Какие бывают схемы включения транзисторов. Схемы включения биполярный транзистор
Как работает биполярный транзистор | Volt-info
Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.
Устройство биполярного транзистора
Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.
Рисунок 1.
Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.
Рисунок 2.
Принцип действия биполярного транзистора
Любой p-n переход транзистора работает аналогично диоду. При приложении к его полюсам разности потенциалов происходит его "смещение". Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается. Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.
Режимы работы
Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную.
Рисунок 3.
Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.
Инверсная схема, в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.
При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки, активный режим и режим насыщения.
Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.
Рисунок 4.
Режим отсечки
Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток. Для кремниевых транзисторов величина такого порога равна примерно 0,6 В. Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).
Таким образом, для режима отсечки необходимым условием являются тождества:
UБЭ<0,6 В
или
IБ=0
Активный режим
В активном режиме эмиттерный переход смещается в прямом направлении до момента отпирания (начала протекания тока) напряжением больше 0,6 В (для кремниевых транзисторов), а коллекторный – в обратном. Если база обладает проводимостью p-типа, происходит перенос (инжекция) электронов из эмиттера в базу, которые моментально распределяются в тонком слое базы и почти все достигают границы коллектора. Насыщение базы электронами приводит к значительному уменьшению размеров коллекторного перехода, через который электроны под действием отрицательного потенциала со стороны эмиттера и базы вытесняются в область коллектора, стекая через вывод коллектора, обуславливая тем самым ток коллектора. Очень тонкий слой базы ограничивает её максимальный ток, проходящий через очень малое сечение поперечного разреза в направлении вывода базы. Но эта малая толщина базы обуславливает её быстрое насыщение электронами. Площадь переходов имеет значительные размеры, что создаёт условия для протекания значительного тока эмиттер-коллектор, в десятки и сотни раз превышающий ток базы. Таким образом, пропуская через базу незначительные токи, мы можем создавать условия для прохождения через коллектор токов гораздо большей величины. Чем больше ток базы, тем больше её насыщение, и тем больше ток коллектора. Такой режим позволяет плавно управлять (регулировать) проводимостью коллекторного перехода соответствующим изменением (регулированием) тока базы. Это свойство активного режима транзистора используется в схемах различных усилителей.
В активном режиме ток эмиттера транзистора складывается из тока базы и коллектора:
IЭ=IК+IБ
Ток коллектора можно выразить соотношением:
IК=αIЭ
где α – коэффициент передачи тока эмиттера
Из приведённых равенств можно получить следующее:
где β – коэффициент усиления тока базы.
Режим насыщения
Предел увеличения тока базы до момента, когда ток коллектора остаётся неизменным определяет точку максимального насыщения базы электронами. Дальнейшее увеличение тока базы не будет изменять степень её насыщения, и ни как не будет влиять на ток коллектора, может привести к перегреву материала в области контакта базы и выходу транзистора из строя. В справочных данных на транзисторы могут быть указаны величины тока насыщения и максимально допустимого тока базы, либо напряжения насыщения эмиттер-база и максимально допустимого напряжения эмиттер-база. Эти пределы определяют режим насыщения транзистора при нормальных условиях его работы.
Режим отсечки и режим насыщения эффективны при работе транзисторов в качестве электронных ключей для коммутации сигнальных и силовых цепей.
Отличие в принципе работы транзисторов с различными структурами
Выше был рассмотрен случай работы транзистора n-p-n структуры. Транзисторы p-n-p структуры работают аналогично, но есть принципиальные отличия, которые следует знать. Полупроводниковый материал с акцепторной проводимостью p-типа обладает сравнительно низкой пропускной способностью электронов, так как основан на принципе перехода электрона от одного вакантного места (дырки) к другому. Когда все вакансии замещены электронами, то их движение возможно только по мере появления вакансий со стороны направления движения. При значительной протяжённости участка такого материала он будет обладать значительным электрическим сопротивлением, что приводит к большим проблемам при его использовании в качестве наиболее массивных коллекторе и эмиттере биполярных транзисторов p-n-p типа, чем при использовании в очень тонком слое базы транзисторов n-p-n типа. Полупроводниковый материал с донорной проводимостью n-типа обладает электрическими свойствами проводящих металлов, что делает его более выгодным для использования в качестве эмиттера и коллектора, как в транзисторах n-p-n типа.
Эта отличительная особенность различных структур биполярных транзисторов приводит к большим затруднениям при производстве пар компонент с различными структурами и аналогичными друг другу электрическими характеристиками. Если обратить внимание на справочные данные характеристик пар транзисторов, можно заметить, что при достижении одинаковых характеристик двух транзисторов различных типов, например КТ315А и КТ361А, несмотря на их одинаковую мощность коллектора (150 мВт) и примерно одинаковый коэффициент усиления по току (20-90), у них отличаются максимально допустимые токи коллектора, напряжения эмиттер-база и пр.
P.S. Данное описание принципа действия транзистора было интерпретировано с позиции Русской Теории, поэтому здесь нет описания действия электрических полей на вымышленные положительные и отрицательные заряды. Русская Физика даёт возможность пользоваться более простыми, понятными механическими моделями, наиболее приближенными к действительности, чем абстракции в виде электрических и магнитных полей, положительных и электрических зарядов, которые вероломно подсовывает нам традиционная школа. По этой причине не рекомендую без предварительного анализа и осмысления пользоваться изложенной теорией при подготовке к сдаче контрольных, курсовых и иных видов работ, Ваши преподаватели могут просто не принять инакомыслие, даже конкурентоспособное и вполне состоятельное с точки зрения здравого смысла и логики. Кроме того, с моей стороны это первая попытка описания работы полупроводникового прибора с позиции Русской Физики, может уточняться и дополняться в дальнейшем.
volt-info.ru
схемы включения. Схема включения биполярного транзистора с общим эмиттером
Домашний уют 22 декабря 2015Одним из типов трехэлектродных полупроводниковых приборов являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.
Классификация
Транзисторы разделяют на группы:
- По материалам: чаще всего используются арсенид галлия и кремний.
- По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
- По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
- По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.
Как работают транзисторы?
Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.
Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.
База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.
Схемы включения биполярных транзисторов способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.
Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток Iб. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.
Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: Iэ = Iб + Iк.
Видео по теме
Параметры транзисторов
- Коэффициенты усиления по напряжению Uэк/Uбэ и току: β = Iк/Iб (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
- Входное сопротивление.
- Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.
Биполярный транзистор: схемы включения, режимы работы
Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.
1. Схема с ОК
Схема включения биполярного транзистора с общим коллектором: сигнал поступает на резистор RL, который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.
Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.
2. Схема с ОБ
Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.
Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.
3. Схема с ОЭ
Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.
Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.
В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.
Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.
Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.
Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.
Режимы работы
На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.
1. Режим отсечки
Данный режим создается, когда значение напряжения VБЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.
2. Активный режим
Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.
3. Режим насыщения
Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.
Все режимы работы зависят от характера выходных характеристик, изображенных на графике.
Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.
Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания VCC, а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: IC = (VCC - VCE)/RC. Из рисунка следует, что рабочая точка, определяющая ток коллектора IC и напряжение VCE, будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы IВ.
Зона между осью VCE и первой характеристикой выхода (заштрихована), где IВ = 0, характеризует режим отсечки. При этом обратный ток IC ничтожно мал, а транзистор закрыт.
Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью IC и самой крутой характеристикой.
Как ведет себя транзистор в разных режимах?
Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.
Биполярный транзистор: схемы включения, усилитель
Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.
Работу усилителя хорошо видно на временных диаграммах.
Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.
Работа в режиме переключения
Транзисторные ключи предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.
Заключение
Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.
Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.
Источник: fb.ru Домашний уют Схема подключения выключателя одноклавишного с розеткой или на две лампочкиУстановка выключателей и их подключение к освещению вызывают трудности для рядового пользователя. Поэтому сначала следует разобраться, как работает самая простая схема подключения выключателя одноклавишного одинарного...
Домашний уют Регулятор яркости: схема и устройство. Выключатели с регулятором яркостиДля настройки яркости ламп накаливания применяются специальные регуляторы. Данные устройства еще называются диммерами. Они существуют разных модификаций, и в случае необходимости в магазине всегда можно подобрать необ...
Домашний уют Подробная схема водоснабжения частного дома с гидроаккумуляторомПроживание в загородном доме будет комфортным только при наличии в нем надежной системы водоснабжения. Обустроить ее можно разными способами. Чаще всего в коттеджах и частных домах используются скваженные водопроводы ...
Домашний уют Однотрубная система отопления двухэтажного дома: схема без насоса и с насосом, отзывы, фотоСистема отопления с одной магистралью используется в частных и многоэтажных домах очень часто. Представляет она собой не слишком сложную, очень эффективную и при этом достаточно ремонтопригодную конструкцию. В этой ст...
Домашний уют Схема однотрубной системы отопления с нижней разводкой. Однотрубная система отопления частного домаОднотрубная система отопления, в просторечии называемая «ленинградкой», у частных застройщиков пользуется необыкновенной популярностью. Все дело в ее экономичности, а также в простоте установки и эксплуата...
Спорт и Фитнес Система отжиманий: схема. Отжимания от пола с нуля для начинающихОтжимания от пола - невероятно простое и популярное упражнение. Оно обрело такой почет из-за того, что его можно выполнять дома, на работе да и вообще где угодно. Отжимания от пола имеют огромное количество разновидно...
Хобби Схема вязания палантина спицами с пояснениями и обозначениямиПалантин – вид накидки, прикрывающей спину и плечи. Длина палантина варьируется от 1,5 до 2,5 м. Такой шарф может полностью прикрывать плечи и спину или же, если позволяет длина, несколько раз оборачивается вокр...
Хобби Простые схемы вязания крючком шали с углаВязание сегодня является весьма популярным увлечением как среди женщин, так и среди мужчин. Вяжут сегодня буквально все. Но есть такие изделия, которые пользуются неизменной популярностью на протяжении многих десятков...
Красота Колосок с лентой: схема плетения. Оригинальные прически с косамиСуществуют многие виды кос для волос, благодаря чему каждая женщина может украсить свой образ, подчеркнуть стиль. С давних времен именно косы помогали длинноволосым дамам оставаться всегда ухоженными. Сегодня косы - э...
Домашний уют Схема подключения проходного выключателя с 3х мест. Где используется система трех выключателей?Что такое проходной выключатель? Это устройство, которое имеет три контакта. При нажатии на клавишу переключает один из контактов на схемах подключения проходных выключателей с 3х мест на две лампы первого номера межд...
monateka.com
Какие бывают схемы включения транзисторов
Поскольку биполярный транзистор является классическим трехполюсником, существует три возможных способа его включения в электронную схему с одним общим для входа и выхода выводом:
- с общей базой (ОБ) - высокий коэффициент передачи по напряжению;
- с общим эмиттером (ОЭ) – усиленный сигнал как по току, так и по напряжению;
- с общим коллектором (ОК)– усиленный сигнал по току.
В каждой из трех разновидностей схемы включения транзистора она по-разному реагирует на входной сигнал, поскольку статические характеристики ее активных элементов зависят от конкретного решения.
Схема с общей базой является одной из трех типовых конфигураций включения биполярных транзисторов. Обычно она используются в качестве токового буфера или усилителя напряжения. Такие схемы включения транзисторов отличаются тем, что эмиттер здесь выступает в качестве входной цепи, выходной сигнал снимается с коллектора, а база "заземлена" на общий провод. Аналогичную конфигурацию имеют схемы включения ПТ в усилителях с общим затвором.
Параметр | Выражение |
Коэфф.усиления по току | Ik/Iin=Ik/Ie= α[α<1] |
Вх. сопротивление | Rin=Uin/Iin=Ube/Ie |
Схемы включения транзисторов ОБ отличаются стабильными температурными и частотными свойствами, что обеспечивает малую зависимость их параметров (коэффициента передачи по напряжению, току, входного сопротивления) от температурных условий рабочей среды. К недостаткам схемы можно отнести малое RВХ и отсутствие усиления по току.
Схема с общим эмиттером обеспечивает очень высокое усиление и дает на выходе инвертированный сигнал, который может иметь довольно большой разброс. Коэффициент передачи в этой схеме в значительной степени зависит от температуры тока смещения, вследствие чего фактическое усиление имеет несколько непредсказуемый характер. Эти схемы включения транзисторов обеспечивают высокое RВХ, коэффициент усиления по току и напряжению, инвертирование входного сигнала, удобство включения. К недостаткам можно отнести проблемы, связанные с переусилением - возможность возникновения спонтанной положительной обратной связи, появления искажений при малых сигналах из-за низкого входного динамического диапазона.
Параметр | Выражение |
Коэфф. усиления по току | Iout/Iin=Ik/Ib=Ik/(Ie-Ik) = α/(1-α) = β[β>>1] |
Вх. сопротивление | Rin=Uin / Iin=Ube/Ib |
Схема с общим коллектором (в электронике известная также как эмиттерный повторитель) является одной из трех разновидностей схемы включения транзисторов. В ней входной сигнал подается по базовой цепи, а выходной снимается с резистора в эмиттерной цепи транзистора. Такая конфигурация усилительного каскада, как правило, используются в качестве буфера напряжения. Здесь база транзистора выполняет функции входной цепи, эмиттер является выходом, а заземленный коллектор служит общей точкой, отсюда и название схемы. Аналогами могут служить схемы включения полевых транзисторов с общим стоком. Достоинством данного способа является довольно высокое входное сопротивление усилительного каскада и относительно низкое выходное.
Параметр | Выражение |
Коэфф. усиления по току | Iout/Iin = Ie/Ib = Ie/(Ie-Ik) = 1/(1-α)= β [β>>1] |
Кофф. усиления по напряжению | Uout /Uin = URe/(Ube+URe) < 1 |
Вх. сопротивление | Rin=Uin/Iin=Ube/Ie |
Все три типовых схемы включения транзисторов широко используются в схемотехнике, в зависимости от назначения электронного устройства и условий его применения.
fb.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.