвигатели обычно подключаются либо по схеме «звезда «, либо по схеме «треугольник» в зависимости от напряжения, на которое рассчитана каждая обмотка двигателя.
В случае подключения двигателя «звездой» пусковой ток, который может превосходить в 3 — 8 раз номинальный ток, меньше чем при при подключении «треугольником», но при этом и мощность двигателя будет меньше, чем заявленная паспортная. В схеме «треугольник» все происходит наоборот — двигатель работает на полную паспортную мощность, но при этом для этого типа подключения характерны высокие пусковые токи.
Для того чтобы уменьшить пусковой ток, но при этом сохранить и полную заявленную мощность двигателя и применяют переключение со «звезды» на «треугольник». При такой схеме изначальный запуск электродвигателя происходит по схеме «звезда», а после того, как двигатель разгонется и наберет обороты, происходит переключение на «треугольник». Обычно такую схема используется для двигателей большой мощности, где пусковые токи особенно высоки, что может привести к просадке напряжения в сети.
По схеме звезда-треугольник можно подключать только те двигатели, у которых обмотки рассчитаны на напряжение сети 380/660В. Также необходимо учитывать, что такая схема применима только для двигателей с легким режимом пуска, т.е центробежные насосы, вентиляторы, станки и т.д, так как в начальный момент запуска звездой до момента переключения на треугольник крутящий момент сопротивления рабочей машины, независимо от скорости вращения, должен оставаться меньшим, чем крутящий момент электродвигателя, собранного в звезду.
Схема подключения звезда-треугольник
Рассмотрим простую и наиболее часто встречающуюся схему подключения со «звезды» на «треугольник».
Схема подключения звезда-треугольник
В данной схеме применяются:
- Автомат защиты двигателей (мотор-автомат) Q1 со встроенной тепловой защитой
- Контакторы K1-K3 с доп. контактами
- Реле времени KT4
- Предохранитель F1
- Стоповая кнопка S1
- Пусковая кнопка S2
- Электродвигатель M1
При нажатии кнопки S2 ток поступает на катушку контактора K1, замыкаются силовые контакты K1 и нормально разомкнутый контакт K1.1, который реализует самоподхват пусковой кнопки. Также подается питание на катушку реле времени K1, после чего замыкается контактор K3. Происходит запуск двигателя по схеме «звезда».
По истечении заданного времени контакт K4.1 разомкнется, обесточив катушку контактора K3, а контакт K4.2 после заданной выдержки времени замкнется, таким образом питание придет на катушку контактора K2 и произойдет переключение на «треугольник».
Контакты K2.2 и K3.2 служат для электрической блокировки, то есть для защиты от одновременного включения контакторов K2 и K3. Также для контакторов K2 и K3 желательно использовать механическую блокировку, дублирующую электрическую ( на схеме не показана). Контакт Q1 мотор-автомата служит для защиты от перегрузки двигателя.
Как подключить асинхронный двигатель
Дорогие читатели, а вы знаете как подключить асинхронный двигатель?
Имею в виду, можете определить по шильдику, когда надо
подключить обмотки электродвигателя звездой, а когда треугольником?
В этой статье я подробно расскажу как подключить асинхронный двигатель. А также Вы узнаете много разных нюансов при подключении электродвигателя.
А вы знали, что если двигатель рассчитан на напряжение
380/660В- треугольник/звезда, и если его подключить по схеме звезда на
напряжение 380 вольт, то в определённых условиях он сгорит. Стало интереснее?
Тогда советую ознакомиться со статьёй.
Перед чтением этой статьи рекомендую прочитать статью «Что такое мощность».
Как подключить асинхронный двигатель
Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.
Шильдик асинхронного электродвигателя выглядит примерно вот
так:
По информации на шильдике мы делаем вывод, что если у нас
напряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Если
у нас 660 вольт, то по схеме звезда.
Так же бывают двигатели на 220/380 вольт:
По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.
Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.
Почему сгорит электродвигатель при неправильном соединении
Сейчас я вкратце расскажу, почему электродвигатель, у которого
обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.
Давайте представим, что в данный момент у нас линейное
напряжение равно 380 вольт.
Что такое линейное напряжение, а фазное? Не знаете? Сейчас
расскажу!
Линейное напряжение – это напряжение между линейными
проводами (фазами), а фазное между линейным проводом и нейтральным.
Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,
а при соединении звездой фазное — 220 вольт.
В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.
Вот пример:
Это формула для однофазной сети, но для понимания сути пойдёт.
P=UI
Где, P- мощность, U-напряжение, I-ток.
Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.
Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.
Давайте приведу пример: На шильдике электродвигателя указан
ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер
— это линейный ток, значит, чтобы
получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е.
номинальный ток для обмотки двигателя 17,3 Ампера.
А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.
При соединении электродвигателя звездой линейный ток будет
равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на
обмотку будет подаваться уже не 380 вольт, а 220.
В результате по обмотке будет протекать не 17,3 А, а целых
30 Ампер. Почему?
Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза. Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!
Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:
Электродвигатель треугольник/звезда: 220 вольт/380 вольт:
38,3/22,2 Ампера.
Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…
А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.
Вывод:
При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.
При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.
А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.
Схема подключения обмоток электродвигателя звездой
Вот так выглядит борно электродвигателя и здесь обмотки соединены звездой. Т.е. концы обмоток соединены в одной точке.
Мои коллеги-инженеры сталкивались с такими случаями, когда
перемычки кидали на начало обмоток, куда подключался питающий кабель. Сразу
возникало короткое замыкание.
Фазное и линейное напряжение при соединении обмоток в звезду разное, а ток одинаковый.
А теперь давайте найдём полную мощность, развиваемую электродвигателем.
Полная мощность в трёхфазной системе равна сумме полных мощностей трёх фаз:
И теперь формула полной мощности будет выглядеть вот так:
А чтобы найти активную мощность применим следующую формулу:
где cosф- коэффициент мощности, n- КПД
Из формулы активной мощности выразим ток:
где cosф- коэффициент мощности, n- КПД
Схема подключения обмоток электродвигателя треугольником
Вот так выглядит борно электродвигателя и здесь обмотки соединены треугольником. Т.е. конец обмотки соединён с началом следующей обмотки.
Фазное и линейное напряжение равны. Линейный ток в 1,73 раза больше фазного.
Формула полной мощности будет выглядеть вот так:
Если обратить внимание на формулу полной мощности при подключении
звездой, то мы заметим, что формулы полной мощности одинаковые.
А чтобы найти активную мощность применим следующую формулу:
где cosф- коэффициент мощности, n- КПД
Из формулы активной мощности выразим ток:
где cosф- коэффициент мощности, n- КПД
Внимательный читатель должен был заметить, что формула мощности
одинаковая при подключении треугольником и при подключении звездой. Так и есть, просто, чтобы поддержать
необходимую мощность, у нас будет меняться ток.
Но чтобы двигатель не сгорел при переключении с треугольника
на звезду, надо уменьшить нагрузку на валу двигателя до тех пор, пока фазный
ток не станет равный фазному току при подключении треугольником.
Поэтому и говорят, что мощность при подключении обмоток электродвигателя звездой меньше, чем при соединении треугольником.
Почему при пуске применяют схему звезда-треугольник
Формула мощности в момент пуска не действует, т.к. двигатель
не вращается – ЭДС Самоиндукции отсутствует (индуктивное сопротивление).
По факту у нас есть обмотка с очень маленьким сопротивлением
и напряжение, подаваемое на двигатель. И ток здесь рассчитывается по закону
Ома. Чем меньше у нас подаваемое напряжение на обмотку электродвигателя, тем
меньше будет ток в обмотке.
А мы помним, что при треугольнике у нас на обмотку подаётся
линейное напряжение, а при звезде напряжение будет в 1.73 раза меньше чем на
треугольнике. Следовательно, и пусковые токи будут меньше.
Но не забываем, что закон Ома действует только в момент пуска электродвигателя. Когда двигатель выходит на номинальные обороты, ему необходимо поддерживать мощность, которая присутствует на валу. А так как напряжение при звезде меньше в 1.73 раза, то начинает подниматься ток, чтобы компенсировать падение напряжения на обмотках электродвигателя.
Будьте внимательны!!!
Бывает попадаются шильдики электродвигателей, которые путают электриков, и они могут допустить ошибку при подключении. Например: Написана буква V, под ней нарисован треугольник, а внизу два напряжения 400 Вольт на 50 Герц и 460 Вольт на 60 Герц. Специалист думает, что буква V-это значок звезды, а так как у него напряжение 400 Вольт, то подключает звездой. А на самом деле этот движок рассчитан на одно лишь подключение- треугольником. А буква V обозначает напряжение.
Подводим итоги:
- При треугольнике линейное и фазное напряжение равны (т.е на обмотку подаётся линейное напряжение), а линейный ток больше фазного в 1,73 раза.
- При звезде фазное напряжение на обмотке в 1,73 раза меньше линейного, а линейный ток равен фазному.
- Если нагрузка на валу двигателя не меняется и мы делаем переключение с треугольника на звезду, то ток начнёт расти. Ток растёт, потому что при звезде у нас уменьшилось напряжение на обмотке в 1,73 раза. И, чтобы компенсировать падение напряжения, начинает увеличиваться ток.
- Звезду применяют для уменьшения пусковых токов. В момент пуска формула мощности не действует, а действует закон Ома. Чем меньше напряжение, тем меньше ток.
Электродвигатель асинхронный: схемы звезда треугольник
Главная страница » Электродвигатель асинхронный: схемы звезда треугольник
Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим. Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов. Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.
СОДЕРЖИМОЕ ПУБЛИКАЦИИ :
Электродвигатель асинхронный: устройство
Как говаривал Антон Павлович Чехов:
Повторение – мать учения!
Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:
- алюминиевый корпус с элементами охлаждения и крепёжным шасси;
- статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
- ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
- подшипники упорные для вала ротора – передний и задний;
- крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
- БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.
АСИНХРОННЫЙ
Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая
Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.
Обозначение и разводка статорных обмоток
Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.
Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.
При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.
Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов
Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.
Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.
В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.
РЕГУЛИРУЕМЫЙ
Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение
Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.
Как подключать «звезду» и «треугольник»?
Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.
Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.
Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.
Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска
Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:
- начальная U1 – концевая W2
- начальная V1 – концевая U2
- начальная W1 – концевая V2
Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим
Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.
Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.
Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.
Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».
Подключение с учётом технической информации
Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.
Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.
МОТОР-РЕДУКТОР
Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя
Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.
Что указывается на технической пластине асинхронного электродвигателя?
- Тип мотора (в данном случае – асинхронный).
- Число фаз и рабочая частота (3Ф / 50 Гц).
- Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
- Рабочий ток (на «треугольнике» / на «звезде»)
- Мощность и число оборотов (кВт / об. мин).
- КПД и COS φ (% / коэффициент).
- Режим и класс изоляции (S1 – S10 / А, В, F, H).
- Производитель и год выпуска.
Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.
С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».
Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.
Трёхфазный асинхронный электродвигатель в сети 220В
Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.
Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.
ВИБРОМОТОР
Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%
Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.
То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.
Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.
Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор
Номинальная ёмкость конденсатора рассчитывается по формулам:
Сзв = 2800 * I / U
C тр = 4800 * I / U
где: C – искомая ёмкость; I – пусковой ток; U – напряжение.
Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.
Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.
Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.
Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности
Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.
Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.
Нестандартные клеммники БРНО
Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.
То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.
ВИБРАТОР
Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине
Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Информация на технических табличках движков с нестандартными клеммниками обычно указывает схему внутреннего развода «звезда» и напряжение, при котором допустимо эксплуатировать электродвигатель асинхронного типа.
Видео включения мотора 380В на 220В
Видеороликом ниже демонстрируется, каким образом допустимо включить электрический двигатель с обмоткой под напряжение 380 вольт к сети с напряжением 220 вольт (бытовая сеть). Такая потребность — частое явление в бытовой практике.
Метод пуска двигателя стартером ЗВЕЗДА-ТРЕУГОЛЬНИК
Пускатель звезда-треугольник Подключение трехфазного двигателя без таймера — схемы питания, управления и подключения
Как мы уже рассказали Пуск трехфазного двигателя звезда-треугольник (Y-Δ) Метод с помощью автоматического пускателя со звезды на треугольник с таймером. Теперь мы расскажем о подключении трехфазного двигателя STAR / DELTA Стартер без таймера Схемы питания и управления ..
Сокращения:
- R, Y, B = красный, желтый, синий (3 Фазовые линии)
- C.B = Главный автоматический выключатель
- Главный = Mai Supply
- Y = Star
- Δ = Delta
- C1, C2, C3 = Контакторы (схема питания)
- O / L = Реле перегрузки
- NO = нормально разомкнутый
- NC = нормально замкнутый K1 = контактор (катушка контактора) K1 / NO = удерживающая катушка контактора (нормально разомкнутый)
- K1, K2, K3 = Контакторы (для схемы управления)
Схема включения стартера звезда — треугольник:
Связанное сообщение:
звезда — треугольник Схема управления:
You можете также прочитать другие схемы питания и управления ниже:
.
Подключение трехфазного двигателя звезда / треугольник (Y-Δ) назад / вперед с таймером Схема питания и управления
Подключение трехфазного двигателя звезда / треугольник (Y-Δ) назад и вперед с таймером Схема питания и управления
Как у нас уже использовали метод пуска трехфазного двигателя с помощью пускателя со звезды на треугольник со схемой таймера (схемы питания и управления). На приведенных ниже диаграммах трехфазный двигатель будет вращаться в двух направлениях, а именно вперед и назад. Но мы контролировали направление вращения этого трехфазного двигателя с помощью схемы таймера.
Сокращения:
O / L = реле перегрузки
NO = нормально разомкнутый
NC = нормально замкнутый
FOR = вперед
REV = обратный
T = таймер
Подключение трехфазного двигателя звезда / треугольник (Y-Δ) Реверс / вперед с таймером Power Схема
Схема питания:
Подключение трехфазного двигателя звезда / треугольник (Y-Δ) Реверс / вперед с таймером Управление Схема
Схема управления:
.
Разница между соединением звезда и треугольник
Разница между соединением звезды и треугольника объясняется с учетом различных факторов, таких как базовое определение соединений, наличие нейтральной точки, соединение клемм, соотношение между линейным током и фазным током, а также между линейным напряжением и фазным напряжением, скорость, уровень изоляции, количество витков, тип системы и использования сети и т. д.
Разница между соединением «звезда» и «треугольник» представлена ниже в таблице , форма .
ОСНОВАНИЕ | СОЕДИНЕНИЕ ЗВЕЗДЫ | СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ |
---|---|---|
Базовое определение | Клеммы трех ветвей подключены к общей точке. Образованная сеть известна как Star Connection | Три ветви сети соединены таким образом, что образуется замкнутый контур, известный как Delta Connection |
Подключение клемм | Начальная и конечная точки, которые представляют собой одинаковые концы трех катушек, соединены вместе | Конец каждой катушки подключен к начальной точке другой катушки, что означает противоположные клеммы катушки соединены между собой. |
Нейтральная точка | Нейтраль или нейтраль имеется в соединении звездой. | Нейтральная точка не существует в соединении треугольником. |
Соотношение между линейным и фазным током | Линейный ток равен фазному току. | Линейный ток равен трехкратному корню фазного тока. |
Соотношение между линейным и фазным напряжением | Линейное напряжение равно трехкратному корню фазного напряжения | Линейное напряжение равно фазному напряжению. |
Скорость | Двигатели, соединенные звездой, имеют низкую скорость, так как они получают 1 / √3 напряжения. | Скорость электродвигателей, подключенных по схеме треугольника, высокая, потому что каждая фаза получает общее напряжение сети. |
Фазовое напряжение | Фазовое напряжение ниже в 1/3 раза от напряжения сети. | Фазное напряжение равно линейному напряжению. |
Число витков | Требуется меньшее число витков | Требуется большое число витков. |
Уровень изоляции | Требуемая изоляция низкая. | Требуется высокая изоляция. |
Тип сети | В основном используется в сетях передачи электроэнергии. | Используется в сетях распределения электроэнергии. |
Полученное напряжение | При соединении звездой каждая обмотка получает 230 вольт. | При соединении треугольником каждая обмотка получает 414 вольт. |
Тип системы | Как трехфазная четырехпроводная, так и трехфазная трехпроводная система могут быть соединены звездой. | Трехфазная четырехпроводная система может быть получена из соединения треугольником. |
В этой статье объясняются различия между соединением «звезда» и «треугольник». В трехфазной цепи есть два типа соединений. Один известен как Star Connection, а другой — Delta Connection. Соединение звездой имеет общую точку или звезду, к которой подключены все три клеммы, образующие звезду, как показано ниже.
При соединении треугольником все три клеммы соединены вместе, образуя замкнутый контур.В нем нет общей или нейтральной точки, и она используется для передачи энергии на короткие расстояния. Схема подключения представлена ниже.
Различия между соединением звезда и треугольник заключаются в следующем: —
- Клеммы трех ответвлений подключены к общей точке. Образованная сеть известна как Star Connection . Три ветви сети соединены таким образом, что образуется замкнутый контур, известный как Delta Connection .
- При соединении звездой концы начальной и конечной точек трех катушек соединены вместе с общей точкой, известной как нейтральная точка . Но при соединении треугольником нейтральной точки нет. Конец каждой катушки соединен с начальной точкой другой катушки, что означает, что противоположные клеммы катушек соединены вместе.
- При соединении звездой линейный ток равен фазному току, тогда как при соединении треугольником линейный ток равен трехкратному корню фазного тока.
- При соединении звездой линейное напряжение равно трехкратному корню фазного напряжения, тогда как при соединении треугольником линейное напряжение равно фазному напряжению.
- Скорость двигателей, подключенных по схеме «звезда», низкая, поскольку они получают 1 / √3 напряжения, но скорость двигателей, подключенных по схеме «треугольник», высокая, потому что каждая фаза получает сумму напряжения сети.
- При соединении звездой фазное напряжение в 1 / √3 раз меньше линейного напряжения, тогда как при соединении треугольником фазное напряжение равно линейному напряжению.
- Соединения звездой в основном требуются для сети передачи электроэнергии на большие расстояния, тогда как соединение треугольником в основном в распределительных сетях и используется для более коротких расстояний.
- При соединении звездой каждая обмотка получает 230 вольт, а при соединении треугольником каждая обмотка получает 415 вольт.
- При соединении звездой можно получить как 3-фазную, 4-проводную, так и 3-фазную 3-проводную системы, тогда как при соединении треугольником можно получить только 3-фазную 4-проводную систему.
- Уровень изоляции, требуемый при соединении звездой, низкий, а при соединении треугольником требуется высокий уровень изоляции.
.
Маркировка проводов электродвигателя и соединения Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д. Www.leeson.com Однофазные соединения: (трехфазные — см. Ниже)
Двойное напряжение: (только основная обмотка)
Двойное напряжение: (основная и вспомогательная обмотки)
Маркировка однофазных клемм по цвету: (Стандарты NEMA) Трехфазные соединения: Деталь Начало намотки:
9 выводов Номенклатура NEMA
12 выводов Номенклатура NEMA и IEC
Трехфазные односкоростные двигатели Номенклатура Nema — 6 выводов: Одно напряжение — внешнее соединение WYE
Одно напряжение — внешнее соединение треугольником Соединения одиночного напряжения WYE-треугольник
Соединения двойного напряжения WYE-треугольник
Номенклатура NEMA — 9 выводов:
Двойное напряжение, соединение по треугольнику
Номенклатура NEMA — 12 выводов:
Двойное напряжение
Номенклатура IEC — 6 и 12 выводов:
Соединения двойного напряжения WYE-треугольник
Пуск с двойным напряжением, соединением по схеме «звезда»
Номенклатура NEMA — 6 выводов:
Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 от высокоскоростного HP)
Подключение постоянной мощности (л.с. одинаковы на обеих скоростях)
Номенклатура IEC — 6 выводов:
|
.