Стартерная схема включения люминесцентных ламп
Пуск без стартеров
Лампы дневного света владеют рядом преимуществ по сопоставлению с лампами накаливания. К их числу относятся большой срок службы, экономичность, отменная освещаемость. Ко всем плюсам, им присущи также и недостатки.
Это ненадежность осветительных приборов, долгий процесс зажигания (в особенности при пониженных температурах) и перегорание ламп, а конкретно нити накала. Но люди умельцы находят методы решения этих заморочек, и есть несколько схем, при помощи которых, можно обходиться для пуска ламп не только лишь без стартеров, но и с обрывами в нити накала.Приведенная схема устраняет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со спаленными нитями накала).
Без стартерная схема включения ламп дневного света
C1,C2 – 0.5 mkF 400 B C3,C4 – 0.1 mkF 1000 B VD1…VD6– Любые на ток 0,1 А для ЛДС-20 и 0,2 А для ЛДС-40 и оборотное напряжение более 600 В (по последней мере для VD5, VD6).L1 – Дроссель, соответственный типу лампы. Если вы переделываете осветительный прибор промышленного производства – оставьте имеющийся. Если же вы собираете осветительный прибор с нуля, то дроссель можно поменять лампой накаливания 75…150 Вт (зависимо от мощности ЛДС).
Внимание:При зажигании лампы напряжение на выходе схемы добивается 1200 В. Будьте аккуратны при наладке схемы.Выбор сечения провода по нагреву и потерям напряжения.
Категория:Электричество на даче
Схемы включения ламп накаливания. Управление двумя лампами, присоединенными к сети, осуществляется одним однополюсным выключателем, пятью лампами —двумя выключателями, расположенными рядом (одним выключателем включают две лампы, другим — три, тремя лампами)— с помощью люстрового переключателя для попеременного изменения числа включаемых ламп.
Рис. 1.
Схемы присоединения группы ламп накаливания к осветительной сети:а — двух ламп одним выключателем; б — пяти ламп двумя выключателями; в — с помощью люстрового переключателя; г — с двух мест двумя переключателями, соединенными перемычками; д — ламп к сети, питаемой от трехпроводной системы с изолированной нейтралью; е — ламп к сети, питаемой от четырехпроводной системы с заземленной нейтральюПри первом повороте переключателя включается одна из трех ламп, при втором остальные две, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры.Для независимого управления одной или несколькими лампами с двух мест применяют схему, в которой используют два переключателя, соединенных двумя перемычками. Эту схему применяют при освещении коридоров и лестничных клеток жилых домов и предприятий, а также туннелей с двумя или несколькими выходами (рис. 1).Схемы включения люминесцентных ламп.Люминесцентные лампы могут включаться в электрическую сеть по стартерной (рис.
2) или бесстартерной схемам (рис. 3) зажигания.При включении ламп по стартерной схеме зажигания в качестве стартера применяют газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами. Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения.
В сетях переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением — дроссель.Зажигание люминесцентной лампы происходит следующим образом. При ее включении между электродами возникает тлеющий разряд, теплота которого нагревает подвижный биметаллический электрод. При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой проходит ток, необходимый для предварительного подогрева электродов лампы.
Рис. 2. Стартерное зажигание люминесцентной лампы: а — схема; б — общий вид стартера; 1 — дроссель; 2 — лампа; 3 — стартер
Рис. 3.
Схема бесстартерного зажигания двухлампового люминесцентного светильникаПри прохождении тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы.При разрыве к напряжению сети добавляется ЭДС самоиндукции дросселя, и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе, зажигая ее. С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера.Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.Для включения люминесцентных ламп применяют стартерные и бесстартерные пускорегулирующие аппараты (ПРА), которые представляют собой комплектные устройства, обеспечивающие надежное зажигание и нормальную работу ламп, а также повышение коэффициента мощности.Электричество на даче- Схемы включения источников светаКатегория:Электромонтажные работыСхемы включения ламп накаливания. Управление двумя лампами, присоединенными к сети, осуществляется одним однополюсным выключателем (рис.1, а), пятью лампами — двумя выключателями (рис.
1, б), расположенными рядом (одним выключателем включают две лампы, другим — три лампы), тремя лампами — с помощью люстрового переключателя (рис. 1, в) для попеременного изменения числа включаемых ламп.При первом повороте переключателя включается одна из трех ламп, при втором — остальные две, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры. Для независимого управления одной или несколькими лампами с двух мест применяют схему (рис.
1, г), в которой используют два переключателя, соединенных двумя перемычками.Эту схему применяют при освещении коридоров и лестничных клеток жилых домов и предприятий, а также туннелей с двумя или несколькими выходами. Схема питания сети, питаемой от четырехпроводной системы с заземленной нейтралью ламп от трехпроводной и четырехпроводной сети показана на рис. 1, д, е.
Рис.
1. Схемы присоединения группы ламп накаливания к осветительной сети: а — двух ламп одним выключателем, 6 — пяти ламп двумя выключателями, в — с помощью люстрового переключателя, г — с двух мест двумя переключателями, соединенными перемычками, д — ламп к сети, питаемой от трехпроводной системы с изолированной нейтралью, е — лампСхемы включения люминесцентных ламп. Люминесцентные лампы могут включаться в электрическую сеть по стартерной или бесстартерной схемам зажигания.При включении ламп по стартерной схеме зажигания (рис.
2, а) в качестве стартера (рис.2, б) применяют газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами. Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения. В сетях переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением — дроссель.
Рис. 2.
Стартерное зажигание люминесцентной лампы: а — схема, б — общий вид стартера; 1 — дроссель, 2 — лампа, 3 — стартерЗажигание люминесцентной лампы происходит следующим образом. При включении лампы между электродами возникает тлеющий разряд, теплота которого нагревает подвижный биметаллический электрод.При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой проходит ток, необходимый для предварительного подогрева электродов лампы. Подогреваясь, электроды начинают испускать электроны.
При прохождении тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы.При разрыве к напряжению сети добавляется эдс самоиндукции дросселя и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе, зажигая ее. С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера. Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.
Рис. 3. Схема бесстартерного зажигания двухлампового люминесцентного светильника:ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С — конденсатор, НТр — нахальный трансформатор, Л — люминесцентная лампаДля включения люминесцентных ламп применяют стартерные и бесстартерные пускорегулирующие аппараты ПРА, которые представляют собой комплектные устройства, обеспечивающие надежное зажигание и нормальную работу ламп, а также повышение коэффициента мощности.
Схема включения бесстартерных ПРА двухлампового люминесцентного светильника показана на рис. 3.Схемы включения ламп ДРЛ. Двухэлектродные лампы включают в электрическую сеть переменного тока напряжением 220 В через поджигающее устройство, с помощью которого (импульсом высокого напряжения) зажигается лампа (рис.
4).Для защиты выпря-напряжения служит конденсатор С1.Конденсатор СЗ необходим для устранения помех радиоприему, создаваемых поджигающим устройством при зажигании лампы. Четырехэлектродная лампа в отличие от приведенной выше схемы включения двухэлектродной лампы включается в сеть по упрощенной схеме, в которой отсутствует поджигающее устройство. Зажигание четырехэлектродной лампы происходит от питающей сети напряжением 220 В.В схеме включения в сеть четырехэлектродной лампы имеются дроссель и конденсатор, которые выполняют те же функции, что и в схеме включения двухэлектродной лампы ДРЛ.
Рис.4. Схема включения двух-электродной лампы ДРЛ: ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С1 — конденсатор защиты выпрямителя, С2 – зарядный конденсатор, СЗ — помехоподавляющий конденсатор, СВ – селеновый выпрямитель, R — зарядный резистор, Л — двухэлектродная лампа ДРЛ. Р – разрядникПоджигающее устройство состоит из разрядника Р, селенового выпрямителя (диода) СВ, зарядного резистора R и конденсаторов С1 и С2.
Основная обмотка дросселя в схеме служит для предотвращения резкого возрастания тока в лампе, а также стабилизации ее режима горения.Электромонтажные работы- Схемы включения электрических источников светаЛюминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать.
Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого – создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер – лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины.В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается.
После этого проводником становится металл, и разряд прекращается.Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;не нужны массивный электромагнитный дроссель и стартер;отсутствие гудения и моргания ламп;высокая светоотдача;легкость и компактность устройства;больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение 220 Вв высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение.
При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампыможет обеспечивать холодный запускили с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется диодным мостом,после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4и пробивается динистор.Запускается полумостовой генератор на трансформаторе TR1и транзисторах Т1и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается.
В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.Преимущества современных ЭПРА следующие:плавное включение;экономичность работы;сохранение электродов;исключение мерцания;работоспособность при низкой температуре;компактность;долговечность.Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам.
Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально.Конденсаторы С1, С2выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах.
Конденсаторы С3, С4устанавливают слюдяные на 1000 В.ЛЛ не предназначена для питания постоянным током.Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА.
Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
Источники:
- elektrica.info
- gardenweb.ru
- gardenweb.ru
- fb.ru
Схема подключения люминесцентной лампы
Подключение люминесцентной лампы, известной также как лампа дневного света требует нескольких дополнительных устройств, определяемых принципом ее действия.
Существует два основных варианта:
- подключение при помощи стартера и дросселя, называемого еще электромагнитным балансом,
- подключение с использованием электронного баланса.
Схема подключения по первому варианту приведена на рисунках 1- для одной лампы, 2- для двух ламп.
Здесь:
- C — конденсатор, номинал которого определяется типом лампы,
- LL — дроссель,
- EL — собственно сама люминесцентная лампа,
- SF — стартер.
Следует учесть, что мощности лампы и дросселя должны быть соизмеримы, а для схемы рис.2 мощность баланса должна быть не менее суммарной мощности ламп. Если мощность каждой из них превышает 20 Вт, то следует использовать два дросселя.
Для этого существует отдельная схема, но я смысла ее приводить не вижу, так как можно просто подключить каждую лампу по схеме 1, запараллелив цепь питания. Так будет, на мой взгляд, проще.
О стартерах стоит сказать, что они бывают рассчитаны на напряжение 220 В (используется для первого случая) и 127 В (для второго). Действительно, если внимательно посмотреть схему подключения для двух ламп, то станет ясно, что они соединены последовательно, значит на каждый стартер приходится только половина напряжения питания.
Кстати, такое подключение имеет существенный недостаток — при выходе из строя одной лампы вторая работать не будет.
Что еще можно сказать про минусы стартерной схемы подключения. Это мерцание лампы в рабочем режиме, обусловленное частотой сети, моргание при запуске, кроме того выход из строя одного из элементов схемы может повлечь поломку других.
В определенной степени это нивелируется применением электронного баланса (ЭПРА), которых автоматически управляет всеми режимами люминесцентной лампы, начиная с пуска. Схема подключения для этого варианта приведена на рисунке 3.
Собственно, схемой ее можно назвать с большой натяжкой, поскольку моделей ЭПРА достаточно много, приводить конкретную схему смысла нет, поскольку она указывается на корпусе изделия (см. справа).
И, последнее, хороший баланс этого типа стоит сравнительно дорого, а плохой, думаю, никому не нужен.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Вторая жизнь люминесцентных ламп — 20 Ноября 2012 — Блог
Подключение не рабочих ЛДС и эконом-ламп от сети.
ИСТОЧНИК: множество интернет ресурсов.
Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :
На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда «зажигание» включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.
На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения. Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности. Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет 100 Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.
Конструктивное исполнение светильника не вызывает затруднений. Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.
На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально
Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.
Резистор R1 обязательно проволочный.
Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.
Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение 220 В.
Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.
В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания. Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.
Идем дальше….
Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.
Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.
Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.
Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.
Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.
Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.
Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.
В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ).
Включение люминесцентной лампы в сеть
Светотехника
Лампы дневного света (ЛДС) часто приходят в негодность по причине перегорания нитей накала. В литературе многократно описывались схемы запуска таких ламп. Предлагаю свою схему (рис.1), разработанную в результате многократных экспериментов с десятками ламп.
Рис.1. Принципиальная схема
В таблице приводятся значения номиналов деталей для ламп различной мощности. Ограничительный резистор R1 обязательно должен быть проволочным. Если при включении лампа сразу не загорается, имеет смысл (иногда помогает) поменять местами ее выводы.
Мощность лампы, Вт | С1,С2, мкФ | С3,С4, пФ | VD1..VD4 | R1, Ом |
20 | 2 | 3300 | Д226 | 100 |
30 | 4 | 3300 | Д226 | 60 |
40 | 10 | 3300 | Д226 | 60 |
80 | 20 | 6800 | Д205 | 30 |
100 | 20 | 6800 | Д231 | 30 |
Автор: А.КАШКАРОВ, г. С.-Петербург
Мнения читателей
- Андрей 86/11.10.2015 — 14:18
Ничё незнаю собрал чисто на коленке даже не паял так чисто связал диоды советские кондёры китайские залил всё в эпоксидку в место R1поставил обычную лампочку накаливания пашет аж бегом
- сергей/07.04.2015 — 16:10
Имею в виду лампу на 20 вт.
- сергей/07.04.2015 — 16:08
Работает всё отлично . В других схемах R1 60 ом . Но при 100 лучше светит .
- Арыслан/16.08.2014 — 16:39
Может у кого-то руки не тем местом вставлены и мозгов не хватает заставить работать схему правильно и поэтому всё грешат на г. Кашкарова. На другом ресурсе положительных отзывов о работе схеме больше половины.))
- дмитрий/30.05.2014 — 01:54
Недостаток схемы:нужны высоковольтные конденсаторы.Лучше всего советского производства бумажные . Но их очень трудно достать Относитесь ко всяким китайским и прочем осторожно и помещайте в герметический корпус. Они «любят» взрываться в самый не подходящий момент.Часто лампы в таких схемах просто не зажигаются. Диоды нужны на ток более 1А. Или ставить на радиаторы указанные в таблице.
- Сергей/12.12.2013 — 15:30
эти схемы я собирал более 30 лет назад, сейчас проще и надежнее использовать схему находящуюся в цоколе поврежденных энергосберегающих ламп
- EVGEN 52/09.01.2013 — 18:04
Использую схемы от сгоревших энергосберегаек для питания линейных ламп ЛД, ЛБ и т.д. Vet@l писал об этом ранее. Работает отлично.
- Нервомататель/12.10.2012 — 04:37
Пробовал собирать по данной схеме,схема рабочая,но есть одно но… люминесцентные лампы как бы тут не писали не любят постоянное напряжение, их лучше уж питать от блокинг генераторов.
- Ужас!/01.07.2012 — 23:32
Практически все опубликованные нетленки господина Кашкарова изобилуют либо недочётами (начинают работать после долгих мытарств на макетке), либо грубыми схемными ошибками. Надо выпустить отдельный сборник «Кашкаров А.П. Схемы-мозготрахи».
- Юрий/20.04.2012 — 19:42
А никто не пробовал в доплнение к обычной схеме включения зажигалку поставить от натриевой лампы?
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Поля, обязательные для заполнения
Добавить
Очистить
Подключение закругленной лампы дневного света схема. Ремонт люминесцентных ламп: схема запуска, основные неисправности
В статье рассмотрим ремонт люминесцентных ламп. Несмотря на то, что такой тип лам служит долго, они все-таки выходят из строя. Чтобы понять возможные причины поломки, нужно понимать принцип их действия.
Люминесцентная лампа представляет собой колбу, заполненную инертным газом с добавлением паров ртути. По краям лампы в колбу впаяны по паре электродов, к которым подключены спирали из вольфрама. Нити спиралей люминесцентной лампы похожи на те, что применяются в лампах накаливания. Отличие в том, что поверхность вольфрама покрыта пленкой из щелочных металлов. Это связано с назначением спиралей: их задача – не светить, а выделять в окружающее пространство свободные электроды. Так же работают катоды электронных ламп при разогреве.
Работа лампы разделяется на два этапа: запуск и свечение. При запуске стартер подключает спирали электродов, расположенных по краям лампы, к питающей сети последовательно с дросселем. Нити разогреваются, из них в окружающее пространство выделяются свободные электроны.
Затем стартер размыкает свои контакты и между электродами по краям лампы за счет ЭДС самоиндукции дросселя формируется импульс высокого напряжения. Электроны приходят в движение. Ток через газовый промежуток лампы при работе ограничивается индуктивным сопротивлением дросселя.
На своем пути электроны встречают молекулы инертного газа и ионизируют их. В результате молекулы теряют свободные электроны и становятся положительными зарядами – ионами. Так в лампе поддерживается количество носителей электрического тока.
При встрече с атомами ртути электроны не ионизируют их, а отдают энергию электронам, входящим в его состав. Электроны возбуждаются, переходя на более высокую орбиту. Но это состояние неустойчиво и длится непродолжительное время. Электроны, возвращаясь на свое место, отдают в окружающее пространство энергию в виде ультрафиолетового излучения.
Колба лампы изнутри покрыта люминофором – веществом, способным светиться под воздействием ультрафиолета. Так энергия ультрафиолетового излучения преобразуется в видимый свет, оттенок которого зависит от типа применяемого люминофора.
Ремонт люминесцентных ламп: основные неисправности
Нарушить герметичность лампы можно, только разбив ее. Утечка газов из ее внутренней полости невозможна. Причинами, в результате которых лампы выходят из строя, следующие:
- перегорание нитей накала;
- нарушение покрытия нитей накала;
- обеднение люминофора.
При нарушении свойств люминофорного покрытия лампы изменяется цвет ее свечения или уменьшается его яркость. Восстановить такую лампу невозможно.
При осыпании или выгорании покрытия электродов при запуске выделяется меньшее количество свободных электронов. Лампа не зажигается, при этом видно, что разогрев нитей происходит: по краям лампы наблюдается красноватое свечение, возникающее при замыкании контактов стартера.
Самая частая причина выхода из строя лампы – перегорание нитей накала
. Происходит оно по тем же причинам, что и в лампах накаливания. Дополнительно этому способствует осыпание или испарение слоя, покрывающего вольфрам. Металл с обнажившихся участков испаряется, толщина нити уменьшается. При очередном запуске нить рвется. Если перегорел один из двух электродов, лампа уже не запустится, так как прервется цепь запуска через стартер.
Схема для запуска неисправной люминесцентной лампы
Лампу с оборванными нитями накала можно заставить поработать еще. Для этого принципиально изменяется схема ее запуска: стартер и дроссель больше не помогут.
Электронные компоненты в схеме для разных мощностей лампы выбираются из таблицы
Номинальная мощность, Вт | Конденсаторы С1,С2 | Конденсаторы С3, С4 | Диоды Д1-Д4 |
30 | 4 мкФ х 350 В | 3300 пФ | Д226 Б |
40 | 10 мкФ х 350 В | 6800 пФ | Д226 Б |
80 | 20 мкФ х 350 В | 6800 пФ | Д 205 |
Конденсаторы С1
и С2
– бумажные, металлобумажные или им подобные, С3
и С4
– слюдяные, но выдерживать они должны рабочее напряжение не ниже 350 В, как и предыдущие. Указанные в таблице выпрямительные диоды устарели, вместо них можно использовать современные модели, выдерживающие прямой ток не менее 0,5 А и обратное напряжение – 400 – 600 В.
Схема представляет собой двухполупериодный выпрямитель с удвоением напряжения. Рассмотрим принцип ее работы, разделив его на три этапа.
Процесс повторяется с частотой питающей сети. Конденсаторы С3
и С4
предназначены для защиты от помех.
Подробнее про конденсаторы читайте статьи: « » и « «.
Нетрудно заметить, что работает лампа на постоянном токе (направление указано на последнем рисунке красной стрелкой). Поэтому пары ртути постепенно смещаются в сторону одного из электродов, из-за чего лампа светится неравномерно. Чтобы скомпенсировать этот недостаток, электроды лампы меняют местами, переворачивая ее в светильнике. Второй недостаток — частота пульсаций света лампы увеличивается в два раза.
Поэтому метод запуска перегоревших люминесцентных ламп рекомендуется выполнять в познавательных целях, либо для использования их в помещениях, в которых требования к качеству освещения невысоки и свет в них включается редко и на короткое время.
Наводил осенью в гараже порядок и нашёл три старые сгоревшие люминесцентные лампы. Маркировка — FL18S/D (рис.1
), длинна около 60 см, диаметр 26 мм. У одной уже люминофор начал осыпаться внутри трубки, а две внешне ещё целые. Решил вспомнить молодость и сделать светильник для гаражного верстака, зажигая лампу от выпрямителя-удвоителя сетевого напряжения 220 В.
Схему эту встречал в журналах «Юный техник» и «Рыбоводство и рыболовство» в разделе про аквариумы – раньше было намного проще найти сгоревшую лампу и спаять четыре диода Д7Ж с двумя конденсаторами МБМ 0,1мкФ (рис.2
), чем искать дроссель, стартёр и лампу с целыми нитями (есть подобная схема и ). В качестве балласта, берущего на себя излишки напряжения после зажигания люминесцентной лампы, использована обыкновенная лампа накаливания. От сопротивления её нити зависит яркость свечения люминесцентной лампы.
Рис.2
Вначале, конечно, надо проверить лампы на возможность работы в такой схеме. Навесным монтажом был спаян мост из диодов 1N4006, к нему подпаяны плёночные конденсаторы МРР 0,1 мкФ 400 В и разведена вся остальная коммутация. Лампу накаливания поставил мощностью 40 Вт. Первая же трубка засветилась без проблем (рис.3
), вторая внешне целая не захотела работать, зато та, что была отбракована из-за осыпания люминофора, тоже засветилась, но только после замены 40-ваттной лампы накаливания на 60-тиваттную.
Рис.3
Так, хорошо, теперь дело за корпусом. Светильник планировал поставить в гараже над верстаком, поэтому корпус нужен крепкий и желательно такой, чтобы закрывал лампы сверху и спереди от случайного удара – гараж, всё-таки…
Порывшись в обрезках, оставшихся от разных строительных ремонтов, нашёл кусок металлического профиля достаточной длины и шириной-глубиной 49х39 мм (стандарт, наверное, «50х40»). Примерно то, что надо, хотя жаль, что он узкий – был бы широкий, можно было бы обе рабочие лампы закрепить. Впрочем, нет, не жаль – всё равно гнёзд для установки люминесцентной лампы только два (рис.4
).
Рис.4
Примерно представив, где, что и как будет располагаться внутри «профиля», оказалось, что его длина избыточна и даже если устанавливать дополнительный патрон для лампы накаливания, достаточно длины 1,05-1,1 метра. Отрезаю излишки, а также выпиливаю из 16-тимиллиметровой плиты ДСП два прямоугольника размерами 48х37 мм для установки их в торцах короба (рис.5
и рис.6
).
Рис.5
Рис.6
Затем установка всех гнёзд и патронов для ламп на уголки из пластика (тоже остатки от ремонта) и крепление их «по месту» винтами и гайками на 3 мм (рис.7
)
Рис.7
На рис.8
видно, как это смотрится с лампами, а на рис.9
показано, как выглядят шляпки винтов с обратной стороны «профиля» — они почти не выступают и при надобности, сверху можно прикрепить деревянный брусок.
Рис.8
Рис.9
Диоды с конденсаторами распаяны на куске одностороннего фольгированного стеклотекстолита с оставленными на нём четырьмя участками фольги (рис.10
). Крепится эта «плата» к задней стенке «профиля» при помощи винта М3 (рис.11
). На передней стенке установлен сетевой выключатель. Электрическая разводка выполнена изолированным проводом в дополнительной тканевой изоляции – название не знаю, провод нашёл, как вы уже догадываетесь, тут же в гараже. Сетевой провод заходит через отверстие в боковой вставке около выключателя — видно в верхнем правом углу на рисунке 11
.
Рис.10
Рис.11
Электронная схема светильника в настройке не нуждается, если же он не всегда сразу загорается после включения, можно коснуться или провести рукой по поверхности люминесцентной лампы. Если кажется, что лампа накаливания светит избыточно ярко и при этом ещё нагревает корпус, то можно попробовать заменить её на более мощную – при этом она будет светить более тускло (рис.12
), а люминесцентная ярче, но у последней при этом уменьшится срок службы (если, конечно, можно говорить о «сроке службы» лампы с перегоревшей нитью).
Рис.12
Была ещё проверена лампа ЛБ-15 1984 года выпуска, найденная дома, но она не захотела работать ни при каких условиях. Зато был проведён такой эксперимент – светильник с лампой FL18S/D был подключен к сети 220 В через ЛАТР и после его зажигания напряжение питания было уменьшено примерно до 100 В. При этом лампа накаливания сильно потускнела, а люминесцентная лампа светила почти без изменений — достаточно хорошее свойство для применения в гараже, где напряжение 220 В очень нестабильное.
Андрей Гольцов, г. Искитим
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
VD1-VD4 | Выпрямительный диод | 1N4006 | 4 | или 1N4007 |
Недавно посмотрел на целую коробку сгоревших энергосберегающих ламп, в основном с хорошей электроникой, но перегоревшими нитями накала люминисцентной лампы, и подумал – надо куда-то всё это добро применить. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов.
И хотя зажигание с холодными электродами является для более тяжелым режимом, чем включение обычным образом, этот метод позволяет ещё долгое время использовать люминисцентную лампу для освещения. Как известно, зажигание лампы с холодными электродами требует повышенного напряжения до 400…600 В. Реализуется это простым выпрямителем, напряжение выхода которого будет почти в два раза выше входного сетевого 220В. В качестве балласта устанавливается обычная маломощная лампочка накаливания, и хотя использование лампы вместо дросселя снижает экономичность такого светильника, если использовать лампы накаливания на напряжение 127 В и её включить в цепь постоянного тока последовательно с лампой, то будем иметь достаточную яркость.
Диоды любые выпрямительные, на напряжение от 400В и ток 1А, можно и советские коричневые КЦ-шки. Конденсаторы так-же с рабочим напряжением не менее 400В.
Данное устройство работает как удвоитель напряжения, выходное напряжение которого приложено к катоду — аноду ЛДС. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой и напряжение одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30 — 80 Вт, имеющих рабочее напряжение в среднем около 100 В. При таком включении схемы, световой поток лампы накаливания будет составлять примерно четверть от потока ЛДС.
Для люминисцентной лампоы мощностью 40 Вт необходима лампа накаливания 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. А для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания — около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность — 34 % от номинальной.
Предлагаем два варианта подключения люминисцентных ламп, без использования дросселя.
Вариант 1.
Все люминесцентные светильники, работающие от сети переменного тока (кроме светильников с высокочастотными преобразователями), излучают пульсирующий (с частотой 100 пульсаций в секунду) световой поток. Это действует утомляюще на зрение людей, искажает восприятие вращающихся узлов в механизмах.
Предлагаемый светильник собран по общеизвестной схеме электропитания люминесцентной лампы выпрямленным током, отличающейся введением в нее конденсатора большой емкости марки К50-7 для сглаживания пульсаций.
При нажатии на общую клавишу (см. схему 1) срабатывает кнопочный выключатель 5В1, подсоединяющий светильник к электросети, и кнопка 5В2, замыкающая своими контактами цепь накала люминесцентной лампы ЛД40. При отпускании клавиш выключатель 5В1 остается включенным, а кнопка SВ2 размыкает свои контакты, и от возникающей ЭДС самоиндукции лампа зажигается. При вторичном нажатии на клавишу выключатель SВ1 размыкает свои контакты, и светильник гаснет.
Описание включающего устройства не привожу из-за его простоты. Для равномерного износа нитей накала лампы полярность ее включения следует менять примерно через 6000 часов работы.Световой поток, излучаемый светильником, практически не имеет пульсаций.
Схема 1. Подключения люминисцентной лампы с перегоревшей нитью (вариант 1.)
В таком светильнике можно применять даже лампы с одной перегоревшей нитью.
Для этого ее выводы замыкают на цоколе пружинкой из тонкой стальной струны, и лампа вставляется в светильник так, чтобы на замкнутые ножки поступал «плюс» выпрямленного напряжения (верхняя нить на схеме).
Вместо конденсатора марки КСО-12 на 10000 пф, 1000 В может быть использован конденсатор из вышедшего из строя стартера для ЛДС.
Вариант 2.
Основная причина выхода из строя люминесцентных ламп та же, что и ламп накаливания — перегорание нити накала. Для стандартного светильника люминесцентная лампа с такого рода неисправностью, конечно же, непригодна, и ее приходится выбрасывать. Между тем по другим параметрам ресурс лампы с перегоревшей нитью накала часто остается далеко не выработанным.
Одним из способов «реанимации» люминесцентных ламп является применение холодного (мгновенного) зажигания. Для этого хотя бы один из катодов должен об-
ладать эмиссионной активностью (см. схему, реализующую указанный способ).
Устройство представляет собой диодно-конденсаторный умножитель с кратностью 4(см.схему 2). Нагрузкой служит цепь из последовательно соединенных газоразрядной лампы и лампы накаливания. Их мощности одинаковы (40 Вт), номинальные напряжения питания также близки по величине (соответственно 103 и 127 В). Вначале при подаче переменного напряжения сети 220 В устройство работает как умножитель. В результате к лампе оказывается приложенным высокое напряжение, которое и обеспечивает «холодное» зажигание.
Схема 2. Еще один вариант подключения люминисцентной лампы с перегоревшей нитью.
После возникновения устойчивого тлеющего разряда устройство переходит в режим двухполупериодного выпрямителя, нагруженного активным сопротивлением. Эффективное напряжение на выходе мостовой схемы практически равно сетевому. Оно распределяется между лампами Е1.1 и Е1.2. Лампа накаливания выполняет функцию токоограничивающего резистора (балласта) и вместе с тем она используется как осветительная, что повышает КПД установки.
Заметим, что люминесцентная лампа представляет фактически своего рода мощный стабилитрон, так что изменения величины питающего напряжения сказываются главным образом на свечении (яркости) лампы накаливания. Поэтому, когда напряжение сети отличается повышенной нестабильностью, лампу Е1_2 нужно взять мощностью 100 Вт на напряжение 220 В.
Совместное применение двух разнотипных источников света, взаимодополняющих друг друга, приводит к улучшению светотехнических характеристик: уменьшаются пульсации светового потока, спектральный состав излучения ближе к естественному.
Устройство не исключает возможности использования в качестве балласта и типового дросселя. Его включают последовательно на входе диодного моста, например, в разрыв цепи вместо предохранителя. При замене диодов Д226 на более мощные — серии КД202 или блоки КД205 и КЦ402 (КЦ405) умножитель позволяет питать люминесцентные лампы мощностью 65 и 80 Вт.
Правильно собранное устройство не требует наладки. В случае нечеткого зажигания тлеющего разряда либо при отсутствии такового вообще при номинальном сетевом напряжении следует изменить полярность подсоединения люминесцентной лампы. Предварительно необходимо произвести отбор перегоревших ламп для выявления возможности работать в данном светильнике.
Как работает люминесцентная лампа схема
Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
- На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
- При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
- Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
- Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;
- не нужны массивный электромагнитный дроссель и стартер;
- отсутствие гудения и моргания ламп;
- высокая светоотдача;
- легкость и компактность устройства;
- больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.
ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.
Преимущества современных ЭПРА следующие:
- плавное включение;
- экономичность работы;
- сохранение электродов;
- исключение мерцания;
- работоспособность при низкой температуре;
- компактность;
- долговечность.
Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.
ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
Схема и ремонт люминесцентных энергосберегающих ламп
В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.
Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.
Отличительные особенности люминесцентных ламп от обычных ламп накаливания.
Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.
Устройство компактной люминесцентной лампы (КЛЛ).
Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.
Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.
По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.
Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.
Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.
Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.
При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.
Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.
Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.
Ремонт бытовых люминесцентных ламп с электронным балластом.
Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.
Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.
Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.
Опасность люминесцентных ламп и рекомендации по использованию.
Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .
При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .
Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.
Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.
Разборка люминесцентной лампы с электронным балластом.
Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.
Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.
Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.
Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).
Восстановление работоспособности ламп с электронным балластом.
При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.
Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.
Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.
В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.
Холодный и горячий режим запуска люминесцентных ламп.
Бытовые люминесцентные лампы бывают двух типов:
С холодным запуском
С горячим запуском
Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.
Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.
Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.
Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.
В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.
В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.
Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.
Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.
Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.
Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.
Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.
При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.
Устройство люминесцентной лампы
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
Схема
Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.
Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.
Схема подключения люминесцентных ламп без дросселя и стартера
В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:
- подключение с применением электромагнитного балласта и стартера;
- подключение с электронным пускорегулирующим аппаратом.
Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.
Схема подключения лампы с дросселем и стартером
Как загорается люминесцентная лампа?
Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:
- на электроды, расположенные на цокольных штырях, подаётся напряжение;
- высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
- ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
- после остывания стартерных контактов происходит их полное размыкание;
- самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
- проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.
Для чего нужен дроссель в люминесцентной лампе
Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.
В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:
- 9 Вт — для стандартной энергосберегающей лампы;
- 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
- 18 w — для настольных осветительных приборов;
- 36 Вт — для люминесцентного светильника с малыми показателями мощности;
- 58 Вт — для потолочных светильников;
- 65 Вт — для многоламповых приборов потолочного типа;
- 80 Вт — для мощных осветительных приборов.
Принцип работы стартера люминесцентной лампы
Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.
Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.
Схема работы стартера
Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.
Устройство и принцип работы люминесцентного светильника
Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.
Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.
Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.
Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.
Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.
Видео на тему
Вторая жизнь светильников с ЛДС — Конструкции простой сложности — Схемы для начинающих
Люминесцентные лампы, называемые лампами дневного света (далее ЛДС), сегодня активно используются в различных областях промышленности и в быту. Отрицательным моментом при эксплуатации светильников с ЛДС считается периодическое перегорание спирали люминесцентных ламп. В каждой лампе дневного света присутствуют две спирали (с разных концов), необходимые для зажигания люминофора внутри лампы в момент включения. Причем, если хоть одна из спиралей лампы перегорит, включить ЛДС с помощью классической схемы запуска (содержащей дроссель, конденсатор и стартер) уже невозможно. В такой ситуации многие покупают новую лампу. Однако когда в помещении установлены несколько светильников (например, в производственных цехах, многоквартирных домах на лестничных клетках и в других сходных случаях), очевидно, что за годы эксплуатации выходит из строя и скапливается без дела множество люминесцентных ламп с перегоревшими спиралями. Сегодня это очень популярная проблема. ЛДС с перегоревшими спиралями, как правило, складируют, надеясь в скором будущем запустить их с помощью какой-нибудь «волшебной» схемы очередного Кулибина, а когда лампы скапливается уже несчетное количество, их просто с сожалением выбрасывают. Происходит расходование средств и неоправданное захламление складских помещений. Эту ситуацию можно изменить. Для оптимизации расходов и полезного места предлагаю простую электрическую схему устройства, запускающего люминесцентные лампы даже с перегоревшими спиралями. Причем в отличие от множества опубликованных и популярных конструкций, предлагаемая ниже схема содержит всего несколько деталей. Благодаря применению выпрямителя, собранного по мостовой схеме, нет необходимости в гасящем ток и напряжение резисторе большой мощности (как это принято в известных схемах). На рис. 1 представлена проверенная электрическая схема для запуска и питания светильников с ЛДС мощностью от 20 до 80 Вт.
Причем, как видно их электрической схемы, спирали лампы (с ее торцов) «закорочены», то есть, соединены, поэтому не имеет значения, какие применяются лампы — новые или б/у, с нормальными спиралями или с перегоревшими. Эта схема отличается от опубликованных многочисленных схем электронных устройств в сторону простоты и надежности. Главное, чтобы мощность ЛДС не превышала 80 Вт, потому что для более мощных ламп требуется применение соответствующих диодов (входящих в выпрямительный мост VD1). В данной схеме допустимо применение диодов с обратным напряжением не менее 300 В, например, КД105Б — КД105Г, Д112-16, КД2996В, КД2997, КД243Г, КД202Е и аналогичных. При мощности ЛДС 80 Вт рекомендую применять диоды типа Д231, Д242 и установить их на теплоотводы с площадью охлаждения не менее 50 см2 каждый. Устройство прошло технические испытания в течение десяти суток непрерывной работы с ЛДС Philips мощностью 40 Вт. Дроссель L1 штатный для светильников с ЛДС мощностью до 80 Вт, то есть любой из типового ряда ВТА. Если предполагается применять ЛДС с меньшей мощностью, например, до 40 Вт, допустимо использовать другой дроссель, соответственно с обозначением на его корпусе ВТА 36 W 220 V. Неполярный конденсатор СЗ служит для купирования помех по питанию. Его тип может быть любым, например, К73-24 (или зарубежный аналог KWC) на рабочее напряжение не ниже 300 В. Неполярные конденсаторы С1, С2 — однотипные, например, из серии K22-У или аналогичные, на рабочее напряжение 160 В и более. Они придают устройству большую надежность и долговечность, препятствуя помехам в моменты поджига люминофора в ЛДС, однако эти два элемента можно без последствий из схемы исключить. В качестве ЛДС применяются отечественные или изготовленные за рубежом лампы (например, фирмы Philips) соответствующего размера и мощностью от 20 до 80 Вт. Предлагаемая схема рассчитана на включение одной из таких ламп, ее нельзя применять для включения нескольких ламп. Таким образом, если стоит конкретная задача — например, запустить освещение на производственном участке большой площади с использованием нескольких ЛДС, для каждой из них требуется собрать отдельную схему. Включать в рекомендуемой схеме ЛДС параллельно нельзя.
Практическое применение (переделка) промышленных светильников с ЛДС
Еще один аспект применения ЛДС в том, что часто радиолюбитель — конструктор пытается переделать уже готовый промышленный светильник под свои нужды. Например, если требуется оставить включенной только одну ЛДС в светильнике, где конструктивно предусмотрены две однотипные ЛДС. На практике часто требуется реконструировать светильник с ЛДС для аквариума. Дело в том, что для отдельно взятого аквариума с водорослями требуется строго регламентированное количество освещение (сила света) в течение дня. Если установлен светильник с ЛДС большой мощности (более 20 Вт на аквариум объемом до 100 л), вода в аквариуме мутнеет и «цветет». Большой радости аквариумисту и радиолюбителю такое положение вещей доставить не может. Предлагаемые сегодня в магазинах и на рынках светильники с ЛДС для аквариумов (рассчитаны на мощность 10…30 Вт), как правило, одни и те же. А объем аквариумов и их насыщенность «цветущими травами» у разных аквариумистов разнятся, поэтому часто требуется вносить коррективы в штатную схему подключения ЛДС. Так, например, в этой связи встает вопрос — как эффективно подключить одну ЛДС вместо двух, предусмотренных в штатном варианте? Это не сложно и под силу даже начинающему радиолюбителю. На рис. 2 представлена классическая электрическая схема включения ЛДС с двумя лампами для аквариума.
Как известно, ЛДС включаются не параллельно друг другу, как принято, например, включать в осветительную сеть 220 В лампы накаливания, а для каждой ЛДС предусмотрен отдельный запускающий элемент — стартер. Сопротивление одной спирали ЛДС мощностью 20 Вт составляет 4 Ома. Если исключить одну лампу, чтобы уменьшить насыщенность освещения, решить проблему обыкновенным шунтированием (резистором сопротивлением 3…5 Ом) спирали второй лампы с последующим изъятием ЛДС из светильника не удается. Оставшаяся в светильнике лампа начинает моргать, чем выводит пользователя из состояния душевного равновесия. Чтобы включить в таком светильнике одну ЛДС вместо двух предусмотренных, применяют электрическую схему, показанную на рис. 3.
Все электрические параметры элементов и рекомендации относительно эффективного использования устройства аналогичны описаниям в предыдущих разделах.
Почему «моргает» ЛДС?
Исправная лампа дневного света после подачи напряжения на схему запуска один-два раза мигнет (внутри лампы происходит поджиг люминофора) и начинает светиться ровным бело-молочным светом (поэтому такие лампы и прозвали лампами «дневного» света). Если лампа после включения продолжает моргать (мигает) — такое может случиться как сразу после подачи питания на схему, так и в рабочем режиме свечения (после ровного света вдруг начинаются мигания, продолжающиеся, как правило, до тех пор, пока не выключат питание) — зто указывает на неисправность стартера, схемы преобразователя переменного напряжения для ЛДС или говорит об изменении сопротивления нагрузки (мощности ЛДС). Об этом ниже. Съемные элементы конструкции светильников (находящиеся в колодках), такие как стартер и сама лампа легко заменяются новыми (другими). Неполярный конденсатор включен в схеме в сеть 220 В и препятствует как появлению помех от других устройств, включенных в осветительную сеть в данном контуре, так и для локализации электрических помех, производимых устройством запуска ЛДС. Сглаживающий электрические помехи конденсатор редко выходит из строя, и его неисправность, как правило, выражается лишь в потере емкости в небольших пределах. Назвать потерю емкости конденсатора на 10…20% относительно номинальной серьезной неисправностью нельзя, поэтому такой конденсатор может пригодиться радиолюбителю в дальнейших экспериментах. Рассмотрим другие элементы, конструктивно входящие в классическую схему запуска ЛДС и их типичные неисправности.
Дроссель
Дроссель, находящийся в устройстве запуска ЛДС, как правило, не выходит из строя при правильной эксплуатации светильника. Его типичные неисправности могут проявить себя в «обрыве» (легко определяется прозвонкой омметром) — тогда ЛДС вообще не зажжется, или в межвитковом замыкании — тогда дроссель будет нагреваться, оплавлять лакокрасочное покрытие и «гудеть». Таким образом, установить неисправный элемент в схеме запуска ЛДС даже без применения паяльника не составит труда.
Стартер
Стартер представляет собой электровакуумный разрядник, нормально замкнутые контакты, которого размыкаются под воздействием протекающего через них переменного тока определенной силы. Стартеры рассчитаны на определенный ток в цепи и соответственно мощность ЛДС (этот параметр мощности ЛДС указан на корпусе — бочонке стартера, как и параметр напряжения — 220 В) Поэтому применять стартеры, рассчитанные на работу с ЛДС мощностью 25 Вт нельзя (неэффективно) с более мощной ЛДС, например, 80 Вт — такое устройство нормально работать не будет. Вот почему ЛДС в светильник мигают при замене штатных ламп на другие ЛДС с меньшей или больше мощностью. В первый момент времени контакты стартера замкнуты и в цепи течет ток, заставляя разогреваться внутренние спирали ЛДС. После того как ток стабилизировался (это происходит после поджига люминофора внутри лампы), между контактам стартера возникает большое сопротивление, и также течет ток, только меньшей силы. Внутри бочонка стартера параллельно контактам электровакуумного выключателя установлен неполярный конденсатор емкость 0,01 мкФ. Он защищает включатель от перегрузки и искрения в моменты коммутации в цепи. Если использовать данный включатель (стартер) в качестве неонового индикатора, этот конденсатор удаляют. Неоновый газ в разряднике при приложении переменного напряжения (когда сопротивление между контактами велико) светится розовым светом. Этот эффект свечения можно использовать в других радиолюбительских конструкциях. Электровакуумный включатель стартера может выполнять роль неоновой индикаторной лампы, если его включить в осветительную сеть 220 В последовательно с ограничивающим ток резистором сопротивлением 0,1…1 мОм.
Лампа
Классическая ЛДС имеет две спирали, расположенные с торцов лампы, к которым в момент включения подводится напряжение для запуска. После прогрева спиралей (как правило, 1 …2 сек) в лампе поджигается люминофор и ЛДС светится. После стабилизации тока (зажигания люминофора) напряжение, приложенное к спиралям лампы, уменьшается, обеспечивая небольшое потребление мощности в совокупности с хорошими показателями освещенности. Если одна или обе спирали ЛДС перегорят, такая лампа работает не стабильно (мигает или не светится), полноценного поджига люминофора не происходит.
Радиолюбитель №4 2007г стр. 15
Флуоресцентные стартеры | Все, что вам нужно знать
Флуоресцентные стартеры или стартеры накаливания используются для зажигания люминесцентных ламп и ламп на начальном этапе их работы.
Проще говоря, люминесцентные пускатели — это реле с таймером. Переключатель открывается и закрывается до тех пор, пока люминесцентная лампа не «загорится» и не загорится. Если люминесцентная лампа не загорается, переключатель повторяет цикл открытия / закрытия, и люминесцентные лампы снова пытаются зажечься.
Прочтите, если вы хотите узнать больше об этом процессе…
Когда питание впервые подается на люминесцентный светильник, ток создает внутри люминесцентного стартера два электрода, которые нагреваются и светятся.Это заставляет один из электродов люминесцентного стартера изгибаться и контактировать с другим электродом. Это замыкает переключатель, и теперь ток проходит через люминесцентный стартер к остальной части светильника. Это означает, что цепь между люминесцентной лампой и балластом в арматуре будет эффективно переключаться «последовательно» с питающим напряжением.
Ток, который сейчас течет в люминесцентную лампу, заставляет нити на каждом конце люминесцентной лампы нагреться и начать испускать электроны в газ, который существует внутри люминесцентной лампы, с помощью процесса, известного как термоэлектронная эмиссия.
Внутри люминесцентного стартера прикосновение электродов замыкает поддерживающее их напряжение, и они начинают остывать и отклоняться друг от друга. Затем это размыкает переключатель в течение секунды или двух.
Затем ток через нити люминесцентной лампы и балласта прерывается, и, когда цепь больше не включена последовательно, полное напряжение подается на нити люминесцентной лампы, и это создает индуктивный толчок, который обеспечивает высокое напряжение, необходимое для включите люминесцентную лампу.
Если нити были недостаточно горячими во время начального цикла, люминесцентная лампа не загорается, и цикл повторяется, при этом стартер нагревается и снова замыкает цепь.
Обычно требуется несколько циклов зажигания люминесцентной лампы, что вызывает мерцание и щелчки на этапе запуска.
После зажигания люминесцентной лампы переключатель стартера не замыкается снова, потому что напряжение на зажженной люминесцентной лампе недостаточно для возобновления процесса нагрева электродов в люминесцентном пускателе.
Чем старше люминесцентная лампа и чем старше люминесцентный стартер, тем менее эффективно они зажигают. Трубка, запуск которой занимает более нескольких секунд, является явным индикатором того, что трубка и стартер могут нуждаться в замене.
Типы люминесцентных пускателей
Флуоресцентные пускатели можно определить по обозначенной мощности, написанной на боковой стороне. Мощность напрямую зависит от длины люминесцентной лампы, для работы с которой она предназначена.
Ниже перечислены 3 наиболее распространенных типа люминесцентных стартеров:
- Стартер серии
- с двумя трубками серии FS2 мощностью до 22 Вт — для использования с люминесцентными лампами при использовании в потолочных панелях 600 мм x 600 мм с несколькими трубками (обычно используются в офисах и т. П. коммерческие приложения).
- Одноламповый стартер от 4 Вт до 65 Вт (FSU-10) — Обычно используется для люминесцентных ламп мощностью 2 фута 18 Вт, 3 фута 30 Вт, 4 фута 36 Вт и 5 футов 58 Вт.
- Одноламповый стартер от 70 до 125 Вт (FS125) — Обычно используется для люминесцентных ламп 6 футов мощностью 70 Вт и более.
Лампы 2D и круглые лампы T9
Как правило, в двухконтактных лампах стартер встроен в корпус, а в 4-контактных версиях требуется внешний люминесцентный стартер.
При замене двухмерной или круглой лампы убедитесь, что вы заменили аналогичную лампу соответствующей мощности.
Как узнать, нужен ли вам новый стартер?
- Мерцающая люминесцентная лампа.
- Люминесцентная лампа не светится.
- Люминесцентная лампа освещает только один конец.
- Люминесцентные лампы освещают только концы, но не середину.
При рассмотрении вопроса о замене лампы на участке с несколькими лампами мы предлагаем заменить все старые лампы на новые.
Старые трубки теряют цвет и со временем могут казаться тусклыми. Новые рядом будут выглядеть ярче и чище.
Замена всех ламп в комнате вместе придаст общий однородный вид.
Обязательно прочтите наше удобное руководство по замене люминесцентных ламп.
Мы также рекомендуем заменять все люминесцентные стартеры при замене лампы.Это обеспечивает быстрый и эффективный запуск, обеспечивает максимальную производительность трубки и может продлить срок ее службы.
Обратите внимание, что светодиодные лампы поставляются со своим собственным специальным стартером, который, по сути, представляет собой схему, которая обходит функцию, которую выполнял бы обычный люминесцентный стартер (светодиодные лампы не нуждаются в «нагревании»). НИКОГДА не используйте люминесцентный стартер со светодиодной лампой.
Управление небольшой люминесцентной лампой с постоянным током
Управление небольшой люминесцентной лампой с постоянным током
Я представляю здесь необычную схему для управления небольшой люминесцентной лампой с постоянным током.Его использование очень ограничено и определенно не так хорошо, как традиционный кондиционер.
схемы «стартера и балласта», но в дидактических целях я все еще
нахожу это интересным альтернативным и необычным способом соединения этих
лампы.
Люминесцентные лампы состоят из двух электродов в атмосфере низкого давления.
состоит из смеси газов; обычно пары аргона и ртути.
Когда трубка выключена, она ведет себя как изолятор, пока напряжение между
его электроды поднимаются выше порогового значения, называемого ударным напряжением (или
пусковое напряжение или ионизирующее напряжение ).Фактическое значение зависит от многих факторов, таких как состав газа, давление газа,
материал электрода, температура электрода и т. д.
Без предварительного нагрева электродов оно может составлять всего несколько сотен вольт.
для небольших трубок и до нескольких десятков киловольт для длинных трубок.
Обычно электроды предварительно нагревают, чтобы снизить пусковое напряжение на
примерно в десять раз, но здесь это не то, что делается.
При достижении пускового напряжения газ ионизируется, запускается ток.
течет и создается свет.Напряжение между электродами падает до низкого значения, где-то между 30
и 100 В, в зависимости от длины трубки и состава
газ внутри.
Ток должен быть ограничен цепью балласта, чтобы лампа оставалась в рабочем состоянии.
номинальная мощность и предотвратить его перегрузку.
Принципиальная схема драйвера лампы.
Люминесцентные лампы почти всегда питаются от переменного тока, но в этой схеме используются
ОКРУГ КОЛУМБИЯ.По сути, эта схема представляет собой удвоитель напряжения, состоящий из двух диодов 1N4007.
и два высоковольтных электролитических конденсатора по 10 мкФ 350 В.
Такие конденсаторы легко утилизировать из компактных люминесцентных ламп.
Когда лампа выключена, диоды выпрямляются и удваивают
230 В AC сеть, вырабатывающая около 650 В DC на
электроды лампы.
Это напряжение достаточно высокое, чтобы напрямую запустить люминесцентную лампу малой мощности.
без предварительного нагрева электродов.Он отлично работает с лампами на 4 Вт и со многими 8 Вт, но с 12 Вт.
лампы сложны и не всегда запускаются надежно.
Я пытался соединить оба вывода каждого электрода вместе или только по одному на каждый
электрод без заметной разницы.
Даже если бы не пробовал, сомневаюсь, что эта схема будет работать с
120 В AC от сети, так как простого удвоителя, вероятно, недостаточно для
генерировать высокое напряжение, чтобы ударить по трубке.
Как только лампа загорится и ток начнет течь, два 470 нФ
конденсаторы действуют как балласт: они ограничивают ток и понижают напряжение, поэтому
что трубка может работать безопасно.Когда он включен, напряжение между электродами трубки 4 Вт составляет около
30 В.
Почему два конденсатора по 470 нФ параллельно?
Просто потому, что у меня под рукой не было 1 мкФ.
Резистор 1 МОм и два резистора 470 кОм действуют как
стравливающие резисторы для разряда конденсаторов при переключении цепи
выключенный.
Имейте в виду, что энергия, запасенная в этих конденсаторах, может быть
смертельный; , даже с установленными дренажными отверстиями, будьте предельно осторожны с этим
цепь, так как резистор может быть сломан.Поскольку лампа напрямую подключена к электросети, прикасаться к любой части необходимо.
избегать, и нужно быть очень осторожным.
Как обычно, попробуйте эту схему, только если вы знаете, что делаете, и по адресу ваш
на свой страх и риск .
Не забудьте прочитать мой отказ от ответственности.
Резистор 82 Ом используется для уменьшения скачка пускового тока при
цепь сначала включается, и все конденсаторы все еще разряжены.
Поскольку эта схема не нагревает электроды, запуск трубки может быть
трудно, если лампа старая или слишком длинная.Удивительно, но прикосновение к трубке одной рукой может помочь, и я могу начать
Трубка 22 Вт, коснувшись стекла одним концом и потянув за руку
трубка.
Но будьте особенно осторожны и просто дотроньтесь до стеклянной части трубки: все части
находятся под высоким напряжением и напрямую подключены к электросети: делайте это самостоятельно
риск.
Заметив, что прикосновение к трубке рукой помогло начать долгую
трубки, я играл с металлической пластиной вдоль трубки, которую я подключил к земле.Это немного помогает (не знаю почему), но чудес не творит.
Фотографии лампы. (нажмите, чтобы увеличить).
Когда лампа горит, можно заметить, что отрицательный электрод (в
рисунок слева) темнее положительного: это связано с
Темная зона Фарадея , типичная для газовых разрядов низкого давления, то есть
Виден только при питании трубки постоянным током.
Как я уже сказал, это красивая, необычная, забавная и опасная трасса.
Определенно поучительно, чтобы узнать, как работают люминесцентные лампы, но недостаточно хорошо, чтобы
заменить обычную цепь балласта переменного тока.
Световод: люминесцентные балласты
Световод
Для работы всех газоразрядных ламп, в том числе люминесцентных, требуется балласт. Балласт обеспечивает высокое начальное напряжение для инициирования разряда, а затем быстро ограничивает ток лампы для безопасного поддержания разряда.Производители ламп указывают электрические входные характеристики лампы (ток лампы, пусковое напряжение, пик-фактор тока и т. Д.), Необходимые для достижения номинального срока службы лампы и характеристик светового потока. Аналогичным образом, Американский национальный институт стандартов (ANSI) публикует рекомендуемые характеристики входной мощности для всех ламп типа ANSI. Балласты предназначены для оптимальной работы ламп уникального типа; однако некоторые пускорегулирующие устройства могут адекватно работать с несколькими типами ламп. В этих случаях оптимальные характеристики лампы обычно не достигаются при всех условиях.Неоптимальные условия могут повлиять на пусковые характеристики лампы, светоотдачу и срок службы.
Тип цепи и режим работы
Люминесцентные балласты производятся для трех основных типов люминесцентных ламп: предварительного нагрева, быстрого запуска и мгновенного запуска.
Операция предварительного нагрева Электроды лампы нагреваются до начала разряда. «Выключатель стартера» замыкается, позволяя току течь через каждый электрод. Выключатель стартера быстро охлаждается, размыкая выключатель и вызывая напряжение питания на дуговой трубке, вызывая разряд.Во время работы на электроды не подается вспомогательное питание.
Операция быстрого запуска Электроды лампы нагреваются до и во время работы. Балластные трансформаторы имеют две специальные вторичные обмотки для подачи на электроды надлежащего низкого напряжения.
Операция мгновенного запуска Электроды лампы не нагреваются перед работой. Балласты для ламп мгновенного пуска предназначены для обеспечения относительно высокого пускового напряжения (по сравнению с лампами предварительного нагрева и быстрого пуска) для инициирования разряда на ненагретых электродах.
Быстрый запуск — самый популярный режим работы для 4-футовых 40-ваттных ламп и 8-футовых ламп высокой мощности. Преимущества быстрого запуска включают плавный запуск, длительный срок службы и возможность регулирования яркости. Лампы мощностью менее 30 Вт обычно работают в режиме предварительного нагрева. Лампы, работающие в этом режиме, более эффективны, чем режим быстрого запуска, поскольку для постоянного нагрева электродов не требуется отдельная мощность. Однако эти лампы имеют тенденцию мерцать при запуске и имеют более короткий срок службы.Восьмифутовые «тонкие» лампы работают в режиме мгновенного пуска. Мгновенный запуск более эффективен, чем быстрый запуск, но, как и в режиме предварительного нагрева, срок службы лампы короче. Лампа F32T8 высотой 4 фута 32 Вт — это лампа для быстрого пуска, обычно работающая в режиме мгновенного пуска с электронными высокочастотными балластами. В этом режиме работы эффективность лампы повышается с некоторым сокращением срока службы лампы.
Энергоэффективность
Люминесцентные лампы достаточно эффективны при преобразовании входной мощности в свет.Тем не менее, большая часть энергии, подаваемой в систему балласта люминесцентных ламп, производит ненужную тепловую энергию.
Есть три основных средства повышения эффективности системы балластных люминесцентных ламп:
- Уменьшить балластные потери
- Включите лампу (лампы) на высокой частоте
- Уменьшить потери на электроды лампы
Новые, более энергоэффективные балласты, как магнитные, так и электронные, используют один или несколько из этих методов для повышения эффективности системы балласта лампы, измеряемой в люменах на ватт.Потери в магнитных балластах были уменьшены за счет замены алюминиевых проводов на медные и за счет использования магнитных компонентов более высокого качества. Потери балласта также могут быть уменьшены за счет использования одного балласта для управления тремя или четырьмя лампами вместо одной или двух. Тщательная схемотехника увеличивает эффективность электронных балластов. Кроме того, электронные балласты, которые преобразуют частоту источника питания 60 Гц в высокую частоту, работают с люминесцентными лампами более эффективно, чем это возможно при 60 Гц. Наконец, в схемах быстрого запуска некоторые магнитные балласты повышают эффективность за счет отключения питания электродов лампы после запуска.
Балластный фактор
Одним из наиболее важных параметров балласта для проектировщика / инженера по свету является коэффициент балласта. Балластный коэффициент необходим для определения светоотдачи конкретной балластной системы лампы. Фактор балласта — это мера фактического светового потока для конкретной системы балласта лампы по сравнению с номинальным световым потоком, измеренным с эталонным балластом в условиях испытаний ANSI (на открытом воздухе при 25 ° C [77 ° F]). Для балласта ANSI для стандартных 40-ваттных ламп F40T12 требуется балластный коэффициент равный 0.95; такой же балласт имеет балластный коэффициент 0,87 для 34-ваттных энергосберегающих ламп Ф40Т12. Однако многие балласты доступны как с высоким (в соответствии со спецификациями ANSI), так и с низким балластным коэффициентом (от 70 до 75%). Важно отметить, что значение балластного фактора является характеристикой не просто балласта, а балластной системы лампы. Балласты, которые могут работать с несколькими типами ламп (например, балластный блок F40 мощностью 40 Вт может работать с лампами F40T12 мощностью 40 Вт, F40T12 на 34 Вт или F40T10 мощностью 40 Вт), как правило, будут иметь различный балластный коэффициент для каждой комбинации ( е.g., 95%, <95% и> 95% соответственно).
Балластный коэффициент не является показателем энергоэффективности. Хотя более низкий балластный коэффициент уменьшает световой поток лампы, она также потребляет пропорционально меньшую входную мощность. Таким образом, тщательный выбор системы балласта лампы с определенным балластным коэффициентом позволяет дизайнерам лучше минимизировать потребление энергии за счет «настройки» уровней освещения в помещении. Например, в новом строительстве, как правило, лучше всего использовать высокий балластный коэффициент, поскольку для удовлетворения требований к уровню освещенности потребуется меньше светильников.При модернизации или в областях с менее важными визуальными задачами, таких как проходы и коридоры, балласты с более низким балластным фактором могут быть более подходящими.
Чтобы избежать резкого сокращения срока службы лампы, балласты с низким балластным коэффициентом (<70%) должны работать с лампами только в режиме быстрого запуска. Это особенно актуально для 32-ваттных ламп F32T8, работающих на высокой частоте.
Найти балластный коэффициент для комбинаций лампы и балласта может быть непросто, так как немногие производители балластов предоставляют эту информацию в своих каталогах.Однако, если входная мощность для конкретной системы балласта лампы известна (обычно ее можно найти в каталогах), можно оценить балластный коэффициент.
Мерцание
Электромагнитные балласты предназначены для согласования входного напряжения 60 Гц с электрическими требованиями ламп. Магнитный балласт изменяет напряжение, но не частоту. Таким образом, напряжение лампы пересекает ноль 120 раз в секунду, что приводит к колебаниям светоотдачи 120 Гц. Это приводит к мерцанию около 30% для стандартных галофосфорных ламп, работающих при 60 Гц.Мерцание обычно незаметно, но есть свидетельства того, что мерцание такой силы может вызывать побочные эффекты, такие как напряжение глаз и головная боль.
С другой стороны, в большинстве электронных балластов используется высокочастотный режим, который снижает мерцание лампы до практически незаметного уровня. Процент мерцания конкретного балласта обычно указывается производителем. Для данного балласта процент мерцания будет функцией типа лампы и состава люминофора.
Слышимый шум
Одной из характеристик электромагнитных балластов с железным сердечником, работающих на частоте 60 Гц, является создание слышимого шума.Шум может увеличиваться при высоких температурах, и он усиливается некоторыми конструкциями светильников. В лучших балластах используются высококачественные материалы и обработка для снижения шума. Уровень шума оценивается A, B, C или D в порядке убывания предпочтения. Балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» будет издавать громкое жужжание. Количество балластов, их уровень шума и характер окружающего шума в комнате определяют, будет ли система создавать звуковые помехи.
Практически все энергоэффективные магнитные балласты для ламп F40T12 и F32T8 имеют рейтинг «А», за некоторыми исключениями, такими как низкотемпературные балласты.Тем не менее, шум магнитных балластов может быть заметен в особенно тихой среде, например в библиотеке. С другой стороны, хорошо спроектированные электронные балласты высокой частоты не должны издавать заметного гула. Все электронные балласты имеют рейтинг «А» по звуку.
Диммирование
В отличие от ламп накаливания, люминесцентные лампы не могут быть должным образом затемнены с помощью простого настенного устройства, такого как те, которые используются для ламп накаливания. Чтобы люминесцентная лампа могла регулировать яркость во всем диапазоне без сокращения срока службы лампы, необходимо поддерживать напряжение нагревателя ее электрода, в то время как ток дуги лампы снижается.Таким образом, лампы, работающие в режиме быстрого запуска, являются единственными люминесцентными лампами, подходящими для широкого диапазона диммирования. Мощность, необходимая для поддержания постоянного напряжения на электродах во всех условиях диммирования, означает, что диммирующие балласты будут менее эффективными при работе ламп на пониженных уровнях.
Диммирующие балласты доступны как в магнитной, так и в электронной версиях, но использование электронных диммирующих балластов дает явные преимущества. Для регулирования яркости ламп магнитным пускорегулирующим устройствам требуется ПРА, содержащее дорогостоящие устройства переключения большой мощности, которые регулируют входную мощность, подаваемую на пускорегулирующие устройства.Это экономически целесообразно только при управлении большим количеством балластов в одной ответвленной цепи. Кроме того, светильники должны управляться в больших зонах, которые определяются схемой системы распределения электроэнергии. Поскольку система распределения фиксируется на ранних этапах процесса проектирования, системы управления, использующие балласты с магнитным регулированием яркости, негибкие и неспособны приспособиться к изменениям в схемах использования.
С другой стороны, диммирование ламп с электронным балластом осуществляется внутри самого балласта.Электронные балласты изменяют выходную мощность ламп с помощью сигнала низкого напряжения в выходной цепи. Переключающие устройства большой мощности для кондиционирования входной мощности не требуются. Это позволяет управлять одним или несколькими балластами независимо от системы распределения электроэнергии. С диммирующими электронными балластными системами можно использовать низковольтную сеть управления для группирования балластов в зоны управления произвольного размера. Эта сеть управления может быть добавлена во время ремонта здания или даже, в некоторых случаях, во время модернизации освещения.Низковольтную проводку не нужно прокладывать в кабелепроводе, что помогает снизить затраты на установку. Кроме того, менее затратно изменить размер и протяженность зон освещения путем перенастройки низковольтной проводки при изменении схемы использования. Низковольтная проводка также совместима с фотоэлементами, датчиками присутствия и входами системы управления энергопотреблением (EMS).
Диапазон диммирования балластов сильно различается. С большинством электронных диммируемых балластов уровни освещенности могут варьироваться от полной мощности до минимум примерно 10% от полной мощности.Тем не менее, также доступны электронные балласты с регулировкой яркости с полным диапазоном, которые работают с лампами при световом потоке до 1% от полного светового потока. Балласты с магнитным диммированием также предлагают множество вариантов диммирования, включая диммирование во всем диапазоне.
Адаптировано из Advanced Lighting Guidelines: 1993 (второе издание), первоначально опубликованного Комиссией по энергетике Калифорнии.
Дополнительные световоды
Insight — Как работает Tubelight Starter
Люминесцентные лампы — одни из самых популярных систем освещения, используемых во всем мире.Люминесцентные лампы / лампы наполнены парами ртути. Они используют электрический заряд для возбуждения атомов ртути с целью получения ультрафиолетового света. Стартер накаливания или обычно известный как стартер используется в цепи лампового света для подачи начального тока на нити лампового света. Чтобы понять, почему в цепи лампового освещения используется стартер, давайте посмотрим на его схему.
Рис.1: Схема схемы лампового пускателя
Когда переключатель нажат, ток не может первоначально проходить через трубку, потому что газ внутри нее не ионизирован и, следовательно, цепь освещения трубки ведет себя как разомкнутая цепь.Как только газ ионизируется, он обеспечивает путь для прохождения тока. Для ионизации газа необходим начальный высокий ток в течение короткого периода времени через нити основной трубки. Это то, что делает стартер. Первоначально стартер обеспечивает путь для замыкания цепи, и как только загорается лампочка, ток течет через ионизированный газ в основной лампе.
Рис. 2: Изображение Tubelight Starter
На изображении выше показан типичный стартер, подключенный параллельно люминесцентной лампе.
Рис. 3: Изображение, показывающее цилиндрическую форму стартера с двумя прикрепленными к нему выводами
Это цилиндрическая банка с двумя выводами, как показано на рисунках выше. Эти две клеммы используются для электрического соединения стартера с остальной частью цепи.
Ключевые компоненты
Рис. 4: Изображение, показывающее заполненную газом трубку и конденсатор подавления радиопомех стартера
Пускатель состоит из небольшой газонаполненной трубки и конденсатора подавления радиочастотных помех (см. Также Capacitor-Insight).И конденсатор, и трубка, заполненная неоновым газом, подключены параллельно к цепи лампы.
Рис.5: Увеличенный вид газонаполненной трубки
Маленькая стеклянная трубка заполнена неоном или аргоном и содержит биметаллическую пластину. Эта биметаллическая пластина — сердце стартера. Из двух контактных полос, показанных на изображении, левая прикреплена с биметаллической полосой, как показано на изображении выше.
Конденсатор
Рис.6: Изображение конденсатора подавления радиопомех
Конденсатор подавления радиопомех показан на изображении. Открытие конденсатора открывает следующий вид.
Рис.7: Конденсатор внутри
Конденсатор подавления радиопомех
выполняет следующие функции в цепи лампового освещения:
а. Поглощает электрический шум, создаваемый разрядом вокруг электродов, чтобы подавить радиочастотные помехи другим электрическим устройствам.
г. Ослабляет начальное напряжение зажигания от балласта и делает его широким, чтобы обеспечить более надежный запуск.
г. Избегая изгибов между контактами накаливания, он обеспечивает долгий срок службы контактов.
Рабочий:
Когда питание подается на цепь лампового освещения, этого напряжения недостаточно для ионизации газа внутри основной трубки. Однако эта мощность создает электрический потенциал на контактах маленькой трубки стартера.Это электрическое поле достаточно велико, чтобы ионизировать газ внутри маленькой трубки и, следовательно, через ионизированный газ в двух контактах протекает ток. Тепло, выделяемое из-за протекания тока, расширяет биметаллическую пластину по направлению к другой пластине и в течение нескольких десятых секунды касается другой пластины. Это выполняет две функции: во-первых, он деионизирует газ, а во-вторых, увеличивает ток через нити основной трубки.
Теперь газ в основной трубке ионизируется, и через него начинает течь ток.Таким образом, биметаллическая пластина стартера охлаждается, открывая зазор между двумя контактами. Этот промежуток будет оставаться открытым до тех пор, пока в следующий раз не загорится лампочка.
]]>
]]>
(PDF) Конструкция адаптивного электронного пускателя для люминесцентных ламп
кратко описывается следующим образом. Сначала выпрямленное напряжение
измеряется и детектируется детектором напряжения. Если
обнаружено высокое напряжение, сработает таймер предварительного нагрева
и начнет отсчет времени предварительного нагрева T
ф.
.В процессе
времени предварительного нагрева T
ph
, пожарная цепь работает как короткое замыкание
, чтобы пропустить ток через нити лампы
для достижения процесса предварительного нагрева. По истечении времени предварительного нагрева
T
ф.
таймер предварительного нагрева отправляет сигнал запуска
в цепь зажигания, чтобы она работала как разомкнутая цепь. В момент размыкания цепи пожара
энергия, запасенная в магнитном балласте
, преобразуется в высокое импульсное напряжение, которое вызывает пробой газа лампы
.Наконец, горит люминесцентная лампа
, а пожарная цепь остается в состоянии разомкнутой цепи. Как показано на рис. 3 (a)
, таймер предварительного нагрева, созданный схемой RC
, предназначен для снижения стоимости [6,7,8,10,11]. Время предварительного нагрева
T
ph
определяется значением произведения резистора
R
T1
и конденсатора C
T
. Этот таймер RC-цепи имеет ограничение
, которое не может быть перезапущено быстро, поскольку скорость разряженного конденсатора C
T
ограничена значением продукта
, резистором R
T2
и конденсатором C
Т
.Чтобы решить эту проблему, на
Рис. 3 (b) показан RC-таймер
с новой схемой управления.
˥
˧˄
˥
˧˅
˖
˧
(а)
˖̂́̇̅̂˿ʳ
˖˼̅˶̈˼̇
˖
˧
9000
˧˄
˥
˧˅
˦
˥˸̆˸̇ʳ˖̂́̇̅̂˿ʳ˖˼̅˶̈˼̇
(b)
Рисунок 3. (a) типичный RC-таймер; (b) типичный RC-таймер со схемой управления сбросом
Функция быстрого перезапуска выполняется переключателем S
, который может быть замкнут для мгновенного разряда конденсатора C
T
.
Однако схема управления в этой схеме управления сбросом
слишком сложна, чтобы снизить стоимость [9]. Время предварительного нагрева типичного электронного пускателя
является фиксированным, что приводит к серьезной проблеме
, когда нити накаливания лампы перегружаются при высоком напряжении переменного тока
и занижены при низком уровне мощности переменного тока
. При перегрузке срок службы люминесцентной лампы
будет значительно сокращен. В состоянии сердечного ритма ниже
люминесцентную лампу трудно зажигать.То, что
означает, что в усовершенствованном электронном пускателе
необходимо адаптивное время предварительного нагрева. Кроме того, простая схема с более низкой стоимостью
должна быть сохранена в усовершенствованном электронном пускателе
для массового производства. Для достижения вышеупомянутого высокого качества
при низкой стоимости в этой статье предлагается управление сбросом с повышающим напряжением
(RCVPC), состоящее только из резистора
и диода. Кроме того, предлагаемый RCVPC
может адаптировать время предварительного нагрева в соответствии с
к входной мощности переменного тока и хорошо работать в ситуации с более низкой мощностью переменного тока
.
II. S
ОПИСАНИЕ СИСТЕМЫ
На рис. 4 показана блок-схема предлагаемого адаптивного электронного пускателя
, который состоит из выпрямителя
, детектора напряжения, RCVPC и пожарной цепи.
˙˼̅˸ʳ˖˼̅˶̈˼̇
ˣ̅˸˻˸˴̇˼́˺ʳ
˧˼̀˸̅
˩̂˿̇˴˺˸ʳ
˗˸̇˸˶ ̇̂̅
˥˸˶̇˼˹˼˸̅
˥˸̆˸̇ʳ˖̂́̇̅̂˿ʳ̊˼̇˻ʳ
˩̂˿̇˴˺˸ʳˣ̈˿˿ˀ˨̃ʳ˖˼̅˶̈˼̇
˖ˡ˄
˖ˡ˅
Рисунок 4.Блок-схема предлагаемого AES
Выпрямитель обеспечивает постоянное напряжение от сети переменного тока.
Детектор напряжения предназначен для определения напряжения на люминесцентной лампе
для оценки уровня мощности и
для контроля состояния включения света. Когда детектор напряжения
определяет достаточную мощность, схема обрабатывает состояние предварительного нагрева
для адаптивного времени предварительного нагрева, чтобы надлежащим образом
предварительно нагреть нити лампы.Адаптивное время предварительного нагрева
точно контролируется таймером предварительного нагрева и адаптируется к входной мощности переменного тока
. Подробные функции схемы будут
, проиллюстрированные в следующем разделе. По истечении времени предварительного нагрева цепь зажигания
может генерировать импульсный сигнал с высоким скачком напряжения
для зажигания люминесцентной лампы. Люминесцентная лампа
есть; поэтому загорелся. Когда входное питание переменного тока отключено, детектор напряжения
определяет эту ситуацию и запускает
RCVPC.Затем таймер предварительного нагрева возвращается в исходное состояние
для функции быстрого сброса. Наконец, люминесцентную лампу
можно быстро снова включить при необходимости.
III. C
IRCUIT ANALYSIS
Учитывая схему, стоимость и размер которой ограничены
для большей коммерческой выгоды, предлагаемая схема электронного пускателя
, показанная на рис. 5, спроектирована так, чтобы быть максимально простой
. Этот электронный пускатель не только поддерживает
всех функций при стандартной функции, но также обеспечивает адаптивное время предварительного нагрева
и пониженную мощность переменного тока при работе
.
424
Разрешенное лицензионное использование ограничено: UNIVERSIDAD NORDESTE. Загружено 1 июня 2010 г. в 14:39:15 UTC с IEEE Xplore. Ограничения применяются.
Анализ причин почернения концов люминесцентных ламп
15 июля 2016 г.,
Публикуется в статьях: EE Publishers, Статьи: Vector.
Информация от Cosine Developments
Чтобы разобраться в причинах почернения концов люминесцентных ламп, полезно немного узнать о самом свете.
Свет — это форма энергии, которая может выделяться атомом. Он состоит из множества маленьких частиц, подобных пакетам, которые обладают энергией и импульсом, но не имеют массы. Эти частицы, называемые фотонами света, являются основными единицами света. Далее в этом поможет базовое понимание конструкции и принципов работы люминесцентных ламп.
Конструкция люминесцентной лампы
Люминесцентная лампа представляет собой разрядную ртутную лампу низкого давления.Обычно он имеет форму длинной стеклянной трубки, покрытой на внутренней поверхности флуоресцентным порошком или люминофором. На каждом конце трубки находится катод лампы. Катод состоит из спирального вольфрамового нагревателя, покрытого специальными оксидами бария и стронция, которые при нагревании испускают электроны. К каждому катоду прикреплены две защитные пластины, которые предотвращают разрушение катушки нагревателя при бомбардировке положительными ионами во время разряда. Стеклянная трубка закрыта с обоих концов и содержит небольшое количество ртути и инертного газа под низким давлением.Газ может быть аргоном, криптоном или их смесью (см. Рис. 1).
Центральным элементом люминесцентной лампы является герметичная стеклянная трубка. Как показано на рис. 1, трубка содержит небольшое количество ртути и инертный газ, обычно аргон, который находится под очень низким давлением. Трубка также содержит порошок люминофора, нанесенный по внутренней стороне стекла (см. Рис. 2).
Как показано на рис. 2, трубка имеет два электрода, по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь подключена к источнику переменного тока.
Рис. 1: Базовая конфигурация люминесцентной лампы.
Когда вы включаете лампу, ток течет по электрической цепи к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ. Когда электроны и заряженные атомы движутся по трубке, некоторые из них будут сталкиваться с газообразными атомами ртути. Эти столкновения возбуждают атомы, выталкивая электроны на более высокие энергетические уровни.Когда электроны возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.
Принципы работы
Принцип работы люминесцентной лампы основан на неупругом рассеянии электронов, т.е. термоэлектронной эмиссии.
Термоэмиссия — это истечение электронов в вакуум из нагретого электрического проводника. Это также известно как эффект Эдисона и эффект Ричардсона. В более широком смысле, это высвобождение электронов или ионов из вещества в результате нагрева.
Падающий электрон (испускаемый покрытием на витках проволоки, образующей катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим»; часть энергии поглощается.
Это более высокое энергетическое состояние нестабильно, и атом будет излучать ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.Фотоны, которые испускаются из выбранной газовой смеси, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет.
Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем снижающийся с испусканием следующего фотона.Фотон, испущенный в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал.
Химические вещества, входящие в состав люминофора, выбраны таким образом, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора (см. Рис. 3).
Следует отметить, что во время каждого цикла запуска некоторое количество излучающего материала теряется с каждого катода.Этот материал имеет тенденцию загрязнять газы лампы и покрытия люминофора и заметен в старых лампах в виде темных полос вокруг каждого катода. Это загрязнение приводит к постепенному снижению мощности лампы (уменьшение светового потока). Когда больше не будет достаточно материала, излучающего электроны, чтобы обеспечить правильный объем свободных электронов во время запуска, лампы больше не будут зажигать.
Обрыв катода лампы также предотвратит зажигание лампы при нормальных условиях.
КПД
Эффективность люминесцентных ламп колеблется от примерно 16 лм / Вт для лампы 4 Вт с обычным балластом до 95 лм / Вт для лампы 32 Вт с современным электронным балластом, обычно в среднем от 50 до 67 лм / Вт в целом. .Большинство компактных люминесцентных ламп мощностью 13 Вт и более со встроенными электронными балластами достигают около 60 лм / Вт. Из-за деградации люминофора по мере старения лампы средняя яркость за весь срок службы фактически примерно на 10% меньше.
Лампа пусковая
Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение в диапазоне 1000 В.
В некоторых случаях это происходит именно так: люминесцентные лампы с мгновенным запуском просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу.
В остальных случаях должна быть предусмотрена отдельная помощь при пуске. Некоторые люминесцентные конструкции (лампы предварительного нагрева) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем, который первоначально соединяет нити последовательно с балластом и, таким образом, предварительно нагревает нити перед зажиганием дуги.
Самая популярная конструкция люминесцентных ламп — это лампа с быстрым запуском. Эта конструкция работает по тому же основному принципу, что и традиционная лампа стартера, но у нее нет выключателя стартера. Вместо этого балласт лампы постоянно пропускает ток через оба электрода. Этот ток сконфигурирован так, что между двумя электродами существует разница зарядов, что создает напряжение на трубке.
При включении люминесцентной лампы обе электродные нити очень быстро нагреваются (горячий катод), выкипая электроны, которые ионизируют газ в трубке.После ионизации газа разность напряжений между электродами создает электрическую дугу. Текущие заряженные частицы (красные) возбуждают атомы ртути (серебра), запуская процесс освещения.
Рис. 2: Внутри люминесцентной лампы.
Сравнение с горячим катодом и холодным катодом
Катод — отрицательный электрод люминесцентной лампы. Ток течет через электроны, вылетающие из катода и притягивающиеся к положительному электроду, аноду.
Горячий катод должен быть нагрет для правильной работы и для испускания достаточного количества электронов, чтобы быть полезным. Примерами являются ЭЛТ-телевизоры и мониторы, большинство электронных ламп (или клапанов) и вакуумные флуоресцентные дисплеи (например, на видеомагнитофонах). Это, как объяснялось ранее, называется «термоэлектронной эмиссией» — выкипанием электронов с поверхности катода. Обычные люминесцентные лампы представляют собой устройства с горячим катодом, которые частично поддерживаются самим током разряда. У всех есть период разминки (хотя он может быть довольно коротким).
Горячий катод
Тепловое излучение — это основной процесс, используемый в лампах с горячим катодом, которые включают стандартные люминесцентные лампы. Ионы ускоряются к катоду за счет небольшого катодного напряжения (менее 10 В) и получают достаточно энергии, чтобы нагреть небольшую часть очень тонкого проволочного электрода при столкновении с ним. Они нагревают его до тех пор, пока он не начнет тускло светиться и электроны «выкипят», высвободившись за счет тепловой энергии. Этот процесс очень эффективен в производстве большого количества электронов и приводит к появлению эффективных ламп.
Холодный катод
Вторичная эмиссия — более жестокий процесс генерации электронов. Для этого требуется падение ускоряющего напряжения от 130 до 150 В. Энергичные ионы просто «сбивают» электроны с поверхности металла. При этом они также сбивают часть металла — процесс, называемый напылением. У больших электродов T12 и T8 достаточно материала, чтобы прослужить до того, как другие эффекты вызовут отказ лампы. Нити накаливания лампы T5 намного более хрупкие и более подвержены повреждениям.
Балласты
Электронные балласты
В более новых конструкциях балласта с быстрым запуском предусмотрены силовые обмотки накала в балласте; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток. При запуске не возникает никаких индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.
Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого пуска: конденсатор (или иногда цепь автоматического отключения) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити.Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, поэтому ток конденсатора падает до низкого, но ненулевого значения. Этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, обычно образуют резонансный контур, увеличивая напряжение на лампе, чтобы ее можно было легко запустить.
Некоторые электронные балласты используют запрограммированный пуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта; и после того, как нити нагреваются, частота быстро уменьшается.Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается. Если лампа не загорается, электронная схема прекращает работу балласта.
Балласты аварийного управления
ПРА для аварийного управления предназначены для работы люминесцентной лампы при отключении электросети. Это вообще не обычное явление. В результате разработчик балластов аварийного управления не принимает во внимание тонкости зажигания люминесцентной лампы, чтобы предотвратить повреждение нити накала и т. Д.Стоимость также является важным фактором. В результате большинство балластов аварийного управления приводят в действие лампу в режиме холодного удара и, как объяснялось ранее, вызывая «сбивание» электронов, что включает в себя сбивание материала с нитей накала. Во-вторых, большинство аварийных ламп работают при гораздо более низком уровне освещенности, примерно 20% от нормального, что приводит к истощению электрода, вызывая почернение концов.
Окончание срока службы
Режим отказа по окончании срока службы люминесцентных ламп различается в зависимости от того, как они используются, и типа их ПРА.В настоящее время существует три основных режима отказа и четвертый, который начинает появляться:
Смесь выбросов
В основе всей работы лампы лежит тот факт, что любой металл непрерывно излучает электроны. Как количество, так и скорость, с которой они испускаются, очень сильно возрастают с температурой, хотя испускание происходит при любых температурах, превышающих абсолютный ноль (-273 ° C). Чтобы понять излучение, мы должны посмотреть, что происходит внутри тела металла. В любом металле есть один или два электрона, которые можно легко отделить от атома, так что внутри твердого металла есть своего рода море электронов, плавающих вокруг независимо от какого-либо конкретного атома.Последние фиксируются внутри кристаллической структуры и совсем не двигаются, хотя и колеблются на месте. Это море электронов является общим для всех металлов и действительно является определяющей характеристикой металла и объясняет многие из их знакомых свойств, таких как электрическая проводимость и тот факт, что они блестят.
Поскольку электроны не прикреплены к какому-либо конкретному атому, они постоянно перемещаются, очень похоже на молекулы в газе. Средняя скорость электронов увеличивается с температурой, но, поскольку они постоянно отскакивают от атомов и друг от друга, не все они имеют одинаковую скорость, а подчиняются закону статистического распределения (см.рис.4).
Эмиссионная смесь обычно состоит из смеси оксидов бария, стронция и кальция, покрытие разбрызгивается при нормальном использовании, что часто в конечном итоге приводит к выходу лампы из строя.
Рис. 3: Включение люминесцентной лампы.
Эмиссионная смесь на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки. Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда трубка запускается с холодными катодами.Лампы, работающие обычно менее трех часов за раз, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках. Когда вся эмиссионная смесь исчезнет, катод не может пропустить достаточно электронов в газовую начинку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они полностью не исчезнут, или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.
Балластная электроника
Это относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Срок службы встроенных электронных балластов сокращается в условиях высокой влажности. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Приведенный средний срок службы лампы обычно составляет при температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). Средний срок службы электроники при этой температуре обычно больше указанной, поэтому при такой температуре немногие лампы выйдут из строя из-за отказа электроники.
В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью).Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше. В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.
Люминофор
Эффективность люминофора падает во время использования. Приблизительно к 25 000 часов работы это будет, как правило, вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше).Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа. Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.
Потеря ртути
Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать.Исторически это не было проблемой, потому что в трубках содержится избыток ртути. Тем не менее, экологические проблемы в настоящее время приводят к созданию трубок с низким содержанием ртути, которые гораздо более точно дозируются с достаточным количеством ртути, достаточным для обеспечения ожидаемого срока службы лампы. Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.
Рис. 4: Крупный план нити накала ртутной газоразрядной лампы низкого давления с белым покрытием из термоэлектронной смеси на центральной части катушки.
Заключение
Почернение концов люминесцентных ламп
Почернение концов — обычное явление для большинства обычных люминесцентных ламп по мере их старения. Однако частый или повторный запуск может ускорить процесс. Сами по себе черные области не влияют на работу, за исключением небольшого уменьшения количества доступного света, поскольку люминофор в этой области мертв.Однако они представляют собой потерю металла на электродах (нитях).
Причина — разбрызгивание нитей, чаще всего в холодном состоянии. Итак, чаще всего это происходит, когда:
- Запуск с неисправным балластом для быстрого пуска, который не нагревает нить (и).
- Запуск с балластом или стартером, который постоянно работает.
- Используется с балластами аварийного управления.
Когда нить накала (катод) холодная (на отрицательной половине цикла переменного тока для этого конца трубки), работа выхода выше, и ионы имеют более высокую скорость при ударе, сбивая атомы металла в процессе.Это значительно уменьшается, когда нить нагревается до нормальной рабочей температуры (хотя даже в этом случае некоторое разбрызгивание неизбежно).
В основе работы люминесцентных ламп лежит тот факт, что любой металл непрерывно излучает электроны. Как количество, так и скорость, с которой они испускаются, очень сильно возрастают с температурой, хотя на самом деле испускание происходит при любых температурах, превышающих абсолютный ноль (-273 ° C).
Пуск лампы
Способ зажигания лампы и, следовательно, тип ПРА имеет большое влияние на почернение концов.
Как описано ранее в этой статье, во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска.Это явление усиливает распад электродов (нитей), что приводит к ускоренному потемнению концов.
После удара по трубке падающий основной разряд сохраняет нить накала / катод горячей, позволяя продолжать излучение.
По мере того, как лампа стареет, возникает ситуация, когда лампа не зажигает или зажигается, а затем гаснет, поэтому последовательность запуска повторяется.
При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа будет бесконечно работать, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку эмиссии недостаточно для поддержания нагрева катодов, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Тогда пора заменить лампу.
Свяжитесь со Стирлингом Марэ, Cosine Developments, тел. 031 579-2172, [email protected]
Статьи по теме
Как работает конденсатор в люминесцентной лампе?
Основы работы с конденсатором
Конденсатор — это старый термин для обозначения конденсатора, устройства, которое функционирует как очень маленькая батарея внутри цепи.По сути, конденсатор состоит из двух металлических листов, разделенных тонким изолирующим листом, который называется диэлектриком. Когда на конденсатор подается напряжение, в металлических листах накапливается небольшое количество электричества. Когда напряжение понижается, конденсатор разряжает накопленную электроэнергию. Конденсаторы являются одними из самых полезных электронных компонентов и используются во всем, от компьютерной памяти до зажигания автомобилей.
Основы работы с люминесцентными лампами
Прежде чем вы сможете понять, как работают конденсаторы в люминесцентных лампах, вам нужно кое-что узнать о самих лампах.Люминесцентную лампу сложно контролировать. Он имеет электроды на обоих концах и работает, пропуская ток через газ между этими электродами. Когда лампа впервые включается, газ устойчив к электричеству. Однако как только электричество начинает течь, сопротивление быстро падает, благодаря чему ток течет все быстрее и быстрее. Если бы ничего не было сделано для управления скоростью тока, через него протекало бы столько электричества, что оно слишком сильно нагрело бы газ и привело бы к взрыву лампочки.
Балласт
Балласт контролирует ток, протекающий через клапан, а конденсатор делает балласт более эффективным. Самый простой балласт — это моток проволоки. Когда электричество течет в катушку, она создает магнитное поле. Это поле сопротивляется потоку электричества, не позволяя ему строить. Электроэнергия, питающая люминесцентную лампу, — это переменный или переменный ток. Это означает, что он меняет направление много раз в секунду. Когда электричество меняет направление, движущееся магнитное поле в катушке замедляет его.Когда электричество начинает накапливаться, оно уже снова меняет направление. Катушка всегда идет на шаг впереди, предотвращая чрезмерное накопление электрического тока.
Не в фазе
Однако у катушки есть стоимость. Электричество имеет два измерения: напряжение и силу тока, также известные как ток. Напряжение — это мера того, насколько сильно подается электричество, а сила тока — это мера того, сколько электричества проходит по цепи. В эффективной цепи переменного тока напряжение и ток находятся в фазе — они увеличиваются и уменьшаются вместе.Однако, когда напряжение достигает балласта, балласт сначала сопротивляется увеличению тока. Это приводит к отставанию тока от напряжения, что делает схему неэффективной. Конденсатор нужен для того, чтобы сделать схему более эффективной, вернув их в фазу.
Устранение проблемы
При повышении напряжения конденсатор немного его поглощает.