Приведенная схема светильника Ultralight System по схемотехнике похожа на подобные устройства других фирм. Схема и краткое описание возможно пригодится при ремонте и эксплуатации. Светильник аккумуляторный люминесцентный предназначен для обеспечения эвакуационного и резервного освещения, а также как сетевой настольный светильник. Потребляемая мощность в режиме зарядки – 10Вт. Время работы от внутренней батареи при полном заряде, не менее 6ч. (с одной лампой и 4ч. с двумя лампами). Время полного заряда батареи, не менее 14 ч.
Проверить работу светильника, выявить в большинстве случаев неисправности возможно даже не вскрывая корпус светильника, ориентируясь по яркости свечения светодиодов LOW и HIGH. Для этого переключатель режима перевести с OFF в DC светодиод LOW или HIGH и лампы светильника должны загораться. Когда лампы не засветились, переводим переключатель в режим AC подключаем в сети, если после этого светильник не работает нужно смотреть плату управление и лампы. Важно Если светильник нормально работает от сети, переводим, переключатель в режим DC, нажать кнопку TEST, светильник должен засветится. Даже 1,5-2В лампы тускло загораются, при нажатии кнопки TEST. Отсюда вывод напряжения на аккумуляторе меньше 5В. Светодиод LOW ярко светит при напряжении на батареи 5. 9В, при уменьшении напряжения яркость будет падать и при 2В отключается, это показывает разряд аккумулятора . Свечение индикатора HIGH свидетельствует напряжение на аккумуляторе 6.1В и выше. При напряжении 6.4В светодиод должен ярко светить, с уменьшением напряжение падает яркость светодиода, при 6.0В индикатор отключается. Когда на аккумуляторе 6.0В, погаснут оба индикатора LOW и HIGH. Частые дефекты светильника. Не работает зарядка аккумулятора. Проверить сетевой шнур. Не исправный блок питание. Часто проблемой отказа нормальной работы блока питания является очень плохой монтаж. Нужно проверить все пайки подозрительные пропаять. Проверить Совет транзисторы блока питания, если не исправный один с них нужно менять сразу и другой. Практика показывает, что виновником повторного ремонта будет ранее не замененный транзистор. В режиме AC работает, DC не работает. Светодиоды LOW /HIGH не светят, перегорел предохранитель. В большинстве случаем обрыв соединяющих проводников платы, или выхода из строя аккумулятора или полной его разрядке. Плата управление. Полезные ссылки … Устройство зарядно-пусковое “ИМПУЛЬС ЗП-02” Фонарик en electronic model: 3810 Ремонт релейного стабилизатора напряжения Uniel RS-1/500 Ремонт стабилизаторов серии LPS-хххrv
|
Схема подключения диодных ламп дневного света
Люминесцентные лампы, благодаря своим революционным, для своего времени, характеристикам: низкому энергопотреблению, высокой световой эффективности и долгому сроку службы, получили очень широкое распространение.
Именно трубчатые лампы дневного света освещают большинство школ, больниц, офисов, цехов и т.д., наиболее часто они установлены в растровых светильниках, знакомых каждому.
Главным недостатком люминесцентных ламп является наличие внутри них ртути, пары которой смертельно опасны для человека.
Но технологии не стоят на месте, их активное развитие привело к созданию светодиодных ламп, которые превзошли практически по всем показателям люминесцентные. В настоящее время, единственным их недостатком является стоимость в сравнении с лампами дневного света, по сумме же всех характеристик и выгод, а главное по соображениям безопасности, они вне конкуренции.
Менять старые люминесцентные светильники целиком на аналогичные светодиодные не выгодно, хотя бы просто экономически, лучше просто заменить лампы, ведь производители давно уже выпускают трубчатые светодиодные лампы Т8 под цоколь G13 и можно установить их, оставив старый корпус светильника, лишь немного модернизировав его.
Чтобы поставить светодиодные лампы вместо люминесцентных, необходимо несколько доработать светильник, сделать его проще, убрав из схемы подключения несколько лишних компонентов. Сейчас я подробно покажу как это легко сделать самому.
В первую очередь давайте рассмотрим схемы стандартных растровых светильников, рассчитанных на установку четырех люминесцентных ламп, такие чаще всего монтируются в потолки, типа «армстронг».
Их всего две разновидности, две различных схемы, первая с балластом и стартером, встречается чаще всего:
Вторая схема более современная, с электронным пускорегулирующим аппаратом:
Как видите, светильники с люминесцентными лампами, содержат внутри различное дополнительное оборудование, которое требуется для их работы. Подробнее читайте об этом в материале — Схема подключения люминесцентных светильников
В современных же трубчатых LED лампах, в частности т8 под цоколь g13, драйвер, необходимый для того, чтобы светодиоды горели, уже встроен в корпус самой лампы и дополнительно устанавливать что-то не требуется.
Соответственно, переделка любого люминесцентного светильника, сводится к демонтажу всего лишнего оборудования: балласта, стартера, эпра и т.д. и подключению питания напрямую к контактам LED лампы. Для обоих типов светильников, схема подключения общая, все зеленые проводники на схеме, подключаем к нулевому проводу, а все красные к фазному, должно получится примерно так:
Схема подключения светодиодных ламп вместо люминесцентных
И еще раз, все достаточно просто, с одной стороны к ламам подводится фаза, а с другой ноль. При этом полярность не важна, так как подключается переменный ток, подсоединяйте так, как вам будет удобнее. Кроме того, не важно к какому из контактных штырьков подключается электрический провод, ведь их каждая пара, с каждой стороны LED лампы, замкнута.
В случае переделки растрового люминесцентного светильника, мы просто берем провода, которые идут от цоколей g13 и обрезаем их, а затем все провода одной стороны подключаем на фазную клемму, а все провода другой, на нулевую. В итоге должно получится примерно следующая схема установки led ламп вместо ламп дневного света:
Как видите, технология простая, не нужно обладать каким-то особым образованием, чтобы перевести на светодиодные лампы, допустим, все люминесцентные светильники в офисе, на производстве или в магазине.
Кстати, как монтировать и подключать люминесцентный светильник, а главное как устанавливать трубчатые лампы т8 — мы писали в статье «Подключение люминесцентного светильника»
В результате такой переделки, вы получаете новый, современный светодиодный светильник, безопасный, с низким энергопотреблением и долгим сроком службы.
Помните, что старые люминесцентные лампы нельзя просто выбросить или, хуже того, просто разбить, их необходимо обязательно утилизировать, ведь они содержат ртуть. В каждом крупном городе есть центры, куда вы сможете сдать свои энергосберегающие лампы, нередко совершенно бесплатно.
Если старый советский светильник с люминесцентными лампами дневного света типа ЛБ-40, ЛБ-80 вышел из строя, или вам надоело менять в нем стартера, утилизировать сами лампы (а просто так выкидывать их в мусорку уже давно нельзя), то его с легкостью можно переделать в светодиодный.
Самое главное, что у люминесцентных и светодиодных ламп одинаковые цоколи – G13. Никакая модернизация корпуса в отличие от других видов штырьковых контактов не потребуется.
- G- означает, что в качестве контактов используются штырьки
- 13 – это расстояние в миллиметрах между этими штырями
При этом вы получите:
- экономию электроэнергии (в 2 раза)
- меньшие потери (почти половина полезной энергии в люминесцентных светильниках может теряться в дросселе)
- отсутствие вибрации и противного звука дребезжания от балластного дросселя
Правда, в более современных моделях, уже используется электронный балласт. В них повысился КПД (90% и более), исчез шум, но расход энергии и световой поток остались на прежнем уровне.
Например, новые модели таких ЛПО и ЛВО часто используются для потолков Armstrong. Вот примерное сравнение их эффективности:
Еще одно преимущество светодиодных – есть модели рассчитанные на напряжение питания от 85В до 265В. Для люминесцентного нужно 220В или близко к этому.
Для таких Led, даже если напряжение в сети у вас слабое или завышенное, они будут запускаться и светить без нареканий.
Светильники с электромагнитным ПРА
На что нужно обратить внимание при переделке простых люминесцентных светильников в светодиодные? Прежде всего на его конструкцию.
Если у вас простой светильник старого советского образца со стартерами и обыкновенным (не электронным ПРА) дросселем, то фактически и модернизировать ничего не надо.
Просто вытаскиваете стартер, подбираете под габаритный размер новую светодиодную лампу, вставляете ее в корпус и наслаждаетесь более ярким и экономным освещением.
Если стартер из схемы не убрать, то при замене лампы ЛБ на светодиодную, можно создать короткое замыкание.
Дроссель же демонтировать не обязательно. У светодиодной, потребляемый ток будет в пределах 0.12А-0.16А, а у балласта рабочий ток в таких старых светильниках 0.37А-0.43А, в зависимости от мощности. Фактически он будет выполнять роль обыкновенной перемычки.
После всей переделки светильник у вас остается тот же самый. На потолке не нужно менять крепление, а сгоревшие лампы не придется более утилизировать и искать специальные контейнеры для них.
Для таких ламп не нужны отдельные драйвера и блоки питания, так как они уже идут встроенными внутри корпуса.
Главное, запомнить основную особенность – у светодиодных, два штырьковых контакта на цоколе, жестко соединены между собой.
А у люминесцентной они соединены нитью накала. Когда она раскаляется, происходит зажигание паров ртути.
В моделях с электронным ПРА нить накала не используется и промежуток между контактами пробивается импульсом высокого напряжения.
Самые распространенные размеры таких трубок:
- 300мм (используется в настольных светильниках)
- 600мм (на потолок для светильников типа Armstrong)
Чем больше их длина, тем ярче свечение.
Переделка светильника с электронным ПРА
Если же у вас модель более современная, без стартера, с электронным дросселем ЭПРА (электронный пускорегулирующий аппарат), то здесь придется немного повозиться с изменением схемы.
Что находится внутри светильника до переделки:
- контактные колодки-патроны по бокам корпуса
Дроссель это то, что нужно будет выкинуть в первую очередь. Без него вся конструкция существенно потеряет в весе. Откручиваете крепежные винты или высверливаете заклепки в зависимости от крепежа.
Затем отсоединяете питающие провода. Для этого может понадобиться отвертка с узким жалом.
Можно данные проводки и просто перекусить пассатижами.
Схема подключения двух ламп отличается, на светодиодной все выполнено гораздо проще:
Главная задача которую нужно решить – это подать 220В на разные концы лампы. То есть, фазу на один вывод (например правый), а ноль на другой (левый).
Ранее говорилось, что у светодиодной лампы оба штырьковых контакта внутри цоколя, соединены между собой перемычкой. Поэтому здесь нельзя как в люминесцентной, подать между ними 220В.
Чтобы убедиться в этом, воспользуйтесь мультиметром. Установите его в режим измерения сопротивления, и касаясь измерительными щупами двух выводов произведите замер.
На табло должны высветиться такие же значения, как и при замыкании щупов между собой, т.е. нулевые или близкие к нему (с учетом сопротивления самих щупов).
У лампы дневного света, между двумя выводами с каждой стороны, есть сопротивление нити накала, которая после подачи напряжения 220V через нее, разогревается и ”запускает” лампу.
Далее всю работу можно проделать двумя способами:
- с демонтажем и установкой перемычек через их контакты
Самый простой способ это без демонтажа, но придется докупить пару зажимов Wago.
Выкусываете вообще все провода подходящие к патрону на расстоянии 10-15мм или более. Далее заводите их в один и тот же зажим Ваго.
Тоже самое проделываете с другой стороной светильника. Если у клеммника wago недостаточно контактов, придется использовать 2 шт.
После этого, все что остается – подать в зажим на одну сторону фазу, а на другую ноль.
Нет Ваго, просто скручиваете провода под колпачок СИЗ. При таком методе, вам не нужно разбираться с существующей схемой, с перемычками, лезть в контакты патронов и т.п.
С демонтажем патронов и установкой перемычек
Другой метод более скрупулезный, зато не требует никаких лишних затрат.
Снимаете боковые крышки со светильника. Делать это нужно осторожно, т.к. в современных изделиях защелки сделаны из хрупкой и ломкой пластмассы.
После чего, можно демонтировать контактные патроны. Внутри них расположены два контакта, которые изолированы друг от друга.
Такие патроны могут быть нескольких разновидностей:
Все они одинаково подходят для ламп с цоколем G13. Внутри них могут быть пружинки.
В первую очередь они нужны не для лучшего контакта, а для того, чтобы лампа не выпадала из него. Плюс за счет пружин, идет некоторая компенсация размера длины. Так как с точность до миллиметра, изготовить одинаковыми лампы не всегда получается.
К каждому патрону подходят два провода питания. Чаще всего, они крепятся путем защелкивания в специальных без винтовых контактах.
Проворачиваете их по часовой и против часовой стрелки, и приложив усилие вытаскиваете наружу один из них.
Как уже говорилось выше, контакты внутри разъема изолированы друг от друга. И демонтируя один из проводков, вы фактически оставляете не удел одно контактное гнездо.
Весь ток теперь будет течь через другой контакт. Конечно, все будет работать и на одном, но если вы делаете светильник для себя, имеет смысл немного усовершенствовать конструкцию, поставив перемычку.
Благодаря ей, вам не придется ловить контакт, проворачивая светодиодную лампу по сторонам. Двойной разъем обеспечит надежное соединение.
Перемычку можно сделать из лишних проводов питания самой лампы, которые у вас обязательно останутся в результате переделки.
Тестером проверяете, что после монтажа перемычки, между ранее изолированными разъемами есть цепь. То же самое проделываете со вторым втычным контактом на другой стороне светильника.
Главное проследить, чтобы оставшийся провод питания был уже не фазным, а нулевым. Остальное выкусываете.
Люминесцентные светильники на две, четыре и более ламп
Если светильник у вас двухламповый, лучше всего к каждому разъему подавать напряжение отдельными проводниками.
При монтаже простой перемычки между двух и более патронов, конструкция будет иметь существенный недостаток.
Вторая лампа будет светиться, только при условии, что первая установлена на свое место. Уберете ее, и тут же погаснет и другая.
Питающие проводники должны сходиться на клеммную колодку, где поочередно у вас будет подключены:
До установки светильника на потолок, необходимо подать на него напряжение и проверить работу ламп. Если какой-то контакт будет отходить, можно здесь же все и подрегулировать, не залезая на верх, прыгая по стремянкам.
Светодиодные лампы, в отличие от люминесцентных с обзором свечения 360 градусов, имеют направленный поток света.
Но за счет возможности поворачиваться вокруг оси на 35 градусов в цоколе G13 + вращая сам цоколь, вы сможете их подрегулировать в нужную вам сторону.
Однако такая конструкция цоколя есть не у всех ламп. И иногда приходится пересверливать крепление патронов на 90 градусов.
Если все в порядке, монтируете светильник на свое место и наслаждаетесь экономным и боле ярким освещением.
Заходя в любое производственное помещение, учебное заведение или даже некоторые квартиры, можно увидеть люминесцентные светильники. Они по праву завоевали репутацию лучших приборов освещения прошлых лет. Но время идет, и уже сейчас многие стараются заменить световые приборы на более высокотехнологичные, долговечные и энергосберегающие – светодиодные лампы. И все же, как установить освещение на кристаллах на 220 вольт вместо ЛДС?
Для некоторых такая замена не представляет ничего сложного, но основная масса людей не представляет, как можно подключить светодиодную лампу взамен люминесцентной. Им проще и надежней поменять светильник целиком, и единственное, что их останавливает – это высокая стоимость такого устройства.
А ведь при затрате минимума усилий люминесцентный прибор очень быстро превращается в светодиодный светильник. Нужно лишь понять, как это сделать.
Подключение светодиодной лампы Т8
Самым распространенным корпусом люминесцентных ламп является Т8, обычная и привычная для всех ЛДС. Для большего удобства замены светодиоды выпускаются в том числе и в подобных корпусах. Особенность диодных трубок заключается в том, что для их работы не требуется пускорегулирующий аппарат, все, что нужно, уже встроено в саму светодиодную лампу.
Схема подключения светодиодной трубки
Для того чтобы модернизировать люминесцентный светильник, требуется лишь исключить из схемы стартер и дроссель и изменить подачу напряжения на лампы. Если электричество на ЛДС поступает по принципу «контактный штырь – фаза, контактный штырь – ноль» с каждой стороны, то светодиодные трубки подключаются «фаза на одну сторону лампы, ноль на другую». При этом не имеет значения, на какой из штырьков цоколя будет подходить провод, т. к. каждая сторона закорочена внутри осветительного прибора.
Существование светодиодных светильников, которые нужно подключать лишь с одной стороны (один штырь цоколя – фаза, другой – ноль), также имеет место. Такие лампы сейчас уже отсутствуют в свободной продаже, т. к. производятся они в Украине, но встретить их все-таки возможно. На таком световом приборе указана сторона подключения.
Если замена люминесцентных ламп происходит в арендованном офисе, и нет уверенности, что не придется со временем переехать в другой, демонтировать дроссели и стартеры будет неправильно. Лучше их просто отключить с возможностью восстановления до исходного состояния. Тогда при необходимости можно вернуть на место люминесцентные лампы, а светодиодные забрать с собой.
Преимущества светодиодов
Люминесцентные светильники потребляют большее количество электроэнергии за счет потерь, связанных с работой пускорегулирующего аппарата. А если установлен более старый образец, работающий посредством электромагнитного балласта, энергопотребление возрастает еще на 20–25%.
Светодиодной трубке не требуется стартера, балласта или ЭПРА. К тому же такой осветительный прибор не содержит опасных тяжелых металлов (таких, как ртуть), а потому не требует особой утилизации, в отличие от люминесцентных.
Также у световых приборов на кристаллах отсутствует мерцание и гудение, что более положительно сказывается на состоянии организма, как физическом, так и психическом. Да и долговечность службы люминесцентных ламп всего около 6 000 часов против 50 000 у светодиодной.
Светодиодная трубка Т8
Технические преимущества
Основной особенностью, обеспечивающей большой срок службы светодиодной лампы на 220 вольт, можно назвать грамотно продуманное отведение тепла от световых элементов. Основной радиатор, обеспечивающий теплоотведение, дублирует дополнительное приспособление в виде продольной пластины по всей длине трубки. В результате чего оборудование не перегревается, а значит, дольше не выходит из строя.
К тому же есть и третья точка теплоотведения – это двухсторонняя печатная плата, изготовленная из особого стеклотекстолита с повышенной плотностью.
Строение светодиодной трубки
Особенности платы
Удивительно, но контакты на плате диодной лампы не паяные. Монтаж производится с помощью инновационных контактных соединений, которые позолочены с целью повышения надежности и увеличения срока службы.
Драйвер выполнен на основе микросхем, минимизирующих габариты и позволяющих обойтись без таких деталей, как высоковольтный электролитический конденсатор. В результате данных инноваций улучшается работа светового прибора, снижаются до нуля скачки напряжения, в частности и при подаче его на лампу, а также не имеется электрических помех.
Стабилизирующее устройство смонтировано с использованием ШИМ (широтно-импульсный модулятор), который поддерживает необходимое напряжение на светодиодах при разнице этих показателей от 175 вольт до 275 вольт.
Максимально допустимая нагрузка на широтно-полюсной модулятор составляет 35 ватт. Поэтому даже при большой нагрузке температура прибора не возрастает.
Светодиодная трубка с модульной системой
Схема подключения
Схема подключения светодиодного светильника не представляет собой ничего сложного. Световые элементы на основе кристаллов подключаются к сети с переменным напряжением 220 вольт через диммер или к стабилизирующему трансформатору 12 В или 24 В. При желании стабилизирующее устройство для подключения чипов к общей электрической сети можно собрать своими руками, хотя процесс это непростой и довольно продолжительный по времени.
Что же касается светодиодных трубок Т8 с цоколем G13 и им подобных, равно как и приборов освещения с цоколем Е27, то для их подключения не требуется устанавливать дополнительные устройства. Все, что нужно для их бесперебойной стабильной работы – подать напряжение на контакты. Все необходимые элементы схемы уже включены в устройство.
Вообще при приобретении имеет смысл обратить внимание на упаковку осветительного прибора, точнее на маркировки на ней. В обязательном порядке помимо информации о номинальном напряжении, силе светового потока и цветовой температуры там будет указано, требуются ли дополнительные устройства для подключения лампы.
Схема подключения светодиодной лампы
Но обычно приборы со встроенным диммером называются лампами, в то время как требующие дополнительного оборудования – светодиодами или LED-элементами.
Также установка стабилизирующего трансформатора, а иногда и контроллера необходима и при монтаже светодиодной полосы. Контроллер – это своего рода мозг подсветки. Монтируется он при условии того, что световая полоса является многоцветной, и «продумывает» переменное включение разных цветов при помощи пульта дистанционного управления.
Схема светодиодного фонаря
Большое распространение получили в наше время и переносные фонари на основе светодиодов. Небольшие и налобные фонарики могут иметь в своей схеме от трех до двадцати двух элементов на кристаллах. Более мощные, с использованием аккумуляторных батарей и возможностью подзарядки от сети в 220 В – до 64 светодиодов. Их несомненное преимущество перед приборами на основе лампы накаливания – в яркости свечения и в то же время экономичности. Заряд батареи расходуется в 10–20 раз медленнее. При этом сила светового потока в разы сильнее.
Схема светодиодного аккумуляторного фонаря
Все дело в том, что обычные лампы накаливания рассеивают свет вокруг себя, а значит, половина светового потока идет назад. В фонарях установлены отражатели с целью уменьшить потери и направить луч в нужном направлении. Но проблема в том, что лампочка находится очень близко к отражателю, а значит, загораживает часть отраженного светового потока.
Таким образом, лампа теряет около 30 процентов света.
Светодиоды, в отличие от приборов с нитью накаливания, изначально светят вперед, не тратя силу на освещение пространства вокруг и позади себя. Конечно, отражатель здесь тоже присутствует, но служит он больше для коррекции луча светового потока, а не для его усиления.
Схема, по которой происходит подключение светодиодного фонаря, предельно проста и вполне жизнеспособна при ее сборке своими руками.
Вывод
Подключение светодиодной лампы – дело простое и не требующее каких-либо особых знаний и навыков. Главное – делать все правильно и четко по инструкции. Экономичные и имеющие очень большой срок эксплуатации осветительные приборы – хороший вариант для дома, квартиры или дачи.
При ассортименте, присутствующем сейчас на полках магазинов, возможен подбор любого типа подобных ламп в любом корпусе и для любых люстр. Замена любого вида освещения, даже люминесцентных приборов, очень проста. Ну а о лампах накаливания и говорить не приходится. А выгода от такой замены, конечно же, немалая.
Электромагнитные ПРА. Схемы включения ламп с ЭмПРА.
Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы расскажем вам про ЭмПРА (электромагнитный пускорегулирующий аппарат) на примере включения люминесцентных ламп.
Для поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора. Эти устройства называют пускорегулирующими аппаратами (ПРА).
Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.
Схема включения люминесцентной лампы
На рисунке выше показана схема включения люминесцентной лампы:
- а — с индуктивным балластом
- б — с индуктивно-емкостным балластом
Как происходит процесс зажигания люминесцентной лампы
Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.
При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двух-трехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.
В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.
Одноламповая стартерная схема включения
На рисунке выше представлена одноламповая стартерная схема включения люминесцентной лампы:
- Л — люминесцентная лампа
- Д — дроссель
- Ст — стартер
- С1 — С3 — конденсаторы
Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 — 12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).
Недостатком описанной стартерной схемы является низкий cos φ, не превышающий 0,5. Повышение cos φ достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos φ = 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.
В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos φ = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминисцентных ламп.
Схема включения ламп и ЭмПРА с расщепленной фазой
Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.
Монтажная схема включения двухлампового стартерного аппарата 2УБК
На рисунке выше представлена монтажная схема включения двухлампового стартерного аппарата 2УБК:
- Л — люминесцентная лампа
- Ст- стартер
- С — конденсатор
- r — разрядное сопротивление
- корпус ПРА 2УБК показан пунктиром
Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.
Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.
Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.
Бес-стартерные схемы включения люминесцентных ламп
Недостатки стартерных схем включения (значительный шум, создаваемый ЭмПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров, привели к настойчивым поискам бес-стартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в простых и дешевых установках.
Для надежной работы бес-стартерных схем, рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.
Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.
Бес-стартерные одноламповая и двухламповая схемы включения
На рисунке выше показаны, бес-стартерные одноламповая и двухламповая схемы включения люминесцентных ламп:
- Л — люминесцентная лампа
- Д — дроссель
- НТ — накальный трансформатор
В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бес-стартерных — 35%
В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА (ЭмПРА) постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).
Смотрите также по теме:
Электронный пускорегулирующий аппарат. Что нужно знать про ЭПРА?
Как выбрать блок розжига металлогалогенных ламп?
Уличные светодиодные светильники, их разновидности и отличия.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Схема подключения люминесцентной лампы | Электрика в доме
Принцип работы газоразрядных люминесцентных ламп
Чтобы понять схему подключения люминесцентной лампы рассмотрим устройство и принцип ее работы. Такой светильник состоит из стеклянной колбы, внутри которой стекло покрыто люминофором. Также в герметичной колбе присутствует немного ртути и инертный газ. Процесс начала свечения осуществляется парами ртути, при определенной температуре.
Чтобы разогреть пары ртути до их свечения нужно высокое напряжение. Напряжение сети для этих целей не хватает, поэтому все условия работы дневных ламп создает пускорегулирующая аппаратура или ПРА. ПРА создает необходимый бросок напряжения для зажигания паров ртути, а затем стабилизирует рабочий ток лампы на необходимом уровне. Существуют ПРА электромагнитного типа и более качественные, электронные.
Схема подключения люминесцентных ламп с дросселем
Электромагнитные пусковые устройства имеют стартер и дроссель. Также устанавливаются конденсаторы. На дросселе, параллельно клеммам подключения сети ставится конденсатор, необходимый для компенсации индуктивной мощности дросселя и для уменьшения электромагнитных помех.
Наглядный пример принципа работы люминесцентной лампы
Конденсатор, устанавливаемый на стартере, необходим для увеличения времени стартового импульса. Иногда это устройство еще называют электронным балластом. На схеме видно, что при включении сети ток проходит через дроссель и попадает на накал катода. На второй накал ток поступает через стартер и далее на ноль.
В момент подачи напряжения на стартер, между разомкнутыми биметаллическими контактами возникает тлеющий разряд, который нагревает контакты. Разогревшись, контакты стартера замыкаются, и ток поступает на оба накала лампы. После окончания действия тактового импульса напряжения с конденсатора, биметаллические контакты стартера остывают и размыкаются.
Дроссель для подключения люминесцентной лампы
В момент размыкания контактов стартера возникает бросок напряжения, из-за действия самоиндукции дросселя. Этого броска напряжения хватает для того чтобы зажечь пары ртути через разогретый накал лампы. Свечение паров ртути находится в ультрафиолетовом, невидимом диапазоне световых волн.
Схема подключения люминесцентной лампы
Однако свечение паров ртути зажигает люминофор с видимым спектром светового излучения. После того как лампа загорелась, напряжение питания лампы уменьшается наполовину от напряжения сети (делитель дроссель – лампа) чего не хватает для повторного разогрева контактов стартера и замыкания контактов.
К недостаткам схемы подключения люминесцентных ламп с дросселем можно отнести.
- Негативный для глаз пульсирующий свет 50 Гц.
- Шумность при работе и пуске дневных ламп.
- Тяжелый пуск при низкой температуре.
- Большое время включение этих ламп.
Иногда в светильниках подключается две лампы дневного освещения на один дроссель. В этом случае нужно соблюдать правила.
Схема подключения двух люминесцентных ламп
- Мощность дросселя должна соответствовать мощности двух ламп.
- Стартеры для этой схемы подключения люминесцентных ламп должны быть на 127 В. Стартер на 220 вольт в этой схеме не работает.
Схема подключения люминесцентной лампы без дросселя на ЭПРА
Лампа с подключением на электронном балласте имеет некоторые особенности.
Частота питающего напряжения на ЭПРА составляет 20-130 кГц, что не создает болезненное моргание света лампы для глаз. ЭПРА представляет собой электронную плату в корпусе с клеммами для подключения светильника. Устанавливается она в одном корпусе со светильником.
Электронный балласт для подключения люминесцентной лампы
Схема подключения ламп не сложная, она печатается на корпусе устройства. На корпусе также нанесена информация о технических характеристиках ЭПРА. Схема подключения ламп с ЭПРА имеет ряд преимуществ.
Пример схемы электронного ЭПРА
- Высокая частота напряжения лампы, что делает ее безвредной для глаз.
- Увеличение срока службы, относительно использования схемы с электромагнитным ПРА.
- Экономия 20% электроэнергии, также относительно ПРА.
- Схема не содержит ненадежного стартера.
- Возможность диммирования, для некоторых видов схемы ЭПРА.
Схемы подключения газоразрядных световых приборов более экономичны, бесшумны и более надежны. Всё это, делает их более популярными, чем схемы подключения газоразрядных приборов освещения с электромагнитными ПРА.
Тоже интересные статьи
Электропроводка люминесцентного патрона — электрическая 101
Схема подключения балласта с мгновенным запуском 2 ламп с шунтированными патронами не
Схема подключения балласта для быстрого запуска 2 ламп с шунтированными патронами не
Как извлечь провод из проталкивания — в соединителе
Возьмитесь за провод и скрутите его (поверните), осторожно потянув за провод, пока он не выйдет.Если не сделать это правильно, провод может оборваться до того, как он отсоединится от разъема.
Люминесцентные патроны для замены клемм на шунтированных патронах не
Люминесцентные патроны удерживают люминесцентные лампы на осветительной арматуре. Провода от штепсельной вилки балласта вставить
Шунтированные патроны
Шунтированные патроны для пусковых балластов с мгновенным запуском вмещают до двух проводов 18 AWG, соединены между собой внутри и подключаются к обеим сторонам патрона.
На схеме ниже (балласт для мгновенного запуска 2 ламп) отдельные синие провода соединяются от балласта с каждым патроном на одной стороне каждой лампы.
Общий красный провод соединяет балласт с обоими патронами на другой стороне каждой лампы. Дополнительный красный провод соединяет вместе два общих боковых патрона.
Схема подключения балласта для двух ламп с мгновенным запуском с шунтированными патронами
Шунтированные патроны без
Шунтируемые патроны без
На схеме ниже отдельные синие провода подключаются от балласта к
Общие желтые провода подключаются от балласта к вставным
Электропроводка балласта — электрическая 101
Для работы люминесцентных ламп требуется балласт. Схема люминесцентной лампы включает балласт, провода, патроны и лампы.
Лампа против лампы
Электрики обычно называют лампочку лампой. Производители лампочек используют термин «лампа», когда относятся к люминесцентным лампам. На этой странице мы будем называть люминесцентную лампу лампой или трубкой.
Индивидуальные и общие балластные провода
Каждый отдельный балластный провод подключается к патрону с одной стороны каждой трубки. Общий провод (а) подключается ко всем патронам на другой стороне трубок.
Цвета проводов балласта
Цвета проводов для отдельных и общих соединений на люминесцентных балластах будут различаться в зависимости от типа балласта, марки и количества поддерживаемых ламп. Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для общих проводов к патронам.
Магнитные балласты и электронные балласты
Старые магнитно-люминесцентные балласты обычно быстро запускаются и подключаются последовательно. Более новые электронные балласты — это мгновенный запуск (подключенные параллельно), быстрый запуск (подключенные последовательно), запрограммированный запуск (подключенные последовательно —
Быстрый запуск и балласты мгновенного запуска
Когда балласт быстрого запуска (соединенный последовательно) работает с несколькими лампами и одна лампа выходит из строя, цепь размыкается, и другие лампы не загораются.
Когда пусковой балласт мгновенного действия (соединенный параллельно) управляет несколькими лампами в цепи, лампы работают независимо друг от друга. Если одна лампа выходит из строя, остальные могут продолжать работать, так как цепь между ними и балластом остается непрерывной.
При использовании некоторых пусковых балластов с 3 и 4 лампами
- ПРА для быстрого пуска можно подключать только последовательно в соответствии со схемой на ПРА.
- ПРА для мгновенного пуска можно подключать параллельно только в соответствии со схемой на ПРА.
- Изменение проводки люминесцентного светильника с быстрого запуска на мгновенное включает изменение проводки с последовательного на параллельное.
Схема балласта для быстрого запуска 1 лампы
Схема балласта для 1 быстрого запуска лампы
Заземление балласта
Заземление балласта очень важно.Заземление обычно происходит автоматически, если светильник заземлен правильно.
Заземляющий провод от источника питания должен быть подключен к светильнику. Металлический балласт, установленный на металлической осветительной арматуре, автоматически заземляет балласт.
Если балласт имеет клемму заземления, к ней должен быть подключен заземляющий провод.
Люминесцентные балласты — электрические 101
В люминесцентных лампах используется балласт, который преобразует линейное напряжение в напряжение для запуска и работы лампы (ей).Новые люминесцентные балласты обычно рассчитаны как на 120 вольт, так и на 277 вольт. Некоторые из них рассчитаны всего на 120 вольт, другие — только на 277 вольт (используются в коммерческой среде).
КЛЛ
для дома имеют встроенный балласт
Есть четыре основных типа люминесцентных балластов:
Электронные балласты с мгновенным запуском используют высокое пусковое напряжение (около 600 вольт) для очень быстрого запуска (менее 0.1 секунду). Для максимальной энергоэффективности электроды не подогреваются, но лучше всего подходят для ограниченного количества переключений (от 10 000 до 15 000 циклов переключения до отказа). ПРА мгновенного пуска подключаются параллельно.
Электромагнитные балласты с быстрым пуском или пуском с триггера используются в светильниках T12 и более старых моделей T8 и подключаются последовательно.
Электронные балласты быстрого запуска нагревают электроды при подаче пускового напряжения (около 500 вольт) для быстрого запуска ламп примерно через 0.От 5 до 1,0 секунды. Нагрев электродов продолжается, пока лампы включены, и они потребляют немного больше энергии (около 2 Вт на лампу), чем балласты с мгновенным запуском. Они могут проработать от 15 000 до 20 000 циклов переключения до отказа. Балласты быстрого пуска подключаются последовательно.
Программируемый пуск Электронные балласты запускаются быстро примерно за 1,0 —
Лампы
T8 с новым электронным балластом потребляют примерно на 20–
Типы ламп, совместимые с этим балластом
(4) F32T8 —
(4) F25T8 —
(4) F17T8 —
Светильники с балластами иногда имеют таблички с указанием необходимого типа лампы и балласта (F32T8).
Люминесцентные этикетки балласта
Этикетка балласта показывает две важные метки.
- Таблица совместимости ламп (типы ламп, которые могут использоваться с этим балластом)
- Схема подключения балласта (показывает, как балласт подключается к лампам)
Диаметр люминесцентных трубок
Люминесцентные лампы имеют две общие формы: прямую и форму U-
Подбор балласта к лампе
При подборе балласта к лампе необходимо выполнить три требования. В приведенном выше примере к лампе типа F32T8 предъявляются следующие три требования:
1. Люминесцентная лампа
2.32 Вт
3. T8.
Люминесцентные лампы T12 Снято с производства
Люминесцентные лампы T12 больше не производятся из-за низкой энергоэффективности. Хотя эти лампы все еще есть в наличии в некоторых магазинах, замена балласта на более эффективный электронный балласт T8 могла бы быть лучшим выбором.
Схема и проект драйвера люминесцентной лампы
— электрические схемы
1. Запуск люминесцентной лампы на инверторе
Драйверы на 12 В для люминесцентных ламп сложны из-за компромисса между хорошей эффективностью работы и возможностью запуска лампы.Требования противоречат друг другу. Вот 7 способов запуска:
1.1 Чистый однотранзисторный инвертор с обратным ходом, создает скачки напряжения в киловольтном диапазоне в состоянии холостого хода, так что лампа запускается. Недостаток: одна нить накала испаряется и затемняет лампу, делает ее электрически несимметричной и сокращает срок службы. Высокий уровень радиации (EMC).
1.2 Нагрев нитей с помощью подходящих обмоток трансформатора. Проблема в том, что эта мощность нагрева подавляет скачки напряжения.Вы получаете только одно из этих двух стартовых средств. Но дополнительный одиночный большой скачок напряжения (например, сокращение вторичной обмотки вручную всего на несколько миллисекунд с помощью кнопки) запустит лампу.
1.3 Ионизационный провод вдоль лампы. Этот провод действует только там, где есть разность потенциалов, он ионизируется вокруг противоположной нити накала. Мы можем рассматривать эту меру как дешевую и простую дополнительную уловку, но она не является прорывом, не способна только запустить.
1.4 Ионизационный провод плюс дополнительная специальная высоковольтная обмотка. Это действительно полноценный стартер. Обмотка может быть отключена во время работы или может питаться от отдельного пускового генератора, который отключается целиком. Возможно, многообещающе, но необычно.
1,5 Цепь стартера со стороны лампы. Такой описан в книге Нюрманна «Professionelle Schaltungstechnik», выпуск 2, стр. 180. Он использовал довольно экзотический тиристорный тетрод BRY20, чтобы последовательно подключить нити ко всей вторичной обмотке для эффективного предварительного нагрева.Когда лампа зажглась, тетрод выключается. Генератор является синусоидальным генератором, и напряжение холостого хода достаточно высокое для запуска, но не содержит всплесков. Хорошо известный патрон с тлеющим пуском неприменим для небольших высокочастотных инверторов, он предназначен только для частоты сети и индуктивного балласта.
1.6 Ссылаясь на схему, приведенную здесь, если отключить конденсатор 0,68 мкФ (параллельно первичной обмотке), генератор перейдет не в синусоидальный режим, а в режим обратного хода и вызовет скачки напряжения, которые немедленно начнутся. флуоресцентный.Потребуется либо ручной запуск, например, кнопка с размыкающим контактом (NC), либо внешнее реле, выполняющее то же действие автоматически.
1,7 Вторичная обмотка предназначена для выработки достаточно высокого напряжения, но без скачков напряжения. Конденсатор включен последовательно со вторичной обмоткой. Поначалу высокая частота холостого хода и напряжение передаются на лампу напрямую, так как она электрически неактивна. После запуска напряжение падает с нескольких сотен вольт до рабочего напряжения, которое составляет около 70 В для стержня мощностью 8 Вт.Дополнительно могут применяться ионизационные провода. Недостатком является определенная потеря эффективности, поскольку мы (очень упрощенно) сначала генерируем высокое напряжение, а затем используем только его часть. Преимуществом является самозапуск без ручных кнопок или внешних специальных пусковых цепей.
2. Схема
Работает в соответствии с методом запуска 1.7, как описано выше.
Транзистор имеет резонансный контур в эмиттерной линии и работает в режиме общего коллектора.Для этого необходимо, чтобы напряжение обратной связи было выше рабочего напряжения, поэтому обмотка обратной связи имеет большее количество витков, чем первичная обмотка.
У меня были транзисторы, которые превзошли все остальные, но это очень экзотические PNP-комплементарные типы еще более экзотического высокочастотного усилителя мощности 2SC1306. Тестировал также BD249C, они работают хорошо. Согласно паспортам, также должен работать 2N 4923.
Ищите транзисторы с быстрым переключением, ток 2А, способные обрабатывать высокие частоты.Размер ТО-220 или больше.
Резистор, состоящий из 2 x 1 кОм, включенных параллельно, раньше был одиночным резистором на 470 Ом, но стал слишком горячим для длительной надежной работы, поэтому я использовал 2 x 1 кОм = 500 Ом только для тепловой мощности.
Конденсатор 1uF 50V наверняка может быть танталового типа, а возможно, еще и качественным электролитическим. Его цель — создать делитель напряжения для высокой частоты, но в первый момент запуска (после принятия его заряда) он делает резистор 500 Ом доминирующим для запуска генератора.
Конденсатор 0,68 мкФ 400 В нагружен с частотой от 12 до 30 кГц, и во избежание чрезмерных диэлектрических потерь рекомендуется выбрать высокое номинальное напряжение. Но, наверное, здесь тоже подойдет рейтинг 160В.
Вторичный конденсатор — самая важная часть. В режиме холостого хода он передает около 700 В (пик / пик) на флуоресцентный свет, в работе он нагружается более 200 В при 12 кГц. Диэлектрический материал должен быть отличным, иначе мы должны позаботиться о том, чтобы был большой запас по номинальному напряжению.
Керамика не подходит. Типы FKP и STYROFLEX (полистирол) хороши и могут быть рассчитаны на 400 В переменного тока. Все другие более распространенные типы, такие как MKP или «без названия», должны быть рассчитаны на напряжение более 1000 В.
Я использовал 2 x 5,6 нФ параллельно 1,5 кВ, что дало 11,2 нФ. Это значение не критично, но немного влияет на ток лампы. Хорошим выбором будет 2 последовательных разъема по 22 нФ, 400 В (или 630 В). Если они нагреваются во время работы, они перегружаются.
3. Подготовка лампы
Благодаря небольшой ручной работе мы улучшаем пусковые характеристики.Обычный ионизационный провод выглядит так:
Вы найдете его в переносных лампах 12 В для мастерских или вашего автомобиля. Он действует только там, где есть заметная разность потенциалов, и неактивен вблизи того места, где он подключен. Так работает только на одном конце лампы.
Я использую перекрестную двойную ионизацию. К стеклянному стержню с помощью прозрачного силикона приклеены две тонкие проволочки диаметром 0,1 мм. Они соединены с алюминиевыми кольцами, которые окружают концы трубки.Алюминиевые кольца обеспечивают высокую электрическую прочность на лету по сравнению с F
ФЛУОРЕСЦЕНТНАЯ СХЕМА ЭЛЕКТРОПРОВОДКИ — Схема электрических соединений
Теги
Схема подключения датчика pir, схема подключения dmx512, схема подключения радио 89 f250, замена топливного фильтра 7 3, схема подключения неоновой вывески, схема подключения переключателя 110v 220v, электрическая схема chrysler 1947 года, схема подключения вентилятора pt cruiser 2007 года, блок предохранителей jeep grand cherokee 2005 , электрическая схема ka24de tps, электрическая схема techno isel cnc, электрическая схема farmall h 6v, электрическая схема цифрового термостата Dometic, электрическая схема автоматического включения резерва, электрическая схема переключателя зажигания mtd, блок предохранителей 2007 frontier, электрическая схема квадроцикла 110 cc, 1973 ford схема подключения фар, блок предохранителей peugeot 207 вода, kia sportage 2012, блок предохранителей
Схема подключения люминесцентного света — Схема подключения и
3 июля 2014 г. Описание: Схема подключения для однотрубной цепи освещения | Electrical4U относительно схемы подключения люминесцентного света, размер изображения 630 X 378 пикселей, и для просмотра деталей изображения щелкните изображение.Вот картинная галерея, посвященная схеме подключения люминесцентных ламп, вместе с описанием изображения, пожалуйста, найдите нужное изображение.
Схема подключения люминесцентного балласта | Схема электрических соединений
22 января 2019 г. Как говорилось ранее, линии на схеме подключения люминесцентного балласта обозначают провода. Иногда провода пересекаются. Но это не означает связь между проводами. Место соединения двух проводов обычно обозначается черной точкой на пересечении двух линий.
Связанные поиски схемы подключения люминесцентных ламп
Схема подключения люминесцентных лампСхема подключения люминесцентных лампСхемы подключения люминесцентных ламп
Связано со схемой подключения люминесцентных ламп
руководство по эксплуатации yamaha ns10, руководство по техническому обслуживанию b737, бесплатные онлайн-руководства по ремонту квадроциклов suzuki, руководство по ремонту hp laserjet 4350, руководство пользователя viper 5900, руководство по эксплуатации coby kyros mid7012, шаблон pawprint powerpoint, руководство по обслуживанию квадроциклов polaris ranger rzr 800 скачать 2009 2010, всемирная история 2 Обзор солей 2008 года, трудно переключаемая механическая коробка передач,
Люминесцентная лампа — Infogalactic: ядро планетарных знаний
Сверху две компактные люминесцентные лампы.Внизу две люминесцентные лампы. Спичка слева показана для масштабирования.
Файл: Tanninglamp.jpg
Типичная двухконтактная лампа F71T12 мощностью 100 Вт, используемая в соляриях. Символ (Hg) указывает на то, что эта лампа содержит ртуть. В США этот символ теперь требуется на всех люминесцентных лампах, содержащих ртуть. [1]
Единый тип патрона для двухконтактных люминесцентных ламп T12 и T8
Файл: Tanninglampend.jpg
Внутри торца двухштырьковой лампы предварительного нагрева. В этой лампе нить накала окружена продолговатым металлическим катодным экраном, который помогает уменьшить потемнение концов лампы. [2]
Люминесцентная лампа или люминесцентная лампа — газоразрядная лампа низкого давления на парах ртути, в которой флуоресценция используется для получения видимого света. Электрический ток в газе возбуждает пары ртути, которые производят коротковолновый ультрафиолетовый свет, который затем вызывает свечение люминофорного покрытия внутри лампы. Люминесцентная лампа преобразует электрическую энергию в полезный свет намного эффективнее, чем лампы накаливания. Типичная световая отдача люминесцентных систем освещения составляет 50–100 люмен на ватт, что в несколько раз превышает эффективность ламп накаливания с сопоставимой светоотдачей.
Светильники люминесцентных ламп дороже ламп накаливания, потому что для них требуется балласт для регулирования тока через лампу, но более низкая стоимость энергии обычно компенсирует более высокую начальную стоимость. Компактные люминесцентные лампы теперь доступны в тех же популярных размерах, что и лампы накаливания, и используются в качестве энергосберегающей альтернативы в домах.
Многие люминесцентные лампы классифицируются как опасные отходы, поскольку они содержат ртуть. Агентство по охране окружающей среды США рекомендует отделять люминесцентные лампы от обычных отходов для переработки или безопасной утилизации. [3]
История
Физические открытия
Флуоресценция некоторых горных пород и других веществ наблюдалась за сотни лет до того, как стала понятна ее природа. К середине XIX века экспериментаторы наблюдали лучистое свечение, исходящее от частично вакуумированных стеклянных сосудов, через которые проходил электрический ток. Одним из первых, кто объяснил это, был ирландский ученый сэр Джордж Стоукс из Кембриджского университета, который назвал это явление «флуоресценцией» в честь флюорита, минерала, многие образцы которого сильно светятся из-за примесей.Объяснение основывалось на природе явления электричества и света, разработанном британскими учеными Майклом Фарадеем в 1840-х годах и Джеймсом Клерком Максвеллом в 1860-х годах. [4]
Немногое было сделано с этим явлением до 1856 года, когда немецкий стеклодув по имени Генрих Гайсслер создал ртутный вакуумный насос, который откачивает стеклянную трубку в такой степени, которая ранее была невозможна. Когда электрический ток проходил через трубку Гейсслера, можно было наблюдать сильное зеленое свечение на стенках трубки со стороны катода.Трубка Гейслера, производившая красивые световые эффекты, была популярным источником развлечений. Однако более важным был его вклад в научные исследования. Одним из первых ученых, которые экспериментировали с трубкой Гейсслера, был Юлиус Плюкер, который в 1858 году систематически описал люминесцентные эффекты, которые происходили в трубке Гейсслера. Он также сделал важное наблюдение: свечение в трубке меняет положение, когда оно находится вблизи электромагнитного поля. Александр Эдмон Беккерель заметил в 1859 году, что некоторые вещества испускали свет, когда их помещали в трубку Гейсслера.Он продолжал наносить тонкие покрытия из люминесцентных материалов на поверхности этих трубок. Произошла флуоресценция, но трубки были очень неэффективными и имели короткий срок службы. [5]
Запросы, которые начались с трубки Гейсслера, продолжились, поскольку были созданы еще более совершенные пылесосы. Самой известной была вакуумная трубка, которую использовал Уильям Крукс для научных исследований. Эта трубка откачивалась с помощью высокоэффективного ртутного вакуумного насоса, созданного Германом Шпренгелем. Исследования, проведенные Круксом и другими, в конечном итоге привели к открытию электрона в 1897 году Дж.Дж. Томсон и рентгеновские лучи в 1895 году Вильгельма Рентгена. Но трубка Крукса, как ее стали называть, давала мало света, потому что в ней был слишком хороший вакуум и, следовательно, не хватало следовых количеств газа, необходимых для электрически стимулированной люминесценции.
Ранние газоразрядные лампы
В то время как Беккерель был заинтересован в первую очередь в проведении научных исследований флуоресценции, Томас Эдисон кратко рассмотрел флуоресцентное освещение из-за его коммерческого потенциала. Он изобрел люминесцентную лампу в 1896 году, в которой использовалось покрытие из вольфрамата кальция в качестве флуоресцентного вещества, возбуждаемого рентгеновскими лучами, но, хотя в 1907 году на нее был получен патент [6] , она не была запущена в производство.Как и в случае с некоторыми другими попытками использовать трубки Гейсслера для освещения, у него был короткий срок службы, и, учитывая успех лампы накаливания, у Эдисона не было особых причин для поиска альтернативных средств электрического освещения. Никола Тесла проводил аналогичные эксперименты в 1890-х годах, изобретая высокочастотные люминесцентные лампы, которые давали яркий зеленоватый свет, но, как и в случае с устройствами Эдисона, коммерческого успеха добиться не удалось.
Хотя Эдисон потерял интерес к люминесцентному освещению, одному из его бывших сотрудников удалось создать газовую лампу, которая добилась определенного коммерческого успеха.В 1895 году Дэниел Макфарлан Мур продемонстрировал лампы длиной от 2 до 3 метров (от 6,6 до 9,8 футов), в которых для излучения белого или розового света использовался углекислый газ или азот соответственно. Как и в случае с будущими люминесцентными лампами, они были значительно сложнее лампы накаливания. [7]
После многих лет работы Мур смог продлить срок службы ламп, изобретя электромагнитный клапан, который поддерживал постоянное давление газа внутри трубки. [8] Хотя лампа Мура была сложной, дорогостоящей в установке и требовала очень высокого напряжения, она была значительно более эффективной, чем лампы накаливания, и обеспечивала более точное приближение к естественному дневному свету, чем современные лампы накаливания.С 1904 года система освещения Мура была установлена в ряде магазинов и офисов. [9] Его успех способствовал мотивации General Electric к совершенствованию лампы накаливания, особенно ее нити. Усилия GE увенчались изобретением нити накала на основе вольфрама. Увеличенный срок службы и повышенная эффективность ламп накаливания свели на нет одно из ключевых преимуществ лампы Мура, но GE приобрела соответствующие патенты в 1912 году. Эти патенты и изобретательские усилия, которые поддерживали их, должны были иметь значительную ценность, когда фирма занялась люминесцентным освещением. более двух десятилетий спустя.
Примерно в то же время, когда Мур разрабатывал свою систему освещения, другой американец создавал средство освещения, которое также можно рассматривать как предшественник современной люминесцентной лампы. Это была ртутная лампа, изобретенная Питером Купером Хьюиттом и запатентованная в 1901 году (US 682692; этот номер патента часто ошибочно цитируется как US 889 692). Лампа Хьюитта загоралась, когда электрический ток пропускался через пары ртути под низким давлением. В отличие от ламп Мура, лампы Hewitt изготавливались стандартных размеров и работали при низком напряжении.Лампа на парах ртути превосходила лампы накаливания того времени с точки зрения энергоэффективности, но излучаемый ею сине-зеленый свет ограничивал возможности ее применения. Однако он использовался для фотографии и некоторых промышленных процессов.
Ртутные лампы продолжали развиваться медленными темпами, особенно в Европе, и к началу 1930-х годов они получили ограниченное применение для крупномасштабного освещения. В некоторых из них использовались флуоресцентные покрытия, но они использовались в основном для коррекции цвета, а не для увеличения светоотдачи.Лампы на парах ртути также предвосхитили люминесцентные лампы с их включением балласта для поддержания постоянного тока.
Купер-Хьюитт не был первым, кто использовал пары ртути для освещения, поскольку ранее усилия были предприняты Уэй, Рапифф, Аронс, Бастиан и Солсбери. Особое значение имела ртутная лампа, изобретенная Кюхом в Германии. В этой лампе вместо стекла использовался кварц, чтобы обеспечить более высокие рабочие температуры и, следовательно, большую эффективность. Хотя ее светоотдача по сравнению с потреблением электроэнергии была лучше, чем у других источников света, излучаемый ею свет был аналогичен свету лампы Купера-Хьюитта в том, что в ней отсутствовала красная часть спектра, что делало ее непригодной для обычного освещения.
Лампы неоновые
Основная статья: Неоновое освещение
Следующий шаг в области газового освещения был основан на люминесцентных свойствах неона — инертного газа, открытого в 1898 году путем изоляции от атмосферы. При использовании в лампах Гейслера неон светился ярко-красным светом. [10] К 1910 году француз Жорж Клод, разработавший технологию и успешный бизнес по сжижению воздуха, получал достаточно неона в качестве побочного продукта для поддержки индустрии неонового освещения. [11] [12] Хотя неоновое освещение использовалось примерно в 1930 году во Франции для общего освещения, оно было не более энергоэффективным, чем обычное освещение лампами накаливания. Освещение с неоновой трубкой, которое также включает использование паров аргона и ртути в качестве альтернативных газов, стало использоваться в основном для привлекательных вывесок и рекламы. Однако неоновое освещение имело отношение к развитию люминесцентного освещения, поскольку улучшенный электрод Клода (запатентованный в 1915 году) преодолел «разбрызгивание», основной источник деградации электродов.Распыление происходит, когда ионизированные частицы ударяются об электрод и отрывают кусочки металла. Хотя для изобретения Клода потребовались электроды с большой площадью поверхности, оно показало, что можно преодолеть серьезное препятствие для газового освещения.
Развитие неонового света также имело значение для последнего ключевого элемента люминесцентной лампы — ее люминесцентного покрытия. В 1926 году Жак Рислер получил французский патент на применение флуоресцентных покрытий на неоновых лампах. [9] Эти лампы, которые можно считать первыми коммерчески успешными люминесцентными лампами, использовались в основном для рекламы, а не для общего освещения.Однако это было не первое использование флуоресцентных покрытий; Эдисон использовал вольфрамат кальция для своей неудачной лампы. Были предприняты другие попытки, но все они сопровождались низкой эффективностью и различными техническими проблемами. Особое значение имело изобретение в 1927 году Фридрихом Мейером, Хансом-Иоахимом Шпаннером и Эдмундом Гермером, сотрудниками немецкой фирмы в Берлине, низковольтной «лампы на парах металла». Немецкий патент был выдан, но в серийное производство лампа так и не пошла.
Серийный выпуск люминесцентных ламп
Все основные функции люминесцентного освещения были реализованы в конце 1920-х годов.Десятилетия изобретений и разработок обеспечили ключевые компоненты люминесцентных ламп: экономичные стеклянные трубки, инертные газы для заполнения трубок, электрические балласты, долговечные электроды, пары ртути как источник люминесценции, эффективные средства создания надежного электрического разряда. , и флуоресцентные покрытия, которые могут быть возбуждены ультрафиолетовым светом. В этот момент интенсивные разработки были важнее фундаментальных исследований.
В 1934 году Артур Комптон, известный физик и консультант GE, сообщил отделу ламп GE об успешных экспериментах с люминесцентным освещением в General Electric Co., Ltd. в Великобритании (не связана с General Electric в США). Вдохновленная этим отчетом и имеющими все ключевые элементы, группа под руководством Джорджа Э. Инмана в 1934 году построила прототип люминесцентной лампы в инженерной лаборатории General Electric в Нела-Парк (Огайо). Это было нетривиальным занятием; как отметил Артур А. Брайт, «пришлось провести множество экспериментов с размерами и формой ламп, конструкцией катода, давлением газа аргона и паров ртути, цветами флуоресцентных порошков, методами их прикрепления к внутренней части лампы. трубка и другие детали лампы и ее вспомогательного оборудования до того, как новое устройство было готово для публики.» [9]
Помимо инженеров и техников, а также помещений для НИОКР по люминесцентным лампам, General Electric контролировала то, что она считала ключевыми патентами на люминесцентное освещение, включая патенты, первоначально выданные Hewitt, Moore и Küch. Более важным, чем это, был патент на электрод, который не разрушался при давлении газа, которое в конечном итоге использовалось в люминесцентных лампах. Альберт В. Халл из исследовательской лаборатории GE в Скенектади подал заявку на патент на это изобретение в 1927 году, которое было выдано в 1931 году. [13] General Electric использовала свой контроль над патентами, чтобы предотвратить конкуренцию со своими лампами накаливания, и, вероятно, отложила внедрение люминесцентного освещения на 20 лет. В конце концов, военное производство потребовало круглосуточных фабрик с экономичным освещением и люминесцентными лампами.
Хотя патент Халла дал GE основание для требования юридических прав на люминесцентную лампу, через несколько месяцев после того, как лампа была запущена в производство, фирма узнала о заявке на патент США, поданной в 1927 году на вышеупомянутую изобретенную «лампу на парах металла». в Германии Мейером, Шпаннером и Гермером.В заявке на патент указывалось, что лампа была создана как превосходное средство для получения ультрафиолетового света, но в заявке также содержалось несколько утверждений, относящихся к флуоресцентному освещению. Попытки получить патент в США натолкнулись на многочисленные задержки, но если бы он был выдан, патент мог бы вызвать серьезные трудности для GE. Сначала GE стремилась заблокировать выдачу патента, требуя, чтобы приоритет был отдан одному из их сотрудников, Лерою Дж. Баттольфу, который, согласно их заявлению, изобрел люминесцентную лампу в 1919 году и чья патентная заявка все еще находилась на рассмотрении.GE также подала заявку на патент в 1936 году на имя Инмана, чтобы охватить «улучшения», внесенные его группой. В 1939 году GE решила, что претензии Мейера, Спаннера и Гермера имеют определенные основания и что в любом случае длительная процедура вмешательства не в их интересах. Поэтому они отказались от иска Buttolph и заплатили 180 000 долларов за приобретение Meyer et al. заявка, которая на тот момент принадлежала фирме, известной как Electrons, Inc. Патент был должным образом выдан в декабре 1939 года. [14] Этот патент, наряду с патентом Халла, поставил GE на то, что казалось твердым юридическим основанием , хотя компания Sylvania Electric Products, Inc. в течение многих лет сталкивалась с судебными проблемами, который заявил о нарушении принадлежащих ему патентов.
Несмотря на то, что вопрос о патентах не будет полностью решен в течение многих лет, сильные стороны General Electric в области производства и маркетинга позволили компании занять лидирующую позицию на развивающемся рынке люминесцентных ламп. Продажа «люминесцентных люмилиновых ламп» началась в 1938 году, когда на рынок были выпущены лампы четырех разных размеров. Они использовались в светильниках, производимых тремя ведущими корпорациями: Lightolier, Artcraft Fluorescent Lighting Corporation и Globe Lighting.В следующем году GE и Westinghouse рекламировали новые светильники на выставках на Всемирной выставке в Нью-Йорке и Международной выставке Golden Gate в Сан-Франциско. Флуоресцентные системы освещения быстро распространились во время Второй мировой войны, поскольку военное производство увеличило спрос на освещение. К 1951 году в Соединенных Штатах люминесцентные лампы производили больше света, чем лампы накаливания. [15]
В первые годы в качестве зеленоватого люминофора использовался ортосиликат цинка с различным содержанием бериллия.Небольшие добавки вольфрамата магния улучшили синюю часть спектра, дав приемлемый белый цвет. После того, как было обнаружено, что бериллий токсичен, фосфор на основе галофосфата взял верх. [16]
Принципы работы
Основное средство преобразования электрической энергии в энергию излучения в люминесцентной лампе основано на неупругом рассеянии электронов, когда падающий электрон сталкивается с атомом в газе. Если (падающий) свободный электрон имеет достаточно кинетической энергии, он передает энергию внешнему электрону атома, заставляя этот электрон временно подпрыгивать на более высокий энергетический уровень.Столкновение «неупругое», потому что происходит потеря кинетической энергии.
Это состояние с более высокой энергией нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень. Большинство фотонов, испускаемых атомами ртути, имеют длины волн в ультрафиолетовой (УФ) области спектра, преимущественно на длинах волн 253,7 и 185 нанометров (нм). Они не видны человеческому глазу, поэтому их необходимо преобразовывать в видимый свет.Это делается с помощью флуоресценции. Ультрафиолетовые фотоны поглощаются электронами в атомах внутреннего флуоресцентного покрытия лампы, вызывая аналогичный скачок энергии, а затем ее падение с испусканием следующего фотона. Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, выбираются таким образом, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.
Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны (термоэлектронная эмиссия). Эти электроны сталкиваются и ионизируют атомы благородного газа внутри колбы, окружающей нить, с образованием плазмы в процессе ударной ионизации. В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам.
Заполняющий газ помогает определить рабочие электрические характеристики лампы, но не излучает свет.Наполняющий газ эффективно увеличивает расстояние, на которое электроны проходят через трубку, что дает электрону больше шансов на взаимодействие с атомом ртути. Атомы аргона, возбужденные до метастабильного состояния ударом электрона, могут передать эту энергию нейтральному атому ртути и ионизировать его, что описывается как эффект Пеннинга. Это позволяет снизить пробивное и рабочее напряжение лампы по сравнению с другими возможными наполняющими газами, такими как криптон. [17]
Строительство
Крупным планом катоды бактерицидной лампы (по существу аналогичная конструкция, в которой не используется люминесцентный люминофор, что позволяет видеть электроды.)
Трубка люминесцентной лампы заполнена газом, содержащим пары ртути низкого давления и аргон, ксенон, неон или криптон. Давление внутри лампы составляет около 0,3% от атмосферного давления. [18] Внутренняя поверхность лампы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей солей металлических и редкоземельных люминофоров. Электроды лампы обычно изготавливаются из спирального вольфрама и обычно называются катодами из-за их основной функции — испускания электронов.Для этого они покрыты смесью оксидов бария, стронция и кальция, выбранной так, чтобы иметь низкую температуру термоэлектронной эмиссии.
В бактерицидной лампе используется тлеющий разряд паров ртути низкого давления, идентичный таковому в люминесцентной лампе, но в бактерицидной лампе используется оболочка из плавленого кварца без покрытия, поэтому ультрафиолетовое излучение может уйти.
Трубки люминесцентных ламп обычно прямые и имеют длину от примерно 100 миллиметров (3,9 дюйма) для миниатюрных ламп до 2,43 метра (8.0 футов) для мощных ламп. У некоторых ламп трубка изогнута в круг, что используется для настольных ламп или в других местах, где требуется более компактный источник света. П-образные лампы большего размера используются для обеспечения того же количества света в более компактных помещениях и используются в особых архитектурных целях. Компактные люминесцентные лампы имеют несколько трубок малого диаметра, соединенных в пучок из двух, четырех или шести, или трубку небольшого диаметра, свернутую в спираль, чтобы обеспечить большое количество светового потока в небольшом объеме.
Светоизлучающие люминофоры наносятся на внутреннюю часть трубки в виде лакокрасочного покрытия. Органическим растворителям дают испариться, затем трубку нагревают почти до температуры плавления стекла, чтобы удалить оставшиеся органические соединения и сплавить покрытие с трубкой лампы. Необходим тщательный контроль размера зерна подвешенных люминофоров; большие зерна, 35 микрометров или больше, приводят к слабым зернистым покрытиям, тогда как слишком много мелких частиц 1 или 2 микрометра или меньше ведет к плохому освещению и эффективности.Большинство люминофоров лучше всего работают с размером частиц около 10 микрометров. Покрытие должно быть достаточно толстым, чтобы улавливать весь ультрафиолетовый свет, производимый ртутной дугой, но не настолько толстым, чтобы люминофорное покрытие поглощало слишком много видимого света. Первые люминофоры были синтетическими версиями естественных флуоресцентных минералов с небольшими количествами металлов, добавленных в качестве активаторов. Позже были обнаружены другие соединения, позволяющие изготавливать лампы разных цветов. [19]
Электрические аспекты эксплуатации
Различные балласты для люминесцентных и газоразрядных ламп
Люминесцентные лампы представляют собой устройства с отрицательным дифференциальным сопротивлением, поэтому при прохождении через них большего тока электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току.При подключении напрямую к источнику постоянного напряжения люминесцентная лампа быстро самоуничтожится из-за неконтролируемого протекания тока. Чтобы этого не произошло, люминесцентные лампы должны использовать вспомогательное устройство — балласт, регулирующий ток через лампу.
Напряжение на клеммах рабочей лампы зависит от тока дуги, диаметра трубки, температуры и наполняющего газа. Фиксированная часть падения напряжения происходит из-за электродов. 48-дюймовая (1219 мм) лампа T12 [20] для обслуживания общего освещения работает при 430 мА при падении напряжения на 100 вольт.Лампы с высокой выходной мощностью работают при 800 мА, а некоторые типы — до 1,5 А. Уровень мощности варьируется от 33 до 82 Вт на метр длины трубки (от 10 до 25 Вт / фут) для ламп T12. [21]
Самым простым балластом для переменного тока (AC) является катушка индуктивности, размещенная последовательно, состоящая из обмотки на многослойном магнитопроводе. Индуктивность этой обмотки ограничивает прохождение переменного тока. Этот тип до сих пор используется, например, в настольных лампах с питанием от 120 вольт, использующих относительно короткие лампы.Балласты рассчитаны на размер лампы и частоту сети. Если переменного напряжения недостаточно для запуска длинных люминесцентных ламп, балласт часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток). Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.
Балласт 230 В для 18–20 Вт
Для управления люминесцентными лампами использовалось множество различных схем. Выбор схемы основан на напряжении переменного тока, длине трубки, начальной стоимости, долгосрочной стоимости, мгновенном или не мгновенном запуске, диапазонах температур, наличии деталей и т. Д.
Люминесцентные лампы могут работать непосредственно от источника постоянного тока (DC) с напряжением, достаточным для зажигания дуги. Балласт должен быть резистивным и потреблять примерно столько же энергии, сколько и лампа. При работе от постоянного тока пусковой выключатель часто предназначен для изменения полярности питания лампы каждый раз при ее запуске; в противном случае ртуть скапливается на одном конце трубки. По этим причинам люминесцентные лампы (почти) никогда не работают напрямую от постоянного тока. Вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.
Влияние температуры
Тепловое изображение винтовой люминесцентной лампы.
На светоотдачу и характеристики люминесцентных ламп в значительной степени влияет температура стенки колбы и ее влияние на парциальное давление паров ртути внутри лампы. [22] Каждая лампа содержит небольшое количество ртути, которая должна испаряться, чтобы поддерживать ток лампы и генерировать свет. При низких температурах ртуть находится в виде диспергированных капель жидкости. По мере того, как лампа нагревается, все больше ртути находится в форме пара.При более высоких температурах самопоглощение пара снижает выход УФ и видимого света. Поскольку ртуть конденсируется в самом холодном месте лампы, необходимо тщательно продумать конструкцию, чтобы поддерживать в этом месте оптимальную температуру, около 40 ° C (104 ° F).
При использовании амальгамы с другим металлом давление пара снижается, а диапазон оптимальных температур расширяется вверх; тем не менее, температуру «холодного пятна» стенки колбы необходимо контролировать, чтобы предотвратить миграцию ртути из амальгамы и ее конденсацию на холодном пятне.Люминесцентные лампы, предназначенные для более высокой мощности, будут иметь такие конструктивные особенности, как деформированная трубка или внутренние радиаторы для контроля температуры холодного пятна и распределения ртути. Сильно нагруженные небольшие лампы, такие как компактные люминесцентные лампы, также включают в себя зоны теплоотвода в трубке для поддержания оптимального давления паров ртути. [23]
Убытки
Файл: Fluorescent Energy.svg
Диаграмма Санки потерь энергии в люминесцентной лампе. В современных конструкциях самая большая потеря заключается в квантовой эффективности преобразования высокоэнергетических УФ-фотонов в низкоэнергетические фотоны видимого света.
Лишь часть электроэнергии, потребляемой лампой, преобразуется в полезный свет. Балласт рассеивает тепло; электронные балласты могут иметь КПД около 90%. На электродах возникает фиксированное падение напряжения, которое также выделяет тепло. Часть энергии в столбе паров ртути также рассеивается, но около 85% превращается в видимый и ультрафиолетовый свет.
УФ-свет поглощается люминесцентным покрытием лампы, которое повторно излучает энергию на более длинных волнах для излучения видимого света.Не вся УФ-энергия, падающая на люминофор, преобразуется в видимый свет. В современной лампе на каждые 100 падающих фотонов УФ-излучения, попадающих на люминофор, излучается только 86 фотонов видимого света (квантовая эффективность 86%). Самая большая одиночная потеря в современных лампах связана с более низкой энергией каждого фотона видимого света по сравнению с энергией УФ-фотонов, которые их генерируют (явление, называемое стоксовым сдвигом). Падающие фотоны имеют энергию 5,5 электрон-вольт, но производят фотоны видимого света с энергией около 2.5 электрон-вольт, поэтому используется только 45% УФ-энергии; остальное рассеивается в виде тепла. Если бы можно было разработать так называемый «двухфотонный» люминофор, это повысило бы эффективность, но многие исследования еще не нашли такой системы. [24]
Лампы люминесцентные с холодным катодом
В большинстве люминесцентных ламп используются электроды, работающие за счет термоэлектронной эмиссии, что означает, что они работают при достаточно высокой температуре, чтобы материал электрода (обычно с помощью специального покрытия) излучал электроны в трубку за счет тепла.
Однако есть также трубки, которые работают в режиме с холодным катодом, когда электроны попадают в трубку только за счет большой разности потенциалов (напряжения) между электродами. Это не означает, что электроды холодные (действительно, они могут быть очень горячими), но это означает, что они работают при температуре ниже своей термоэлектронной эмиссии. Поскольку лампы с холодным катодом не имеют термоэмиссионного покрытия, которое могло бы изнашиваться, они могут иметь гораздо больший срок службы, чем лампы с горячим катодом. Это качество делает их желательными для приложений с длительным сроком службы, не требующих обслуживания (например, для подсветки жидкокристаллических дисплеев).Распыление электрода все еще может происходить, но электроды могут иметь форму (например, во внутренний цилиндр), чтобы захватывать большую часть распыленного материала, чтобы он не терялся с электрода.
Лампы с холодным катодом обычно менее эффективны, чем лампы с термоэлектронной эмиссией, потому что катодное падение напряжения намного выше. Повышенное падение напряжения приводит к большему рассеиванию мощности на концах трубки, что не влияет на светоотдачу. Однако это менее важно для более длинных трубок. Повышенное рассеивание мощности на концах трубок также обычно означает, что лампы с холодным катодом должны работать при более низкой нагрузке, чем их эквиваленты с термоэлектронной эмиссией.Учитывая, что в любом случае требуется более высокое напряжение на лампе, эти лампы можно легко сделать длинными и даже работать в виде последовательных цепочек. Они лучше подходят для сгибания в специальные формы для надписей и вывесок, а также могут быть мгновенно включены или выключены.
Начиная с
Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).
Схема предварительно нагревает цепь люминесцентной лампы с помощью автоматического пускового выключателя. A: Люминесцентная лампа, B: Питание (+220 В), C: Стартер, D: Переключатель (биметаллический термостат), E: Конденсатор, F: Нити, G: Балласт
Запуск лампы предварительного нагрева. Автоматический выключатель стартера мигает оранжевым при каждой попытке запустить лампу.
Предварительный нагрев
В этом методе используется комбинированная нить накала-катод на каждом конце лампы в сочетании с механическим или автоматическим (биметаллическим) переключателем (см. Принципиальную схему справа), который первоначально соединяет нити накала последовательно с балластом для их предварительного нагрева; при зажигании дуги нити отключаются.Эта система описывается как предварительного нагрева в некоторых странах и switchstart в других. [25] Эти системы являются стандартным оборудованием в странах с напряжением 200–240 В (и для ламп на 100–120 В мощностью до 30 Вт) [ необходима ссылка ] .
А подогрев люминесцентная лампа «стартер» (автоматический пусковой выключатель)
До 1960-х годов использовались четырехконтактные термовыключатели и ручные выключатели. [ необходима ссылка ] Механизм, широко используемый в то время для предварительного нагрева, до сих пор широко используемый, — это пускатель с выключателем накаливания (показан).Он состоит из нормально разомкнутого биметаллического переключателя в небольшой герметичной газоразрядной лампе, содержащей инертный газ (неон или аргон).
Электронные пускатели люминесцентных ламп
При первом подаче питания на цепь на электродах стартерной лампы возникает тлеющий разряд. Это нагревает газ в стартере и заставляет один из биметаллических контактов изгибаться по направлению к другому. Когда контакты соприкасаются, две нити люминесцентной лампы и пускорегулирующего устройства эффективно подключаются последовательно к питающему напряжению.Ток через нити заставляет их нагреваться и испускать электроны в газ трубки за счет термоэлектронной эмиссии. В стартере прикосновение к контакту замыкает напряжение, поддерживающее тлеющий разряд, гасит его, так что газ охлаждается и больше не нагревает биметаллический переключатель, который размыкается в течение одной или двух секунд. Ток через нити и индуктивный балласт резко прерывается, оставляя полное линейное напряжение, приложенное между нитями нити на концах трубки, и генерирует индуктивный толчок, который обеспечивает высокое напряжение, необходимое для запуска лампы.Лампа не загорится, если нити накала недостаточно горячие, и в этом случае цикл повторяется; Обычно требуется несколько циклов, что вызывает мерцание и щелчки во время запуска (более старые термостартеры в этом отношении вели себя лучше). Конденсатор коррекции коэффициента мощности (PFC) потребляет опережающий ток из сети для компенсации запаздывающего тока, потребляемого цепью лампы. [25]
Как только трубка ударяется, падающий основной разряд сохраняет катоды горячими, обеспечивая непрерывную эмиссию электронов без необходимости дальнейшего нагрева нитей.Выключатель стартера не замыкается снова, потому что напряжение на горящей трубке недостаточно для запуска тлеющего разряда в стартере. [25]
При использовании автоматических пускателей, таких как стартеры накаливания, неисправная трубка будет бесконечно работать, мерцая, когда лампа быстро гаснет, потому что смеси излучения недостаточно для поддержания тока лампы на достаточно высоком уровне, чтобы пускатель накаливания оставался открытым. Это запускает балласт при более высокой температуре. У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до сброса питания. [требуется ссылка ] В некоторых старых системах использовалось отключение от перегрева при перегрузке по току для обнаружения повторных попыток запуска и отключения цепи до ручного сброса. Переключающие контакты в пускателях накаливания подвержены износу и неизбежно выходят из строя, поэтому стартер изготавливается как сменный блок.
В электронных пускателях, выпущенных в последнее время, используется другой метод предварительного нагрева катодов. [26] Они могут быть спроектированы так, чтобы их можно было заменить на пускатели накаливания для использования в стандартной арматуре.Обычно они используют специально разработанный полупроводниковый переключатель и «мягкий запуск» лампы путем предварительного нагрева катодов перед подачей управляемого пускового импульса, который зажигает лампу в первый раз без мерцания; это удаляет минимальное количество материала с катодов во время пуска, обеспечивая более длительный срок службы лампы, чем это возможно с неконтролируемыми импульсами, которым лампа подвергается при пуске из выключателя. [25] Утверждается, что это продлевает срок службы лампы обычно в 3-4 раза для лампы, часто включаемой, например, в быту, [27] , и для уменьшения почернения концов лампы, типичного для люминесцентные трубки.Схема обычно сложная, но сложность заложена в ИС. Электронные пускатели могут быть оптимизированы для быстрого запуска (типичное время запуска 0,3 секунды), [27] [28] или для наиболее надежного запуска даже при низких температурах и с низким напряжением питания, с временем запуска 2–4 секунд. [29] Устройства с более быстрым запуском могут издавать слышимый шум во время запуска. [30]
Электронные стартеры пытаются запустить лампу только на короткое время при первоначальном включении питания и не пытаются повторно запустить повторно погашенную лампу, которая не может поддерживать дугу; некоторые автоматически выключают вышедшую из строя лампу. [26] Это исключает повторное зажигание лампы и постоянное мерцание неисправной лампы с помощью стартера накаливания. Электронные стартеры не подвержены износу и не нуждаются в периодической замене, хотя они могут выйти из строя, как и любая другая электронная схема. Производители обычно указывают срок службы 20 лет или столько же, сколько и светильник. [28] [29] Пускатели недорогие, обычно менее 50 центов США для кратковременного свечения (в зависимости от мощности лампы) и, возможно, в десять раз больше для электронного типа по состоянию на 2013 год. [обновление] .
Мгновенный запуск
Трубка другого типа вообще не имеет нитей для запуска. Мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы пробить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по одному штырю на каждом конце трубки. Патроны лампы имеют разъём для отключения на низковольтном конце, который отключает балласт при снятии трубки, чтобы предотвратить поражение электрическим током. В недорогих осветительных приборах со встроенным электронным балластом используется мгновенный запуск ламп, изначально предназначенных для предварительного нагрева, хотя это сокращает срок службы ламп. [ необходима ссылка ]
Быстрый старт
Более новые модели с быстрым запуском балласта предусматривают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток. Обычно работает при более низком напряжении дуги, чем конструкция с мгновенным запуском; при запуске не возникает индуктивного скачка напряжения, поэтому лампы необходимо устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.В некоторых лампах заземленная полоса «стартера» прикреплена к внешней стороне стекла лампы.
«Железный» (магнитный) балласт с быстрым запуском постоянно нагревает катоды на концах ламп. В этом балласте последовательно работают две лампы F40T12.
Быстрый запуск
ПРА с быстрым запуском используют небольшой автотрансформатор для нагрева нитей при первом включении питания. Когда возникает дуга, мощность нагрева нити уменьшается, и трубка запускается через полсекунды. Автотрансформатор либо совмещен с балластом, либо может быть отдельным блоком.Трубки необходимо устанавливать рядом с заземленным металлическим отражателем, чтобы они не ударяли. Балласты с быстрым запуском более распространены в коммерческих установках из-за более низких затрат на обслуживание. Балласт быстрого запуска устраняет необходимость в переключателе стартера, который является частым источником отказов ламп. Тем не менее балласты с быстрым запуском также используются в бытовых (жилых) установках из-за того, что балласты с быстрым запуском включаются почти сразу после подачи питания (при включении переключателя).ПРА с быстрым запуском используются только в цепях 240 В и предназначены для использования с более старыми, менее эффективными лампами T12.
Полурезонансный пуск
Люминесцентная лампа мощностью 65 Вт, запускаемая по полурезонансной цепи запуска
Схема полурезонансного пуска
Полурезонансная схема пуска была изобретена Thorn Lighting для использования с люминесцентными лампами T12. В этом методе используются трансформатор с двойной обмоткой и конденсатор. При отсутствии тока дуги трансформатор и конденсатор резонируют на частоте сети и генерируют примерно в два раза большее напряжение питания на трубке и небольшой ток нагрева электрода. [31] Напряжение на трубке слишком низкое для зажигания дуги холодными электродами, но по мере того, как электроды нагреваются до температуры термоэлектронной эмиссии, напряжение зажигания трубки падает ниже напряжения вызывного сигнала, и возникает дуга. По мере нагрева электродов лампа медленно, в течение трех-пяти секунд, достигает полной яркости. По мере увеличения тока дуги и падения напряжения на трубке схема обеспечивает ограничение тока.
Полурезонансные пусковые схемы в основном ограничиваются использованием в коммерческих установках из-за более высокой начальной стоимости компонентов схемы.Однако нет переключателей стартера, которые нужно заменять, а повреждение катода уменьшается во время запуска, что увеличивает срок службы ламп, сокращая расходы на техническое обслуживание.