Термоэлектрический преобразователь — термопара. Схема подключения термопара


Простой усилитель термопары

Несколько лет назад я столкнулся с необходимостью измерения температуры с помощью термопар. Существенно мне помог в этом один человек, которому я до сих пор благодарен. Не сильно вдаваясь в теоретические аспекты, хочу предложить простой вариант усилителя термопары. Этот усилитель повторили несколько человек и тоже были получены хорошие результаты.

 

 

 

 

                                                                              Основная схема.

 

Основа усилителя взята из технического описания фирмы «Analog Devices» на операционный усилитель ОР213. Данный ОУ можно отнести к точным ОУ с малым тепловым дрейфом нуля

Сразу скажу, что на фирменной схеме допущена досадная ошибка. Точка соединения резисторов R8 и R6 должна быть исключена. Схема позволяет измерять температуру в диапазоне 0 – 1000 оС с точностью 0,02 оС при применение данного ОУ и термопары К-типа. Эта термопара обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9...10 %Сг; 0,6...1,2 % Со; алюмель (НМцАК) — 1,6...2.4 % Al, 0.85...1,5 Si, 1,8...2,7 % Mn. 0.6...1.2 % Со. Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля. Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению. Учитывая почти линейную зависимость термоЭДС термопары хромель — алюмель от температуры в диапазоне 0...1000°С, ее наиболее часто применяют в терморегуляторах.

Подключение электродов термопары к разъемам платы усилителя образует еще один источник термоЭДС (холодный спай) напряжение на котором вносит существенную ошибку в истинные показания. Для устранения этой погрешности применяют разные методы. В данном случае для компенсации напряжения холодного спая применен простой и эффективный способ. Как можно ближе к разъему подключается кремневый диод. Известная зависимость тока p-n перехода от температуры позволяет сформировать компенсационное напряжение для коррекции ошибки холодного спая.

ОУ питается напряжением +12В, максимальное выходное напряжение ОУ будет составлять, за счет внутреннего падения напряжения, чуть больше 10В. Схема на ОУ представляет усилитель с ОС с коэф. усиления около 200. Резистор R6 осуществляет балансировку опорного напряжения ОУ ( установку нуля).

Точный стабилизатор напряжения REF02EZ позволяет получить из  напряжения питания стабилизированное напряжение для питания входных делителей ОУ с точностью около 1мВ.

Значения резисторов, особенно входных делителей, должны быть как можно точней соответствовать указанным на схеме.

Практическая реализация.

Всем хороша данная схема, но комплектующие не дешевы, а заявленная точность не всегда нужна в большинстве случаев. Самое распространенная задача, это измерять температуру до 400 о С с точностью +/- 1-2 оС. Под эту задачу и была разработана простая и дешевая схема.

 

 

Не используется опорный стабилизатор, Применен более дешевый и распространенный ОУ LM358. Напряжение питания 5В, поэтому максимально можно измерить реально 375 оС. Относительно большой температурный дрейф ОУ определяет ошибку измерения, не более 2 оС. Для увеличения помехоустойчивости по переменному току применен конденсатор С1. Резистором R12 можно корректировать коэф усиления в зависимости от применяемой термопары. В диапазоне до 400 оС многие типы термопар достаточно линейны, поэтому появляется возможность применения любой подходящей термопары. Хорошие результаты получаются с термопарами от цифровых мультиметров. Так как микросхема LM358 содержит два ОУ, то удобно реализовать на одной микросхеме двухканальный вариант.

Особенности при изготовлении.

Термокомпенсационный диод желательно разместить снизу печатной платы, так чтобы его корпус был как можно физически был ближе к разъему. Хорошо применить термопасту. Резисторы можно применить как SMD типа, так и обычные 0,125 Вт. Я обычно применяю последовательно соединенные резисторы стандартного ряда.

2,74К=2,7К+39

53,6=27+27

3,95К=3,9К+51

Калибровка

В домашних условиях калибровка проще всего сделать по двум точкам 0 и 100 градусов. Термопара погружается в талую воду, выставляется показания 0 градусов R6. Термопара погружается в кипящую воду, выставляется показания 100 градусов R12. Еще раз проверить 0 и 100, при необходимости подкорректировать. Можно проверить температуру тела 36,6 градусов.

Пример программной реализации.

Напряжение на выходе ОУ прямо пропорционально измеренной температуре. Если на вых. ОУ 1,00В, то это соответствует температуре 100 оС . Если на выходе 2,58В, то 258 градусам. Для измерения применен встроенный АЦП микроконтроллера фирмы МИКРОЧИП. Опорное напряжение равно напряжению питания 5,12В, при применение стабилизатора напряжения типа 7805 напряжение на его выходе обычно соответствует этому значению. АЦП 10 разрядное, 1024 уровней квантования. Один уровень квантования 0,005В. При измерении напряжения на выходе ОУ с помощью АЦП получаем следующий результат:

Пример: Uвых = 2,87В /0,005=574, уровней квантования АЦП.Для упрощения вывода результата на индикацию, необходимо полученный результат разделить на два.

574/2= 287 (0х11F) остается преобразовать полученное число в двоично-десятичный вид и вывести на применяемый индикатор.

Хочу отметить, что если необходимо измерять температуру больше 400 градусов, то напряжение питания ОУ и соответственно выходное напряжение ОУ будет больше опорного напряжения АЦП. В этом случае, как самый простой вариант, удобно использовать делитель напряжения на выходе ОУ с коэф. 2. ( два одинаковых резистора по 10 кОм). Программное деление необходимо исключить.

; RA0 - активный входной канал АЦП,

;----------------------------------------------------------------------------------------------

izm_U ;измеряем напряжение АЦП результат в ADS_L, ADS_H

;----------------------------------------------------------------------------------------------

movlw b'01000001' ; Включение АЦП; выбор аналогового канала AN0;

movwf ADCON0       ; источник Fosc/8; состояние ожидания.

movlw .6

movwf reg

decfsz reg ; задержкa

goto $-1

bsf ADCON0,2 ; Включение преобразования.

btfsc ADCON0,2 ; Ожидание окончания

goto $-1 ; преобразования.

bcf ADCON0,ADON ; Выключение модуля АЦП

;-------------------------------------------------------------------------------------------------------

movf ADRESH,w ; перепишем результат преобразования

movwf ADS_H

bsf STATUS,RP0

movf ADRESL,w

clrf STATUS

movwf ADS_L

;---------------------------------------------------------------------------------------------------------

rrf ADS_H ; результат делим на 2

rrf ADS_L

;---------------------------------------------------------------------------------------------------------

call bin2_10 ; преобразование двоичного числа в двоично-десятичное

call IND ; вывод на индикацию

подпрограммы bin2_10 и IND, не привожу, т.к. каждый применяет свой удобный вариант для применяемого индикатора.

Заключение.

Данная схема прекрасно измеряет и более высокие температуры до 1000 градусов. Единственно, надо знать тип термопары. Распространенные советские термопары хромель-копель измеряют до 800 градусов и немного нелинейны с 300 - 600 градусов. Если применить термопары К-типа, то результаты хорошие до 1000 градусов, с точностью +\- 2 градуса.  Так же нужно повысить напряжение питания ОУ  и применить делитель напряжения на вых ОУ.

chipmk.ru

Подключение термопары к микроконтроллеру

Подробности Категория: Микроконтроллеры Опубликовано 25.06.2016 14:25 Автор: Admin Просмотров: 1304

В данной статье речь пойдет о подключении термопары к микроконтроллеру Atmega8. Термопара представляет собой два проводника из разных металлов спаянных в одной точке. В этой точке при разных температурах возникает термоэдс. Метталлы берутся такими чтобы зависимость термоэдс от температуры была наиболее линейна. Это снижает погрешность измерений и облегчает расчет температуры.

Термопары испольщуются там где нам нужно измерить высокую температуру до 2000 градусов. При таких температурах цифровые датчики сразу бы вышли из строя. Есть много разных видов теромопар, но наибольшей популярностью пользуются термопары типа K (хромель-алюминий), это связано с их практически линейным графиком изменения теромоэдс. Такие термопары устанавливаются в различные виды водонагревателей, паяльных станций, их используют в установках по плавке металла.

 График зависимости термоэдс от температуры для термопар типа K практически линейный на всем диапазоне температуры.

 

 Измеренно значение термоэдс нужно преобразовать в температуру. Преобразование осуществляется при помощи коэффициента который постояннен для всего диапазано измерения температуры.

 Для измерения термоэдс будем использовать АЦП (аналого-цифровой преобразователь). Для того чтобы подлючить термопару к микрокнтроллеру используется ОУ (операционный усилитель) который включается по неинвертирующей схеме. Дело в том что значение эдс очень мало и его необходимо усилить при помощи ОУ.\

 Для того чтобы найти отношение входного и выходного напряжения нужно воспользоваться формулой:

 Vout/Vin=1+(R2/R1)

От номинала сопротилений R1 и R2 которые выполняют функцию обратной связи, зависит отношение входного и выходного напряжения. Уселение сигнала должно выбирать исходя из выбранного ИОН - источника опорного напряжения. Например если в качестве ИОН выбрано напряжения в 5 В, а максимальный предел измеряемой температуры 1000 градусов, при такой температуре термоэдм состовит 41.3 мВ. Это напряжение необходимо будет преобразовать в 5 В на входе в АЦП. Т.е нам нужно чтобы при такой температуре на входе в АЦП было напряжение в 5 В. Коэффициент усиления получился равным 120.

Подключение термопары к микроконтроллеру

В результате получилась такой модуль:

Схема подключения двухстрочного дисплея к микрокнтроллеру

А так выглядит теомапара которая шла в комплекте с мультиметром

 

Код программы 

$regfile = "m8def.dat" $crystal = 8000000 Dim W As Integer 'подключение двухстрочного дисплея Config Lcdpin=Pin,Rs=Portb.0,E=Portd.7,Db4=Portd.6,Db5=Portd.5,Db6=Portb.7,Db7=Portb.6 Config Lcd = 16 * 2 Cursor Off Cls 'считывание значения с АЦП по прерыванию от таймера Config Timer1 = Timer , Prescale = 64 On Timer1 Acp 'конфигурация АЦП Config Adc = Single , Prescaler = Auto , Reference = Avcc Enable Interrupts Enable Timer1 Do Cls Rem Температура: Lcd "Teјѕepaїypa:" Lowerline Lcd W Waitms 200 Loop 'работа с АЦП Acp: Start Adc 'запуск АЦП W = Getadc(1) W = W / 1.28 'подгоняем замеры под действ. температуру Return End

 Число 1.28 бы подогнато опытным путем. В качестве эталонной температуры была температура кипения воды 100 градусов. Зная температуру и подгоняя коэффициент добиваемся аналогичных показаний на дисплее.

 

После того как выставил показания, измерил температуру в пламени зажигалки, прибор показал значение в 700 градусов. При комнатной температуре 25 градусов прибор почему то показывал 50.

Печатная плата для ОУ

Оригинал статьи

  • < Назад
  • Вперёд >
Добавить комментарий

www.radio-magic.ru

принцип работы простым языком, типы

Практически все отопительные приборы в нашем доме нуждаются в использовании специальных контроллеров, которые предохранят их от перегрева. Предлагаем рассмотреть, что это такое – термопары, их принцип работы простым языком, виды приспособлений, а также основные характеристики подключения.

Общие понятия и конструкция

Термопара ГОСТ Р 8.585-2001 представляет собой устройство для измерения температуры, которое состоит из двух разнородных проводников, контактирующих друг с другом в нескольких или одной точке, которые иногда соединяют компенсационные провода. В тот момент, когда на одном из таких участков изменяется температура, создается определенное напряжение. Термопары часто используются для контроля температур разнообразных сред, а также для конвертации температуры в энергию, в частности, в электрический ток.

Виды термопар

Коммерческий преобразователь стоит доступно, является полностью взаимозаменяемым, оснащен стандартными разъемами и может измерять широкий диапазон температур. В отличие от большинства других методов измерения градусов, термопары с автономным питанием не требуют внешнего способа возбуждения. Основным ограничением при работе термопар является точность; вполне возможны ошибки вплоть до одного градуса по Цельсию, что достаточно много для стандартного измерителя или контроллера.

Фото – Вид термопары

Основные параметры прибора зависят от материала. Любой узел из разнородных металлов будет производить электрический потенциал, относящийся к определенной температуре и образующий сопротивление. Термопары для практического измерения температуры созданы из конкретных сплавов, имеющих предсказуемую и повторяемую зависимость между температурой и напряжением. Различные сплавы используются для различных температурных диапазонов, если Вы хотите купить термопару, то предварительно обязательно проконсультируйтесь с продавцом-консультантом выбранной компании.

Существуют разные типы термопары, очень важно обращать внимание также на стойкость к коррозии. Если точка измерения находится далеко от измерительного прибора, промежуточное соединение может быть выполнено путем расширения проводов, которые являются менее дорогостоящими, чем материалы, используемые, чтобы сделать датчик. Приспособления обычно стандартизованы по отношению к эталонной температуре 0 градусов по Цельсию; производственные компании часто используют электронные методы компенсации холодного спая для корректировки изменения температуры на клеммах прибора. Электронные приборы могут также компенсировать прочие различные характеристики термопары, тем самым улучшить точность и достоверность измерений.

Фото – Термопара для котла

Применение термопары достаточно широкое: их используют в науке и промышленности; приспособлениями можно осуществлять измерение температуры для печей, газовой колонки, спая, газовых турбин выхлопных газов, дизельных двигателей и других промышленных процессов. Данные устройства термосопротивления также используются в частных домах, офисах и предприятий. Также они могут заменить термостаты в АОГВ и прочих газовых отопительных приборах.

Принцип действия термопары

Согласно правилу Зеебека, если проводник подвергается воздействию, его сопротивление и напряжение изменяется – это называется термоэлектрический эффект или эффект Зеебека. Любая попытка измерить это напряжение обязательно включает подключение другого проводника к «горячему» концу термопары. Этот дополнительный гибкий провод, потом также может стать градиентом температуры, а также разработать собственное напряжение, которое будет противостоять текущему. Величина этой разности напрямую зависит от металла, который используется при работе. Использование разнородных сплавов для замыкания цепи создает новую цепь, в которой два конца могут генерировать различные напряжения, в результате чего образуется небольшое различие в напряжении, доступные для измерения. Это различие увеличивается с ростом температуры и составляет от 1 до 70 микровольт на градус Цельсия (мкВ / ° C) для стандартных сочетаний металлов.

Фото – Принцип работы термопары

Напряжение не генерируется на стыке двух металлов термопары, а вдоль этой части длины двух разнородных металлов, подверженного градиента температуры. Поскольку обе длины разнородных металлов испытывают один и тот же температурный градиент, конечный результат является результатом измерения разности температур между термопарой и спаем. Пока контакт находится в постоянной температуре, это не имеет значения, каким образом узел изготовлен (это может быть пайка, точечная сварка, обжим и т.д.), однако это имеет решающее значение для точности. Если соединение выполнено недостаточно качественно, то получится более серьезная погрешность, чем градус. Особенно в высокой точности нуждается мультиметр с термопарой, разнообразные производственные датчики, контроллеры высоких температур для газовой печи и т.д.

Фото – Термопара арбат

Видео: Измерение температуры с  помощью термопары

Типы термопары

В определенных условиях, легко создается термопара своими руками, но необходимо знать, какие бывают виды данных устройств, в частности, чем отличаются модели ТХА, ТХК, ТПП, ТВР, ТЖК, ТПР, ТСП. Они распределятся как:

  1. Тип E

Сплав хромель – константан. Данное соединение имеет высокую производительность (68 мкВ / ° C), что делает его подходящим для криогенного использования. Кроме того, он является немагнитным. Диапазон температур составляет от -50 ° С до +740 ° С.

  1. Тип J

Это железо – константан. Здесь область работы немного уже от -40 ° C до +750 ° C, но выше чувствительность – около 50 мкВ / ° С.

  1. Тип K

Это термопары, которые создан из сплав хромель алюминий. Они являются наиболее распространенными устройствами общего назначения с чувствительностью около 41 мкВ / ° C. Эти приборы могут работать в пределах -200 ° С до 1350 ° C / -330 ° F до +2460 ° F.

Фото – термопары хромель-алюмель

Термопары тип K могут быть использованы включительно до 1260 ° С в неокисляющих или инертных атмосферах без появления быстрого старения. В незначительно окислительной среде (например, углекислом газе) между 800 ° C-1050 ° С, проволока из хромеля быстро разъедается и становится намагниченной, также это явление известное как «зелена гниль». Это вызывает большое и постоянное ухудшение работы регулятора.

  1. Тип M

Класс термопар M (Ni / Mo 82% / 18% – Ni / Co 99,2% / 0,8%, по весу) используется в вакуумных печах. Максимальная температура составляет до 1400 ° С.

  1. Тип N

Никросил-нисиловые термопары являются подходящими для использования между -270 ° C и 1300 ° C, вследствие его стабильности и стойкости к окислению. Чувствительность около 39 мкВ / °С.

  1. Сплавы родия и платины

Платиновые термопары типа B, R, и S являются одними из самых стабильных термопар, но имеют более низкую термоЭДС, чем другие типы, всего около 10 мкВ / ° С. Класс B, R, и S обычно применяется только для измерения высоких температур из-за их высокой стоимости и низкой чувствительности.

  1. Тип B, S, C

Обозначение B у термопары означает, что в её состав входят такие металлы, как Pt / Rh 70% / 30% – Pt / Rh 94% / 6%, подходят для использования в среде до 1800 ° C. Класс S применяются до 1600 градусов, в то время как C до 1500.

  1. Сплавы рения и вольфрама

Эти термопары хорошо подходят для измерения очень высоких температур. Типичная область их применения – то автоматика промышленных процессов, производство водорода, вакуумные печи (особенно перед выходом обрабатываемого материала). Но ими нельзя работать в кислотных средах.

Монтаж термопары

Импортные термопары устанавливаются точно также, как и отечественные, замена производится своими руками, рассмотрим самый простой метод.

  1. Открутите медную или свинцовую гайку подключения внутри резьбового соединения к газовой линии.
  2. Под монтажным кронштейном на термопаре нужно отвинтить компенсационный винт, который держит трубку на место.
  3. Вставьте новую термопару в отверстие кронштейна. Убедитесь, что система не подключена к газовому или электрическому снабжению.
  4. Нажмите на гайку для резьбового соединения, где медный провод подключается к газовой линии. Убедитесь в том, соединение чистое и сухое.
  5. Плотно закрепите соединение, но не перетягивайте, при необходимости установите керамический уплотнитель или защитные прокладки.

Нужно отметить, что контролер плиты должен быть вмонтирован не слишком сильно, но чтобы руками он не отсоединялся.

Фото – Термопара для печи

При установке медная и стальная труба подачи и отвода топлива или прочих веществ, направлены вниз – это очень важная зависимость.

Концевой выключатель расположен под автоматом контроля безопасности на печи, чуть ниже пленума. Если пленум становится слишком горячим, концевой выключатель отключает горелку. Он также отключает вентилятор, когда температура падает до определенного уровня, после того, как горелка выключается. Если вентилятор работает постоянно, либо контроль вентилятора на термостате был установлен в положение ВКЛ, то выключатель нуждается в корректировке. В первую очередь проверьте термостат. Если элемент был включен, то переведите его в автоматический режим, с предварительной установкой сигнала.

Любая лабораторная система контроля требует настройки. Градуировка или калибровка термопары также может осуществляться самостоятельно.

Для регулировки переключателя, снимите крышку элемента управления. Под ней находится зубчатый циферблат. Есть два указателя на стороне вентилятора. Указатели должны быть установлены около 25 градусов. Установите верхний указатель около 115 градусов по Фаренгейту, а нижний около 90 градусов. Если Вы почувствовали запах газа при выполнении этих работ или включения, нужно проверить утечку и уплотнители. Таким же способом можно заменить кабель и прочие детали системы.

Изготовление осуществляется на специальных заводах. Часто ремонт устройств можно осуществить непосредственно в дилерских центрах. Средняя стоимость термопары pt100 или овен (гильза с хромелем алюминия) составляет от 3 долларов до 6 в Москве. Перед покупкой обязательно проконсультируйтесь со специалистом, какое приспособление Вам необходимо, при потребности Вам будет предоставлена таблица предлагаемой продукции.

www.asutpp.ru

Термопара – устройство и принцип работы простым языком

Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.

Общие характеристики

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Термопары

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства. 

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток. Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением. Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком. Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо. Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра. Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла. Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала - хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/оС, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С - + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800оС, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Термопары хромель-алюмель

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

Плюсы:

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

Термопара "Арбат"

Минусы:

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

www.portaltepla.ru

Принцип работы термопары, определение, типы и виды термопар, схемы работы термопары, способы подключения

Термопара — термоэлектрический преобразователь — это два разных сплава металла (проводники) которые образуют замкнутую цепь (термоэлемент). Термопара — один из наиболее распространенных в промышленности температурный датчик. Применяется в любых сферах промышленности, автоматики, научных исследованиях, медицине — везде, где нужно измерять температуру. Так же применяется в термоэлектрических генераторах для преобразования тепловой энергии в электрическую.

Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. — термоэлектрический эффект или эффект Зеебека. В замкнутой цепи, состоящей из разнородных проводников, возникает термоэлектрический эффект (термо-ЭДС), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.), термопара образует термоэлектрический термометр.

Измерительный прибор подключают либо к концам термоэлектродов, либо в разрыв одного из них. В среду, которую контролируют, помещают рабочий спай, а свободные концы подсоединяются к измерительному прибору. Чем больше различие между свойствами проводников и тепловой перепад на концах, тем выше термо-ЭДС.

По-простому — термопара это две проволоки из разнородных металлов (например, Хромель и Копель), сваренных или скрученных между собой. Место сварки (скрутки) называется рабочий спай Т1, а места соединения с измерительным прибором Т2 называют холодными спаями. То есть рабочий спай помещают в среду, температуру которой необходимо измерить, а холодные спаи подключают к приборам (милливольтметр). Но надо знать прибор — например, ИРТ 7710 не меряет температуру рабочего спая, он меряет разницу температур холодного и рабочего спаев. Это значит простым милливольтметром (тестером) мы можем узнать, поступает ли сигнал с рабочего спая (есть обрыв или нет), узнать где у термопары плюс (+) а где (-), примерно узнать какой тип термопары (но для этого нужен точный милливольтметр).

Типы, виды термопар

Типы российских термопар приведены в ГОСТ 6616-94.

Почему российские термопары? Термопара ТХК, то есть Хромель-Копель была придумана в СССР и сейчас выпускается только у нас и в странах СНГ. Не известно почему, но везде пишут ХК (L) — в скобках подразумевается международный тип, но это не так — на западе тип L это (Fe-CuNi). Может быть, они чем то и похожи по названию металлов входящих в сплав, но самое главное — у них разные таблицы НСХ. Мы с этим столкнулись, заказывая термопару из Италии. Наш совет — когда закупаете термопарный провод или кабель, сравнивайте таблицы НСХ, т.е. номинальные статические характеристики преобразователя ГОСТ Р 8.585-2001.

Таблица соответствия типов отечественных и импортных термопар

Тип температурного датчика

Сплав элемента

Российская маркировка температурных датчиков

Температурный диапазон

 

Термопара типа ТХК - хромель, копель (производства СССР или РФ)

хромель, копель

-200 … 800 °C

Термопара типа U

медь-медьникелевые

 

-200 … 500 °C

Термопара типа L

хромель, копель

ТХК

-200 … 850 °C

Термопара типа B

платинородий - платинородиевые

ТПР

100 … 1800 °C

Термопара типа S

платинородий - платиновые

ТПП

0 … 1700 °C

Термопара типа R

платинородий - платиновые

ТПП

0 … 1700 °C

Термопара типа N

нихросил нисил

ТНН

-200 … 1300 °C

Термопара типа E

хромель-константановые

ТХКн

0 … 600 °C

Термопара типа T

медь - константановые

ТМК

-200 … 400 °C

Термопара типа J

железо - константановые

ТЖК

-100 … 1200 °C

Термопара типа K

хромель, алюмель

ТХА

-200 … 1300 °C

Таблица ANSI Code (Американский национальный институт стандартов) и IEC Code (Международная электротехническая комиссия — МЭК)

В настоящее время в её состав входят более 76 стран (наша в том числе).

eltermo.ru

Как подключить термопару к Arduino

Часто возникает необходимость заменить приборы контроля и регулировки температур на термопластавтоматах. Здесь можно сделать многоканальный прибор на базе Arduino.

Для подключения термопары к Arduino нужен усилитель. В интернете нашел схему усилителя для термопар на микросхеме LM358, собрал и настроил для работы с термопарой ТХК от - 40 до 400 градусов. В схему добавил датчик температуры DS18B20 для компенсации температуры холодного спая. Этот датчик должен находится поблизости холодного спая.

Программировал Arduino при помощи программы FLProg. C выхода усилителя сигнал поступает на аналоговый вход Arduino. При 100 градусах напряжение на выходе усилителя получается 0,35 вольта (получил при помощи регулировок подстроичным резистром), если температура холодного спая 24 градуса. Чтобы получить константу на каждый градус, я сделал так: 100-24=76 - это разница температуры между холодным спаем и температурой кипения воды. Напряжение 0,35 разделил на 76 и получил 0,0046. То есть на каждый градус на выходе усилителя напряжение увеличивается на 0,0046 вольта. Разрешение Arduino на входе - 1023. То есть, если разделить входное напряжение 5 вольт на 1023, получим константу 0,00488. Программировал следующим образом: входное число умножаем на 0,00488, получаем напряжение на входе, которое делим на константу 0,0046 и получаем температуру между горячим концом термопары и холодным спаем. Затем плюсуем температуру холодного спая и получаем истинную температуру. Опыты проводил кипяченой водой. Температура пара ровно 100 градусов.

На выходе термопары напряжение почти линейное. Точное значение около 100 градусов. На конце диапазона температур может быть расхождение в несколько градусов.

При повторе схемы надо учитывать, что эталонное напряжение взято от питания Arduino. Если значение различается от пять вольт, то для получении константы надо делить истинное напряжение питания на 1023.

DS18B20 имеет свой уникальный адрес в скетче, которые нужно заменить на ваш.

Скачать скетч Arduino file

Скачать скетч (файл расширения flp устанавливается на Arduino при помощи Flprog)

Схема усилителя термопары.

Эффект Зеебека.

Готовая плата усилителя термопары.

Оставьте комментарий:

arduinoprom.ru

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500 градусов. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400 градусов.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0 градусов.
Хромель-алюмелевые

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500 градусов появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5 градусов.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500 градусов. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250 градусов.
  • Рекомендуемая температура эксплуатации не превышает 1200 градусов, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350 градусов.
  • Допускается кратковременное использование при 1600 градусах.
  • Нецелесообразно использовать при температуре менее 400 градусов, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000 градусов термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900 градусов, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500 градусов.
  • Нецелесообразно использование при температуре менее 600 градусов, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750 градусах.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.

Преимущества

  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

Недостатки

  1. Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  2. Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  3. Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  4. На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  5. ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  6. Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:

  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

 

electrosam.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.