26.06.2024

Схема регулятора жала паяльника: схемы для самостоятельной сборки и доводки регулятора

Содержание

Самоделка из прошлого — регулятор «температуры» паяльника (China free:)

«… В то время, когда деревья были большими», а руки выпускника радиотехнического училища совсем кривые, и было изготовлено это устройство.

Не уверен, что на сегодня его изготовление все так же актуально — сейчас продаются готовые реализации этой схемы в ОФФ магазинах и на просторах интернета, однако, в этом году ему исполняется 30 лет!
А это уже не шутки, и можно сказать юбилей 😉

Использую его, хоть и изредка, но до сих пор — как минимум испытание временем пройдено вполне успешно 😉

Этот мой пост, конечно, в некоторой степени шутка — эдакий небольшой экскурс в прошлое.

Самоделка случайно попалась на глаза, вспомнил сколько ей лет, не смог устоять, не вспомнить один из моих самых первых, небольшой DIY :).

В те далекие времена подобное нельзя было купить в магазинах, никто из моих знакомых не знал слово «интернет» и уж тем более алиэкспресс, а народным паяльником (который еще и поискать пришлось бы) был вот такой ЭПСН

Собственно для него и было изготовлено описываемое устройство.

Все побывавшие у меня в руках паяльники этой модели, имели довольно значительный перегрев- паять было относительно не комфортно, а жало быстро обгорало и теряло свою форму.

А паять, в это доброе время, было много чего- начиная от всякого рода ремонтов магнитофонов и телевизоров, и заканчивая ДУ для ТВ, дверными звонками с мелодиями и наконец «Синклерами»!

Последние, правда сказать, чаще паял уже другими паяльниками — жалко было гробить РУ5-РУ6, да и более дешевые (но не менее дефицитные на тот момент) микросхемы, был печальный опыт.

Посмотрим, что же смог собрать 30 лет назад, вчерашний курсант не имеющий навыков пайки и практики сборки самодельных устройств 🙂

Я специально это подчеркнул — не ругайтесь слишком сильно! Делалось давно, но живо и работоспособно до сих пор- на мой взгляд это главное! 😉

Схему тогда нашел в одной прекрасной книжке, которая сохранилась у меня до наших дней — на тот момент была одной из любимых, ну ОЧЕНЬ интересной казалась, с кучей разнообразных схем и поделок, перечитывал ее регулярно.
Книжка переведена с польского, поэтому частенько приходилось подбирать отечественные аналоги деталей. Для начинающего радиолюбителя это было, в некотором роде, проблемой.

Назначение схемы в книжке несколько иное, но я предположил, что таким образом можно изготовить паяльную станцию регулировать температуру жала паяльника, и идея действительно сработала!

Схема была собрана самым страшным навесным монтажом, однако лезть переделывать ее не собираюсь 😉
Попался под руку корпус от какого-то блока питания (от чего он был вспомнить уже невозможно). В нем были прорезаны необходимые отверстия, закреплены клеммы, снятые со старой аппаратуры.
пластик, основа платы, от времени уже рассыхается и стал хрупким -уголок отломился при разборке

Снаружи все получилось симпатичнее, но все равно возраст берет свое 🙂

В качестве индикации неонка.
Светодиоды тогда были относительно дефицитным товаром, и кроме серий 307 и 102 я других и не встречал, а неоновая лампочка, даже «цветная» была в относительной доступности.
Она довольно неплохо прижилась в корпусе и, к тому же, именно по ее яркости свечения производится настройка «температуры паяльника» — опытным путем была установлена яркость свечения лампы, для оптимальной температуры.
Режим довольно легко было запомнить, лампа горит в пол накала и слегка мерцает — вот в таком режиме и использовал устройство много лет.

Работу схемы посмотрим уже современным, DSO FNIRSI PRO


Видно, как при вращении ручки меняется форма сигнала- изменяется и «температура» паяльника 😉

Напряжение 6в, потому что используется доработанный осциллограф — получаем делитель на 100.

При использовании заводского варианта измерения сигнал заметно искажается (да и напряжение тоже), да еще и синхронизацию подрывает, так что описанная в ссылке доработка DSO FNIRSI PRO вполне себе оправдана

ниже пример сигнала с заводской схемой

Вот такая «сладкая парочка» отмечает свои 30 лет!

Уже позже, из-за лени, перешел на импульсные варианты паяльников — именно по моей работе это вполне удачный вариант (мобильность, быстрота нагрева).
Работа с «мелкоэлементами» типа SMD мне и сейчас практически не встречается, поэтому иногда и сейчас достаю этот раритет ;).

Несколько раз появлялась необходимость именно в диммере — тогда использовал схему по ее прямому назначению, все выдержала!

Вполне согласен, что симистор подошел бы лучше, но не забывайте — это был 1989 год, радиодеталей тогда в свободной продаже практически не было, да и в книжке использовался именно тиристор.

К тому же, тогда у меня был доступ к халявным тиристорам 201-202 серий, это было решающим фактором.

Да и, честно сказать, на момент создания этой самоделки, скорее всего о симисторах я практически ничего не знал 🙂

Итого:
Схема отработала 30 лет, без замечаний и неисправностей!

Китая в схеме нет совсем 🙂

Всем удачи и хорошего настроения! ☕

ШИМ регулятор для USB паяльника. Доработка паяльника.

Всем привет. Китайские USB паяльники появились довольно давно и на них уже есть миллион обзоров. Но в данной статье, вместо обзора, я расскажу, как легко и просто приделать к паяльнику ШИМ регулятор мощности.

Зачем нужно регулирование?

Паяльник, на самом деле, очень даже неплохой. Он очень быстро нагревается, он лёгкий, он маленький, и его можно запитать от чего угодно, у чего есть USB разъём. Например от зарядного устройства смартфона, от зарядного устройства через прикуриватель в автомобиле или от пауэрбанка. Разве что от USB разъёма компьютера питать паяльник не советую.

Но большинство владельцев этих паяльников сталкивались с проблемами в их работе, а именно:

  • паяльник может не включаться
  • паяльник может не выключаться
  • паяльник перегревается

Перечисленные проблемы приводят к тому, что USB паяльником неудобно, а порой и невозможно работать.

Существующие варианты доработки

Естественно, люди пытались устранить проблемы. Я нашёл несколько самых популярных способов доработки паяльников:

  • можно припаять параллельно стабилитрону резистор на 2МОм, что убрать помехи
  • можно вместо шарика (сенсора) поставить микровыключатель
  • можно использовать микроконтроллер для включения/выключения паяльника

Первый способ мне не понравился тем, что хотя паяльник и начинает включаться и выключаться при касании сенсора, но, тем не менее, всё равно будет крайне проблематично контролировать нужную температуру так, чтобы паяльник не остывал и не перегревался.

Второй способ имеет такие же недостатки, как и первый. Кстати, китайцы, не найдя лучшего решения, сами уже начали ставить кнопки вместо сенсора. Такие упрощённые паяльники продаются с серым колпачком вместо жёлтого и надписью «Press Switch» вместо «Touch Switch» на упаковке. Такой паяльник вы не сможете переделать под ШИМ регулирование.

Третий способ предполагает наличие «спящего режима». Когда человек касается шарика — паяльник нагревается до температуры, примерно 250 градусов за 20 секунд. Ещё касание — паяльник греется на полную в течении определённого времени. Статья с этой доработкой есть на муське — статья. Недостатком данного способа считаю дискретность управления — либо 250 градусов, либо 500. Никакой промежуточной температуры. Ну и сложность конечно. Не у каждого есть программатор под рукой.

ШИМ регулятор для паяльника

Так как мне не понравился ни один из существующих вариантов доработки, я решил пойти своим путём.
Ниже вы можете увидеть схему USB паяльника. Схема сделана пользователем JVX79 с драйв2.

На схеме видно, что для включения и задержки выключения нагрева в паяльнике используется таймер NE555. А для чего ещё используется этот таймер? Для ШИМ регулирования! То есть для доработки паяльника уже практически всё есть!

Всё, что нужно сделать для доработки паяльника, это:

  • добавить один постоянный резистор на 6,8к
  • добавить один переменный резистор на 2,4к
  • заменить один резистор с номиналом 200к на резистор 1к
  • выпаять стабилитрон и перерезать пару дорожек

Самое сложное — это найти и разместить переменный резистор в маленьком корпусе USB паяльника.
Резистор я взял из регулятора громкости от старых наушников. Фото регулятора громкости не сделал, так что приложу фотографию из интернета, чтобы вы понимали, про что я говорю.

Резистор разместил по центру корпуса над микросхемой таймера. В верхней половине корпуса сделал небольшой вырез для переменного резистора.

Фото доработанного паяльника

В собранном виде. Колесо резистора выступает на край корпуса на несколько миллиметров.

Вид со снятой крышкой.

Обратная сторона платы паяльника.

Прорезь в верхней половине корпуса.

После сборки и проверки паяльника определил диапазон нагрева — от 230 до 500 градусов. При 230 градусах уже плавится припой пос60 и можно не бояться за сохранность жала, а при 500 градусах можно припаивать и выпаивать даже крупные элементы.

Ну и самое главное — вы можете выставлять любую температуру в пределах указанного диапазона для пайки элементов различного размера и теплоёмкости.

Также советую посмотреть видео с демонстрацией работы паяльника и подробным описанием работы ШИМ регулятора.

Надеюсь, что информация, приведённая в данной статье, будет для вас полезной. И ещё раз напомню — не ошибитесь при покупке паяльника. Надо брать версию с жёлтым колпачком и надписью «Touch Switch» на упаковке.

Опыт использования паяльника с регулировкой

В последнее время пришлось ремонтировать много всякой мелочевки. Однако делать это имеющимся в наличии паяльником ЭПСН-25 было не всегда удобно.
Был заказан и получен не дорогой китайский паяльник с регулировкой температуры от 200 до 450 градусов.

В комплекте с паяльником идет набор жал из пяти штук для выполнения различных видов работ (реплики Hakko 900-й серии).

Заявленная мощность паяльника 60 Ватт. Немного огорчила длина провода – 1,38 метра. Как по мне, так провод коротковат, но тут все индивидуально и зависит от организации рабочего места и расположения розеток.

Перед включением, разобрав паяльник, провел осмотр его внутреннего мира. Пайка приличная, схема симисторного регулятора (обычный диммер), присутствует индикаторный светодиод (сообщает только о подаче сетевого напряжения).

Термодатчик отсутствует, но его наличие за такие деньги и не ожидалось. Нагревательный элемент заявлен как керамический – присутствует характерная ступенька. Однако в сети есть фото такого разбитого нагревателя. И не смотря на ступеньку, внутри была нихромовая проволока. Так что, не могу утверждать, что тут керамический нагреватель. Его сопротивление составляет 592 Ома.

Казалось бы, все не плохо, но первые же результаты сильно озадачили. Первое знакомство паяльника с канифолью привело к голливудскому появлению облака дыма и растрескиванию канифоли по всей глубине. Регулировка мало помогала. Паяльник был отложен в сторону до прибытия ваттметра и термометра. Сначала попробовал делать замеры температуры погружным кухонным термометром, но предел его измерения 300 градусов и инертность заставили отказаться от его услуг.

На всю процедуру рассматривания внешнего вида и внутреннего мира, включения, вызова волшебного дыма, выхода из ступора ушло минут 20. Жало (реплика 900M-К) самое массивное из набора после этого приобрело весьма бледный вид и отказалось дружить с оловом. ОНО ОБГОРЕЛО!!!

Поскольку посылки приехали с разницей в три недели, то по мере их поступления делались сначала замеры потребляемой мощности, а потом температуры. Фото делались как дома, так и в «домике в деревне», поэтому окружающий фон на фото хоть и отличается, но сделаны они собственноручно и на них фигурирует один и тот же паяльник.

ИТАК:

По прибытию ваттметра, решил измерить мощность потребляемую паяльником и, оказалось, что заявленные 60 Вт он потребляет лишь в момент включения (весьма трудно запечатлеть фотоаппаратом). При этом регулятор температуры выведен в максимальное положение. Жало устанавливать не стал – их хоть в наборе и много, но все же.

Показания ваттметра быстро падают до 40 Ватт и далее снижаются до 30,1 Вт.

Далее дав паяльнику остыть, вывел регулятор на минимум и снова провел замеры потребления.

На минимуме старт потребления так же начинается из района в 60 Ватт, но резко снижается до 25,2 и окончательно стабилизируется на 20, 6 Вт.

Обратите внимание — нагрев происходит во второй половине нагревателя там, где находится жало.

Но паяем мы не потребляемой мощностью, а жалом с определенной температурой и до прибытия термометра паяльник вновь отправился на скамейку запасных.

По прибытию термометра провел замеры в тех же положениях регулятора – максимум и минимуму.

В максимуме температура достигла 587 градусов!!! (Мне подсунули выжегатель???)

В минимуме — 276 градусов.

Доработал схему регулировки добавлением параллельно имеющемуся конденсатору еще одного конденсаторов суммарной емкостью 47 наноФарад * 400 Вольт.

Так с потребляемой мощностью уже и так все ясно, т. е. она не критична, то сделал только замеры температуры на максимуме и минимуме и уже в собранном виде – с жалом:

На максимуме получилось:

На минимуме:

что граничит с уровнем нагрева привычного для меня паяльника ЭПСН-25.

В сети есть информация о том, что нагревательный элемент можно отпаять от платы и слегка его выдвинуть вперед – это якобы должно увеличить передачу тепла жалу паяльника.

Попробовал, но существенной разницы не заметил – недогревом паяльник и так не страдал. Кроме того нельзя забывать о линейном расширении материалов в результате нагрева и при такой модификации, в собранном виде нагреватель упирается в холодное жало, а при нагреве благодаря линейному расширению нагреватель может разрушиться. Косвенно об этом говорит то, что после данных испытаний гайка, фиксирующая жало, оказалась довольно сильно ослаблена. Поэтому от данной модификации отказался и вернул нагреватель в исходное состояние.

Для практических испытаний жал выбрал самое массивное (реплика 900M-К) жало. Почему именно его? Масса определяет теплоемкость, а следовательно оно будет медленнее остывать. Кстати, все жала залужены с завода и не магнитятся. Т.е. это даже репликой назвать сложно – жалкое подобие. Позже самое массивное жало, примененное в начале тестирования, было пущено под надфиль и можно предположить, что жала изготовлены из меди. Однако смущает их вес, для изготовленных из меди довольно легкие, хотя это мое субъективное мнение не основанное на химическом анализе)).

Со всеми жалами экспериментировать не стал, а по привычке выбрал реплику 900М-Т-3С (круглое со скосом). Привык по такой форме жала, используя ЭПСН-25.

Но и тут ждало фиаско – даже после доработки паяльника, жало обгорело на минимальной мощности. Остальные даже не стал устанавливать – обгорят. Цена всего набора за себя сама говорит.

Поскольку уже терять было нечего, то вспомнил про надфиль и безжалостно заточил жало Т3С по привычной технологии. Думал, все, в ведро, но оказалось, что в таком виде жало отлично дружит с оловом и пайка приобрела новый смысл)). Сколько продержится сказать не могу, но пока результатом доволен.

В ИТОГЕ:

1. Вещь для энтузиастов – без доработки использовать вряд ли получится;

2. Жала из набора – мусор;

3. Покупка новых жал – лотерея) ибо подделок полно;

4. Тактильные ощущения от использования паяльника самые положительные – в руке лежит как влитой, благодаря резиновой обкладке хват уверенно фиксируется и скольжение руки отсутствует, нагрев верхней части рукоятки после часа использования на температуре в районе 250 градусов (выпаивал доноров) в диапазоне «отсутсвует» до «не значительный»;

5. Не большой вынос рабочей поверхности жала от рукоятки паяльника – однозначный плюс;

6. Быстрый нагрев, малый расход припоя, несомненные удобства пайки SMD компонентов, возможность смены жал для разных видов работ.

Да это не профинструмент для работы каждый день в течении 8 часов, но для большинства радиолюбителей, набивающих руку, самое то (с учетом изложенного выше).

Еще одно качество, которое не могу отнести к недостаткам, но благодаря которому есть отличие от использования обычного паяльника малой мощности с обычным жалом – на жалах нового паяльника не задерживается канифоль. Т.е. пока донесешь ее до платы, жало уже сухое. Это обусловлено малогабаритностью жал из комплекта и как следствие небольшой площадью поверхности.

Из положения вышел с помощью флюса Amtech RMA-223. Пайка получается идеальная. Худшие результаты показала спиртоканифольная смесь.

Учитывая, что к каждому инструменту нужно привыкнуть, могу сказать, что паяльником после полученного опыта и внесенных корректив в целом доволен. Для себя пусть каждый решает самостоятельно.

Как сделать регулятор напряжения для паяльника

Схем регуляторов напряжения для паяльника на тиристорах очень много. Их преимущество — высокий КПД, малые размеры. Кроме того, такой регулятор греется незначительно. Недостаток — высокий уровень помех, который подобные схемы выдают в сеть. Их можно гасить, поставив на входе конденсаторы. Но в таком случае регулировка напряжения не будет плавной.

Тиристорных схем регулирования напряжения питания паяльников действительно много. Работают они по-разному, да и компоненты применяют различные. Некоторые вполне работоспособные решения не слишком хороши в эксплуатации из-за нестабильно работающих составляющих.

Регулятор напряжения для паяльника на 220 В на тиристоре

Приведённая выше схема позволяет регулировать выходное напряжение от 110 вольт до сетевого. Хороша тем, что построена на широко распространённых и стабильных в работе транзисторах серии КТ361 и 315 и тиристоре КУ202Н. Остальные компоненты — резисторы и всего один конденсатор. Стоит только грамотно подобрать регулятор R2 — чтобы было удобно с ним работать (плавный ход ручки).

А также обратите внимание на пределы регулировки и на мощность, на которую эти компоненты рассчитаны. Устройство рассчитано на ток до 10 А, тиристор VD2 должен быть установлен на теплоотвод.

Содержание статьи

Регулятор без помех

Этот регулятор можно использовать для любой нагрузки. Для устранения пульсаций используется постоянное напряжение. Имеет более широкий интервал изменения напряжений. Мощность ограничивается диодным мостом КЦ405А, в данном случае 100 ватт.

Регулировка паяльника с устранённым эффектом пульсации

При проверке работоспособности схемы случается, что регулировки не происходит. Это бывает связано с чувствительностью тиристора. То есть напряжения на управляющем электроде не хватает для открытия p-n перехода. Можно подобрать деталь с более высокой чувствительностью или найти аналог.

При появлении гула в паяльнике включите в цепь нагрузки индуктивность. Её величина подбирается до исчезновения эффекта.

Простой регулятор напряжения на симисторе

Пожалуй, самая простая схема управления напряжением нагрузки для повторения, с неплохими характеристиками.

Схема простого регулятора напряжения на симисторе

Схема небольшая и уместится даже в маленький в корпус зарядки от телефона. По такой схеме собраны регуляторы оборотов пылесосов, например. Разве что динистор может быть заменён оптопарой.

Аналогичную сборку имеют и диммеры на АлиЭкспресс. В продаже имеются как с радиатором, так и без. Без радиатора допускается нагрузка до 60 Вт.

Диммер для паяльника

Регулятор для паяльника на микросхеме

Вариант непрост, но имеет свои плюсы. Плавное регулирование напряжения на нагрузке от 0 до 2 кВт и отсутствие помех. При эксплуатации на большой мощности обязательна установка радиатора на VS1.

Самодельный регулятор паяльника без помех

К561ЛА7 — К176ЛА7.
КД503А — КД514А, КД522А.
КТ361В — КТ326В, КТ361А.

Простая схема для 36 вольтового паяльника

Эта схема вполне рабочая с минимумом деталей.

Простая схема регулятора паяльника низковольтного переменного напряжения

Есть аналогичные схемы регулирования сетевого напряжения. Здесь только меньше предел регулировки.

Регулятор для паяльника 36 вольт

Современная электроника требует для монтажа деталей иметь в наличии низковольтный паяльник. Реализовать его питание можно по приведённой ниже схеме. Она позволяет регулировать температуру паяльника в широких пределах. А используя в качестве ключа мощный полевой транзистор снижаются потери.

Регулятор для паяльника на микросхеме

На DA 1 собран ждущий мультивибратор, управляющий работой транзистора VT1. Он открывается с появлением на затворе положительного напряжения.

Для снижения помех работа мультивибратора синхронизирована с частотой сети. Достигается это подачей пульсирующего напряжения на вывод 2 DA1 через делитель R2- R3. Порог срабатывания микросхемы устанавливается подстройкой R3. С периодом 10 мс на выводе 3 DA1 идут импульсы с длительностью, зависящей от положения регулятора R4.

К деталям схема не критична. Микросхема КР1006ВИ1 может быть заменена аналогами LM 555 или NE 555. VD 1 — VD 4 с током не менее 3А. Полевик BUZ 11 меняется на IRF 540 или КП540.

Регулятор температуры на микроконтроллере PIC 16F628

Данный цифровой регулятор мощности позволяет отобразить уровень нагрузки, с автоматическим её отключением при долгом не простое. Минус схем с микроконтроллером, это необходимость его предварительной прошивки. Прошивка, печатная плата и схема доступна для скачивания в конце заметки.

Регулятор для паяльника на микроконтроллере PIC 16F628

Регулирование температуры осуществляется за счёт пропуска периодов сетевого напряжения. При уровне мощности «0», нагрузка подключена на один период, с паузой в 15 периодов. На уровне мощности «3», нагрузка подключается на 4 периода с паузой в 12 периодов. На уровне «15», нагрузка включена полностью.

Выставленный уровень показывается на индикаторе в виде цифр от 0 до 9 и букв ABCDEF. Прибавить или убавить температуру можно, удерживая кнопку.

Нажав одновременно и удерживая обе кнопки можно отключить нагрузку. Индикатор уровня будет мигать.

Через 2 часа нагрузка автоматически выключается. Возобновление работы производится нажатием и удержанием обеих кнопок или отключением регулятора от сети.

Перед началом монтажа детали регулятора проверьте мультиметром. Как правило, наладки при исправных деталях и правильно собранной схеме не требуется. Прошивка, печатная плата и схема регулятора на PIC 16F628.

Регулятор мощности в вилке паяльника

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Регулятор мощности в вилке паяльника


О регуляторах мощности для паяльников очень много написано статей и приведено множество разнообразных схем, в том числе и на сайте РадиоКот. Интерес к данному типу устройств, как видно не ослабевает, да это и понятно, ведь от него зависит качество пайки, долговечность жала паяльника и самого паяльника. И тот кто делает первые шаги в электронике, в первую очередь должен позаботится о комфортных условиях пайки. Наверно кто-то скажет: « ну вот опять о регуляторе мощности », но тем не менее хочется поделится ещё одной конструкцией, именно для паяльника, возможно она окажется кому нибудь полезной (а точнее несколькими конструкциями на данную тему).

Работая в сфере промышленной автоматики, частенько приходится производить ремонтные работы с участием паяльника на различных объектах, отдалённых от основного рабочего места, и бывает забываешь брать с собой регулятор, да и иногда приходится одалживать паяльник лицам, которые возвращают потом его с обгоревшим жалом. Кроме того, я не единственный пользователь этого паяльника, так как работаю по сменам, после этого приходится опять браться за напильник и приводить жало в порядок, к тому же из-за повышенного напряжения в сети (238В) он быстро перегревался. Размышляя над всем этим, мне пришла идея, вместо стандартной вилки паяльника использовать миниатюрный регулятор мощности, который был бы непосредственно закреплён на шнуре паяльника и сопровождал бы его всюду где он нужен. За основу была взята схема с амплитудно-фазовым принципом работы и содержащая наименьшее число деталей, дополненная индикатором включения регулируемой фазы, что упрощает регулировку за счёт визуализации по яркости свечения светодиода. Смотри схему и плату:

Плату конечно нужно проектировать под конкретный корпус. Плата 63Х32

Использование одного полупериода для регулировки себя оправдывает в отличии от двухполупериодных регуляторах с использованием симисторов, которые хороши для регулировки освещения и нагревательных приборов, не требующих дежурного режима. Паяльник всегда должен быть нагретым, даже если им какое-то время не пользуются. Это хорошо реализуется за счёт одного полупериода — повернул рукоятку влево до отказа и он всегда будет готов к работе. При необходимости осуществлять пайку — повернул рукоятку в право до зажигания индикатора и далее по яркости индикатора и можно паять. Индикатор зажигается при напряжении на нагрузке= 150…160В и далее яркость плавно увеличивается при увеличении напряжения до 220В. Ниже 150..160В индикатор гаснет, вернее, еле заметно подсвечивается, напряжение при этом на нагрузке соответствует 127…130В в зависимости от напряжения в сети. Для каждого паяльника своё оптимальное напряжение. Подобный регулятор я использую дома вот уже почти 30 лет и за всё время он не разу не отказал и паяльник служит столько же . Вот этот антиквариат : (проверка работоспособности, дежурный режим).

 

В качестве корпуса для вилки я использовал корпус от зарядного устройства для сотового телефона смотри фото: (плата и корпус)

Момент зажигания индикатора 150…..160В

 

Теперь регулятор мощности всегда с паяльником, как неразлучные друзья. И я забыл о проблемах с жалом паяльника. ( В данном варианте можно использовать паяльник не более 40 Вт.). Используемые детали:

VS1 = КУ101Е; С1= 22мкФ Х 63В К50-29; R2 = ОМЛТ -0.5 10К; R3= СП-04 0.5Вт 47К; VD1= SY103/05 ; R1= ОМЛТ 0.5 47К ; VD2= LED от китайского зарядного устройства. VD3= КД209А,Б

В плате сделан вырез для резистора СП-04. Если использовать СП4-1 то вырез не нужен.

Вот ещё один вариант исполнения переносного регулятора мощности для паяльника. В данном варианте используется схема с импульсно-фазовым управлением. В отличии от предыдущей схемы, импульсно фазовый способ осуществляет более точное регулирование, смотри схему:

Данный регулятор так же снабжён индикатором мощности ( в конструкции он пока отсутствует). Регулировка осуществляется плавно от 130В до 220В. Резистор R1= 100К, но установлен на 120К для более чёткого выражения зоны ( 45 град. Поворота рукоятки где напряжение практически не изменяется и соответствует 130В). В этом варианте используются более мощные диоды Д246Б и тиристор КУ202Л, что позволяет подключать нагрузку до 500Вт ( паяльник на 100Вт). Если использовать двухполупериодное регулирование, включив тиристор в диагональ моста из диодов Д246Б, то регулировка осуществляется от 50В до 220В. Регулятор собран в корпусе от сетевого источника питания-адаптера (пустые корпуса продаются в специализированных магазинах и стоят 40р). В корпус вмонтированы двойная клемма для вилки паяльника (от старого ТВ) и регулировочный резистор R1 120К СП-04 0.5Вт. Используются номиналы в скобках. Под рукояткой резистора сделана шкала, проградуированная в Вольтах действующего значения 127…..220В, для точной установки мощности паяльника, смотри фото: (Плата и внешний вид) Плата 57х46

Ну уж и за одно ещё регулятор мощности для паяльника, реализующий широтно-импульсный принцип регулирования для одного полупериода напряжения. Схема этого регулятора была опубликована в одном из старых журналов радио (без транзистора VT3) и немного другой схемотехникой управления выходным тиристором. После изготовления прибора по схеме из журнала устройство не совсем хорошо работало: при повышенном напряжении сети 238В тиристор во время паузы самопроизвольно включался, при напряжении в сети 227….230В -отрабатывал импульсы и паузы, но при этом другие экземпляры тиристоров в обще не включались (видимо, рабочий экземпляр попался с заниженными параметрами). В процессе наладки было установлено, что причиной не работоспособности являлся недостаточный ток управляющего электрода тиристора КУ202Л, поэтому был в ведён дополнительный каскад усиления на транзисторе КТ940А, смотри схему:

При этом проблемы устранились, все экземпляры тиристоров КУ202Л и КУ202Н с доработанной схемой работали.

Индикатор на тиратроне показывает длительности включения и отключения тиристора, по которым можно судить о средней мощности на паяльнике: 50% ( при минимальном импульсе), 75% (при равенстве длительности импульса и паузы) , 100% (при максимальной длительности импульса)

Фото прибора:

В регуляторе использованы транзисторы МП26А PNP Ik max= 150mA Ukэ =70В Uэбо = 70В h31= 20. ….50. Тиратрон МТХ-90 VD1=Д814A VS1= КУ202Л VT3 =КТ940А.

Все резисторы МЛТ 0.25Вт. Кроме R9=18К 2Вт. И R11= 3.3К 0.5Вт.

В качестве корпуса для прибора так же можно использовать корпус от сетевого адаптера.


Файлы:
Регулятор мощности в вилке паяльника
РМП-М-аф.Lay
Регулятор мощности в вилке паяльника
РМП-М-иф.Lay
РМП-М-шим (схема)



Все вопросы в
Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Регулятор мощности паяльника с цифровой индикацией и кнопочным управлением.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Регулятор мощности паяльника с цифровой индикацией и кнопочным управлением.

Многие из нас проводят много времени в руках с паяльником. Не секрет, что хорошая пайка компонентов является залогом успешной
работы электронного устройства. Качество пайки определяется по характерному блеску. Сероватая и неровная пайка является
потенциальной причиной плохой работы схемы. Другая важная задача заключается в том, чтобы произвести пайку не перегревая
компонентов.

Хорошее качество пайки обеспечивают цифровые паяльные станции, которые контролируют температуру жала. Но они достаточно
дороги и трудоемки в сборке. Цифровые паяльные станции не всегда можно взять с собой для работы в полевых условиях.

В радиолюбительской практике для регулировки температуры обычных паяльников используются как промышленные, так и
самодельные регуляторы мощности, которые иначе называют диммерами. Как правило, такие диммеры используются для плавной
регулировки яркости ламп накаливания, и, следовательно, нет необходимости в дополнительной индикации уровня мощности,
т. к. о настройке судят по яркости свечения. Но как оценить на каком уровне мощности работает паяльник? Кто-то оценивает
достаточность мощности по положению крутилки диммера, а я же решила собрать регулятор с цифровой индикацией и кнопочным
управлением.

Регулятор собран на pic16f628a. Тактирование микроконтроллера осуществляется встроенным генератором на частоте 4 МГц, т.е.
кварцевый резонатор не нужен. На плате предусмотрены посадочные места под кварцевый резонатор, что позволяет применять
устаревшие контроллеры (например, pic16f84a) и иные без внутреннего тактирования. В своем варианте регулятора я установила
семисегментный индикатор с общим катодом. На плате предусмотрена установка индикатора с общим анодом, путем перепайки
соответствующей перемычки. В исходниках программы закомментированы заготовки под контроллер pic16f84a и индикатор с общим
анодом.

Регулятор собран на двух платах: силовая и цифровая. На силовой плате расположен фильтр (для снижения уровня помех
создаваемым регулятором) и схема бестрансформаторного питания. На цифровой плате расположен микроконтроллер и семисегментный
индикатор.

Платы регулятора мощности с цифровой индикацией закреплены с помощью винтов в корпусе обычной мыльницы. Дизайн регулятора
зависит от Вашей фантазии и способностей.

Красной кнопкой увеличиваем уровень мощности и температуру нагрева паяльника, синей – снижаем. Программа для микроконтроллера
написана на Ассемблере. Задержки, определяющие уровень мощности, подобраны экспериментально. Их можно легко изменить в
программе и подобрать для себя необходимые уровни. Всего 10 уровней. Символ «0» на индикаторе означает, что симистор закрыт.
Символ «9» означает, что симистор постоянно открыт и устройство работает на полную мощность.

Для проверки работоспособности регулятора мощности можно подключить лампу накаливания (на фото лампа на 40Вт).

Узлы схемы не являются чем-то необычным. Расчеты компонентов силовой части сделаны в соответствии с рекомендациями документов
из открытых источников:

1. Электромагнитная совместимость импульсных источников питания

2. Transformerless Power Supply. Application Notes 91008b

Соблюдайте осторожность и помните про электробезопасность при работе с сетью переменного тока 220В. Правильно изготовленный
регулятор из исправных деталей не требует настройки и сразу начинает работать. Для обеспечения электромагнитной совместимости
следует лишь правильно подключить его к сети (фазу и нейтраль подключить так, как это показано на схеме).

На перспективу программа для микроконтроллера может быть расширена дополнительными функциями. Например, таймер на
выключение – для случаев простоя паяльника без дела, в целях защиты от выгорания жала. Также можно предложить разогрев
паяльника определенное время на максимальном уровне и затем переход на меньший уровень для поддержания температуры. Если
эти функции найдут Вашу поддержку, то следующая версия прошивки будет дополнена этими функциями.

Файлы:
Схема
Плата
Исходники и прошивка

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Автоматический ограничитель тепла для паяльника

Обычно паяльнику требуется пара минут, чтобы должным образом нагреться и расплавить припой, после чего выделяемое тепло намного превышает требуемое и тратится впустую. Сам припой также производит токсичный дым, который необходимо удалять с помощью вытяжных устройств Integrated Air Systems. Более того, чрезмерное нагревание снижает срок службы бита и элемента, вызывая серьезные повреждения хрупких микросхем, конденсаторов и дорожек печатной платы.

Распространенным решением этой проблемы является использование диода, включенного последовательно с сетью и нагрузкой, так что утюг получает только половину цикла переменного тока. Но у этого процесса есть один серьезный недостаток — он замедляет нормальную скорость нагрева. Таким образом, после включения питания приходится долго ждать начала работы. Это может сильно раздражать, особенно если вы торопитесь.

ПЕРЕЧЕНЬ ДЕТАЛЕЙ
R1 220?
R2 82К?
R3 10К?
R4 150 К?
R5 СМОТРЕТЬ ТЕКСТ
C1 100 мкФ 25 В
C2 100 мкФ 25 В
C3 220 мкФ 16 В
D1 IN4007
D2 IN4007
D3 IN4007
D4 ЖЕЛТЫЙ светодиод
D5 IN4007
D6 12 В 400 мВт стабилитрон
Т1 SL 100
T2 г. до н.э. 108
RL1 6В 300? Реле

Описанная здесь схема решает эту проблему простым и недорогим способом и может использоваться с различными типами нагрузок до 80 Вт. При включении сети обнаруживается падение примерно 15 В положительного полупериода на R5, которое подается на T1, который действует как регулятор напряжения.

Стабилитрон D6 вместе с диодом D4 (желтый светодиод) стабилизирует напряжение эмиттера T1 на уровне 13,2 В постоянного тока, которое затем подается в схему реле, построенную вокруг T2 и C3. Конденсаторы C3 заряжаются по цепи база-эмиттер T2 и вызывают срабатывание реле. что, в свою очередь, позволяет обоим полупериодам сети переменного тока проходить через диод D3 и R5 к нагрузке, чтобы нагреть ее с нормальной скоростью.

По прошествии определенного времени (задано около 2 минут), C3 насыщается, и T2 перестает проводить через реле, таким образом, включается последовательный диод D2, чтобы пропустить через нагрузку только половину цикла переменного тока.

После выключения системы C3 очень медленно разряжается через R3 и R4. До того, как C3 полностью разрядится, если питание снова будет включено, C3 потребуется более короткое время для достижения уровня насыщения, таким образом, последовательный диод D2 переключается намного раньше, чем заданное время, чтобы предотвратить двойной нагрев нагрузки.

Однако, если цепь включается только через несколько секунд после выключения, C3 не успевает разрядиться, и реле вообще не срабатывает. Более того, если релейная цепь выходит из строя по какой-либо причине и T2 не проводит, нагрузке не причиняется никакого вреда, потому что в этом случае D2 остается последовательно с ней. Таким образом, схема обеспечивает полную защиту нагрузки.

Как указывалось ранее, данное значение C3 дает задержку в 2 минуты. Тем не менее, конденсатор емкостью 1000 мкФ также можно использовать для создания задержки 41/2 минуты.R5 поддерживает падение напряжения около 15 В. Таким образом, для использования в различных условиях нагрузки его значение изменяется, как показано в таблице 1.

ТАБЛИЦА 1
мощность нагрузки 10 Вт 18 Вт 25 Вт 35 Вт 65 Вт 80 Вт
Значение R5 (в омах) 330 180 136 (68 + 68) 100 56 44 (22 + 22)
Мощность R5 (в ваттах) 1 2 2 4 5 6.5

Вся схема может быть установлена ​​на печатной плате и помещена в корпус адаптера (7,6 см * 5,1 см * 6,4 см) и использоваться в качестве сетевой вилки. Поскольку во время работы R5 нагревается, его следует изолировать от других компонентов.

Присылайте свои идеи, они очень важны для нашего успеха…

Схема паяльника с регулируемой температурой

Одна из причин, по которой коммерческие паяльные станции дороги, заключается в том, что, как правило, они требуют использования паяльников со встроенными датчиками температуры, такими как термопары.Эта схема устраняет необходимость в специальном датчике, поскольку она определяет температуру нагревательного элемента паяльника непосредственно по его сопротивлению. Таким образом, эта схема, в принципе, будет работать с любым утюгом с сопротивлением, которое предсказуемо и в правильном направлении изменяется с температурой (то есть с положительным температурным коэффициентом).

Паяльник, идеально подходящий для использования с этим контроллером, можно приобрести в компании Dick Smith Electronics (Cat T-2100). Эта схема работает от батареи 12 В или источника постоянного тока, работающего от сети.Он работает следующим образом: преобразователь постоянного тока в постоянный (IC1, Q1, D1, Q2, T1, D2, L1 и т. Д.) Увеличивает входное напряжение 12 В постоянного тока примерно до 16 В. Более высокое напряжение увеличивает мощность утюга и сокращает время прогрева. Это выходное напряжение подается на резистивный мост, в котором нагревательный элемент утюга образует одну ногу.

Принципиальная схема:

Остальные компоненты моста включают резисторы R7-R9 и потенциометры VR2-VR4. Когда утюг достигает заданной температуры, установленной VR4, выход IC2a ​​становится высоким, посылая сигнал на переключающий регулятор IC1.Это приводит к относительно низкому напряжению на выходе преобразователя. Двухцветный светодиодный индикатор показывает, что утюг достиг заданной температуры, меняя цвет с красного на зеленый. Теперь утюг начинает охлаждаться до тех пор, пока его температура не упадет ниже заданной температуры, после чего выходное напряжение преобразователя постоянного тока снова становится высоким, и цикл повторяется.

Степень гистерезиса, встроенная в схему, заставляет светодиодный индикатор мигать между красным и зеленым, пока температура утюга поддерживается на заданной температуре. Откалибруйте схему следующим образом: пока утюг еще относительно холодный, контролируйте входное напряжение и ток и отрегулируйте VR1 так, чтобы входная мощность (Вольт x Ампер) была около 50 Вт.Когда вы это сделаете, установите VR4 на максимум и настройте VR2 так, чтобы светодиодный индикатор мигал между красным и зеленым, когда утюг достиг желаемой максимальной температуры.

Наконец, установите VR4 в среднее положение и настройте VR3 так, чтобы светодиодный индикатор мигал, когда утюг достигает желаемой средней рабочей температуры. Например, вы можете установить максимальную температуру примерно на 400 ° C и среднюю рабочую температуру примерно на 350 ° C. В этом случае общий температурный диапазон должен составлять приблизительно от 280 ° C до 400 ° C.Проверьте правильность калибровки и при необходимости повторите процедуру регулировки. При регулировке используйте датчик температуры, желательно разработанный специально для паяльников, а не наугад.

Примечание:

  • VR4 должен иметь логарифмический конус для компенсации нелинейности характеристики термостойкости паяльника.

Автор: Герман Нацинович — Авторское право: Silicon Chip

Паяльник с переносным аккумулятором Arduino T12 PCB

Паяльник портативный V3
Помогите мне, поделившись этим постом

Наконец, плата работает идеально.Так что я мог сделать 3D-дизайн корпуса, и это окончательный продукт, который может оказаться на Kickstarter. Это очень дешевый проект, около 15 долларов за все детали. В этом уроке у вас будет полный список деталей, схема и макет платы на тот случай, если вы захотите это сделать. Я также делюсь файлами 3D STL для корпуса, чтобы вы могли их распечатать.

См. Необходимые нам компоненты здесь:

ЧАСТЬ 1- Схема

Ниже представлена ​​схема этой платы.Для его питания используется разъем USB типа mini B. Он подключен к силовому МОП-транзистору, а также к некоторым площадкам понижающего преобразователя, поэтому мы можем получить 5 В для других микрочипов. Теперь кристалл с частотой 16 МГц меньше, поэтому у нас есть больше места на печатной плате для будущих улучшений. См. Версию 2, чтобы увидеть другую печатную плату. У нас есть 2 кнопки для установки температуры и других параметров, датчик вибрации для спящего режима и микроконтроллер ATmega328p.AU. См. Полный список деталей для всех компонентов.

Есть еще несколько контактных площадок для подключения UART, чтобы мы могли программировать плату.Обратите внимание, что на плате нет SPI-соединения, поэтому чип ATmega328 должен иметь загрузчик, иначе мы не сможем его записать позже. Это должно стать улучшением для будущих плат. Теперь посмотрим на макет.

ЧАСТЬ 2- макет

Ниже вы видите изображение верхней и нижней стороны печатной платы. Вы можете видеть, что дорожки на входе очень толстые, в данном случае 2 мм, поскольку они должны выдерживать токи до 2 или 3 ампер от входа к разъемам MOSFET и T12.Ниже вы также можете увидеть реальное распределение реальной платы. Чтобы закрепить железный наконечник T12, я использовал зажимы для предохранителей на печатной плате. Они будут припаяны в середине печатной платы на нижней стороне , и это сторона, на которой находится LM358 OPAMP . Понижающий преобразователь необходимо припаять к верхней стороне, а также к OLED-экрану. Остальные SMD, поэтому их можно припаять только с одной стороны, поэтому проблем быть не должно.

ЧАСТЬ 3 — Установите печатную плату

ЧАСТЬ 3.1 — Минимальная конфигурация ATmega328p-AU

Сначала загрузите печатную плату GERBER здесь:

Очень важно. Сначала мы должны убедиться, что самый важный компонент печатной платы работает. Для этого нужно спаять 5 компонентов. Микросхема ATmega328p-AU, кристалл 16 МГц, резистор R10 на 1 МОм, подтягивающий резистор R11 на 10 кОм и конденсатор C2 для вывода DTR на 100 нФ.

С этими компонентами чип должен работать. Подтяжка 10K будет поддерживать микросхему в активном состоянии, кристалл 16 МГц будет создавать тактовый сигнал, а конденсатор C2 используется для сброса микросхемы с помощью импульса DTR.Чтобы проверить, работает ли он, мы должны подключить модуль FTDI к контактам UART. Затем я загружаю тестовый код, который будет записывать числа на серийный монитор. Откройте монитор, и если вы получите данные, значит, с чипом все в порядке, и можно продолжать пайку компонентов.

ЧАСТЬ 3.2 — Компоненты для чистовой пайки

Не паяйте понижающий преобразователь до конца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *